file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.mul_mod
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 52, "start_col": 0, "start_line": 52 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.Definitions.lmul_st Lib.IntTypes.U64 4ul 0ul Hacl.Impl.K256.Qinv.mk_to_k256_scalar_comm_monoid
Prims.Tot
[ "total" ]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.__uint_to_t", "Hacl.K256.Scalar.qmul", "Prims.unit" ]
[]
false
false
false
false
false
let mul_mod ctx x y xy =
qmul xy x y
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.sqr_mod
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 57, "start_col": 0, "start_line": 57 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.Definitions.lsqr_st Lib.IntTypes.U64 4ul 0ul Hacl.Impl.K256.Qinv.mk_to_k256_scalar_comm_monoid
Prims.Tot
[ "total" ]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.__uint_to_t", "Hacl.K256.Scalar.qsqr", "Prims.unit" ]
[]
false
false
false
false
false
let sqr_mod ctx x xx =
qsqr xx x
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.linv
val linv (a: LSeq.lseq uint64 4) : Type0
val linv (a: LSeq.lseq uint64 4) : Type0
let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 29, "start_col": 0, "start_line": 28 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 4 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.U64", "Spec.K256.PointOps.q" ]
[]
false
false
false
false
true
let linv (a: LSeq.lseq uint64 4) : Type0 =
SD.bn_v #U64 #4 a < S.q
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.refl
val refl (a: LSeq.lseq uint64 4 {linv a}) : GTot S.qelem
val refl (a: LSeq.lseq uint64 4 {linv a}) : GTot S.qelem
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 19, "end_line": 33, "start_col": 0, "start_line": 32 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 4 {Hacl.Impl.K256.Qinv.linv a} -> Prims.GTot Spec.K256.PointOps.qelem
Prims.GTot
[ "sometrivial" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Hacl.Impl.K256.Qinv.linv", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.U64", "Spec.K256.PointOps.qelem" ]
[]
false
false
false
false
false
let refl (a: LSeq.lseq uint64 4 {linv a}) : GTot S.qelem =
SD.bn_v #U64 #4 a
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_top_index_t
val bn_get_top_index_t : len: Lib.IntTypes.size_nat -> i: Prims.nat{i <= len} -> Type0
let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len}
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 312, "start_col": 0, "start_line": 312 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_nat -> i: Prims.nat{i <= len} -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan" ]
[]
false
false
false
false
true
let bn_get_top_index_t (len: size_nat) (i: nat{i <= len}) =
x: nat{x < len}
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.qsquare_times
val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 93, "start_col": 0, "start_line": 90 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) [@CInline] let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.K256.Scalar.qelem -> a: Hacl.K256.Scalar.qelem -> b: Lib.IntTypes.size_t -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Lib.IntTypes.size_t", "Hacl.Impl.Exponentiation.lexp_pow2", "Lib.IntTypes.U64", "FStar.UInt32.__uint_to_t", "Hacl.Impl.K256.Qinv.mk_k256_scalar_concrete_ops", "Lib.Buffer.null", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "Prims.unit", "Spec.Exponentiation.exp_pow2_lemma", "Spec.K256.PointOps.qelem", "Hacl.Spec.K256.Qinv.mk_nat_mod_concrete_ops", "Hacl.K256.Scalar.qas_nat", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let qsquare_times out a b =
let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.limb_get_ith_bit
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t
let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 57, "end_line": 22, "start_col": 0, "start_line": 22 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.limb t -> i: Prims.nat{i < Lib.IntTypes.bits t} -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Hacl.Spec.Bignum.Definitions.limb", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.bits", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.size", "Lib.IntTypes.uint" ]
[]
false
false
false
false
false
let limb_get_ith_bit #t a i =
(a >>. size i) &. uint #t 1
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_ith_bit
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t
let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 38, "start_col": 0, "start_line": 35 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len} -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Lib.limb_get_ith_bit", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Prims.int", "Prims.op_Modulus" ]
[]
false
false
false
false
false
let bn_get_ith_bit #t #len input ind =
let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[ i ] j
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.limb_get_ith_bit_lemma
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 37, "end_line": 32, "start_col": 0, "start_line": 27 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.limb t -> i: Prims.nat{i < Lib.IntTypes.bits t} -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Hacl.Spec.Bignum.Lib.limb_get_ith_bit a i) == Lib.IntTypes.v a / Prims.pow2 i % 2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Hacl.Spec.Bignum.Definitions.limb", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.bits", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.op_Modulus", "Prims.op_Division", "Prims.pow2", "Prims.unit", "Lib.IntTypes.range_t", "Lib.IntTypes.mod_mask", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.uint", "Lib.IntTypes.mod_mask_lemma", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.size" ]
[]
true
false
true
false
false
let limb_get_ith_bit_lemma #t a i =
let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2)
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.qinv
val qinv (out f: qelem) : Stack unit (requires fun h -> live h out /\ live h f /\ disjoint out f /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qas_nat h1 out == S.qinv (qas_nat h0 f) /\ qe_lt_q h1 out)
val qinv (out f: qelem) : Stack unit (requires fun h -> live h out /\ live h f /\ disjoint out f /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qas_nat h1 out == S.qinv (qas_nat h0 f) /\ qe_lt_q h1 out)
let qinv out f = let h0 = ST.get () in SI.qinv_is_qinv_lemma (qas_nat h0 f); qinv_ out f
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 505, "start_col": 0, "start_line": 502 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) [@CInline] let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) [@CInline] let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out inline_for_extraction noextract val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit (requires fun h -> live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\ disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\ disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\ disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\ disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\ disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\ disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\ disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\ disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\ disjoint x_1011 x_1101 /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+| loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\ (let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in let _x_11 = S.qmul _x_10 (qas_nat h0 f) in let _x_101 = S.qmul _x_10 _x_11 in let _x_111 = S.qmul _x_10 _x_101 in let _x_1001 = S.qmul _x_10 _x_111 in let _x_1011 = S.qmul _x_10 _x_1001 in let _x_1101 = S.qmul _x_10 _x_1011 in qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\ qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\ qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\ qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\ qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\ qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\ qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101)) let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times x_10 f 1ul; let h1 = ST.get () in assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1); qmul x_11 x_10 f; let h2 = ST.get () in assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f)); qmul x_101 x_10 x_11; let h3 = ST.get () in assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11)); qmul x_111 x_10 x_101; let h4 = ST.get () in assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101)); qmul x_1001 x_10 x_111; let h5 = ST.get () in assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111)); qmul x_1011 x_10 x_1001; let h6 = ST.get () in assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001)); qmul x_1101 x_10 x_1011; let h7 = ST.get () in assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011)) inline_for_extraction noextract val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit (requires fun h -> live h x_11 /\ live h x_1011 /\ live h x_1101 /\ live h x6 /\ live h x8 /\ live h x14 /\ disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\ disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\ disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\ disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\ (let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\ qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\ qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14)) let qinv2 x_11 x_1011 x_1101 x6 x8 x14 = let h0 = ST.get () in qsquare_times x6 x_1101 2ul; qmul x6 x6 x_1011; let h1 = ST.get () in assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011)); qsquare_times x8 x6 2ul; qmul x8 x8 x_11; let h2 = ST.get () in assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11)); qsquare_times x14 x8 6ul; qmul x14 x14 x6; let h3 = ST.get () in assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6)) inline_for_extraction noextract val qinv3 (tmp x14: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x14 /\ disjoint tmp x14 /\ qe_lt_q h x14) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\ qe_lt_q h1 tmp) let qinv3 tmp x14 = push_frame (); let x56 = create_qelem () in let h0 = ST.get () in qsquare_times tmp x14 14ul; qmul tmp tmp x14; //tmp = x28 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14)); qsquare_times x56 tmp 28ul; qmul x56 x56 tmp; let h2 = ST.get () in assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp)); qsquare_times tmp x56 56ul; //tmp = r0 qmul tmp tmp x56; let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56)); qsquare_times_in_place tmp 14ul; //tmp = r1 qmul tmp tmp x14; let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14)); pop_frame () //r2; .. ;r8 inline_for_extraction noextract val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\ qe_lt_q h1 tmp) let qinv4 tmp x_101 x_111 x_1011 = let h0 = ST.get () in qsquare_times_in_place tmp 3ul; qmul tmp tmp x_101; //tmp = r2 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r3 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; //tmp = r4 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1011; //tmp = r5 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1011; //tmp = r6 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r7 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_111; //tmp = r8 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111)) // r9; ..; r15 inline_for_extraction noextract val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp) let qinv5 tmp x_101 x_111 x_1001 x_1101 = let h0 = ST.get () in qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1101; //tmp = r9 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; //tmp = r10 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 3ul; qmul tmp tmp x_111; //tmp = r11 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1001; //tmp = r12 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_101; //tmp = r13 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101)); qsquare_times_in_place tmp 10ul; qmul tmp tmp x_111; //tmp = r14 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r15 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111)) // r16; ..;r23 inline_for_extraction noextract val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x8 /\ live h x_11 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp) (qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp) let qinv6 tmp x8 x_11 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times_in_place tmp 9ul; qmul tmp tmp x8; //tmp = r16 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 9) (qas_nat h0 x8)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1001; //tmp = r17 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 5) (qas_nat h0 x_1001)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1011; //tmp = r18 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 6) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1101; //tmp = r19 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 4) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_11; //tmp = r20 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 5) (qas_nat h0 x_11)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1101; //tmp = r21 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 6) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 10ul; qmul tmp tmp x_1101; //tmp = r22 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 10) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1001; //tmp = r23 let h8 = ST.get () in assert (qas_nat h8 tmp == S.qmul (SI.qsquare_times (qas_nat h7 tmp) 4) (qas_nat h0 x_1001)) //r24; r25 inline_for_extraction noextract val qinv7 (tmp f x6: qelem) : Stack unit (requires fun h -> live h tmp /\ live h f /\ live h x6 /\ disjoint tmp f /\ disjoint tmp x6 /\ qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\ qe_lt_q h1 tmp) let qinv7 tmp f x6 = let h0 = ST.get () in qsquare_times_in_place tmp 6ul; qmul tmp tmp f; //tmp = r23 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 f)); qsquare_times_in_place tmp 8ul; qmul tmp tmp x6; //tmp = r24 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 8) (qas_nat h0 x6)) inline_for_extraction noextract val qinv8 (tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h f /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint tmp f /\ disjoint tmp x_11 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\ disjoint tmp x_1101 /\ qe_lt_q h f /\ qe_lt_q h x_11 /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r0_r25 (qas_nat h0 f) (qas_nat h0 x_11) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp) let qinv8 tmp f x_11 x_101 x_111 x_1001 x_1011 x_1101 = push_frame (); let x6 = create_qelem () in let x8 = create_qelem () in let x14 = create_qelem () in let h1 = ST.get () in qinv2 x_11 x_1011 x_1101 x6 x8 x14; //x6; x8; x14 let h2 = ST.get () in assert (modifies (loc x6 |+| loc x8 |+| loc x14) h1 h2); qinv3 tmp x14; //x28; x56; r0; r1 let h3 = ST.get () in assert (modifies (loc tmp) h2 h3); qinv4 tmp x_101 x_111 x_1011; //r2; ..; r8 let h4 = ST.get () in assert (modifies (loc tmp) h3 h4); qinv5 tmp x_101 x_111 x_1001 x_1101; //r9; ..; r15 let h5 = ST.get () in assert (modifies (loc tmp) h4 h5); qinv6 tmp x8 x_11 x_1001 x_1011 x_1101; //r16; ..; r23 let h6 = ST.get () in assert (modifies (loc tmp) h5 h6); qinv7 tmp f x6; //r24; r25 let h7 = ST.get () in assert (modifies (loc tmp) h6 h7); pop_frame () inline_for_extraction noextract val qinv_ (out f: qelem) : Stack unit (requires fun h -> live h out /\ live h f /\ disjoint out f /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qas_nat h1 out == SI.qinv (qas_nat h0 f) /\ qe_lt_q h1 out) #set-options "--z3rlimit 150" let qinv_ out f = push_frame (); let x_10 = create_qelem () in let x_11 = create_qelem () in let x_101 = create_qelem () in let x_111 = create_qelem () in let x_1001 = create_qelem () in let x_1011 = create_qelem () in let x_1101 = create_qelem () in qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101; qinv8 out f x_11 x_101 x_111 x_1001 x_1011 x_1101; pop_frame () val qinv (out f: qelem) : Stack unit (requires fun h -> live h out /\ live h f /\ disjoint out f /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qas_nat h1 out == S.qinv (qas_nat h0 f) /\ qe_lt_q h1 out)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.K256.Scalar.qelem -> f: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Hacl.Impl.K256.Qinv.qinv_", "Prims.unit", "Hacl.Spec.K256.Qinv.qinv_is_qinv_lemma", "Hacl.K256.Scalar.qas_nat", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let qinv out f =
let h0 = ST.get () in SI.qinv_is_qinv_lemma (qas_nat h0 f); qinv_ out f
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.qsquare_times_in_place
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 79, "end_line": 79, "start_col": 0, "start_line": 76 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.K256.Scalar.qelem -> b: Lib.IntTypes.size_t -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Lib.IntTypes.size_t", "Hacl.Impl.Exponentiation.lexp_pow2_in_place", "Lib.IntTypes.U64", "FStar.UInt32.__uint_to_t", "Hacl.Impl.K256.Qinv.mk_k256_scalar_concrete_ops", "Lib.Buffer.null", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "Prims.unit", "Spec.Exponentiation.exp_pow2_lemma", "Spec.K256.PointOps.qelem", "Hacl.Spec.K256.Qinv.mk_nat_mod_concrete_ops", "Hacl.K256.Scalar.qas_nat", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let qsquare_times_in_place out b =
let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma_aux
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d)
val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d)
let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 106, "start_col": 0, "start_line": 101 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> d: Prims.nat -> FStar.Pervasives.Lemma (requires a + b * Prims.pow2 c < Prims.pow2 (c + d) /\ a < Prims.pow2 c) (ensures b < Prims.pow2 d)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Math.Lemmas.small_division_lemma_1", "Prims.pow2", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Addition", "Prims.op_Division", "FStar.Math.Lemmas.lemma_div_plus", "FStar.Mul.op_Star", "FStar.Math.Lemmas.lemma_div_lt_nat" ]
[]
true
false
true
false
false
let bn_set_ith_bit_lemma_aux a b c d =
Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c)
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_div_pow2
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i)
let bn_div_pow2 #t #len b i = slice b i len
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 185, "start_col": 0, "start_line": 184 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i <= len} -> Hacl.Spec.Bignum.Definitions.lbignum t (len - i)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.slice", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Subtraction" ]
[]
false
false
false
false
false
let bn_div_pow2 #t #len b i =
slice b i len
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.qinv7
val qinv7 (tmp f x6: qelem) : Stack unit (requires fun h -> live h tmp /\ live h f /\ live h x6 /\ disjoint tmp f /\ disjoint tmp x6 /\ qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\ qe_lt_q h1 tmp)
val qinv7 (tmp f x6: qelem) : Stack unit (requires fun h -> live h tmp /\ live h f /\ live h x6 /\ disjoint tmp f /\ disjoint tmp x6 /\ qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\ qe_lt_q h1 tmp)
let qinv7 tmp f x6 = let h0 = ST.get () in qsquare_times_in_place tmp 6ul; qmul tmp tmp f; //tmp = r23 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 f)); qsquare_times_in_place tmp 8ul; qmul tmp tmp x6; //tmp = r24 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 8) (qas_nat h0 x6))
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 89, "end_line": 413, "start_col": 0, "start_line": 403 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) [@CInline] let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) [@CInline] let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out inline_for_extraction noextract val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit (requires fun h -> live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\ disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\ disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\ disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\ disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\ disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\ disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\ disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\ disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\ disjoint x_1011 x_1101 /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+| loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\ (let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in let _x_11 = S.qmul _x_10 (qas_nat h0 f) in let _x_101 = S.qmul _x_10 _x_11 in let _x_111 = S.qmul _x_10 _x_101 in let _x_1001 = S.qmul _x_10 _x_111 in let _x_1011 = S.qmul _x_10 _x_1001 in let _x_1101 = S.qmul _x_10 _x_1011 in qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\ qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\ qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\ qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\ qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\ qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\ qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101)) let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times x_10 f 1ul; let h1 = ST.get () in assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1); qmul x_11 x_10 f; let h2 = ST.get () in assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f)); qmul x_101 x_10 x_11; let h3 = ST.get () in assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11)); qmul x_111 x_10 x_101; let h4 = ST.get () in assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101)); qmul x_1001 x_10 x_111; let h5 = ST.get () in assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111)); qmul x_1011 x_10 x_1001; let h6 = ST.get () in assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001)); qmul x_1101 x_10 x_1011; let h7 = ST.get () in assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011)) inline_for_extraction noextract val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit (requires fun h -> live h x_11 /\ live h x_1011 /\ live h x_1101 /\ live h x6 /\ live h x8 /\ live h x14 /\ disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\ disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\ disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\ disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\ (let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\ qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\ qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14)) let qinv2 x_11 x_1011 x_1101 x6 x8 x14 = let h0 = ST.get () in qsquare_times x6 x_1101 2ul; qmul x6 x6 x_1011; let h1 = ST.get () in assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011)); qsquare_times x8 x6 2ul; qmul x8 x8 x_11; let h2 = ST.get () in assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11)); qsquare_times x14 x8 6ul; qmul x14 x14 x6; let h3 = ST.get () in assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6)) inline_for_extraction noextract val qinv3 (tmp x14: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x14 /\ disjoint tmp x14 /\ qe_lt_q h x14) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\ qe_lt_q h1 tmp) let qinv3 tmp x14 = push_frame (); let x56 = create_qelem () in let h0 = ST.get () in qsquare_times tmp x14 14ul; qmul tmp tmp x14; //tmp = x28 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14)); qsquare_times x56 tmp 28ul; qmul x56 x56 tmp; let h2 = ST.get () in assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp)); qsquare_times tmp x56 56ul; //tmp = r0 qmul tmp tmp x56; let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56)); qsquare_times_in_place tmp 14ul; //tmp = r1 qmul tmp tmp x14; let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14)); pop_frame () //r2; .. ;r8 inline_for_extraction noextract val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\ qe_lt_q h1 tmp) let qinv4 tmp x_101 x_111 x_1011 = let h0 = ST.get () in qsquare_times_in_place tmp 3ul; qmul tmp tmp x_101; //tmp = r2 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r3 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; //tmp = r4 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1011; //tmp = r5 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1011; //tmp = r6 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r7 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_111; //tmp = r8 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111)) // r9; ..; r15 inline_for_extraction noextract val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp) let qinv5 tmp x_101 x_111 x_1001 x_1101 = let h0 = ST.get () in qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1101; //tmp = r9 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; //tmp = r10 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 3ul; qmul tmp tmp x_111; //tmp = r11 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1001; //tmp = r12 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_101; //tmp = r13 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101)); qsquare_times_in_place tmp 10ul; qmul tmp tmp x_111; //tmp = r14 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r15 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111)) // r16; ..;r23 inline_for_extraction noextract val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x8 /\ live h x_11 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp) (qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp) let qinv6 tmp x8 x_11 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times_in_place tmp 9ul; qmul tmp tmp x8; //tmp = r16 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 9) (qas_nat h0 x8)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1001; //tmp = r17 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 5) (qas_nat h0 x_1001)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1011; //tmp = r18 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 6) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1101; //tmp = r19 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 4) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_11; //tmp = r20 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 5) (qas_nat h0 x_11)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1101; //tmp = r21 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 6) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 10ul; qmul tmp tmp x_1101; //tmp = r22 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 10) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1001; //tmp = r23 let h8 = ST.get () in assert (qas_nat h8 tmp == S.qmul (SI.qsquare_times (qas_nat h7 tmp) 4) (qas_nat h0 x_1001)) //r24; r25 inline_for_extraction noextract val qinv7 (tmp f x6: qelem) : Stack unit (requires fun h -> live h tmp /\ live h f /\ live h x6 /\ disjoint tmp f /\ disjoint tmp x6 /\ qe_lt_q h tmp /\ qe_lt_q h f /\ qe_lt_q h x6) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r24_r25 (qas_nat h0 tmp) (qas_nat h0 f) (qas_nat h0 x6) /\ qe_lt_q h1 tmp)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tmp: Hacl.K256.Scalar.qelem -> f: Hacl.K256.Scalar.qelem -> x6: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.K256.Scalar.qas_nat", "Spec.K256.PointOps.qmul", "Hacl.Spec.K256.Qinv.qsquare_times", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.K256.Scalar.qmul", "Hacl.Impl.K256.Qinv.qsquare_times_in_place", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let qinv7 tmp f x6 =
let h0 = ST.get () in qsquare_times_in_place tmp 6ul; qmul tmp tmp f; let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 f)); qsquare_times_in_place tmp 8ul; qmul tmp tmp x6; let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 8) (qas_nat h0 x6))
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_set_ith_bit
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len
let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 94, "start_col": 0, "start_line": 90 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len} -> Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logor", "Lib.IntTypes.SEC", "Lib.Sequence.index", "Lib.IntTypes.shift_left", "Lib.IntTypes.mk_int", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.l_Forall", "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Bar_Dot", "Lib.Sequence.op_String_Access", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.uint", "Lib.IntTypes.size", "Prims.int", "Prims.op_Modulus" ]
[]
false
false
false
false
false
let bn_set_ith_bit #t #len input ind =
let i = ind / bits t in let j = ind % bits t in let inp = input.[ i ] <- input.[ i ] |. (uint #t 1 <<. size j) in inp
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.qinv1
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit (requires fun h -> live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\ disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\ disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\ disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\ disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\ disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\ disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\ disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\ disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\ disjoint x_1011 x_1101 /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+| loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\ (let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in let _x_11 = S.qmul _x_10 (qas_nat h0 f) in let _x_101 = S.qmul _x_10 _x_11 in let _x_111 = S.qmul _x_10 _x_101 in let _x_1001 = S.qmul _x_10 _x_111 in let _x_1011 = S.qmul _x_10 _x_1001 in let _x_1101 = S.qmul _x_10 _x_1011 in qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\ qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\ qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\ qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\ qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\ qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\ qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit (requires fun h -> live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\ disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\ disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\ disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\ disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\ disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\ disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\ disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\ disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\ disjoint x_1011 x_1101 /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+| loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\ (let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in let _x_11 = S.qmul _x_10 (qas_nat h0 f) in let _x_101 = S.qmul _x_10 _x_11 in let _x_111 = S.qmul _x_10 _x_101 in let _x_1001 = S.qmul _x_10 _x_111 in let _x_1011 = S.qmul _x_10 _x_1001 in let _x_1101 = S.qmul _x_10 _x_1011 in qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\ qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\ qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\ qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\ qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\ qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\ qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times x_10 f 1ul; let h1 = ST.get () in assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1); qmul x_11 x_10 f; let h2 = ST.get () in assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f)); qmul x_101 x_10 x_11; let h3 = ST.get () in assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11)); qmul x_111 x_10 x_101; let h4 = ST.get () in assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101)); qmul x_1001 x_10 x_111; let h5 = ST.get () in assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111)); qmul x_1011 x_10 x_1001; let h6 = ST.get () in assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001)); qmul x_1101 x_10 x_1011; let h7 = ST.get () in assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 76, "end_line": 157, "start_col": 0, "start_line": 129 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) [@CInline] let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) [@CInline] let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out inline_for_extraction noextract val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit (requires fun h -> live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\ disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\ disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\ disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\ disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\ disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\ disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\ disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\ disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\ disjoint x_1011 x_1101 /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+| loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\ (let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in let _x_11 = S.qmul _x_10 (qas_nat h0 f) in let _x_101 = S.qmul _x_10 _x_11 in let _x_111 = S.qmul _x_10 _x_101 in let _x_1001 = S.qmul _x_10 _x_111 in let _x_1011 = S.qmul _x_10 _x_1001 in let _x_1101 = S.qmul _x_10 _x_1011 in qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\ qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\ qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\ qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\ qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\ qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\ qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.K256.Scalar.qelem -> x_10: Hacl.K256.Scalar.qelem -> x_11: Hacl.K256.Scalar.qelem -> x_101: Hacl.K256.Scalar.qelem -> x_111: Hacl.K256.Scalar.qelem -> x_1001: Hacl.K256.Scalar.qelem -> x_1011: Hacl.K256.Scalar.qelem -> x_1101: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.K256.Scalar.qas_nat", "Spec.K256.PointOps.qmul", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.K256.Scalar.qmul", "Hacl.Spec.K256.Qinv.qsquare_times", "Hacl.Impl.K256.Qinv.qsquare_times", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let h0 = ST.get () in qsquare_times x_10 f 1ul; let h1 = ST.get () in assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1); qmul x_11 x_10 f; let h2 = ST.get () in assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f)); qmul x_101 x_10 x_11; let h3 = ST.get () in assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11)); qmul x_111 x_10 x_101; let h4 = ST.get () in assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101)); qmul x_1001 x_10 x_111; let h5 = ST.get () in assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111)); qmul x_1011 x_10 x_1001; let h6 = ST.get () in assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001)); qmul x_1101 x_10 x_1011; let h7 = ST.get () in assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011))
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_mod_pow2
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i
let bn_mod_pow2 #t #aLen a i = sub a 0 i
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 205, "start_col": 0, "start_line": 205 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Prims.nat{i <= aLen} -> Hacl.Spec.Bignum.Definitions.lbignum t i
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.sub", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_mod_pow2 #t #aLen a i =
sub a 0 i
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.qinv2
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit (requires fun h -> live h x_11 /\ live h x_1011 /\ live h x_1101 /\ live h x6 /\ live h x8 /\ live h x14 /\ disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\ disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\ disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\ disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\ (let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\ qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\ qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit (requires fun h -> live h x_11 /\ live h x_1011 /\ live h x_1101 /\ live h x6 /\ live h x8 /\ live h x14 /\ disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\ disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\ disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\ disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\ (let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\ qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\ qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 = let h0 = ST.get () in qsquare_times x6 x_1101 2ul; qmul x6 x6 x_1011; let h1 = ST.get () in assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011)); qsquare_times x8 x6 2ul; qmul x8 x8 x_11; let h2 = ST.get () in assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11)); qsquare_times x14 x8 6ul; qmul x14 x14 x6; let h3 = ST.get () in assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6))
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 88, "end_line": 193, "start_col": 0, "start_line": 178 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) [@CInline] let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) [@CInline] let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out inline_for_extraction noextract val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit (requires fun h -> live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\ disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\ disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\ disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\ disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\ disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\ disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\ disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\ disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\ disjoint x_1011 x_1101 /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+| loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\ (let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in let _x_11 = S.qmul _x_10 (qas_nat h0 f) in let _x_101 = S.qmul _x_10 _x_11 in let _x_111 = S.qmul _x_10 _x_101 in let _x_1001 = S.qmul _x_10 _x_111 in let _x_1011 = S.qmul _x_10 _x_1001 in let _x_1101 = S.qmul _x_10 _x_1011 in qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\ qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\ qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\ qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\ qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\ qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\ qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101)) let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times x_10 f 1ul; let h1 = ST.get () in assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1); qmul x_11 x_10 f; let h2 = ST.get () in assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f)); qmul x_101 x_10 x_11; let h3 = ST.get () in assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11)); qmul x_111 x_10 x_101; let h4 = ST.get () in assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101)); qmul x_1001 x_10 x_111; let h5 = ST.get () in assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111)); qmul x_1011 x_10 x_1001; let h6 = ST.get () in assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001)); qmul x_1101 x_10 x_1011; let h7 = ST.get () in assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011)) inline_for_extraction noextract val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit (requires fun h -> live h x_11 /\ live h x_1011 /\ live h x_1101 /\ live h x6 /\ live h x8 /\ live h x14 /\ disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\ disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\ disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\ disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\ (let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\ qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\ qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x_11: Hacl.K256.Scalar.qelem -> x_1011: Hacl.K256.Scalar.qelem -> x_1101: Hacl.K256.Scalar.qelem -> x6: Hacl.K256.Scalar.qelem -> x8: Hacl.K256.Scalar.qelem -> x14: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.K256.Scalar.qas_nat", "Spec.K256.PointOps.qmul", "Hacl.Spec.K256.Qinv.qsquare_times", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.K256.Scalar.qmul", "Hacl.Impl.K256.Qinv.qsquare_times", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let qinv2 x_11 x_1011 x_1101 x6 x8 x14 =
let h0 = ST.get () in qsquare_times x6 x_1101 2ul; qmul x6 x6 x_1011; let h1 = ST.get () in assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011)); qsquare_times x8 x6 2ul; qmul x8 x8 x_11; let h2 = ST.get () in assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11)); qsquare_times x14 x8 6ul; qmul x14 x14 x6; let h3 = ST.get () in assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6))
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.cswap2
val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len)
val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len)
let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 278, "start_col": 0, "start_line": 276 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bit: Hacl.Spec.Bignum.Definitions.limb t -> b1: Hacl.Spec.Bignum.Definitions.lbignum t len -> b2: Hacl.Spec.Bignum.Definitions.lbignum t len -> Hacl.Spec.Bignum.Definitions.lbignum t len * Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.LoopCombinators.repeati", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Lib.cswap2_f", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.uint" ]
[]
false
false
false
false
false
let cswap2 #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2)
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_top_index_f
val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1)
val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1)
let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 324, "start_col": 0, "start_line": 322 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Prims.nat{i < len} -> priv: Hacl.Spec.Bignum.Lib.bn_get_top_index_t len i -> Hacl.Spec.Bignum.Lib.bn_get_top_index_t len (i + 1)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Lib.bn_get_top_index_t", "Prims.op_Equality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.bool", "Prims.op_Addition", "Lib.IntTypes.int_t", "Lib.IntTypes.eq_mask", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Lib.IntTypes.zeros" ]
[]
false
false
false
false
false
let bn_get_top_index_f #t #len b i priv =
let mask = eq_mask b.[ i ] (zeros t SEC) in if v mask = 0 then i else priv
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_top_index
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len}
let bn_get_top_index #t #len b = Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 328, "start_col": 0, "start_line": 327 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1) let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> res: Lib.IntTypes.size_nat{res < len}
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Lib.LoopCombinators.repeat_gen", "Hacl.Spec.Bignum.Lib.bn_get_top_index_t", "Hacl.Spec.Bignum.Lib.bn_get_top_index_f", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThan" ]
[]
false
false
false
false
false
let bn_get_top_index #t #len b =
Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.cswap2_f
val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len)
val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len)
let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 265, "start_col": 0, "start_line": 261 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mask: Hacl.Spec.Bignum.Definitions.limb t -> i: Prims.nat{i < len} -> _: (Hacl.Spec.Bignum.Definitions.lbignum t len * Hacl.Spec.Bignum.Definitions.lbignum t len) -> Hacl.Spec.Bignum.Definitions.lbignum t len * Hacl.Spec.Bignum.Definitions.lbignum t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.limb", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.lbignum", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.lseq", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logxor", "Lib.IntTypes.SEC", "Lib.Sequence.index", "Prims.l_Forall", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.op_Hat_Dot", "Lib.Sequence.op_String_Access", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot" ]
[]
false
false
false
false
false
let cswap2_f #t #len mask i (p1, p2) =
let dummy = mask &. (p1.[ i ] ^. p2.[ i ]) in let p1 = p1.[ i ] <- p1.[ i ] ^. dummy in let p2 = p2.[ i ] <- p2.[ i ] ^. dummy in (p1, p2)
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.lemma_cswap2_step
val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 250, "start_col": 0, "start_line": 238 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bit: Hacl.Spec.Bignum.Definitions.limb t {Lib.IntTypes.v bit <= 1} -> p1: Hacl.Spec.Bignum.Definitions.limb t -> p2: Hacl.Spec.Bignum.Definitions.limb t -> FStar.Pervasives.Lemma (ensures (let mask = Lib.IntTypes.uint 0 -. bit in let dummy = mask &. p1 ^. p2 in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in (match Lib.IntTypes.v bit = 1 with | true -> p1' == p2 /\ p2' == p1 | _ -> p1' == p1 /\ p2' == p2) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Hacl.Spec.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Lib.IntTypes.logxor_lemma", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Hat_Dot", "Prims.unit", "Prims._assert", "Prims.eq2", "Lib.IntTypes.range_t", "Prims.op_Equality", "Prims.int", "Prims.bool", "Lib.IntTypes.uint", "Prims.l_imp", "Lib.IntTypes.logand_lemma", "Lib.IntTypes.op_Amp_Dot", "Prims.op_Subtraction", "Prims.pow2", "Lib.IntTypes.bits", "Lib.IntTypes.op_Subtraction_Dot" ]
[]
false
false
true
false
false
let lemma_cswap2_step #t bit p1 p2 =
let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_ith_bit_lemma
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 86, "start_col": 0, "start_line": 71 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i / Lib.IntTypes.bits t < len} -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Hacl.Spec.Bignum.Lib.bn_get_ith_bit b i) == Hacl.Spec.Bignum.Definitions.bn_v b / Prims.pow2 i % 2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Prims.unit", "FStar.Calc.calc_finish", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Lib.bn_get_ith_bit_aux_lemma", "Prims.squash", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Hacl.Spec.Bignum.Lib.limb_get_ith_bit_lemma", "Hacl.Spec.Bignum.Lib.limb_get_ith_bit" ]
[]
false
false
true
false
false
let bn_get_ith_bit_lemma #t #len b ind =
let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[ i ] j in limb_get_ith_bit_lemma b.[ i ] j; calc ( == ) { v b.[ i ] / pow2 j % 2; ( == ) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; ( == ) { (assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j)) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2)
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_bits
val bn_get_bits: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> limb t
val bn_get_bits: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> limb t
let bn_get_bits #t #nLen n ind l = let mask_l = (uint #t #SEC 1 <<. size l) -. uint #t 1 in bn_get_bits_limb n ind &. mask_l
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 516, "start_col": 0, "start_line": 514 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1) let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} let bn_get_top_index #t #len b = Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) let bn_get_top_index_lemma #t #len b = Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0; let res = Loops.repeati_inductive #size_nat len (fun i priv -> priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\ priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0)) (fun i priv -> Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i; let mask = eq_mask b.[i] (zeros t SEC) in eq_mask_lemma b.[i] (zeros t SEC); assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0); let res = if v mask = 0 then i else priv in res) 0 in () val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma (requires ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) (ensures bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind]) let bn_get_top_index_eval_lemma #t #len b ind = let pbits = bits t in assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0); bn_eval_split_i b (ind + 1); assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len)); eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0)); bn_eval_zeroes #t (len - ind - 1) (len - ind - 1); assert (bn_v b == bn_v (slice b 0 (ind + 1))); bn_eval_split_i (slice b 0 (ind + 1)) ind; assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1))); bn_eval1 (slice b ind (ind + 1)); assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind]) val bn_low_bound_bits: #t:limb_t -> #len:size_pos{bits t * len <= max_size_t} -> b:lbignum t len -> res:size_nat{res / bits t < len} let bn_low_bound_bits #t #len b = bits t * bn_get_top_index b val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1) (ensures pow2 (bn_low_bound_bits b) < bn_v b) let bn_low_bound_bits_lemma #t #len b = let ind = bn_get_top_index #t #len b in bn_get_top_index_lemma #t #len b; bn_get_top_index_eval_lemma #t #len b ind; assert (pow2 (bn_low_bound_bits b) <= bn_v b); if ind = 0 then assert_norm (pow2 0 = 1) else Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b) val bn_get_bits_limb: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> limb t let bn_get_bits_limb #t #nLen n ind = let i = ind / bits t in let j = ind % bits t in let p1 = n.[i] >>. size j in let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[i + 1] <<. (size (bits t - j))) else p1 in p2 val bn_get_bits_limb_aux_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma ( let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[i] >>. size j in bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1) let bn_get_bits_limb_aux_lemma #t #nLen n ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[i] >>. size j in let res = bn_v n / pow2 ind % pow2 pbits in calc (==) { bn_v n / pow2 ind % pow2 pbits; (==) { Math.Lemmas.euclidean_division_definition res (pow2 (pbits - j)) } res / pow2 (pbits - j) * pow2 (pbits - j) + res % pow2 (pbits - j); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits } res / pow2 (pbits - j) * pow2 (pbits - j) + bn_v n / pow2 ind % pow2 (pbits - j); (==) { bn_get_ith_bit_aux_lemma n ind } res / pow2 (pbits - j) * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits } bn_v n / pow2 ind / pow2 (pbits - j) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.division_multiplication_lemma (bn_v n) (pow2 ind) (pow2 (pbits - j)) } bn_v n / (pow2 ind * pow2 (pbits - j)) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_plus ind (pbits - j) } bn_v n / pow2 (ind + pbits - j) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.euclidean_division_definition ind pbits } bn_v n / pow2 (i * pbits + pbits) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (bn_v n / pow2 (i * pbits + pbits)) pbits (pbits - j) } bn_v n / pow2 (i * pbits + pbits) * pow2 (pbits - j) % pow2 pbits + v p1; (==) { Math.Lemmas.distributivity_add_left i 1 pbits } bn_v n / pow2 ((i + 1) * pbits) * pow2 (pbits - j) % pow2 pbits + v p1; (==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v n / pow2 ((i + 1) * pbits)) (pow2 (pbits - j)) (pow2 pbits) } bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1; } val bn_get_bits_limb_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t)) #push-options "--z3rlimit 100" let bn_get_bits_limb_lemma #t #nLen n ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in assert (i == ind / bits t); assert (i < nLen); let p1 = n.[i] >>. size j in let res = bn_v n / pow2 ind % pow2 pbits in bn_get_ith_bit_aux_lemma n ind; assert (v p1 == bn_v n / pow2 ind % pow2 (pbits - j)); if j = 0 then () else begin bn_get_bits_limb_aux_lemma n ind; if i + 1 < nLen then begin let p2 = n.[i + 1] <<. (size (pbits - j)) in calc (==) { v p2 % pow2 (pbits - j); (==) { } v n.[i + 1] * pow2 (pbits - j) % pow2 pbits % pow2 (pbits - j); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v n.[i + 1] * pow2 (pbits - j)) (pbits - j) pbits } v n.[i + 1] * pow2 (pbits - j) % pow2 (pbits - j); (==) { Math.Lemmas.multiple_modulo_lemma (v n.[i + 1]) (pow2 (pbits - j)) } 0; }; let p3 = p1 |. p2 in logor_disjoint p1 p2 (pbits - j); assert (v p3 == v p1 + v p2); bn_eval_index n (i + 1); assert (res == v p1 + v p2); assert (ind / bits t + 1 < nLen && 0 < ind % bits t) end else begin bn_eval_bound n nLen; assert (bn_v n < pow2 (nLen * pbits)); Math.Lemmas.lemma_div_lt_nat (bn_v n) (nLen * pbits) ((i + 1) * pbits); Math.Lemmas.pow2_minus (nLen * pbits) ((i + 1) * pbits); assert (bn_v n / pow2 ((i + 1) * pbits) < pow2 0); assert_norm (pow2 0 = 1); assert (res == v p1) end end #pop-options val bn_get_bits: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> limb t
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen -> i: Lib.IntTypes.size_nat -> l: Lib.IntTypes.size_nat{l < Lib.IntTypes.bits t /\ i / Lib.IntTypes.bits t < nLen} -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.bits", "Prims.op_Division", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Lib.bn_get_bits_limb", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.uint", "Lib.IntTypes.size", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
false
false
false
false
false
let bn_get_bits #t #nLen n ind l =
let mask_l = (uint #t #SEC 1 <<. size l) -. uint #t 1 in bn_get_bits_limb n ind &. mask_l
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_low_bound_bits
val bn_low_bound_bits: #t:limb_t -> #len:size_pos{bits t * len <= max_size_t} -> b:lbignum t len -> res:size_nat{res / bits t < len}
val bn_low_bound_bits: #t:limb_t -> #len:size_pos{bits t * len <= max_size_t} -> b:lbignum t len -> res:size_nat{res / bits t < len}
let bn_low_bound_bits #t #len b = bits t * bn_get_top_index b
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 379, "start_col": 0, "start_line": 378 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1) let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} let bn_get_top_index #t #len b = Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) let bn_get_top_index_lemma #t #len b = Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0; let res = Loops.repeati_inductive #size_nat len (fun i priv -> priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\ priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0)) (fun i priv -> Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i; let mask = eq_mask b.[i] (zeros t SEC) in eq_mask_lemma b.[i] (zeros t SEC); assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0); let res = if v mask = 0 then i else priv in res) 0 in () val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma (requires ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) (ensures bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind]) let bn_get_top_index_eval_lemma #t #len b ind = let pbits = bits t in assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0); bn_eval_split_i b (ind + 1); assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len)); eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0)); bn_eval_zeroes #t (len - ind - 1) (len - ind - 1); assert (bn_v b == bn_v (slice b 0 (ind + 1))); bn_eval_split_i (slice b 0 (ind + 1)) ind; assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1))); bn_eval1 (slice b ind (ind + 1)); assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind]) val bn_low_bound_bits: #t:limb_t -> #len:size_pos{bits t * len <= max_size_t} -> b:lbignum t len -> res:size_nat{res / bits t < len}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> res: Lib.IntTypes.size_nat{res / Lib.IntTypes.bits t < len}
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Lib.IntTypes.max_size_t", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Lib.bn_get_top_index", "Lib.IntTypes.size_nat", "Prims.op_LessThan", "Prims.op_Division" ]
[]
false
false
false
false
false
let bn_low_bound_bits #t #len b =
bits t * bn_get_top_index b
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_low_bound_bits_lemma
val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1) (ensures pow2 (bn_low_bound_bits b) < bn_v b)
val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1) (ensures pow2 (bn_low_bound_bits b) < bn_v b)
let bn_low_bound_bits_lemma #t #len b = let ind = bn_get_top_index #t #len b in bn_get_top_index_lemma #t #len b; bn_get_top_index_eval_lemma #t #len b ind; assert (pow2 (bn_low_bound_bits b) <= bn_v b); if ind = 0 then assert_norm (pow2 0 = 1) else Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 76, "end_line": 394, "start_col": 0, "start_line": 386 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1) let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} let bn_get_top_index #t #len b = Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) let bn_get_top_index_lemma #t #len b = Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0; let res = Loops.repeati_inductive #size_nat len (fun i priv -> priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\ priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0)) (fun i priv -> Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i; let mask = eq_mask b.[i] (zeros t SEC) in eq_mask_lemma b.[i] (zeros t SEC); assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0); let res = if v mask = 0 then i else priv in res) 0 in () val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma (requires ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) (ensures bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind]) let bn_get_top_index_eval_lemma #t #len b ind = let pbits = bits t in assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0); bn_eval_split_i b (ind + 1); assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len)); eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0)); bn_eval_zeroes #t (len - ind - 1) (len - ind - 1); assert (bn_v b == bn_v (slice b 0 (ind + 1))); bn_eval_split_i (slice b 0 (ind + 1)) ind; assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1))); bn_eval1 (slice b ind (ind + 1)); assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind]) val bn_low_bound_bits: #t:limb_t -> #len:size_pos{bits t * len <= max_size_t} -> b:lbignum t len -> res:size_nat{res / bits t < len} let bn_low_bound_bits #t #len b = bits t * bn_get_top_index b val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1) (ensures pow2 (bn_low_bound_bits b) < bn_v b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (requires 1 < Hacl.Spec.Bignum.Definitions.bn_v b /\ Lib.IntTypes.bits t * len <= Lib.IntTypes.max_size_t /\ Hacl.Spec.Bignum.Definitions.bn_v b % 2 = 1) (ensures Prims.pow2 (Hacl.Spec.Bignum.Lib.bn_low_bound_bits b) < Hacl.Spec.Bignum.Definitions.bn_v b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Equality", "Prims.int", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.pow2", "Prims.bool", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1", "Hacl.Spec.Bignum.Lib.bn_low_bound_bits", "Prims.unit", "Prims._assert", "Prims.op_LessThanOrEqual", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Lib.bn_get_top_index_eval_lemma", "Hacl.Spec.Bignum.Lib.bn_get_top_index_lemma", "Prims.nat", "Prims.op_Subtraction", "Prims.op_LessThan", "Hacl.Spec.Bignum.Lib.bn_get_top_index" ]
[]
false
false
true
false
false
let bn_low_bound_bits_lemma #t #len b =
let ind = bn_get_top_index #t #len b in bn_get_top_index_lemma #t #len b; bn_get_top_index_eval_lemma #t #len b ind; assert (pow2 (bn_low_bound_bits b) <= bn_v b); if ind = 0 then assert_norm (pow2 0 = 1) else Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b)
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.qinv3
val qinv3 (tmp x14: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x14 /\ disjoint tmp x14 /\ qe_lt_q h x14) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\ qe_lt_q h1 tmp)
val qinv3 (tmp x14: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x14 /\ disjoint tmp x14 /\ qe_lt_q h x14) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\ qe_lt_q h1 tmp)
let qinv3 tmp x14 = push_frame (); let x56 = create_qelem () in let h0 = ST.get () in qsquare_times tmp x14 14ul; qmul tmp tmp x14; //tmp = x28 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14)); qsquare_times x56 tmp 28ul; qmul x56 x56 tmp; let h2 = ST.get () in assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp)); qsquare_times tmp x56 56ul; //tmp = r0 qmul tmp tmp x56; let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56)); qsquare_times_in_place tmp 14ul; //tmp = r1 qmul tmp tmp x14; let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14)); pop_frame ()
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 229, "start_col": 0, "start_line": 205 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) [@CInline] let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) [@CInline] let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out inline_for_extraction noextract val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit (requires fun h -> live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\ disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\ disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\ disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\ disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\ disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\ disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\ disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\ disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\ disjoint x_1011 x_1101 /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+| loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\ (let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in let _x_11 = S.qmul _x_10 (qas_nat h0 f) in let _x_101 = S.qmul _x_10 _x_11 in let _x_111 = S.qmul _x_10 _x_101 in let _x_1001 = S.qmul _x_10 _x_111 in let _x_1011 = S.qmul _x_10 _x_1001 in let _x_1101 = S.qmul _x_10 _x_1011 in qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\ qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\ qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\ qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\ qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\ qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\ qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101)) let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times x_10 f 1ul; let h1 = ST.get () in assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1); qmul x_11 x_10 f; let h2 = ST.get () in assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f)); qmul x_101 x_10 x_11; let h3 = ST.get () in assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11)); qmul x_111 x_10 x_101; let h4 = ST.get () in assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101)); qmul x_1001 x_10 x_111; let h5 = ST.get () in assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111)); qmul x_1011 x_10 x_1001; let h6 = ST.get () in assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001)); qmul x_1101 x_10 x_1011; let h7 = ST.get () in assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011)) inline_for_extraction noextract val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit (requires fun h -> live h x_11 /\ live h x_1011 /\ live h x_1101 /\ live h x6 /\ live h x8 /\ live h x14 /\ disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\ disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\ disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\ disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\ (let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\ qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\ qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14)) let qinv2 x_11 x_1011 x_1101 x6 x8 x14 = let h0 = ST.get () in qsquare_times x6 x_1101 2ul; qmul x6 x6 x_1011; let h1 = ST.get () in assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011)); qsquare_times x8 x6 2ul; qmul x8 x8 x_11; let h2 = ST.get () in assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11)); qsquare_times x14 x8 6ul; qmul x14 x14 x6; let h3 = ST.get () in assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6)) inline_for_extraction noextract val qinv3 (tmp x14: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x14 /\ disjoint tmp x14 /\ qe_lt_q h x14) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\ qe_lt_q h1 tmp)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tmp: Hacl.K256.Scalar.qelem -> x14: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.K256.Scalar.qas_nat", "Spec.K256.PointOps.qmul", "Hacl.Spec.K256.Qinv.qsquare_times", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.K256.Scalar.qmul", "Hacl.Impl.K256.Qinv.qsquare_times_in_place", "FStar.UInt32.__uint_to_t", "Hacl.Impl.K256.Qinv.qsquare_times", "Hacl.K256.Scalar.create_qelem", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let qinv3 tmp x14 =
push_frame (); let x56 = create_qelem () in let h0 = ST.get () in qsquare_times tmp x14 14ul; qmul tmp tmp x14; let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14)); qsquare_times x56 tmp 28ul; qmul x56 x56 tmp; let h2 = ST.get () in assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp)); qsquare_times tmp x56 56ul; qmul tmp tmp x56; let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56)); qsquare_times_in_place tmp 14ul; qmul tmp tmp x14; let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14)); pop_frame ()
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_lt_pow2_index_lemma
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0))
val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0))
let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 135, "start_col": 0, "start_line": 115 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> ind: Lib.IntTypes.size_nat{ind / Lib.IntTypes.bits t < len} -> FStar.Pervasives.Lemma (requires Hacl.Spec.Bignum.Definitions.bn_v b < Prims.pow2 ind) (ensures (let i = ind / Lib.IntTypes.bits t in Lib.IntTypes.v b.[ i ] < Prims.pow2 (ind % Lib.IntTypes.bits t) /\ Hacl.Spec.Bignum.Definitions.bn_v b == Hacl.Spec.Bignum.Definitions.bn_v (Lib.Sequence.slice b 0 i) + Prims.pow2 (i * Lib.IntTypes.bits t) * Lib.IntTypes.v b.[ i ] /\ Hacl.Spec.Bignum.Definitions.bn_v (Lib.Sequence.slice b (i + 1) len) = 0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Prims._assert", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Prims.pow2", "Prims.unit", "Hacl.Spec.Bignum.Lib.bn_set_ith_bit_lemma_aux", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.op_Subtraction", "Lib.Sequence.slice", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Hacl.Spec.Bignum.Definitions.bn_eval1", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Prims.nat", "FStar.Math.Lemmas.pow2_lt_compat", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.op_Modulus" ]
[]
true
false
true
false
false
let bn_lt_pow2_index_lemma #t #len b ind =
let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[ i ]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[ i ]) (i * pbits) j; assert (v b.[ i ] < pow2 j)
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_bits_limb
val bn_get_bits_limb: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> limb t
val bn_get_bits_limb: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> limb t
let bn_get_bits_limb #t #nLen n ind = let i = ind / bits t in let j = ind % bits t in let p1 = n.[i] >>. size j in let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[i + 1] <<. (size (bits t - j))) else p1 in p2
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 409, "start_col": 0, "start_line": 404 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1) let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} let bn_get_top_index #t #len b = Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) let bn_get_top_index_lemma #t #len b = Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0; let res = Loops.repeati_inductive #size_nat len (fun i priv -> priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\ priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0)) (fun i priv -> Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i; let mask = eq_mask b.[i] (zeros t SEC) in eq_mask_lemma b.[i] (zeros t SEC); assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0); let res = if v mask = 0 then i else priv in res) 0 in () val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma (requires ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) (ensures bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind]) let bn_get_top_index_eval_lemma #t #len b ind = let pbits = bits t in assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0); bn_eval_split_i b (ind + 1); assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len)); eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0)); bn_eval_zeroes #t (len - ind - 1) (len - ind - 1); assert (bn_v b == bn_v (slice b 0 (ind + 1))); bn_eval_split_i (slice b 0 (ind + 1)) ind; assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1))); bn_eval1 (slice b ind (ind + 1)); assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind]) val bn_low_bound_bits: #t:limb_t -> #len:size_pos{bits t * len <= max_size_t} -> b:lbignum t len -> res:size_nat{res / bits t < len} let bn_low_bound_bits #t #len b = bits t * bn_get_top_index b val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1) (ensures pow2 (bn_low_bound_bits b) < bn_v b) let bn_low_bound_bits_lemma #t #len b = let ind = bn_get_top_index #t #len b in bn_get_top_index_lemma #t #len b; bn_get_top_index_eval_lemma #t #len b ind; assert (pow2 (bn_low_bound_bits b) <= bn_v b); if ind = 0 then assert_norm (pow2 0 = 1) else Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b) val bn_get_bits_limb: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> limb t
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen -> ind: Lib.IntTypes.size_nat{ind / Lib.IntTypes.bits t < nLen} -> Hacl.Spec.Bignum.Definitions.limb t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_AmpAmp", "Prims.op_Addition", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Less_Less_Dot", "Lib.Sequence.op_String_Access", "Lib.IntTypes.size", "Prims.op_Subtraction", "Prims.bool", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Greater_Greater_Dot", "Prims.int", "Prims.op_Modulus" ]
[]
false
false
false
false
false
let bn_get_bits_limb #t #nLen n ind =
let i = ind / bits t in let j = ind % bits t in let p1 = n.[ i ] >>. size j in let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[ i + 1 ] <<. (size (bits t - j))) else p1 in p2
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.qinv4
val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\ qe_lt_q h1 tmp)
val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\ qe_lt_q h1 tmp)
let qinv4 tmp x_101 x_111 x_1011 = let h0 = ST.get () in qsquare_times_in_place tmp 3ul; qmul tmp tmp x_101; //tmp = r2 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r3 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; //tmp = r4 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1011; //tmp = r5 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1011; //tmp = r6 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r7 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_111; //tmp = r8 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111))
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 279, "start_col": 0, "start_line": 244 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) [@CInline] let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) [@CInline] let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out inline_for_extraction noextract val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit (requires fun h -> live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\ disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\ disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\ disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\ disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\ disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\ disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\ disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\ disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\ disjoint x_1011 x_1101 /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+| loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\ (let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in let _x_11 = S.qmul _x_10 (qas_nat h0 f) in let _x_101 = S.qmul _x_10 _x_11 in let _x_111 = S.qmul _x_10 _x_101 in let _x_1001 = S.qmul _x_10 _x_111 in let _x_1011 = S.qmul _x_10 _x_1001 in let _x_1101 = S.qmul _x_10 _x_1011 in qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\ qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\ qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\ qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\ qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\ qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\ qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101)) let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times x_10 f 1ul; let h1 = ST.get () in assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1); qmul x_11 x_10 f; let h2 = ST.get () in assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f)); qmul x_101 x_10 x_11; let h3 = ST.get () in assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11)); qmul x_111 x_10 x_101; let h4 = ST.get () in assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101)); qmul x_1001 x_10 x_111; let h5 = ST.get () in assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111)); qmul x_1011 x_10 x_1001; let h6 = ST.get () in assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001)); qmul x_1101 x_10 x_1011; let h7 = ST.get () in assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011)) inline_for_extraction noextract val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit (requires fun h -> live h x_11 /\ live h x_1011 /\ live h x_1101 /\ live h x6 /\ live h x8 /\ live h x14 /\ disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\ disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\ disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\ disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\ (let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\ qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\ qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14)) let qinv2 x_11 x_1011 x_1101 x6 x8 x14 = let h0 = ST.get () in qsquare_times x6 x_1101 2ul; qmul x6 x6 x_1011; let h1 = ST.get () in assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011)); qsquare_times x8 x6 2ul; qmul x8 x8 x_11; let h2 = ST.get () in assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11)); qsquare_times x14 x8 6ul; qmul x14 x14 x6; let h3 = ST.get () in assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6)) inline_for_extraction noextract val qinv3 (tmp x14: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x14 /\ disjoint tmp x14 /\ qe_lt_q h x14) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\ qe_lt_q h1 tmp) let qinv3 tmp x14 = push_frame (); let x56 = create_qelem () in let h0 = ST.get () in qsquare_times tmp x14 14ul; qmul tmp tmp x14; //tmp = x28 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14)); qsquare_times x56 tmp 28ul; qmul x56 x56 tmp; let h2 = ST.get () in assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp)); qsquare_times tmp x56 56ul; //tmp = r0 qmul tmp tmp x56; let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56)); qsquare_times_in_place tmp 14ul; //tmp = r1 qmul tmp tmp x14; let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14)); pop_frame () //r2; .. ;r8 inline_for_extraction noextract val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\ qe_lt_q h1 tmp)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tmp: Hacl.K256.Scalar.qelem -> x_101: Hacl.K256.Scalar.qelem -> x_111: Hacl.K256.Scalar.qelem -> x_1011: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.K256.Scalar.qas_nat", "Spec.K256.PointOps.qmul", "Hacl.Spec.K256.Qinv.qsquare_times", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.K256.Scalar.qmul", "Hacl.Impl.K256.Qinv.qsquare_times_in_place", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let qinv4 tmp x_101 x_111 x_1011 =
let h0 = ST.get () in qsquare_times_in_place tmp 3ul; qmul tmp tmp x_101; let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1011; let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1011; let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_111; let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111))
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.qinv5
val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp)
val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp)
let qinv5 tmp x_101 x_111 x_1001 x_1101 = let h0 = ST.get () in qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1101; //tmp = r9 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; //tmp = r10 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 3ul; qmul tmp tmp x_111; //tmp = r11 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1001; //tmp = r12 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_101; //tmp = r13 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101)); qsquare_times_in_place tmp 10ul; qmul tmp tmp x_111; //tmp = r14 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r15 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111))
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 331, "start_col": 0, "start_line": 296 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) [@CInline] let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) [@CInline] let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out inline_for_extraction noextract val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit (requires fun h -> live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\ disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\ disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\ disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\ disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\ disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\ disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\ disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\ disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\ disjoint x_1011 x_1101 /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+| loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\ (let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in let _x_11 = S.qmul _x_10 (qas_nat h0 f) in let _x_101 = S.qmul _x_10 _x_11 in let _x_111 = S.qmul _x_10 _x_101 in let _x_1001 = S.qmul _x_10 _x_111 in let _x_1011 = S.qmul _x_10 _x_1001 in let _x_1101 = S.qmul _x_10 _x_1011 in qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\ qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\ qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\ qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\ qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\ qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\ qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101)) let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times x_10 f 1ul; let h1 = ST.get () in assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1); qmul x_11 x_10 f; let h2 = ST.get () in assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f)); qmul x_101 x_10 x_11; let h3 = ST.get () in assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11)); qmul x_111 x_10 x_101; let h4 = ST.get () in assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101)); qmul x_1001 x_10 x_111; let h5 = ST.get () in assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111)); qmul x_1011 x_10 x_1001; let h6 = ST.get () in assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001)); qmul x_1101 x_10 x_1011; let h7 = ST.get () in assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011)) inline_for_extraction noextract val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit (requires fun h -> live h x_11 /\ live h x_1011 /\ live h x_1101 /\ live h x6 /\ live h x8 /\ live h x14 /\ disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\ disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\ disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\ disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\ (let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\ qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\ qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14)) let qinv2 x_11 x_1011 x_1101 x6 x8 x14 = let h0 = ST.get () in qsquare_times x6 x_1101 2ul; qmul x6 x6 x_1011; let h1 = ST.get () in assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011)); qsquare_times x8 x6 2ul; qmul x8 x8 x_11; let h2 = ST.get () in assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11)); qsquare_times x14 x8 6ul; qmul x14 x14 x6; let h3 = ST.get () in assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6)) inline_for_extraction noextract val qinv3 (tmp x14: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x14 /\ disjoint tmp x14 /\ qe_lt_q h x14) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\ qe_lt_q h1 tmp) let qinv3 tmp x14 = push_frame (); let x56 = create_qelem () in let h0 = ST.get () in qsquare_times tmp x14 14ul; qmul tmp tmp x14; //tmp = x28 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14)); qsquare_times x56 tmp 28ul; qmul x56 x56 tmp; let h2 = ST.get () in assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp)); qsquare_times tmp x56 56ul; //tmp = r0 qmul tmp tmp x56; let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56)); qsquare_times_in_place tmp 14ul; //tmp = r1 qmul tmp tmp x14; let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14)); pop_frame () //r2; .. ;r8 inline_for_extraction noextract val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\ qe_lt_q h1 tmp) let qinv4 tmp x_101 x_111 x_1011 = let h0 = ST.get () in qsquare_times_in_place tmp 3ul; qmul tmp tmp x_101; //tmp = r2 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r3 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; //tmp = r4 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1011; //tmp = r5 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1011; //tmp = r6 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r7 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_111; //tmp = r8 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111)) // r9; ..; r15 inline_for_extraction noextract val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tmp: Hacl.K256.Scalar.qelem -> x_101: Hacl.K256.Scalar.qelem -> x_111: Hacl.K256.Scalar.qelem -> x_1001: Hacl.K256.Scalar.qelem -> x_1101: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.K256.Scalar.qas_nat", "Spec.K256.PointOps.qmul", "Hacl.Spec.K256.Qinv.qsquare_times", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.K256.Scalar.qmul", "Hacl.Impl.K256.Qinv.qsquare_times_in_place", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let qinv5 tmp x_101 x_111 x_1001 x_1101 =
let h0 = ST.get () in qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1101; let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 3ul; qmul tmp tmp x_111; let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1001; let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_101; let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101)); qsquare_times_in_place tmp 10ul; qmul tmp tmp x_111; let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111))
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i))
let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 201, "start_col": 0, "start_line": 190 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> i: Lib.IntTypes.size_nat{i < len} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Lib.bn_div_pow2 b i) == Hacl.Spec.Bignum.Definitions.bn_v b / Prims.pow2 (Lib.IntTypes.bits t * i))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims._assert", "Prims.eq2", "Prims.int", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.op_Subtraction", "Lib.Sequence.slice", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Division", "Prims.pow2", "FStar.Mul.op_Star", "Prims.unit", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Prims.squash", "FStar.Math.Lemmas.division_addition_lemma", "FStar.Math.Lemmas.small_division_lemma_1", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Lib.IntTypes.bits" ]
[]
false
false
true
false
false
let bn_div_pow2_lemma #t #len c i =
let pbits = bits t in calc ( == ) { bn_v c / pow2 (pbits * i); ( == ) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); ( == ) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); ( == ) { (bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i))) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i))
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_ith_bit_aux_lemma
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 65, "start_col": 0, "start_line": 45 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> ind: Lib.IntTypes.size_nat{ind / Lib.IntTypes.bits t < len} -> FStar.Pervasives.Lemma (ensures (let i = ind / Lib.IntTypes.bits t in let j = ind % Lib.IntTypes.bits t in Lib.IntTypes.v (b.[ i ] >>. Lib.IntTypes.size j) == Hacl.Spec.Bignum.Definitions.bn_v b / Prims.pow2 ind % Prims.pow2 (Lib.IntTypes.bits t - j)) )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Prims.op_Subtraction", "Prims.unit", "FStar.Calc.calc_finish", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_index", "Prims.squash", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.euclidean_div_axiom", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.size" ]
[]
false
false
true
false
false
let bn_get_ith_bit_aux_lemma #t #len b ind =
let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[ i ] >>. size j in calc ( == ) { v b.[ i ] / pow2 j; ( == ) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; ( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); ( == ) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); ( == ) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); ( == ) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j))
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_mod_pow2_lemma
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i))
let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); }
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 219, "start_col": 0, "start_line": 209 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> i: Prims.nat{i <= aLen} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Lib.bn_mod_pow2 a i) == Hacl.Spec.Bignum.Definitions.bn_v a % Prims.pow2 (Lib.IntTypes.bits t * i))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Lib.Sequence.slice", "Hacl.Spec.Bignum.Definitions.limb", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Prims.squash", "FStar.Math.Lemmas.modulo_addition_lemma", "FStar.Math.Lemmas.small_mod", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Lib.IntTypes.bits" ]
[]
false
false
true
false
false
let bn_mod_pow2_lemma #t #aLen a i =
let pbits = bits t in calc ( == ) { bn_v a % pow2 (pbits * i); ( == ) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); ( == ) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); ( == ) { (bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i))) } bn_v (slice a 0 i); }
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_top_index_lemma
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
let bn_get_top_index_lemma #t #len b = Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0; let res = Loops.repeati_inductive #size_nat len (fun i priv -> priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\ priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0)) (fun i priv -> Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i; let mask = eq_mask b.[i] (zeros t SEC) in eq_mask_lemma b.[i] (zeros t SEC); assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0); let res = if v mask = 0 then i else priv in res) 0 in ()
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 349, "start_col": 0, "start_line": 335 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1) let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} let bn_get_top_index #t #len b = Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures (let ind = Hacl.Spec.Bignum.Lib.bn_get_top_index b in ind < len /\ (ind > 0 ==> Lib.IntTypes.v b.[ ind ] <> 0) /\ (forall (k: Prims.nat{ind < k /\ k < len}). Lib.IntTypes.v b.[ k ] = 0)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_and", "Prims.eq2", "Prims.l_or", "Prims.op_LessThan", "Lib.LoopCombinators.repeat_gen", "Hacl.Spec.Bignum.Lib.bn_get_top_index_t", "Hacl.Spec.Bignum.Lib.bn_get_top_index_f", "Prims.l_imp", "Prims.op_GreaterThan", "Prims.op_disEquality", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Lib.Sequence.index", "Hacl.Spec.Bignum.Definitions.limb", "Prims.l_Forall", "Prims.op_Equality", "Lib.LoopCombinators.repeati_inductive", "Lib.IntTypes.size_nat", "Lib.IntTypes.max_size_t", "Lib.Sequence.op_String_Access", "Prims.op_Addition", "Prims.bool", "Prims.unit", "Prims._assert", "Lib.IntTypes.eq_mask_lemma", "Lib.IntTypes.zeros", "Lib.IntTypes.int_t", "Lib.IntTypes.eq_mask", "Lib.LoopCombinators.unfold_repeat_gen", "Lib.LoopCombinators.eq_repeat_gen0" ]
[]
false
false
true
false
false
let bn_get_top_index_lemma #t #len b =
Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0; let res = Loops.repeati_inductive #size_nat len (fun i priv -> priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\ priv < len /\ (priv > 0 ==> v b.[ priv ] <> 0) /\ (forall (k: nat{priv < k /\ k < i}). v b.[ k ] = 0)) (fun i priv -> Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i; let mask = eq_mask b.[ i ] (zeros t SEC) in eq_mask_lemma b.[ i ] (zeros t SEC); assert (if v mask = 0 then v b.[ i ] <> 0 else v b.[ i ] = 0); let res = if v mask = 0 then i else priv in res) 0 in ()
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_bits_lemma
val bn_get_bits_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> Lemma (v (bn_get_bits n i l) == bn_v n / pow2 i % pow2 l)
val bn_get_bits_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> Lemma (v (bn_get_bits n i l) == bn_v n / pow2 i % pow2 l)
let bn_get_bits_lemma #t #nLen n ind l = let tmp = bn_get_bits_limb n ind in let mask_l = (uint #t #SEC 1 <<. size l) -. uint #t 1 in let tmp1 = tmp &. mask_l in Math.Lemmas.pow2_lt_compat (bits t) l; mod_mask_lemma tmp (size l); assert (v (mod_mask #t #SEC (size l)) == v mask_l); assert (v tmp1 == v tmp % pow2 l); bn_get_bits_limb_lemma #t #nLen n ind; assert (v tmp1 == bn_v n / pow2 ind % pow2 (bits t) % pow2 l); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) l (bits t); assert (v tmp1 == bn_v n / pow2 ind % pow2 l)
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 538, "start_col": 0, "start_line": 527 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1) let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} let bn_get_top_index #t #len b = Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) let bn_get_top_index_lemma #t #len b = Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0; let res = Loops.repeati_inductive #size_nat len (fun i priv -> priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\ priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0)) (fun i priv -> Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i; let mask = eq_mask b.[i] (zeros t SEC) in eq_mask_lemma b.[i] (zeros t SEC); assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0); let res = if v mask = 0 then i else priv in res) 0 in () val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma (requires ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) (ensures bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind]) let bn_get_top_index_eval_lemma #t #len b ind = let pbits = bits t in assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0); bn_eval_split_i b (ind + 1); assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len)); eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0)); bn_eval_zeroes #t (len - ind - 1) (len - ind - 1); assert (bn_v b == bn_v (slice b 0 (ind + 1))); bn_eval_split_i (slice b 0 (ind + 1)) ind; assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1))); bn_eval1 (slice b ind (ind + 1)); assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind]) val bn_low_bound_bits: #t:limb_t -> #len:size_pos{bits t * len <= max_size_t} -> b:lbignum t len -> res:size_nat{res / bits t < len} let bn_low_bound_bits #t #len b = bits t * bn_get_top_index b val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1) (ensures pow2 (bn_low_bound_bits b) < bn_v b) let bn_low_bound_bits_lemma #t #len b = let ind = bn_get_top_index #t #len b in bn_get_top_index_lemma #t #len b; bn_get_top_index_eval_lemma #t #len b ind; assert (pow2 (bn_low_bound_bits b) <= bn_v b); if ind = 0 then assert_norm (pow2 0 = 1) else Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b) val bn_get_bits_limb: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> limb t let bn_get_bits_limb #t #nLen n ind = let i = ind / bits t in let j = ind % bits t in let p1 = n.[i] >>. size j in let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[i + 1] <<. (size (bits t - j))) else p1 in p2 val bn_get_bits_limb_aux_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma ( let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[i] >>. size j in bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1) let bn_get_bits_limb_aux_lemma #t #nLen n ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[i] >>. size j in let res = bn_v n / pow2 ind % pow2 pbits in calc (==) { bn_v n / pow2 ind % pow2 pbits; (==) { Math.Lemmas.euclidean_division_definition res (pow2 (pbits - j)) } res / pow2 (pbits - j) * pow2 (pbits - j) + res % pow2 (pbits - j); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits } res / pow2 (pbits - j) * pow2 (pbits - j) + bn_v n / pow2 ind % pow2 (pbits - j); (==) { bn_get_ith_bit_aux_lemma n ind } res / pow2 (pbits - j) * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits } bn_v n / pow2 ind / pow2 (pbits - j) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.division_multiplication_lemma (bn_v n) (pow2 ind) (pow2 (pbits - j)) } bn_v n / (pow2 ind * pow2 (pbits - j)) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_plus ind (pbits - j) } bn_v n / pow2 (ind + pbits - j) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.euclidean_division_definition ind pbits } bn_v n / pow2 (i * pbits + pbits) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (bn_v n / pow2 (i * pbits + pbits)) pbits (pbits - j) } bn_v n / pow2 (i * pbits + pbits) * pow2 (pbits - j) % pow2 pbits + v p1; (==) { Math.Lemmas.distributivity_add_left i 1 pbits } bn_v n / pow2 ((i + 1) * pbits) * pow2 (pbits - j) % pow2 pbits + v p1; (==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v n / pow2 ((i + 1) * pbits)) (pow2 (pbits - j)) (pow2 pbits) } bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1; } val bn_get_bits_limb_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t)) #push-options "--z3rlimit 100" let bn_get_bits_limb_lemma #t #nLen n ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in assert (i == ind / bits t); assert (i < nLen); let p1 = n.[i] >>. size j in let res = bn_v n / pow2 ind % pow2 pbits in bn_get_ith_bit_aux_lemma n ind; assert (v p1 == bn_v n / pow2 ind % pow2 (pbits - j)); if j = 0 then () else begin bn_get_bits_limb_aux_lemma n ind; if i + 1 < nLen then begin let p2 = n.[i + 1] <<. (size (pbits - j)) in calc (==) { v p2 % pow2 (pbits - j); (==) { } v n.[i + 1] * pow2 (pbits - j) % pow2 pbits % pow2 (pbits - j); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v n.[i + 1] * pow2 (pbits - j)) (pbits - j) pbits } v n.[i + 1] * pow2 (pbits - j) % pow2 (pbits - j); (==) { Math.Lemmas.multiple_modulo_lemma (v n.[i + 1]) (pow2 (pbits - j)) } 0; }; let p3 = p1 |. p2 in logor_disjoint p1 p2 (pbits - j); assert (v p3 == v p1 + v p2); bn_eval_index n (i + 1); assert (res == v p1 + v p2); assert (ind / bits t + 1 < nLen && 0 < ind % bits t) end else begin bn_eval_bound n nLen; assert (bn_v n < pow2 (nLen * pbits)); Math.Lemmas.lemma_div_lt_nat (bn_v n) (nLen * pbits) ((i + 1) * pbits); Math.Lemmas.pow2_minus (nLen * pbits) ((i + 1) * pbits); assert (bn_v n / pow2 ((i + 1) * pbits) < pow2 0); assert_norm (pow2 0 = 1); assert (res == v p1) end end #pop-options val bn_get_bits: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> limb t let bn_get_bits #t #nLen n ind l = let mask_l = (uint #t #SEC 1 <<. size l) -. uint #t 1 in bn_get_bits_limb n ind &. mask_l val bn_get_bits_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> i:size_nat -> l:size_nat{l < bits t /\ i / bits t < nLen} -> Lemma (v (bn_get_bits n i l) == bn_v n / pow2 i % pow2 l)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen -> i: Lib.IntTypes.size_nat -> l: Lib.IntTypes.size_nat{l < Lib.IntTypes.bits t /\ i / Lib.IntTypes.bits t < nLen} -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Hacl.Spec.Bignum.Lib.bn_get_bits n i l) == Hacl.Spec.Bignum.Definitions.bn_v n / Prims.pow2 i % Prims.pow2 l)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.bits", "Prims.op_Division", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Hacl.Spec.Bignum.Lib.bn_get_bits_limb_lemma", "Lib.IntTypes.range_t", "Lib.IntTypes.mod_mask", "Lib.IntTypes.size", "Lib.IntTypes.mod_mask_lemma", "FStar.Math.Lemmas.pow2_lt_compat", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.uint", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Lib.bn_get_bits_limb" ]
[]
true
false
true
false
false
let bn_get_bits_lemma #t #nLen n ind l =
let tmp = bn_get_bits_limb n ind in let mask_l = (uint #t #SEC 1 <<. size l) -. uint #t 1 in let tmp1 = tmp &. mask_l in Math.Lemmas.pow2_lt_compat (bits t) l; mod_mask_lemma tmp (size l); assert (v (mod_mask #t #SEC (size l)) == v mask_l); assert (v tmp1 == v tmp % pow2 l); bn_get_bits_limb_lemma #t #nLen n ind; assert (v tmp1 == bn_v n / pow2 ind % pow2 (bits t) % pow2 l); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) l (bits t); assert (v tmp1 == bn_v n / pow2 ind % pow2 l)
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_top_index_eval_lemma
val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma (requires ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) (ensures bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma (requires ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) (ensures bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
let bn_get_top_index_eval_lemma #t #len b ind = let pbits = bits t in assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0); bn_eval_split_i b (ind + 1); assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len)); eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0)); bn_eval_zeroes #t (len - ind - 1) (len - ind - 1); assert (bn_v b == bn_v (slice b 0 (ind + 1))); bn_eval_split_i (slice b 0 (ind + 1)) ind; assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1))); bn_eval1 (slice b ind (ind + 1)); assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind])
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 74, "end_line": 369, "start_col": 0, "start_line": 358 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1) let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} let bn_get_top_index #t #len b = Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) let bn_get_top_index_lemma #t #len b = Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0; let res = Loops.repeati_inductive #size_nat len (fun i priv -> priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\ priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0)) (fun i priv -> Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i; let mask = eq_mask b.[i] (zeros t SEC) in eq_mask_lemma b.[i] (zeros t SEC); assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0); let res = if v mask = 0 then i else priv in res) 0 in () val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma (requires ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) (ensures bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Spec.Bignum.Definitions.lbignum t len -> ind: Prims.nat -> FStar.Pervasives.Lemma (requires ind < len /\ (ind > 0 ==> Lib.IntTypes.v b.[ ind ] <> 0) /\ (forall (k: Prims.nat{ind < k /\ k < len}). Lib.IntTypes.v b.[ k ] = 0)) (ensures Hacl.Spec.Bignum.Definitions.bn_v b == Hacl.Spec.Bignum.Definitions.bn_v (Lib.Sequence.slice b 0 ind) + Prims.pow2 (Lib.IntTypes.bits t * ind) * Lib.IntTypes.v b.[ ind ])
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_pos", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.nat", "Prims._assert", "Prims.eq2", "Prims.int", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.op_Addition", "Prims.op_Subtraction", "Lib.Sequence.slice", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Mul.op_Star", "Prims.pow2", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access", "Prims.unit", "Hacl.Spec.Bignum.Definitions.bn_eval1", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Hacl.Spec.Bignum.Definitions.bn_eval_zeroes", "Lib.Sequence.eq_intro", "Lib.Sequence.create", "Lib.IntTypes.uint", "Prims.l_Forall", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Lib.IntTypes.bits" ]
[]
false
false
true
false
false
let bn_get_top_index_eval_lemma #t #len b ind =
let pbits = bits t in assert (forall (k: nat{ind < k /\ k < len}). v b.[ k ] = 0); bn_eval_split_i b (ind + 1); assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len)); eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0)); bn_eval_zeroes #t (len - ind - 1) (len - ind - 1); assert (bn_v b == bn_v (slice b 0 (ind + 1))); bn_eval_split_i (slice b 0 (ind + 1)) ind; assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1))); bn_eval1 (slice b ind (ind + 1)); assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ ind ])
false
Hacl.Impl.K256.Qinv.fst
Hacl.Impl.K256.Qinv.qinv6
val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x8 /\ live h x_11 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp) (qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp)
val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x8 /\ live h x_11 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp) (qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp)
let qinv6 tmp x8 x_11 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times_in_place tmp 9ul; qmul tmp tmp x8; //tmp = r16 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 9) (qas_nat h0 x8)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1001; //tmp = r17 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 5) (qas_nat h0 x_1001)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1011; //tmp = r18 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 6) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1101; //tmp = r19 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 4) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_11; //tmp = r20 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 5) (qas_nat h0 x_11)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1101; //tmp = r21 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 6) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 10ul; qmul tmp tmp x_1101; //tmp = r22 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 10) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1001; //tmp = r23 let h8 = ST.get () in assert (qas_nat h8 tmp == S.qmul (SI.qsquare_times (qas_nat h7 tmp) 4) (qas_nat h0 x_1001))
{ "file_name": "code/k256/Hacl.Impl.K256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 93, "end_line": 389, "start_col": 0, "start_line": 349 }
module Hacl.Impl.K256.Qinv open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.K256.Scalar module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Spec.K256 module SI = Hacl.Spec.K256.Qinv module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module SD = Hacl.Spec.Bignum.Definitions #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = SD.bn_v #U64 #4 a < S.q unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SD.bn_v #U64 #4 a inline_for_extraction noextract let mk_to_k256_scalar_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let one_mod ctx one = make_u64_4 one (u64 1, u64 0, u64 0, u64 0) inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_k256_scalar_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_k256_scalar_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_k256_scalar_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } val qsquare_times_in_place (out:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ qe_lt_q h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 out /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 out) (v b)) [@CInline] let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) out b val qsquare_times (out a:qelem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ qe_lt_q h a) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ qe_lt_q h1 a /\ qas_nat h1 out == SI.qsquare_times (qas_nat h0 a) (v b)) [@CInline] let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qas_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_k256_scalar_concrete_ops (null uint64) a b out inline_for_extraction noextract val qinv1 (f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101:qelem) : Stack unit (requires fun h -> live h f /\ live h x_10 /\ live h x_11 /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint f x_10 /\ disjoint f x_11 /\ disjoint f x_101 /\ disjoint f x_111 /\ disjoint f x_1001 /\ disjoint f x_1011 /\ disjoint f x_1101 /\ disjoint x_10 x_11 /\ disjoint x_10 x_101 /\ disjoint x_10 x_111 /\ disjoint x_10 x_1001 /\ disjoint x_10 x_1011 /\ disjoint x_10 x_1101 /\ disjoint x_11 x_101 /\ disjoint x_11 x_111 /\ disjoint x_11 x_1001 /\ disjoint x_11 x_1011 /\ disjoint x_11 x_1101 /\ disjoint x_101 x_111 /\ disjoint x_101 x_1001 /\ disjoint x_101 x_1011 /\ disjoint x_101 x_1101 /\ disjoint x_111 x_1001 /\ disjoint x_111 x_1011 /\ disjoint x_111 x_1101 /\ disjoint x_1001 x_1011 /\ disjoint x_1001 x_1101 /\ disjoint x_1011 x_1101 /\ qe_lt_q h f) (ensures fun h0 _ h1 -> modifies (loc x_10 |+| loc x_11 |+| loc x_101 |+| loc x_111 |+| loc x_1001 |+| loc x_1011 |+| loc x_1101) h0 h1 /\ (let _x_10 = SI.qsquare_times (qas_nat h0 f) 1 in let _x_11 = S.qmul _x_10 (qas_nat h0 f) in let _x_101 = S.qmul _x_10 _x_11 in let _x_111 = S.qmul _x_10 _x_101 in let _x_1001 = S.qmul _x_10 _x_111 in let _x_1011 = S.qmul _x_10 _x_1001 in let _x_1101 = S.qmul _x_10 _x_1011 in qas_nat h1 x_10 == _x_10 /\ qe_lt_q h1 x_10 /\ qas_nat h1 x_11 == _x_11 /\ qe_lt_q h1 x_11 /\ qas_nat h1 x_101 == _x_101 /\ qe_lt_q h1 x_101 /\ qas_nat h1 x_111 == _x_111 /\ qe_lt_q h1 x_111 /\ qas_nat h1 x_1001 == _x_1001 /\ qe_lt_q h1 x_1001 /\ qas_nat h1 x_1011 == _x_1011 /\ qe_lt_q h1 x_1011 /\ qas_nat h1 x_1101 == _x_1101 /\ qe_lt_q h1 x_1101)) let qinv1 f x_10 x_11 x_101 x_111 x_1001 x_1011 x_1101 = let h0 = ST.get () in qsquare_times x_10 f 1ul; let h1 = ST.get () in assert (qas_nat h1 x_10 == SI.qsquare_times (qas_nat h0 f) 1); qmul x_11 x_10 f; let h2 = ST.get () in assert (qas_nat h2 x_11 == S.qmul (qas_nat h1 x_10) (qas_nat h0 f)); qmul x_101 x_10 x_11; let h3 = ST.get () in assert (qas_nat h3 x_101 == S.qmul (qas_nat h1 x_10) (qas_nat h2 x_11)); qmul x_111 x_10 x_101; let h4 = ST.get () in assert (qas_nat h4 x_111 == S.qmul (qas_nat h1 x_10) (qas_nat h3 x_101)); qmul x_1001 x_10 x_111; let h5 = ST.get () in assert (qas_nat h5 x_1001 == S.qmul (qas_nat h1 x_10) (qas_nat h4 x_111)); qmul x_1011 x_10 x_1001; let h6 = ST.get () in assert (qas_nat h6 x_1011 == S.qmul (qas_nat h1 x_10) (qas_nat h5 x_1001)); qmul x_1101 x_10 x_1011; let h7 = ST.get () in assert (qas_nat h7 x_1101 == S.qmul (qas_nat h1 x_10) (qas_nat h6 x_1011)) inline_for_extraction noextract val qinv2 (x_11 x_1011 x_1101 x6 x8 x14: qelem) : Stack unit (requires fun h -> live h x_11 /\ live h x_1011 /\ live h x_1101 /\ live h x6 /\ live h x8 /\ live h x14 /\ disjoint x_11 x6 /\ disjoint x_11 x8 /\ disjoint x_11 x14 /\ disjoint x_1011 x6 /\ disjoint x_1011 x8 /\ disjoint x_1011 x14 /\ disjoint x_1101 x6 /\ disjoint x_1101 x8 /\ disjoint x_1101 x14 /\ disjoint x6 x8 /\ disjoint x6 x14 /\ disjoint x8 x14 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc x6 |+| loc x8 |+| loc x14) h0 h1 /\ (let _x6 = S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011) in let _x8 = S.qmul (SI.qsquare_times _x6 2) (qas_nat h0 x_11) in let _x14 = S.qmul (SI.qsquare_times _x8 6) _x6 in qas_nat h1 x6 == _x6 /\ qe_lt_q h1 x6 /\ qas_nat h1 x8 == _x8 /\ qe_lt_q h1 x8 /\ qas_nat h1 x14 == _x14 /\ qe_lt_q h1 x14)) let qinv2 x_11 x_1011 x_1101 x6 x8 x14 = let h0 = ST.get () in qsquare_times x6 x_1101 2ul; qmul x6 x6 x_1011; let h1 = ST.get () in assert (qas_nat h1 x6 == S.qmul (SI.qsquare_times (qas_nat h0 x_1101) 2) (qas_nat h0 x_1011)); qsquare_times x8 x6 2ul; qmul x8 x8 x_11; let h2 = ST.get () in assert (qas_nat h2 x8 == S.qmul (SI.qsquare_times (qas_nat h1 x6) 2) (qas_nat h0 x_11)); qsquare_times x14 x8 6ul; qmul x14 x14 x6; let h3 = ST.get () in assert (qas_nat h3 x14 == S.qmul (SI.qsquare_times (qas_nat h2 x8) 6) (qas_nat h1 x6)) inline_for_extraction noextract val qinv3 (tmp x14: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x14 /\ disjoint tmp x14 /\ qe_lt_q h x14) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r0_r1 (qas_nat h0 x14) /\ qe_lt_q h1 tmp) let qinv3 tmp x14 = push_frame (); let x56 = create_qelem () in let h0 = ST.get () in qsquare_times tmp x14 14ul; qmul tmp tmp x14; //tmp = x28 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 x14) 14) (qas_nat h0 x14)); qsquare_times x56 tmp 28ul; qmul x56 x56 tmp; let h2 = ST.get () in assert (qas_nat h2 x56 == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 28) (qas_nat h1 tmp)); qsquare_times tmp x56 56ul; //tmp = r0 qmul tmp tmp x56; let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 x56) 56) (qas_nat h2 x56)); qsquare_times_in_place tmp 14ul; //tmp = r1 qmul tmp tmp x14; let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 14) (qas_nat h0 x14)); pop_frame () //r2; .. ;r8 inline_for_extraction noextract val qinv4 (tmp x_101 x_111 x_1011: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1011 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1011 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1011) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r2_r8 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1011) /\ qe_lt_q h1 tmp) let qinv4 tmp x_101 x_111 x_1011 = let h0 = ST.get () in qsquare_times_in_place tmp 3ul; qmul tmp tmp x_101; //tmp = r2 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 3) (qas_nat h0 x_101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r3 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; //tmp = r4 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1011; //tmp = r5 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1011; //tmp = r6 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 4) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r7 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 4) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_111; //tmp = r8 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 5) (qas_nat h0 x_111)) // r9; ..; r15 inline_for_extraction noextract val qinv5 (tmp x_101 x_111 x_1001 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x_101 /\ live h x_111 /\ live h x_1001 /\ live h x_1101 /\ disjoint tmp x_101 /\ disjoint tmp x_111 /\ disjoint tmp x_1001 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x_101 /\ qe_lt_q h x_111 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r9_r15 (qas_nat h0 tmp) (qas_nat h0 x_101) (qas_nat h0 x_111) (qas_nat h0 x_1001) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp) let qinv5 tmp x_101 x_111 x_1001 x_1101 = let h0 = ST.get () in qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1101; //tmp = r9 let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 6) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_101; //tmp = r10 let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 4) (qas_nat h0 x_101)); qsquare_times_in_place tmp 3ul; qmul tmp tmp x_111; //tmp = r11 let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 3) (qas_nat h0 x_111)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1001; //tmp = r12 let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 5) (qas_nat h0 x_1001)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_101; //tmp = r13 let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 6) (qas_nat h0 x_101)); qsquare_times_in_place tmp 10ul; qmul tmp tmp x_111; //tmp = r14 let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 10) (qas_nat h0 x_111)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_111; //tmp = r15 let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 4) (qas_nat h0 x_111)) // r16; ..;r23 inline_for_extraction noextract val qinv6 (tmp x8 x_11 x_1001 x_1011 x_1101: qelem) : Stack unit (requires fun h -> live h tmp /\ live h x8 /\ live h x_11 /\ live h x_1001 /\ live h x_1011 /\ live h x_1101 /\ disjoint tmp x8 /\ disjoint tmp x_11 /\ disjoint tmp x_1001 /\ disjoint tmp x_1011 /\ disjoint tmp x_1101 /\ qe_lt_q h tmp /\ qe_lt_q h x8 /\ qe_lt_q h x_11 /\ qe_lt_q h x_1001 /\ qe_lt_q h x_1011 /\ qe_lt_q h x_1101) (ensures fun h0 _ h1 -> modifies (loc tmp) h0 h1 /\ qas_nat h1 tmp == SI.qinv_r16_r23 (qas_nat h0 tmp) (qas_nat h0 x8) (qas_nat h0 x_11) (qas_nat h0 x_1001) (qas_nat h0 x_1011) (qas_nat h0 x_1101) /\ qe_lt_q h1 tmp)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.K256.Qinv.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.K256.Scalar.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.K256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.K256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tmp: Hacl.K256.Scalar.qelem -> x8: Hacl.K256.Scalar.qelem -> x_11: Hacl.K256.Scalar.qelem -> x_1001: Hacl.K256.Scalar.qelem -> x_1011: Hacl.K256.Scalar.qelem -> x_1101: Hacl.K256.Scalar.qelem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.K256.Scalar.qelem", "Prims._assert", "Prims.eq2", "Prims.nat", "Hacl.K256.Scalar.qas_nat", "Spec.K256.PointOps.qmul", "Hacl.Spec.K256.Qinv.qsquare_times", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.K256.Scalar.qmul", "Hacl.Impl.K256.Qinv.qsquare_times_in_place", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let qinv6 tmp x8 x_11 x_1001 x_1011 x_1101 =
let h0 = ST.get () in qsquare_times_in_place tmp 9ul; qmul tmp tmp x8; let h1 = ST.get () in assert (qas_nat h1 tmp == S.qmul (SI.qsquare_times (qas_nat h0 tmp) 9) (qas_nat h0 x8)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_1001; let h2 = ST.get () in assert (qas_nat h2 tmp == S.qmul (SI.qsquare_times (qas_nat h1 tmp) 5) (qas_nat h0 x_1001)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1011; let h3 = ST.get () in assert (qas_nat h3 tmp == S.qmul (SI.qsquare_times (qas_nat h2 tmp) 6) (qas_nat h0 x_1011)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1101; let h4 = ST.get () in assert (qas_nat h4 tmp == S.qmul (SI.qsquare_times (qas_nat h3 tmp) 4) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 5ul; qmul tmp tmp x_11; let h5 = ST.get () in assert (qas_nat h5 tmp == S.qmul (SI.qsquare_times (qas_nat h4 tmp) 5) (qas_nat h0 x_11)); qsquare_times_in_place tmp 6ul; qmul tmp tmp x_1101; let h6 = ST.get () in assert (qas_nat h6 tmp == S.qmul (SI.qsquare_times (qas_nat h5 tmp) 6) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 10ul; qmul tmp tmp x_1101; let h7 = ST.get () in assert (qas_nat h7 tmp == S.qmul (SI.qsquare_times (qas_nat h6 tmp) 10) (qas_nat h0 x_1101)); qsquare_times_in_place tmp 4ul; qmul tmp tmp x_1001; let h8 = ST.get () in assert (qas_nat h8 tmp == S.qmul (SI.qsquare_times (qas_nat h7 tmp) 4) (qas_nat h0 x_1001))
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_bits_limb_lemma
val bn_get_bits_limb_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t))
val bn_get_bits_limb_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t))
let bn_get_bits_limb_lemma #t #nLen n ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in assert (i == ind / bits t); assert (i < nLen); let p1 = n.[i] >>. size j in let res = bn_v n / pow2 ind % pow2 pbits in bn_get_ith_bit_aux_lemma n ind; assert (v p1 == bn_v n / pow2 ind % pow2 (pbits - j)); if j = 0 then () else begin bn_get_bits_limb_aux_lemma n ind; if i + 1 < nLen then begin let p2 = n.[i + 1] <<. (size (pbits - j)) in calc (==) { v p2 % pow2 (pbits - j); (==) { } v n.[i + 1] * pow2 (pbits - j) % pow2 pbits % pow2 (pbits - j); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v n.[i + 1] * pow2 (pbits - j)) (pbits - j) pbits } v n.[i + 1] * pow2 (pbits - j) % pow2 (pbits - j); (==) { Math.Lemmas.multiple_modulo_lemma (v n.[i + 1]) (pow2 (pbits - j)) } 0; }; let p3 = p1 |. p2 in logor_disjoint p1 p2 (pbits - j); assert (v p3 == v p1 + v p2); bn_eval_index n (i + 1); assert (res == v p1 + v p2); assert (ind / bits t + 1 < nLen && 0 < ind % bits t) end else begin bn_eval_bound n nLen; assert (bn_v n < pow2 (nLen * pbits)); Math.Lemmas.lemma_div_lt_nat (bn_v n) (nLen * pbits) ((i + 1) * pbits); Math.Lemmas.pow2_minus (nLen * pbits) ((i + 1) * pbits); assert (bn_v n / pow2 ((i + 1) * pbits) < pow2 0); assert_norm (pow2 0 = 1); assert (res == v p1) end end
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 503, "start_col": 0, "start_line": 464 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1) let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} let bn_get_top_index #t #len b = Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) let bn_get_top_index_lemma #t #len b = Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0; let res = Loops.repeati_inductive #size_nat len (fun i priv -> priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\ priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0)) (fun i priv -> Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i; let mask = eq_mask b.[i] (zeros t SEC) in eq_mask_lemma b.[i] (zeros t SEC); assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0); let res = if v mask = 0 then i else priv in res) 0 in () val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma (requires ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) (ensures bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind]) let bn_get_top_index_eval_lemma #t #len b ind = let pbits = bits t in assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0); bn_eval_split_i b (ind + 1); assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len)); eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0)); bn_eval_zeroes #t (len - ind - 1) (len - ind - 1); assert (bn_v b == bn_v (slice b 0 (ind + 1))); bn_eval_split_i (slice b 0 (ind + 1)) ind; assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1))); bn_eval1 (slice b ind (ind + 1)); assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind]) val bn_low_bound_bits: #t:limb_t -> #len:size_pos{bits t * len <= max_size_t} -> b:lbignum t len -> res:size_nat{res / bits t < len} let bn_low_bound_bits #t #len b = bits t * bn_get_top_index b val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1) (ensures pow2 (bn_low_bound_bits b) < bn_v b) let bn_low_bound_bits_lemma #t #len b = let ind = bn_get_top_index #t #len b in bn_get_top_index_lemma #t #len b; bn_get_top_index_eval_lemma #t #len b ind; assert (pow2 (bn_low_bound_bits b) <= bn_v b); if ind = 0 then assert_norm (pow2 0 = 1) else Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b) val bn_get_bits_limb: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> limb t let bn_get_bits_limb #t #nLen n ind = let i = ind / bits t in let j = ind % bits t in let p1 = n.[i] >>. size j in let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[i + 1] <<. (size (bits t - j))) else p1 in p2 val bn_get_bits_limb_aux_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma ( let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[i] >>. size j in bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1) let bn_get_bits_limb_aux_lemma #t #nLen n ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[i] >>. size j in let res = bn_v n / pow2 ind % pow2 pbits in calc (==) { bn_v n / pow2 ind % pow2 pbits; (==) { Math.Lemmas.euclidean_division_definition res (pow2 (pbits - j)) } res / pow2 (pbits - j) * pow2 (pbits - j) + res % pow2 (pbits - j); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits } res / pow2 (pbits - j) * pow2 (pbits - j) + bn_v n / pow2 ind % pow2 (pbits - j); (==) { bn_get_ith_bit_aux_lemma n ind } res / pow2 (pbits - j) * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits } bn_v n / pow2 ind / pow2 (pbits - j) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.division_multiplication_lemma (bn_v n) (pow2 ind) (pow2 (pbits - j)) } bn_v n / (pow2 ind * pow2 (pbits - j)) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_plus ind (pbits - j) } bn_v n / pow2 (ind + pbits - j) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.euclidean_division_definition ind pbits } bn_v n / pow2 (i * pbits + pbits) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (bn_v n / pow2 (i * pbits + pbits)) pbits (pbits - j) } bn_v n / pow2 (i * pbits + pbits) * pow2 (pbits - j) % pow2 pbits + v p1; (==) { Math.Lemmas.distributivity_add_left i 1 pbits } bn_v n / pow2 ((i + 1) * pbits) * pow2 (pbits - j) % pow2 pbits + v p1; (==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v n / pow2 ((i + 1) * pbits)) (pow2 (pbits - j)) (pow2 pbits) } bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1; } val bn_get_bits_limb_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma (v (bn_get_bits_limb n ind) == bn_v n / pow2 ind % pow2 (bits t))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen -> ind: Lib.IntTypes.size_nat{ind / Lib.IntTypes.bits t < nLen} -> FStar.Pervasives.Lemma (ensures Lib.IntTypes.v (Hacl.Spec.Bignum.Lib.bn_get_bits_limb n ind) == Hacl.Spec.Bignum.Definitions.bn_v n / Prims.pow2 ind % Prims.pow2 (Lib.IntTypes.bits t))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims.op_Addition", "Prims._assert", "Prims.op_AmpAmp", "Prims.op_Modulus", "Prims.unit", "Prims.eq2", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Definitions.bn_eval_index", "Lib.IntTypes.logor_disjoint", "Prims.op_Subtraction", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Bar_Dot", "FStar.Calc.calc_finish", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Mul.op_Star", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "FStar.Math.Lemmas.multiple_modulo_lemma", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.size", "FStar.Pervasives.assert_norm", "Hacl.Spec.Bignum.Definitions.bn_v", "FStar.Math.Lemmas.pow2_minus", "FStar.Math.Lemmas.lemma_div_lt_nat", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Hacl.Spec.Bignum.Lib.bn_get_bits_limb_aux_lemma", "Hacl.Spec.Bignum.Lib.bn_get_ith_bit_aux_lemma", "Lib.IntTypes.op_Greater_Greater_Dot" ]
[]
false
false
true
false
false
let bn_get_bits_limb_lemma #t #nLen n ind =
let pbits = bits t in let i = ind / pbits in let j = ind % pbits in assert (i == ind / bits t); assert (i < nLen); let p1 = n.[ i ] >>. size j in let res = bn_v n / pow2 ind % pow2 pbits in bn_get_ith_bit_aux_lemma n ind; assert (v p1 == bn_v n / pow2 ind % pow2 (pbits - j)); if j = 0 then () else (bn_get_bits_limb_aux_lemma n ind; if i + 1 < nLen then let p2 = n.[ i + 1 ] <<. (size (pbits - j)) in calc ( == ) { v p2 % pow2 (pbits - j); ( == ) { () } v n.[ i + 1 ] * pow2 (pbits - j) % pow2 pbits % pow2 (pbits - j); ( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (v n.[ i + 1 ] * pow2 (pbits - j)) (pbits - j) pbits } v n.[ i + 1 ] * pow2 (pbits - j) % pow2 (pbits - j); ( == ) { Math.Lemmas.multiple_modulo_lemma (v n.[ i + 1 ]) (pow2 (pbits - j)) } 0; }; let p3 = p1 |. p2 in logor_disjoint p1 p2 (pbits - j); assert (v p3 == v p1 + v p2); bn_eval_index n (i + 1); assert (res == v p1 + v p2); assert (ind / bits t + 1 < nLen && 0 < ind % bits t) else (bn_eval_bound n nLen; assert (bn_v n < pow2 (nLen * pbits)); Math.Lemmas.lemma_div_lt_nat (bn_v n) (nLen * pbits) ((i + 1) * pbits); Math.Lemmas.pow2_minus (nLen * pbits) ((i + 1) * pbits); assert (bn_v n / pow2 ((i + 1) * pbits) < pow2 0); assert_norm (pow2 0 = 1); assert (res == v p1)))
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.cswap2_lemma
val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); ()
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 309, "start_col": 0, "start_line": 290 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bit: Hacl.Spec.Bignum.Definitions.limb t {Lib.IntTypes.v bit <= 1} -> b1: Hacl.Spec.Bignum.Definitions.lbignum t len -> b2: Hacl.Spec.Bignum.Definitions.lbignum t len -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Bignum.Lib.cswap2 bit b1 b2 in (let FStar.Pervasives.Native.Mktuple2 #_ #_ p1 p2 = _ in (match Lib.IntTypes.v bit = 1 with | true -> p1 == b2 /\ p2 == b1 | _ -> p1 == b1 /\ p2 == b2) <: Type0) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.limb", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.unit", "Prims._assert", "Prims.op_Equality", "Prims.int", "Prims.eq2", "Lib.Sequence.eq_intro", "Prims.bool", "FStar.Pervasives.Native.tuple2", "Prims.l_and", "FStar.Pervasives.Native.Mktuple2", "Lib.LoopCombinators.repeati", "Hacl.Spec.Bignum.Lib.cswap2_f", "Prims.l_Forall", "Prims.nat", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.LoopCombinators.repeati_inductive", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Lib.lemma_cswap2_step", "Lib.LoopCombinators.unfold_repeati", "Prims.op_Addition", "Lib.LoopCombinators.eq_repeati0", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.uint" ]
[]
false
false
true
false
false
let cswap2_lemma #t #len bit b1 b2 =
let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let p1, p2 = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k: nat{k < i}). (if v bit = 1 then p1.[ k ] == b2.[ k ] /\ p2.[ k ] == b1.[ k ] else p1.[ k ] == b1.[ k ] /\ p2.[ k ] == b2.[ k ])) /\ (forall (k: nat{i <= k /\ k < len}). p1.[ k ] == b1.[ k ] /\ p2.[ k ] == b2.[ k ])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[ i ] p2.[ i ]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); ()
false
Hacl.Bignum256.fsti
Hacl.Bignum256.t_limbs
val t_limbs:Hacl.Bignum.Definitions.limb_t
val t_limbs:Hacl.Bignum.Definitions.limb_t
let t_limbs: Hacl.Bignum.Definitions.limb_t = Lib.IntTypes.U64
{ "file_name": "code/bignum/Hacl.Bignum256.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 12, "start_col": 0, "start_line": 12 }
module Hacl.Bignum256 open FStar.Mul module BN = Hacl.Bignum module BS = Hacl.Bignum.SafeAPI module MA = Hacl.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Bignum.SafeAPI.fst.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum256.fsti" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Bignum.Definitions.limb_t
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.U64" ]
[]
false
false
false
true
false
let t_limbs:Hacl.Bignum.Definitions.limb_t =
Lib.IntTypes.U64
false
Hacl.Bignum256.fsti
Hacl.Bignum256.lbignum
val lbignum : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
let lbignum = Hacl.Bignum.Definitions.lbignum
{ "file_name": "code/bignum/Hacl.Bignum256.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 28, "start_col": 0, "start_line": 28 }
module Hacl.Bignum256 open FStar.Mul module BN = Hacl.Bignum module BS = Hacl.Bignum.SafeAPI module MA = Hacl.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let t_limbs: Hacl.Bignum.Definitions.limb_t = Lib.IntTypes.U64 inline_for_extraction noextract let n_limbs: BN.meta_len t_limbs = 4ul inline_for_extraction noextract let n_bytes = n_limbs `FStar.UInt32.mul` 8ul // A static assert that the number of bytes vs number of blocks matches. This is // important for bn_to_bytes_be which takes a number of bytes, not a number of // limbs. (It would be nice to fix this.) let _ = assert_norm (Hacl.Bignum.Definitions.blocks n_bytes 8ul = n_limbs) let _ = assert_norm (256ul = Lib.IntTypes.(size (bits t_limbs)) `FStar.UInt32.mul` n_limbs)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Bignum.SafeAPI.fst.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum256.fsti" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.lbignum" ]
[]
false
false
false
true
true
let lbignum =
Hacl.Bignum.Definitions.lbignum
false
Hacl.Spec.Bignum.Lib.fst
Hacl.Spec.Bignum.Lib.bn_get_bits_limb_aux_lemma
val bn_get_bits_limb_aux_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma ( let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[i] >>. size j in bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1)
val bn_get_bits_limb_aux_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma ( let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[i] >>. size j in bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1)
let bn_get_bits_limb_aux_lemma #t #nLen n ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[i] >>. size j in let res = bn_v n / pow2 ind % pow2 pbits in calc (==) { bn_v n / pow2 ind % pow2 pbits; (==) { Math.Lemmas.euclidean_division_definition res (pow2 (pbits - j)) } res / pow2 (pbits - j) * pow2 (pbits - j) + res % pow2 (pbits - j); (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits } res / pow2 (pbits - j) * pow2 (pbits - j) + bn_v n / pow2 ind % pow2 (pbits - j); (==) { bn_get_ith_bit_aux_lemma n ind } res / pow2 (pbits - j) * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits } bn_v n / pow2 ind / pow2 (pbits - j) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.division_multiplication_lemma (bn_v n) (pow2 ind) (pow2 (pbits - j)) } bn_v n / (pow2 ind * pow2 (pbits - j)) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_plus ind (pbits - j) } bn_v n / pow2 (ind + pbits - j) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.euclidean_division_definition ind pbits } bn_v n / pow2 (i * pbits + pbits) % pow2 j * pow2 (pbits - j) + v p1; (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (bn_v n / pow2 (i * pbits + pbits)) pbits (pbits - j) } bn_v n / pow2 (i * pbits + pbits) * pow2 (pbits - j) % pow2 pbits + v p1; (==) { Math.Lemmas.distributivity_add_left i 1 pbits } bn_v n / pow2 ((i + 1) * pbits) * pow2 (pbits - j) % pow2 pbits + v p1; (==) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v n / pow2 ((i + 1) * pbits)) (pow2 (pbits - j)) (pow2 pbits) } bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1; }
{ "file_name": "code/bignum/Hacl.Spec.Bignum.Lib.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 453, "start_col": 0, "start_line": 424 }
module Hacl.Spec.Bignum.Lib open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Bignum.Definitions module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module BB = Hacl.Spec.Bignum.Base #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" /// /// Get and set i-th bit of a bignum /// val limb_get_ith_bit: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> limb t let limb_get_ith_bit #t a i = (a >>. size i) &. uint #t 1 val limb_get_ith_bit_lemma: #t:limb_t -> a:limb t -> i:nat{i < bits t} -> Lemma (v (limb_get_ith_bit a i) == v a / pow2 i % 2) let limb_get_ith_bit_lemma #t a i = let tmp1 = a >>. size i in let tmp2 = tmp1 &. uint #t 1 in mod_mask_lemma tmp1 1ul; assert (v (mod_mask #t #SEC 1ul) == v (uint #t #SEC 1)); assert (v tmp2 == v a / pow2 i % 2) val bn_get_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> limb t let bn_get_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in limb_get_ith_bit input.[i] j val bn_get_ith_bit_aux_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (let i = ind / bits t in let j = ind % bits t in v (b.[i] >>. size j) == (bn_v b / pow2 ind) % pow2 (bits t - j)) let bn_get_ith_bit_aux_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = b.[i] >>. size j in calc (==) { v b.[i] / pow2 j; (==) { bn_eval_index b i } (bn_v b / pow2 (pbits * i) % pow2 pbits) / pow2 j; (==) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v b / pow2 (pbits * i)) j pbits } (bn_v b / pow2 (pbits * i) / pow2 j) % pow2 (pbits - j); (==) { Math.Lemmas.division_multiplication_lemma (bn_v b) (pow2 (pbits * i)) (pow2 j) } (bn_v b / (pow2 (pbits * i) * pow2 j)) % pow2 (pbits - j); (==) { Math.Lemmas.pow2_plus (pbits * i) j } (bn_v b / pow2 (pbits * i + j)) % pow2 (pbits - j); (==) { Math.Lemmas.euclidean_div_axiom ind pbits } (bn_v b / pow2 ind) % pow2 (pbits - j); }; assert (v res == (bn_v b / pow2 ind) % pow2 (pbits - j)) val bn_get_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (v (bn_get_ith_bit b i) == (bn_v b / pow2 i % 2)) let bn_get_ith_bit_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let res = limb_get_ith_bit b.[i] j in limb_get_ith_bit_lemma b.[i] j; calc (==) { v b.[i] / pow2 j % 2; (==) { bn_get_ith_bit_aux_lemma b ind } (bn_v b / pow2 ind) % pow2 (pbits - j) % 2; (==) { assert_norm (pow2 1 = 2); Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v b / pow2 ind) 1 (pbits - j) } (bn_v b / pow2 ind) % 2; }; assert (v res == bn_v b / pow2 ind % 2) val bn_set_ith_bit: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> lbignum t len let bn_set_ith_bit #t #len input ind = let i = ind / bits t in let j = ind % bits t in let inp = input.[i] <- input.[i] |. (uint #t 1 <<. size j) in inp val bn_set_ith_bit_lemma_aux: a:nat -> b:nat -> c:nat -> d:nat -> Lemma (requires a + b * pow2 c < pow2 (c + d) /\ a < pow2 c) (ensures b < pow2 d) let bn_set_ith_bit_lemma_aux a b c d = Math.Lemmas.lemma_div_lt_nat (a + b * pow2 c) (c + d) c; assert ((a + b * pow2 c) / pow2 c < pow2 d); Math.Lemmas.lemma_div_plus a b (pow2 c); assert (a / pow2 c + b < pow2 d); Math.Lemmas.small_division_lemma_1 a (pow2 c) val bn_lt_pow2_index_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> ind:size_nat{ind / bits t < len} -> Lemma (requires bn_v b < pow2 ind) (ensures (let i = ind / bits t in v b.[i] < pow2 (ind % bits t) /\ bn_v b == bn_v (slice b 0 i) + pow2 (i * bits t) * v b.[i] /\ bn_v (slice b (i + 1) len) = 0)) let bn_lt_pow2_index_lemma #t #len b ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in Math.Lemmas.euclidean_division_definition ind (pbits); assert (bn_v b < pow2 (i * pbits + j)); Math.Lemmas.pow2_lt_compat (i * pbits + pbits) (i * pbits + j); assert (bn_v b < pow2 (i * pbits + pbits)); bn_eval_split_i #t #len b (i + 1); bn_eval_bound (slice b 0 (i + 1)) (i + 1); bn_set_ith_bit_lemma_aux (bn_v (slice b 0 (i + 1))) (bn_v (slice b (i + 1) len)) (pbits * (i + 1)) 0; assert (bn_v b == bn_v (slice b 0 (i + 1))); bn_eval_split_i #t #(i + 1) (slice b 0 (i + 1)) i; bn_eval1 (slice b i (i + 1)); assert (bn_v b == bn_v (slice b 0 i) + pow2 (i * pbits) * v b.[i]); bn_eval_bound #t #i (slice b 0 i) i; bn_set_ith_bit_lemma_aux (bn_v (slice b 0 i)) (v b.[i]) (i * pbits) j; assert (v b.[i] < pow2 j) val bn_set_ith_bit_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i / bits t < len} -> Lemma (requires bn_v b < pow2 i) (ensures bn_v (bn_set_ith_bit b i) == bn_v b + pow2 i) let bn_set_ith_bit_lemma #t #len input ind = let pbits = bits t in let i = ind / pbits in let j = ind % pbits in bn_lt_pow2_index_lemma #t #len input ind; assert (v input.[i] < pow2 j); let b = uint #t 1 <<. size j in let inp = input.[i] <- input.[i] |. b in FStar.Math.Lemmas.pow2_lt_compat pbits j; FStar.Math.Lemmas.modulo_lemma (pow2 j) (pow2 pbits); assert (v b == pow2 j); logor_disjoint (input.[i]) b j; assert (v inp.[i] == v input.[i] + v b); calc (==) { bn_v inp; (==) { bn_eval_split_i #t #len inp (i + 1); bn_eval_extensionality_j (slice inp (i + 1) len) (slice input (i + 1) len) (len - i - 1) } bn_v (slice inp 0 (i + 1)); (==) { bn_eval_split_i #t #(i + 1) (slice inp 0 (i + 1)) i } bn_v (slice inp 0 i) + pow2 (i * pbits) * bn_v (slice inp i (i + 1)); (==) { bn_eval1 (slice inp i (i + 1)) } bn_v (slice inp 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { bn_eval_extensionality_j input inp i } bn_v (slice input 0 i) + pow2 (i * pbits) * v inp.[i]; (==) { } bn_v (slice input 0 i) + pow2 (i * pbits) * (v input.[i] + v b); (==) { Math.Lemmas.distributivity_add_right (pow2 (i * pbits)) (v input.[i]) (v b) } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 (i * pbits) * v b; (==) { Math.Lemmas.pow2_plus (i * pbits) j; Math.Lemmas.euclidean_division_definition ind pbits } bn_v (slice input 0 i) + pow2 (i * pbits) * v input.[i] + pow2 ind; (==) { } bn_v input + pow2 ind; } /// /// % pow2 and / pow2 /// val bn_div_pow2: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i <= len} -> lbignum t (len - i) let bn_div_pow2 #t #len b i = slice b i len val bn_div_pow2_lemma: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:size_nat{i < len} -> Lemma (bn_v (bn_div_pow2 b i) == bn_v b / pow2 (bits t * i)) let bn_div_pow2_lemma #t #len c i = let pbits = bits t in calc (==) { bn_v c / pow2 (pbits * i); (==) { bn_eval_split_i c i } (bn_v (slice c 0 i) + pow2 (pbits * i) * bn_v (slice c i len)) / pow2 (pbits * i); (==) { Math.Lemmas.division_addition_lemma (bn_v (slice c 0 i)) (pow2 (pbits * i)) (bn_v (slice c i len)) } bn_v (slice c 0 i) / pow2 (pbits * i) + bn_v (slice c i len); (==) { bn_eval_bound (slice c 0 i) i; Math.Lemmas.small_division_lemma_1 (bn_v (slice c 0 i)) (pow2 (pbits * i)) } bn_v (slice c i len); }; assert (bn_v (slice c i len) == bn_v c / pow2 (pbits * i)) val bn_mod_pow2: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> lbignum t i let bn_mod_pow2 #t #aLen a i = sub a 0 i val bn_mod_pow2_lemma: #t:limb_t -> #aLen:size_nat -> a:lbignum t aLen -> i:nat{i <= aLen} -> Lemma (bn_v (bn_mod_pow2 a i) == bn_v a % pow2 (bits t * i)) let bn_mod_pow2_lemma #t #aLen a i = let pbits = bits t in calc (==) { bn_v a % pow2 (pbits * i); (==) { bn_eval_split_i a i } (bn_v (slice a 0 i) + pow2 (pbits * i) * bn_v (slice a i aLen)) % pow2 (pbits * i); (==) { Math.Lemmas.modulo_addition_lemma (bn_v (slice a 0 i)) (pow2 (pbits * i)) (bn_v (slice a i aLen)) } (bn_v (slice a 0 i)) % pow2 (pbits * i); (==) { bn_eval_bound (slice a 0 i) i; Math.Lemmas.small_mod (bn_v (slice a 0 i)) (pow2 (pbits * i)) } bn_v (slice a 0 i); } /// /// Conditional swap /// //the same as in curve25519 val lemma_cswap2_step: #t:limb_t -> bit:limb t{v bit <= 1} -> p1:limb t -> p2:limb t -> Lemma (let mask = uint #t 0 -. bit in let dummy = mask &. (p1 ^. p2) in let p1' = p1 ^. dummy in let p2' = p2 ^. dummy in if v bit = 1 then p1' == p2 /\ p2' == p1 else p1' == p1 /\ p2' == p2) let lemma_cswap2_step #t bit p1 p2 = let mask = uint #t 0 -. bit in assert (v bit == 0 ==> v mask == 0); assert (v bit == 1 ==> v mask == pow2 (bits t) - 1); let dummy = mask &. (p1 ^. p2) in logand_lemma mask (p1 ^. p2); assert (v bit == 1 ==> v dummy == v (p1 ^. p2)); assert (v bit == 0 ==> v dummy == 0); let p1' = p1 ^. dummy in assert (v dummy == v (if v bit = 1 then (p1 ^. p2) else uint #t 0)); logxor_lemma p1 p2; let p2' = p2 ^. dummy in logxor_lemma p2 p1 val cswap2_f: #t:limb_t -> #len:size_nat -> mask:limb t -> i:nat{i < len} -> tuple2 (lbignum t len) (lbignum t len) -> tuple2 (lbignum t len) (lbignum t len) let cswap2_f #t #len mask i (p1, p2) = let dummy = mask &. (p1.[i] ^. p2.[i]) in let p1 = p1.[i] <- p1.[i] ^. dummy in let p2 = p2.[i] <- p2.[i] ^. dummy in (p1, p2) val cswap2: #t:limb_t -> #len:size_nat -> bit:limb t -> b1:lbignum t len -> b2:lbignum t len -> tuple2 (lbignum t len) (lbignum t len) let cswap2 #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.repeati len (cswap2_f #t #len mask) (b1, b2) val cswap2_lemma: #t:limb_t -> #len:size_nat -> bit:limb t{v bit <= 1} -> b1:lbignum t len -> b2:lbignum t len -> Lemma (let (p1, p2) = cswap2 bit b1 b2 in (if v bit = 1 then p1 == b2 /\ p2 == b1 else p1 == b1 /\ p2 == b2)) let cswap2_lemma #t #len bit b1 b2 = let mask = uint #t 0 -. bit in Loops.eq_repeati0 len (cswap2_f #t #len mask) (b1, b2); let (p1, p2) = Loops.repeati_inductive #(tuple2 (lbignum t len) (lbignum t len)) len (fun i (p1, p2) -> (p1, p2) == Loops.repeati i (cswap2_f #t #len mask) (b1, b2) /\ (forall (k:nat{k < i}). (if v bit = 1 then p1.[k] == b2.[k] /\ p2.[k] == b1.[k] else p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) /\ (forall (k:nat{i <= k /\ k < len}). p1.[k] == b1.[k] /\ p2.[k] == b2.[k])) (fun i (p1, p2) -> Loops.unfold_repeati (i + 1) (cswap2_f #t #len mask) (b1, b2) i; lemma_cswap2_step bit p1.[i] p2.[i]; cswap2_f #t #len mask i (p1, p2)) (b1, b2) in assert (if v bit = 1 then (eq_intro p1 b2; p1 == b2) else (eq_intro p1 b1; p1 == b1)); assert (if v bit = 1 then (eq_intro p2 b1; p2 == b1) else (eq_intro p2 b2; p2 == b2)); //eq_intro p1 (if v bit = 1 then b2 else b1); //eq_intro p2 (if v bit = 1 then b1 else b2); () let bn_get_top_index_t (len:size_nat) (i:nat{i <= len}) = x:nat{x < len} val bn_get_top_index_f: #t:limb_t -> #len:size_nat -> b:lbignum t len -> i:nat{i < len} -> priv:bn_get_top_index_t len i -> bn_get_top_index_t len (i + 1) let bn_get_top_index_f #t #len b i priv = let mask = eq_mask b.[i] (zeros t SEC) in if v mask = 0 then i else priv val bn_get_top_index: #t:limb_t -> #len:size_pos -> b:lbignum t len -> res:size_nat{res < len} let bn_get_top_index #t #len b = Loops.repeat_gen len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 val bn_get_top_index_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (let ind = bn_get_top_index #t #len b in ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) let bn_get_top_index_lemma #t #len b = Loops.eq_repeat_gen0 len (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0; let res = Loops.repeati_inductive #size_nat len (fun i priv -> priv == Loops.repeat_gen i (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 /\ priv < len /\ (priv > 0 ==> v b.[priv] <> 0) /\ (forall (k:nat{priv < k /\ k < i}). v b.[k] = 0)) (fun i priv -> Loops.unfold_repeat_gen (i + 1) (bn_get_top_index_t len) (bn_get_top_index_f #t #len b) 0 i; let mask = eq_mask b.[i] (zeros t SEC) in eq_mask_lemma b.[i] (zeros t SEC); assert (if v mask = 0 then v b.[i] <> 0 else v b.[i] = 0); let res = if v mask = 0 then i else priv in res) 0 in () val bn_get_top_index_eval_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> ind:nat -> Lemma (requires ind < len /\ (ind > 0 ==> v b.[ind] <> 0) /\ (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0)) (ensures bn_v b == bn_v (slice b 0 ind) + pow2 (bits t * ind) * v b.[ind]) let bn_get_top_index_eval_lemma #t #len b ind = let pbits = bits t in assert (forall (k:nat{ind < k /\ k < len}). v b.[k] = 0); bn_eval_split_i b (ind + 1); assert (bn_v b == bn_v (slice b 0 (ind + 1)) + pow2 (pbits * (ind + 1)) * bn_v (slice b (ind + 1) len)); eq_intro (slice b (ind + 1) len) (create (len - ind - 1) (uint #t 0)); bn_eval_zeroes #t (len - ind - 1) (len - ind - 1); assert (bn_v b == bn_v (slice b 0 (ind + 1))); bn_eval_split_i (slice b 0 (ind + 1)) ind; assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * bn_v (slice b ind (ind + 1))); bn_eval1 (slice b ind (ind + 1)); assert (bn_v b == bn_v (slice b 0 ind) + pow2 (pbits * ind) * v b.[ind]) val bn_low_bound_bits: #t:limb_t -> #len:size_pos{bits t * len <= max_size_t} -> b:lbignum t len -> res:size_nat{res / bits t < len} let bn_low_bound_bits #t #len b = bits t * bn_get_top_index b val bn_low_bound_bits_lemma: #t:limb_t -> #len:size_pos -> b:lbignum t len -> Lemma (requires 1 < bn_v b /\ bits t * len <= max_size_t /\ bn_v b % 2 = 1) (ensures pow2 (bn_low_bound_bits b) < bn_v b) let bn_low_bound_bits_lemma #t #len b = let ind = bn_get_top_index #t #len b in bn_get_top_index_lemma #t #len b; bn_get_top_index_eval_lemma #t #len b ind; assert (pow2 (bn_low_bound_bits b) <= bn_v b); if ind = 0 then assert_norm (pow2 0 = 1) else Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 1 (bn_low_bound_bits b) val bn_get_bits_limb: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> limb t let bn_get_bits_limb #t #nLen n ind = let i = ind / bits t in let j = ind % bits t in let p1 = n.[i] >>. size j in let p2 = if i + 1 < nLen && 0 < j then p1 |. (n.[i + 1] <<. (size (bits t - j))) else p1 in p2 val bn_get_bits_limb_aux_lemma: #t:limb_t -> #nLen:size_nat -> n:lbignum t nLen -> ind:size_nat{ind / bits t < nLen} -> Lemma ( let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[i] >>. size j in bn_v n / pow2 ind % pow2 pbits == bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits * pow2 (pbits - j) % pow2 pbits + v p1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Bignum.Lib.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Base", "short_module": "BB" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Hacl.Spec.Bignum.Definitions.lbignum t nLen -> ind: Lib.IntTypes.size_nat{ind / Lib.IntTypes.bits t < nLen} -> FStar.Pervasives.Lemma (ensures (let pbits = Lib.IntTypes.bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[ i ] >>. Lib.IntTypes.size j in Hacl.Spec.Bignum.Definitions.bn_v n / Prims.pow2 ind % Prims.pow2 pbits == (Hacl.Spec.Bignum.Definitions.bn_v n / Prims.pow2 ((i + 1) * pbits) % Prims.pow2 pbits) * Prims.pow2 (pbits - j) % Prims.pow2 pbits + Lib.IntTypes.v p1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Bignum.Definitions.limb_t", "Lib.IntTypes.size_nat", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.IntTypes.bits", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Prims.pow2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.squash", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Hacl.Spec.Bignum.Lib.bn_get_ith_bit_aux_lemma", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Lib.IntTypes.size" ]
[]
false
false
true
false
false
let bn_get_bits_limb_aux_lemma #t #nLen n ind =
let pbits = bits t in let i = ind / pbits in let j = ind % pbits in let p1 = n.[ i ] >>. size j in let res = bn_v n / pow2 ind % pow2 pbits in calc ( == ) { bn_v n / pow2 ind % pow2 pbits; ( == ) { Math.Lemmas.euclidean_division_definition res (pow2 (pbits - j)) } (res / pow2 (pbits - j)) * pow2 (pbits - j) + res % pow2 (pbits - j); ( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits } (res / pow2 (pbits - j)) * pow2 (pbits - j) + bn_v n / pow2 ind % pow2 (pbits - j); ( == ) { bn_get_ith_bit_aux_lemma n ind } (res / pow2 (pbits - j)) * pow2 (pbits - j) + v p1; ( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 (bn_v n / pow2 ind) (pbits - j) pbits } (bn_v n / pow2 ind / pow2 (pbits - j) % pow2 j) * pow2 (pbits - j) + v p1; ( == ) { Math.Lemmas.division_multiplication_lemma (bn_v n) (pow2 ind) (pow2 (pbits - j)) } (bn_v n / (pow2 ind * pow2 (pbits - j)) % pow2 j) * pow2 (pbits - j) + v p1; ( == ) { Math.Lemmas.pow2_plus ind (pbits - j) } (bn_v n / pow2 (ind + pbits - j) % pow2 j) * pow2 (pbits - j) + v p1; ( == ) { Math.Lemmas.euclidean_division_definition ind pbits } (bn_v n / pow2 (i * pbits + pbits) % pow2 j) * pow2 (pbits - j) + v p1; ( == ) { Math.Lemmas.pow2_multiplication_modulo_lemma_2 (bn_v n / pow2 (i * pbits + pbits)) pbits (pbits - j) } (bn_v n / pow2 (i * pbits + pbits)) * pow2 (pbits - j) % pow2 pbits + v p1; ( == ) { Math.Lemmas.distributivity_add_left i 1 pbits } (bn_v n / pow2 ((i + 1) * pbits)) * pow2 (pbits - j) % pow2 pbits + v p1; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l (bn_v n / pow2 ((i + 1) * pbits)) (pow2 (pbits - j)) (pow2 pbits) } (bn_v n / pow2 ((i + 1) * pbits) % pow2 pbits) * pow2 (pbits - j) % pow2 pbits + v p1; }
false
Spec.Blake2.fst
Spec.Blake2.list_iv_S
val list_iv_S:List.Tot.llist (uint_t U32 PUB) 8
val list_iv_S:List.Tot.llist (uint_t U32 PUB) 8
let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 103, "start_col": 0, "start_line": 97 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"]
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.List.Tot.Properties.llist (Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB) 8
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.list", "Prims.Cons", "FStar.UInt32.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let list_iv_S:List.Tot.llist (uint_t U32 PUB) 8 =
[@@ inline_let ]let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul ] in assert_norm (List.Tot.length l == 8); l
false
Spec.Blake2.fst
Spec.Blake2.serialize_blake2_params
val serialize_blake2_params (#a: alg) (p: blake2_params a) : lseq (word_t a) 8
val serialize_blake2_params (#a: alg) (p: blake2_params a) : lseq (word_t a) 8
let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 72, "start_col": 0, "start_line": 69 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2_params a -> Lib.Sequence.lseq (Spec.Blake2.Definitions.word_t a) 8
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.blake2_params", "Spec.Blake2.serialize_blake2s_params", "Spec.Blake2.serialize_blake2b_params", "Lib.Sequence.lseq", "Spec.Blake2.Definitions.word_t" ]
[]
false
false
false
false
false
let serialize_blake2_params (#a: alg) (p: blake2_params a) : lseq (word_t a) 8 =
match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p
false
Spec.Blake2.fst
Spec.Blake2.rTable
val rTable (a: alg) : rtable_t a
val rTable (a: alg) : rtable_t a
let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B)
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 93, "start_col": 0, "start_line": 90 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ]
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Spec.Blake2.Definitions.rtable_t a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.Sequence.of_list", "Lib.IntTypes.rotval", "Lib.IntTypes.U32", "Spec.Blake2.rTable_list_S", "Lib.IntTypes.U64", "Spec.Blake2.rTable_list_B", "Spec.Blake2.Definitions.rtable_t" ]
[]
false
false
false
false
false
let rTable (a: alg) : rtable_t a =
match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B)
false
Spec.Blake2.fst
Spec.Blake2.list_iv_B
val list_iv_B:List.Tot.llist (uint_t U64 PUB) 8
val list_iv_B:List.Tot.llist (uint_t U64 PUB) 8
let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 115, "start_col": 0, "start_line": 107 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"]
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.List.Tot.Properties.llist (Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.PUB) 8
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.PUB", "Prims.list", "Prims.Cons", "FStar.UInt64.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let list_iv_B:List.Tot.llist (uint_t U64 PUB) 8 =
[@@ inline_let ]let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL ] in assert_norm (List.Tot.length l == 8); l
false
Spec.Blake2.fst
Spec.Blake2.blake2_compress
val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a)
val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a)
let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 6, "end_line": 298, "start_col": 0, "start_line": 293 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> s_iv: Spec.Blake2.Definitions.state a -> m: Spec.Blake2.Definitions.block_s a -> offset: Spec.Blake2.Definitions.limb_t a -> flag: Prims.bool -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Spec.Blake2.Definitions.block_s", "Spec.Blake2.Definitions.limb_t", "Prims.bool", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Spec.Blake2.blake2_compress3", "Spec.Blake2.blake2_compress2", "Spec.Blake2.blake2_compress1", "Spec.Blake2.Definitions.block_w", "Spec.Blake2.blake2_compress0" ]
[]
false
false
false
false
false
let blake2_compress a s_iv m offset flag =
let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv
false
Spec.Blake2.fst
Spec.Blake2.g1
val g1 (a: alg) (wv: state a) (i j: row_idx) (r: rotval (wt a)) : Tot (state a)
val g1 (a: alg) (wv: state a) (i j: row_idx) (r: rotval (wt a)) : Tot (state a)
let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 37, "end_line": 166, "start_col": 0, "start_line": 165 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> wv: Spec.Blake2.Definitions.state a -> i: Spec.Blake2.Definitions.row_idx -> j: Spec.Blake2.Definitions.row_idx -> r: Lib.IntTypes.rotval (Spec.Blake2.Definitions.wt a) -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Spec.Blake2.Definitions.row_idx", "Lib.IntTypes.rotval", "Spec.Blake2.Definitions.wt", "Lib.Sequence.op_String_Assignment", "Spec.Blake2.Definitions.row", "Spec.Blake2.Definitions.op_Greater_Greater_Greater_Bar", "Spec.Blake2.Definitions.op_Hat_Bar", "Lib.Sequence.op_String_Access" ]
[]
false
false
false
false
false
let g1 (a: alg) (wv: state a) (i j: row_idx) (r: rotval (wt a)) : Tot (state a) =
wv.[ i ] <- (wv.[ i ] ^| wv.[ j ]) >>>| r
false
Spec.Blake2.fst
Spec.Blake2.list_iv
val list_iv (a: alg) : List.Tot.llist (pub_word_t a) 8
val list_iv (a: alg) : List.Tot.llist (pub_word_t a) 8
let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 24, "end_line": 122, "start_col": 0, "start_line": 119 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"]
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> FStar.List.Tot.Properties.llist (Spec.Blake2.Definitions.pub_word_t a) 8
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.list_iv_S", "Spec.Blake2.list_iv_B", "FStar.List.Tot.Properties.llist", "Spec.Blake2.Definitions.pub_word_t" ]
[]
false
false
false
false
false
let list_iv (a: alg) : List.Tot.llist (pub_word_t a) 8 =
match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B
false
Spec.Blake2.fst
Spec.Blake2.serialize_blake2b_params
val serialize_blake2b_params (p: blake2b_params) : lseq uint64 8
val serialize_blake2b_params (p: blake2b_params) : lseq uint64 8
let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 66, "start_col": 0, "start_line": 42 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2b_params -> Lib.Sequence.lseq Lib.IntTypes.uint64 8
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.blake2b_params", "Lib.Sequence.createL", "Lib.IntTypes.uint64", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.Cons", "Prims.Nil", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Lib.ByteSequence.uints_from_bytes_le", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__personal", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__salt", "Lib.IntTypes.range", "Lib.IntTypes.v", "Lib.IntTypes.u64", "Lib.IntTypes.op_Hat_Dot", "Lib.IntTypes.U8", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__node_depth", "Lib.IntTypes.op_Less_Less_Dot", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__inner_length", "Lib.IntTypes.size", "Lib.IntTypes.U32", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__node_offset", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__xof_length", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__digest_length", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__key_length", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__fanout", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__depth", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__leaf_length" ]
[]
false
false
false
false
false
let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 =
let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in let s3 = u64 0 in let salt_u64:lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[ 0 ] in let s5 = salt_u64.[ 1 ] in let personal_u64:lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[ 0 ] in let s7 = personal_u64.[ 1 ] in [@@ inline_let ]let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l
false
Spec.Blake2.fst
Spec.Blake2.g2z
val g2z (a: alg) (wv: state a) (i j: row_idx) : Tot (state a)
val g2z (a: alg) (wv: state a) (i j: row_idx) : Tot (state a)
let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j])
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 172, "start_col": 0, "start_line": 171 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> wv: Spec.Blake2.Definitions.state a -> i: Spec.Blake2.Definitions.row_idx -> j: Spec.Blake2.Definitions.row_idx -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Spec.Blake2.Definitions.row_idx", "Lib.Sequence.op_String_Assignment", "Spec.Blake2.Definitions.row", "Spec.Blake2.Definitions.op_Plus_Bar", "Lib.Sequence.op_String_Access" ]
[]
false
false
false
false
false
let g2z (a: alg) (wv: state a) (i j: row_idx) : Tot (state a) =
wv.[ i ] <- (wv.[ i ] +| wv.[ j ])
false
Spec.Blake2.fst
Spec.Blake2.sigmaTable
val sigmaTable:lseq sigma_elt_t size_sigmaTable
val sigmaTable:lseq sigma_elt_t size_sigmaTable
let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 162, "start_col": 0, "start_line": 160 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq Spec.Blake2.Definitions.sigma_elt_t Spec.Blake2.Definitions.size_sigmaTable
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Spec.Blake2.Definitions.sigma_elt_t", "Spec.Blake2.list_sigma", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.nat", "FStar.List.Tot.Base.length", "Spec.Blake2.Definitions.size_sigmaTable" ]
[]
false
false
false
true
false
let sigmaTable:lseq sigma_elt_t size_sigmaTable =
assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma
false
Spec.Blake2.fst
Spec.Blake2.serialize_blake2s_params
val serialize_blake2s_params (p: blake2s_params) : lseq uint32 8
val serialize_blake2s_params (p: blake2s_params) : lseq uint32 8
let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 37, "start_col": 0, "start_line": 18 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2s_params -> Lib.Sequence.lseq Lib.IntTypes.uint32 8
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.blake2s_params", "Lib.Sequence.createL", "Lib.IntTypes.uint32", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Prims.Cons", "Prims.Nil", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.op_String_Access", "Lib.Sequence.lseq", "Lib.ByteSequence.uints_from_bytes_le", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__personal", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__salt", "Lib.IntTypes.op_Hat_Dot", "Lib.IntTypes.u32", "Lib.IntTypes.v", "Lib.IntTypes.U16", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__xof_length", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.U8", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__node_depth", "Lib.IntTypes.size", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__inner_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__node_offset", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__leaf_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__digest_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__key_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__fanout", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__depth" ]
[]
false
false
false
false
false
let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 =
let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32:lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[ 0 ] in let s5 = salt_u32.[ 1 ] in let personal_u32:lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[ 0 ] in let s7 = personal_u32.[ 1 ] in [@@ inline_let ]let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l
false
Spec.Blake2.fst
Spec.Blake2.ivTable
val ivTable (a: alg) : lseq (pub_word_t a) 8
val ivTable (a: alg) : lseq (pub_word_t a) 8
let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 128, "start_col": 0, "start_line": 125 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Lib.Sequence.lseq (Spec.Blake2.Definitions.pub_word_t a) 8
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Spec.Blake2.list_iv_S", "Lib.IntTypes.U64", "Spec.Blake2.list_iv_B", "Lib.Sequence.lseq", "Spec.Blake2.Definitions.pub_word_t" ]
[]
false
false
false
false
false
let ivTable (a: alg) : lseq (pub_word_t a) 8 =
match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B
false
Hacl.Bignum256.fsti
Hacl.Bignum256.n_bytes
val n_bytes : FStar.UInt32.t
let n_bytes = n_limbs `FStar.UInt32.mul` 8ul
{ "file_name": "code/bignum/Hacl.Bignum256.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 18, "start_col": 0, "start_line": 18 }
module Hacl.Bignum256 open FStar.Mul module BN = Hacl.Bignum module BS = Hacl.Bignum.SafeAPI module MA = Hacl.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let t_limbs: Hacl.Bignum.Definitions.limb_t = Lib.IntTypes.U64 inline_for_extraction noextract let n_limbs: BN.meta_len t_limbs = 4ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Bignum.SafeAPI.fst.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum256.fsti" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.mul", "Hacl.Bignum256.n_limbs", "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let n_bytes =
n_limbs `FStar.UInt32.mul` 8ul
false
Spec.Blake2.fst
Spec.Blake2.blake2_mixing
val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a)
val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a)
let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 196, "start_col": 0, "start_line": 182 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> ws: Spec.Blake2.Definitions.state a -> x: Spec.Blake2.Definitions.row a -> y: Spec.Blake2.Definitions.row a -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Spec.Blake2.Definitions.row", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Spec.Blake2.g1", "Lib.Sequence.op_String_Access", "Lib.IntTypes.rotval", "Spec.Blake2.g2z", "Spec.Blake2.g2", "Spec.Blake2.rTable", "Prims.int" ]
[]
false
false
false
false
false
let blake2_mixing al wv x y =
let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[ 0 ] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[ 1 ] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[ 2 ] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[ 3 ] in wv
false
Spec.Blake2.fst
Spec.Blake2.g2
val g2 (a: alg) (wv: state a) (i j: row_idx) (x: row a) : Tot (state a)
val g2 (a: alg) (wv: state a) (i j: row_idx) (x: row a) : Tot (state a)
let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x)
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 169, "start_col": 0, "start_line": 168 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> wv: Spec.Blake2.Definitions.state a -> i: Spec.Blake2.Definitions.row_idx -> j: Spec.Blake2.Definitions.row_idx -> x: Spec.Blake2.Definitions.row a -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Spec.Blake2.Definitions.row_idx", "Spec.Blake2.Definitions.row", "Lib.Sequence.op_String_Assignment", "Spec.Blake2.Definitions.op_Plus_Bar", "Lib.Sequence.op_String_Access" ]
[]
false
false
false
false
false
let g2 (a: alg) (wv: state a) (i j: row_idx) (x: row a) : Tot (state a) =
wv.[ i ] <- (wv.[ i ] +| wv.[ j ] +| x)
false
Spec.Blake2.fst
Spec.Blake2.blake2_compress0
val blake2_compress0: a:alg -> m:block_s a -> block_w a
val blake2_compress0: a:alg -> m:block_s a -> block_w a
let blake2_compress0 a m = uints_from_bytes_le m
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 244, "start_col": 0, "start_line": 243 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> m: Spec.Blake2.Definitions.block_s a -> Spec.Blake2.Definitions.block_w a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.block_s", "Lib.ByteSequence.uints_from_bytes_le", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.size_block_w", "Spec.Blake2.Definitions.block_w" ]
[]
false
false
false
false
false
let blake2_compress0 a m =
uints_from_bytes_le m
false
Spec.Blake2.fst
Spec.Blake2.gather_row
val gather_row (#a: alg) (m: block_w a) (i0 i1 i2 i3: sigma_elt_t) : row a
val gather_row (#a: alg) (m: block_w a) (i0 i1 i2 i3: sigma_elt_t) : row a
let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3]
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 212, "start_col": 0, "start_line": 211 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Spec.Blake2.Definitions.block_w a -> i0: Spec.Blake2.Definitions.sigma_elt_t -> i1: Spec.Blake2.Definitions.sigma_elt_t -> i2: Spec.Blake2.Definitions.sigma_elt_t -> i3: Spec.Blake2.Definitions.sigma_elt_t -> Spec.Blake2.Definitions.row a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.block_w", "Spec.Blake2.Definitions.sigma_elt_t", "Spec.Blake2.Definitions.create_row", "Lib.Sequence.op_String_Access", "Spec.Blake2.Definitions.word_t", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Spec.Blake2.Definitions.row" ]
[]
false
false
false
false
false
let gather_row (#a: alg) (m: block_w a) (i0 i1 i2 i3: sigma_elt_t) : row a =
create_row m.[ v i0 ] m.[ v i1 ] m.[ v i2 ] m.[ v i3 ]
false
Spec.Blake2.fst
Spec.Blake2.rTable_list_B
val rTable_list_B:List.Tot.llist (rotval U64) 4
val rTable_list_B:List.Tot.llist (rotval U64) 4
let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ]
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 87, "start_col": 0, "start_line": 84 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"]
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.List.Tot.Properties.llist (Lib.IntTypes.rotval Lib.IntTypes.U64) 4
Prims.Tot
[ "total" ]
[]
[ "Prims.Cons", "Lib.IntTypes.rotval", "Lib.IntTypes.U64", "Lib.IntTypes.size", "Prims.Nil" ]
[]
false
false
false
false
false
let rTable_list_B:List.Tot.llist (rotval U64) 4 =
[size 32; size 24; size 16; size 63]
false
Spec.Blake2.fst
Spec.Blake2.blake2_compress2
val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a)
val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a)
let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 70, "end_line": 272, "start_col": 0, "start_line": 272 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> wv: Spec.Blake2.Definitions.state a -> m: Spec.Blake2.Definitions.block_w a -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Spec.Blake2.Definitions.block_w", "Lib.LoopCombinators.repeati", "Spec.Blake2.Definitions.rounds", "Spec.Blake2.blake2_round" ]
[]
false
false
false
false
false
let blake2_compress2 a wv m =
repeati (rounds a) (blake2_round a m) wv
false
Spec.Blake2.fst
Spec.Blake2.blake2_round
val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a
val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a
let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 237, "start_col": 0, "start_line": 231 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> m: Spec.Blake2.Definitions.block_w a -> i: Lib.IntTypes.size_nat -> wv: Spec.Blake2.Definitions.state a -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.block_w", "Lib.IntTypes.size_nat", "Spec.Blake2.Definitions.state", "Spec.Blake2.undiag", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Spec.Blake2.blake2_mixing", "Lib.Sequence.op_String_Access", "Spec.Blake2.Definitions.row", "Spec.Blake2.diag", "Spec.Blake2.gather_state", "Prims.int", "FStar.Mul.op_Star", "Prims.op_Modulus" ]
[]
false
false
false
false
false
let blake2_round a m i wv =
let start = (i % 10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[ 0 ] m_s.[ 1 ] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[ 2 ] m_s.[ 3 ] in undiag wv
false
Spec.Blake2.fst
Spec.Blake2.blake2_compress1
val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a)
val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a)
let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 263, "start_col": 0, "start_line": 253 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> s_iv: Spec.Blake2.Definitions.state a -> offset: Spec.Blake2.Definitions.limb_t a -> flag: Prims.bool -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Spec.Blake2.Definitions.limb_t", "Prims.bool", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Spec.Blake2.Definitions.op_Hat_Bar", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.Sequence.op_String_Access", "Spec.Blake2.Definitions.create_row", "Spec.Blake2.Definitions.zero", "Lib.IntTypes.ones", "Spec.Blake2.Definitions.word_t", "Spec.Blake2.Definitions.limb_to_word", "Lib.IntTypes.shift_right", "Spec.Blake2.Definitions.limb_inttype", "Lib.IntTypes.size", "Lib.IntTypes.bits" ]
[]
false
false
false
false
false
let blake2_compress1 a s_iv offset flag =
let wv:state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[ 3 ] <- wv.[ 3 ] ^| mask in wv
false
Spec.Blake2.fst
Spec.Blake2.diag
val diag (#a: alg) (wv: state a) : state a
val diag (#a: alg) (wv: state a) : state a
let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 202, "start_col": 0, "start_line": 198 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
wv: Spec.Blake2.Definitions.state a -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Spec.Blake2.Definitions.rotr", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Spec.Blake2.Definitions.row", "Lib.Sequence.op_String_Access" ]
[]
false
false
false
false
false
let diag (#a: alg) (wv: state a) : state a =
let wv = wv.[ 1 ] <- rotr wv.[ 1 ] 1 in let wv = wv.[ 2 ] <- rotr wv.[ 2 ] 2 in let wv = wv.[ 3 ] <- rotr wv.[ 3 ] 3 in wv
false
Spec.Blake2.fst
Spec.Blake2.rTable_list_S
val rTable_list_S:List.Tot.llist (rotval U32) 4
val rTable_list_S:List.Tot.llist (rotval U32) 4
let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ]
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 80, "start_col": 0, "start_line": 77 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"]
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.List.Tot.Properties.llist (Lib.IntTypes.rotval Lib.IntTypes.U32) 4
Prims.Tot
[ "total" ]
[]
[ "Prims.Cons", "Lib.IntTypes.rotval", "Lib.IntTypes.U32", "Lib.IntTypes.size", "Prims.Nil" ]
[]
false
false
false
false
false
let rTable_list_S:List.Tot.llist (rotval U32) 4 =
[size 16; size 12; size 8; size 7]
false
Hacl.Bignum256.fsti
Hacl.Bignum256.n_limbs
val n_limbs:BN.meta_len t_limbs
val n_limbs:BN.meta_len t_limbs
let n_limbs: BN.meta_len t_limbs = 4ul
{ "file_name": "code/bignum/Hacl.Bignum256.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 15, "start_col": 0, "start_line": 15 }
module Hacl.Bignum256 open FStar.Mul module BN = Hacl.Bignum module BS = Hacl.Bignum.SafeAPI module MA = Hacl.Bignum.MontArithmetic #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let t_limbs: Hacl.Bignum.Definitions.limb_t = Lib.IntTypes.U64
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Bignum.SafeAPI.fst.checked", "Hacl.Bignum.MontArithmetic.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Convert.fst.checked", "Hacl.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum256.fsti" }
[ { "abbrev": true, "full_module": "Hacl.Bignum.MontArithmetic", "short_module": "MA" }, { "abbrev": true, "full_module": "Hacl.Bignum.SafeAPI", "short_module": "BS" }, { "abbrev": true, "full_module": "Hacl.Bignum", "short_module": "BN" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Bignum.meta_len Hacl.Bignum256.t_limbs
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.__uint_to_t" ]
[]
false
false
false
true
false
let n_limbs:BN.meta_len t_limbs =
4ul
false
Spec.Blake2.fst
Spec.Blake2.blake2_update_block
val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a)
val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a)
let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 311, "start_col": 0, "start_line": 309 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> flag: Prims.bool -> totlen: Prims.nat{totlen <= Spec.Blake2.Definitions.max_limb a} -> d: Spec.Blake2.Definitions.block_s a -> s_iv: Spec.Blake2.Definitions.state a -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Prims.bool", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_limb", "Spec.Blake2.Definitions.block_s", "Spec.Blake2.Definitions.state", "Spec.Blake2.blake2_compress", "Spec.Blake2.Definitions.limb_t", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.U64", "Lib.IntTypes.U128", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.nat_to_limb" ]
[]
false
false
false
false
false
let blake2_update_block a flag totlen d s =
let offset = nat_to_limb a totlen in blake2_compress a s d offset flag
false
Spec.Blake2.fst
Spec.Blake2.undiag
val undiag (#a: alg) (wv: state a) : state a
val undiag (#a: alg) (wv: state a) : state a
let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 208, "start_col": 0, "start_line": 204 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
wv: Spec.Blake2.Definitions.state a -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Spec.Blake2.Definitions.rotr", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Spec.Blake2.Definitions.row", "Lib.Sequence.op_String_Access" ]
[]
false
false
false
false
false
let undiag (#a: alg) (wv: state a) : state a =
let wv = wv.[ 1 ] <- rotr wv.[ 1 ] 3 in let wv = wv.[ 2 ] <- rotr wv.[ 2 ] 2 in let wv = wv.[ 3 ] <- rotr wv.[ 3 ] 1 in wv
false
Spec.Blake2.fst
Spec.Blake2.gather_state
val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a
val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a
let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 222, "start_col": 0, "start_line": 215 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3]
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> m: Spec.Blake2.Definitions.block_w a -> start: Prims.nat{start <= 144} -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.block_w", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.createL", "Spec.Blake2.Definitions.row", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Prims.Cons", "Prims.Nil", "Spec.Blake2.gather_row", "Lib.Sequence.op_String_Access", "Spec.Blake2.Definitions.sigma_elt_t", "Spec.Blake2.Definitions.size_sigmaTable", "Spec.Blake2.sigmaTable", "Prims.op_Addition", "Spec.Blake2.Definitions.state" ]
[]
false
false
false
false
false
let gather_state a m start =
let x = gather_row m sigmaTable.[ start ] sigmaTable.[ start + 2 ] sigmaTable.[ start + 4 ] sigmaTable.[ start + 6 ] in let y = gather_row m sigmaTable.[ start + 1 ] sigmaTable.[ start + 3 ] sigmaTable.[ start + 5 ] sigmaTable.[ start + 7 ] in let z = gather_row m sigmaTable.[ start + 8 ] sigmaTable.[ start + 10 ] sigmaTable.[ start + 12 ] sigmaTable.[ start + 14 ] in let w = gather_row m sigmaTable.[ start + 9 ] sigmaTable.[ start + 11 ] sigmaTable.[ start + 13 ] sigmaTable.[ start + 15 ] in let l = [x; y; z; w] in assert_norm (List.Tot.length l == 4); createL l
false
Spec.Blake2.fst
Spec.Blake2.blake2_compress3
val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a)
val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a)
let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 283, "start_col": 0, "start_line": 280 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> wv: Spec.Blake2.Definitions.state a -> s_iv: Spec.Blake2.Definitions.state a -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Spec.Blake2.Definitions.op_Hat_Bar", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Spec.Blake2.Definitions.row", "Lib.Sequence.op_String_Access" ]
[]
false
false
false
false
false
let blake2_compress3 a wv s =
let s = s.[ 0 ] <- (s.[ 0 ] ^| wv.[ 0 ]) ^| wv.[ 2 ] in let s = s.[ 1 ] <- (s.[ 1 ] ^| wv.[ 1 ]) ^| wv.[ 3 ] in s
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.pure
val pure (p:prop) : slprop
val pure (p:prop) : slprop
let pure p = pure p
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 19, "end_line": 60, "start_col": 0, "start_line": 60 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = ()
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.prop -> PulseCore.InstantiatedSemantics.slprop
Prims.Tot
[ "total" ]
[]
[ "Prims.prop", "PulseCore.Memory.pure", "PulseCore.InstantiatedSemantics.slprop" ]
[]
false
false
false
true
false
let pure p =
pure p
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.slprop
val slprop : Type u#2
val slprop : Type u#2
let slprop = slprop
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 19, "end_line": 57, "start_col": 0, "start_line": 57 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "PulseCore.Memory.slprop" ]
[]
false
false
false
true
true
let slprop =
slprop
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.emp
val emp : slprop
val emp : slprop
let emp = emp
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 13, "end_line": 59, "start_col": 0, "start_line": 59 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
PulseCore.InstantiatedSemantics.slprop
Prims.Tot
[ "total" ]
[]
[ "PulseCore.Memory.emp" ]
[]
false
false
false
true
false
let emp =
emp
false
Spec.Blake2.fst
Spec.Blake2.get_blocki
val get_blocki (a: alg) (m: bytes) (i: nat{i < length m / size_block a}) : block_s a
val get_blocki (a: alg) (m: bytes) (i: nat{i < length m / size_block a}) : block_s a
let get_blocki (a:alg) (m:bytes) (i:nat{i < length m / size_block a}) : block_s a = Seq.slice m (i * size_block a) ((i+1) * size_block a)
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 322, "start_col": 0, "start_line": 321 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a) let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag val blake2_update1: a:alg -> prev:nat -> m:bytes -> i:nat{i < length m / size_block a /\ prev + length m <= max_limb a} -> s:state a -> Tot (state a)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> m: Lib.ByteSequence.bytes -> i: Prims.nat{i < Lib.Sequence.length m / Spec.Blake2.Definitions.size_block a} -> Spec.Blake2.Definitions.block_s a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.ByteSequence.bytes", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.size_block", "FStar.Seq.Base.slice", "FStar.Mul.op_Star", "Prims.op_Addition", "Spec.Blake2.Definitions.block_s" ]
[]
false
false
false
false
false
let get_blocki (a: alg) (m: bytes) (i: nat{i < length m / size_block a}) : block_s a =
Seq.slice m (i * size_block a) ((i + 1) * size_block a)
false
Spec.Blake2.fst
Spec.Blake2.split
val split (a: alg) (len: nat) : nb_rem: (nat & nat) { let nb, rem = nb_rem in nb * size_block a + rem == len }
val split (a: alg) (len: nat) : nb_rem: (nat & nat) { let nb, rem = nb_rem in nb * size_block a + rem == len }
let split (a:alg) (len:nat) : nb_rem:(nat & nat){let (nb,rem) = nb_rem in nb * size_block a + rem == len} = UpdateMulti.split_at_last_lazy_nb_rem (size_block a) len
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 360, "start_col": 0, "start_line": 357 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a) let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag val blake2_update1: a:alg -> prev:nat -> m:bytes -> i:nat{i < length m / size_block a /\ prev + length m <= max_limb a} -> s:state a -> Tot (state a) let get_blocki (a:alg) (m:bytes) (i:nat{i < length m / size_block a}) : block_s a = Seq.slice m (i * size_block a) ((i+1) * size_block a) let blake2_update1 a prev m i s = let totlen = prev + (i+1) * size_block a in let d = get_blocki a m i in blake2_update_block a false totlen d s val blake2_update_last: a:alg -> prev:nat -> rem:nat -> m:bytes{prev + length m <= max_limb a /\ rem <= length m /\ rem <= size_block a} -> s:state a -> Tot (state a) let get_last_padded_block (a:alg) (m:bytes) (rem:nat{rem <= length m /\ rem <= size_block a}) : block_s a = let last = Seq.slice m (length m - rem) (length m) in let last_block = create (size_block a) (u8 0) in let last_block = update_sub last_block 0 rem last in last_block let blake2_update_last a prev rem m s = let inlen = length m in let totlen = prev + inlen in let last_block = get_last_padded_block a m rem in blake2_update_block a true totlen last_block s val blake2_update_blocks: a:alg -> prev:nat -> m:bytes{prev + length m <= max_limb a} -> s:state a -> Tot (state a)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> len: Prims.nat -> nb_rem: (Prims.nat * Prims.nat) { let _ = nb_rem in (let FStar.Pervasives.Native.Mktuple2 #_ #_ nb rem = _ in nb * Spec.Blake2.Definitions.size_block a + rem == len) <: Type0 }
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Prims.nat", "Lib.UpdateMulti.split_at_last_lazy_nb_rem", "Spec.Blake2.Definitions.size_block", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "Prims.int", "Prims.op_Addition", "FStar.Mul.op_Star" ]
[]
false
false
false
false
false
let split (a: alg) (len: nat) : nb_rem: (nat & nat) { let nb, rem = nb_rem in nb * size_block a + rem == len } =
UpdateMulti.split_at_last_lazy_nb_rem (size_block a) len
false
Spec.Blake2.fst
Spec.Blake2.blake2_update_key
val blake2_update_key: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> ll:nat -> s:state a -> Tot (state a)
val blake2_update_key: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> ll:nat -> s:state a -> Tot (state a)
let blake2_update_key a kk k ll s = let key_block = blake2_key_block a kk k in if ll = 0 then blake2_update_block a true (size_block a) key_block s else blake2_update_block a false (size_block a) key_block s
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 426, "start_col": 0, "start_line": 421 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a) let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag val blake2_update1: a:alg -> prev:nat -> m:bytes -> i:nat{i < length m / size_block a /\ prev + length m <= max_limb a} -> s:state a -> Tot (state a) let get_blocki (a:alg) (m:bytes) (i:nat{i < length m / size_block a}) : block_s a = Seq.slice m (i * size_block a) ((i+1) * size_block a) let blake2_update1 a prev m i s = let totlen = prev + (i+1) * size_block a in let d = get_blocki a m i in blake2_update_block a false totlen d s val blake2_update_last: a:alg -> prev:nat -> rem:nat -> m:bytes{prev + length m <= max_limb a /\ rem <= length m /\ rem <= size_block a} -> s:state a -> Tot (state a) let get_last_padded_block (a:alg) (m:bytes) (rem:nat{rem <= length m /\ rem <= size_block a}) : block_s a = let last = Seq.slice m (length m - rem) (length m) in let last_block = create (size_block a) (u8 0) in let last_block = update_sub last_block 0 rem last in last_block let blake2_update_last a prev rem m s = let inlen = length m in let totlen = prev + inlen in let last_block = get_last_padded_block a m rem in blake2_update_block a true totlen last_block s val blake2_update_blocks: a:alg -> prev:nat -> m:bytes{prev + length m <= max_limb a} -> s:state a -> Tot (state a) let split (a:alg) (len:nat) : nb_rem:(nat & nat){let (nb,rem) = nb_rem in nb * size_block a + rem == len} = UpdateMulti.split_at_last_lazy_nb_rem (size_block a) len let blake2_update_blocks a prev m s = let (nb,rem) = split a (length m) in let s = repeati nb (blake2_update1 a prev m) s in blake2_update_last a prev rem m s val blake2_init_hash: a:alg -> p:blake2_params a -> kk:size_nat{kk <= max_key a} -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (state a) let blake2_init_hash a p kk nn = let iv0 = secret (ivTable a).[0] in let iv1 = secret (ivTable a).[1] in let iv2 = secret (ivTable a).[2] in let iv3 = secret (ivTable a).[3] in let iv4 = secret (ivTable a).[4] in let iv5 = secret (ivTable a).[5] in let iv6 = secret (ivTable a).[6] in let iv7 = secret (ivTable a).[7] in let r0 = create_row #a iv0 iv1 iv2 iv3 in let r1 = create_row #a iv4 iv5 iv6 iv7 in let p: blake2_params a = set_key_length (set_digest_length p nn) kk in let s = serialize_blake2_params p in let iv0' = iv0 ^. s.[0] in let iv1' = iv1 ^. s.[1] in let iv2' = iv2 ^. s.[2] in let iv3' = iv3 ^. s.[3] in let iv4' = iv4 ^. s.[4] in let iv5' = iv5 ^. s.[5] in let iv6' = iv6 ^. s.[6] in let iv7' = iv7 ^. s.[7] in let r0' = create_row #a iv0' iv1' iv2' iv3' in let r1' = create_row #a iv4' iv5' iv6' iv7' in let s_iv = createL [r0';r1';r0;r1] in s_iv val blake2_key_block: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> block_s a let blake2_key_block a kk k = let key_block = create (size_block a) (u8 0) in let key_block = update_sub key_block 0 kk k in key_block /// This function must be called only if the key is non empty (see the precondition) val blake2_update_key: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> ll:nat -> s:state a ->
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> kk: Lib.IntTypes.size_nat{0 < kk /\ kk <= Spec.Blake2.Definitions.max_key a} -> k: Lib.ByteSequence.lbytes kk -> ll: Prims.nat -> s: Spec.Blake2.Definitions.state a -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_key", "Lib.ByteSequence.lbytes", "Prims.nat", "Spec.Blake2.Definitions.state", "Prims.op_Equality", "Prims.int", "Spec.Blake2.blake2_update_block", "Spec.Blake2.Definitions.size_block", "Prims.bool", "Spec.Blake2.Definitions.block_s", "Spec.Blake2.blake2_key_block" ]
[]
false
false
false
false
false
let blake2_update_key a kk k ll s =
let key_block = blake2_key_block a kk k in if ll = 0 then blake2_update_block a true (size_block a) key_block s else blake2_update_block a false (size_block a) key_block s
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.slprop_equiv
val slprop_equiv (p q:slprop) : prop
val slprop_equiv (p q:slprop) : prop
let slprop_equiv p q = Mem.equiv p q
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 36, "end_line": 68, "start_col": 0, "start_line": 68 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p)
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: PulseCore.InstantiatedSemantics.slprop -> q: PulseCore.InstantiatedSemantics.slprop -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "PulseCore.Memory.equiv", "Prims.prop" ]
[]
false
false
false
true
true
let slprop_equiv p q =
Mem.equiv p q
false
Spec.Blake2.fst
Spec.Blake2.blake2_update
val blake2_update: a:alg -> kk:size_nat{kk <= max_key a} -> k:lbytes kk -> d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a} -> s:state a -> Tot (state a)
val blake2_update: a:alg -> kk:size_nat{kk <= max_key a} -> k:lbytes kk -> d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a} -> s:state a -> Tot (state a)
let blake2_update a kk k d s = let ll = length d in if kk > 0 then let s = blake2_update_key a kk k ll s in if ll = 0 then s // Skip update_last if ll = 0 (but kk > 0) else blake2_update_blocks a (size_block a) d s else blake2_update_blocks a 0 d s
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 441, "start_col": 0, "start_line": 435 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a) let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag val blake2_update1: a:alg -> prev:nat -> m:bytes -> i:nat{i < length m / size_block a /\ prev + length m <= max_limb a} -> s:state a -> Tot (state a) let get_blocki (a:alg) (m:bytes) (i:nat{i < length m / size_block a}) : block_s a = Seq.slice m (i * size_block a) ((i+1) * size_block a) let blake2_update1 a prev m i s = let totlen = prev + (i+1) * size_block a in let d = get_blocki a m i in blake2_update_block a false totlen d s val blake2_update_last: a:alg -> prev:nat -> rem:nat -> m:bytes{prev + length m <= max_limb a /\ rem <= length m /\ rem <= size_block a} -> s:state a -> Tot (state a) let get_last_padded_block (a:alg) (m:bytes) (rem:nat{rem <= length m /\ rem <= size_block a}) : block_s a = let last = Seq.slice m (length m - rem) (length m) in let last_block = create (size_block a) (u8 0) in let last_block = update_sub last_block 0 rem last in last_block let blake2_update_last a prev rem m s = let inlen = length m in let totlen = prev + inlen in let last_block = get_last_padded_block a m rem in blake2_update_block a true totlen last_block s val blake2_update_blocks: a:alg -> prev:nat -> m:bytes{prev + length m <= max_limb a} -> s:state a -> Tot (state a) let split (a:alg) (len:nat) : nb_rem:(nat & nat){let (nb,rem) = nb_rem in nb * size_block a + rem == len} = UpdateMulti.split_at_last_lazy_nb_rem (size_block a) len let blake2_update_blocks a prev m s = let (nb,rem) = split a (length m) in let s = repeati nb (blake2_update1 a prev m) s in blake2_update_last a prev rem m s val blake2_init_hash: a:alg -> p:blake2_params a -> kk:size_nat{kk <= max_key a} -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (state a) let blake2_init_hash a p kk nn = let iv0 = secret (ivTable a).[0] in let iv1 = secret (ivTable a).[1] in let iv2 = secret (ivTable a).[2] in let iv3 = secret (ivTable a).[3] in let iv4 = secret (ivTable a).[4] in let iv5 = secret (ivTable a).[5] in let iv6 = secret (ivTable a).[6] in let iv7 = secret (ivTable a).[7] in let r0 = create_row #a iv0 iv1 iv2 iv3 in let r1 = create_row #a iv4 iv5 iv6 iv7 in let p: blake2_params a = set_key_length (set_digest_length p nn) kk in let s = serialize_blake2_params p in let iv0' = iv0 ^. s.[0] in let iv1' = iv1 ^. s.[1] in let iv2' = iv2 ^. s.[2] in let iv3' = iv3 ^. s.[3] in let iv4' = iv4 ^. s.[4] in let iv5' = iv5 ^. s.[5] in let iv6' = iv6 ^. s.[6] in let iv7' = iv7 ^. s.[7] in let r0' = create_row #a iv0' iv1' iv2' iv3' in let r1' = create_row #a iv4' iv5' iv6' iv7' in let s_iv = createL [r0';r1';r0;r1] in s_iv val blake2_key_block: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> block_s a let blake2_key_block a kk k = let key_block = create (size_block a) (u8 0) in let key_block = update_sub key_block 0 kk k in key_block /// This function must be called only if the key is non empty (see the precondition) val blake2_update_key: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> ll:nat -> s:state a -> Tot (state a) let blake2_update_key a kk k ll s = let key_block = blake2_key_block a kk k in if ll = 0 then blake2_update_block a true (size_block a) key_block s else blake2_update_block a false (size_block a) key_block s val blake2_update: a:alg -> kk:size_nat{kk <= max_key a} -> k:lbytes kk -> d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a} -> s:state a ->
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> kk: Lib.IntTypes.size_nat{kk <= Spec.Blake2.Definitions.max_key a} -> k: Lib.ByteSequence.lbytes kk -> d: Lib.ByteSequence.bytes { (match kk = 0 with | true -> Lib.Sequence.length d <= Spec.Blake2.Definitions.max_limb a | _ -> Lib.Sequence.length d + Spec.Blake2.Definitions.size_block a <= Spec.Blake2.Definitions.max_limb a) <: Type0 } -> s: Spec.Blake2.Definitions.state a -> Spec.Blake2.Definitions.state a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_key", "Lib.ByteSequence.lbytes", "Lib.ByteSequence.bytes", "Prims.op_Equality", "Prims.int", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.max_limb", "Prims.bool", "Prims.op_Addition", "Spec.Blake2.Definitions.size_block", "Spec.Blake2.Definitions.state", "Prims.op_GreaterThan", "Spec.Blake2.blake2_update_blocks", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Spec.Blake2.blake2_update_key", "Prims.nat" ]
[]
false
false
false
false
false
let blake2_update a kk k d s =
let ll = length d in if kk > 0 then let s = blake2_update_key a kk k ll s in if ll = 0 then s else blake2_update_blocks a (size_block a) d s else blake2_update_blocks a 0 d s
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.lower
val lower (t: Type u#a) : Type0
val lower (t: Type u#a) : Type0
let lower (t:Type u#a) : Type0 = unit -> Dv t
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 45, "end_line": 114, "start_col": 0, "start_line": 114 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash () let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q let slprop_equiv_unit p = unsquash () let slprop_equiv_comm p1 p2 = unsquash () let slprop_equiv_assoc p1 p2 p3 = unsquash () module T = FStar.Tactics.V2 let slprop_equiv_exists (#a:Type) (p q: a -> slprop) (_:squash (forall x. slprop_equiv (p x) (q x))) = introduce forall x. p x == q x with slprop_equiv_elim (p x) (q x); F.extensionality _ _ p q; let pf : squash (eq2 #(F.arrow a (fun _ -> slprop)) (F.on_dom a p) (F.on_dom a q)) = () in let x : squash (op_exists_Star p == op_exists_Star q) = _ by ( T.norm [delta_only [`%op_exists_Star; `%F.on_dom]; unascribe]; let bindings = T.cur_vars() in let bindings = List.Tot.rev bindings in match bindings with | hd::_ -> ( match T.term_as_formula hd.sort with | T.Comp (T.Eq _) lhs rhs -> T.grewrite lhs rhs; T.trefl(); T.exact (T.binding_to_term hd) | _ -> T.fail "Unexpected type of hd" ) | _ -> T.fail "empty bindings" ) in unsquash x
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Type -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.unit" ]
[]
false
false
false
true
true
let lower (t: Type u#a) : Type0 =
unit -> Dv t
false
Spec.Blake2.fst
Spec.Blake2.get_last_padded_block
val get_last_padded_block (a: alg) (m: bytes) (rem: nat{rem <= length m /\ rem <= size_block a}) : block_s a
val get_last_padded_block (a: alg) (m: bytes) (rem: nat{rem <= length m /\ rem <= size_block a}) : block_s a
let get_last_padded_block (a:alg) (m:bytes) (rem:nat{rem <= length m /\ rem <= size_block a}) : block_s a = let last = Seq.slice m (length m - rem) (length m) in let last_block = create (size_block a) (u8 0) in let last_block = update_sub last_block 0 rem last in last_block
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 12, "end_line": 342, "start_col": 0, "start_line": 337 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a) let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag val blake2_update1: a:alg -> prev:nat -> m:bytes -> i:nat{i < length m / size_block a /\ prev + length m <= max_limb a} -> s:state a -> Tot (state a) let get_blocki (a:alg) (m:bytes) (i:nat{i < length m / size_block a}) : block_s a = Seq.slice m (i * size_block a) ((i+1) * size_block a) let blake2_update1 a prev m i s = let totlen = prev + (i+1) * size_block a in let d = get_blocki a m i in blake2_update_block a false totlen d s val blake2_update_last: a:alg -> prev:nat -> rem:nat -> m:bytes{prev + length m <= max_limb a /\ rem <= length m /\ rem <= size_block a} -> s:state a -> Tot (state a)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> m: Lib.ByteSequence.bytes -> rem: Prims.nat{rem <= Lib.Sequence.length m /\ rem <= Spec.Blake2.Definitions.size_block a} -> Spec.Blake2.Definitions.block_s a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.ByteSequence.bytes", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.size_block", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.eq2", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.l_or", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "Spec.Blake2.Definitions.block_s" ]
[]
false
false
false
false
false
let get_last_padded_block (a: alg) (m: bytes) (rem: nat{rem <= length m /\ rem <= size_block a}) : block_s a =
let last = Seq.slice m (length m - rem) (length m) in let last_block = create (size_block a) (u8 0) in let last_block = update_sub last_block 0 rem last in last_block
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.return
val return (#a:Type u#a) (x:a) (p:a -> slprop) : stt a (p x) p
val return (#a:Type u#a) (x:a) (p:a -> slprop) : stt a (p x) p
let return (#a:Type u#a) (x:a) (p:a -> slprop) : stt a (p x) p = fun _ -> Sem.ret x (F.on_dom a p)
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 35, "end_line": 123, "start_col": 0, "start_line": 121 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash () let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q let slprop_equiv_unit p = unsquash () let slprop_equiv_comm p1 p2 = unsquash () let slprop_equiv_assoc p1 p2 p3 = unsquash () module T = FStar.Tactics.V2 let slprop_equiv_exists (#a:Type) (p q: a -> slprop) (_:squash (forall x. slprop_equiv (p x) (q x))) = introduce forall x. p x == q x with slprop_equiv_elim (p x) (q x); F.extensionality _ _ p q; let pf : squash (eq2 #(F.arrow a (fun _ -> slprop)) (F.on_dom a p) (F.on_dom a q)) = () in let x : squash (op_exists_Star p == op_exists_Star q) = _ by ( T.norm [delta_only [`%op_exists_Star; `%F.on_dom]; unascribe]; let bindings = T.cur_vars() in let bindings = List.Tot.rev bindings in match bindings with | hd::_ -> ( match T.term_as_formula hd.sort with | T.Comp (T.Eq _) lhs rhs -> T.grewrite lhs rhs; T.trefl(); T.exact (T.binding_to_term hd) | _ -> T.fail "Unexpected type of hd" ) | _ -> T.fail "empty bindings" ) in unsquash x (* The type of general-purpose computations *) let lower (t:Type u#a) : Type0 = unit -> Dv t let stt (a:Type u#a) (pre:slprop) (post:a -> slprop) : Type0 = lower (Sem.m u#2 u#100 u#a #state a pre (F.on_dom a post))
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> p: (_: a -> PulseCore.InstantiatedSemantics.slprop) -> PulseCore.InstantiatedSemantics.stt a (p x) p
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "Prims.unit", "PulseCore.Semantics.ret", "PulseCore.InstantiatedSemantics.state", "FStar.FunctionalExtensionality.on_dom", "PulseCore.Semantics.__proj__Mkstate__item__pred", "PulseCore.Semantics.m", "FStar.FunctionalExtensionality.on_domain", "PulseCore.InstantiatedSemantics.stt" ]
[]
false
false
false
false
false
let return (#a: Type u#a) (x: a) (p: (a -> slprop)) : stt a (p x) p =
fun _ -> Sem.ret x (F.on_dom a p)
false
Spec.Blake2.fst
Spec.Blake2.blake2
val blake2: a:alg -> d:bytes -> p:blake2_params a -> kk:size_nat{kk <= max_key a /\ (if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn)
val blake2: a:alg -> d:bytes -> p:blake2_params a -> kk:size_nat{kk <= max_key a /\ (if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn)
let blake2 a d p kk k nn = let s = blake2_init_hash a p kk nn in let s = blake2_update a kk k d s in blake2_finish a s nn
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 465, "start_col": 0, "start_line": 462 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a) let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag val blake2_update1: a:alg -> prev:nat -> m:bytes -> i:nat{i < length m / size_block a /\ prev + length m <= max_limb a} -> s:state a -> Tot (state a) let get_blocki (a:alg) (m:bytes) (i:nat{i < length m / size_block a}) : block_s a = Seq.slice m (i * size_block a) ((i+1) * size_block a) let blake2_update1 a prev m i s = let totlen = prev + (i+1) * size_block a in let d = get_blocki a m i in blake2_update_block a false totlen d s val blake2_update_last: a:alg -> prev:nat -> rem:nat -> m:bytes{prev + length m <= max_limb a /\ rem <= length m /\ rem <= size_block a} -> s:state a -> Tot (state a) let get_last_padded_block (a:alg) (m:bytes) (rem:nat{rem <= length m /\ rem <= size_block a}) : block_s a = let last = Seq.slice m (length m - rem) (length m) in let last_block = create (size_block a) (u8 0) in let last_block = update_sub last_block 0 rem last in last_block let blake2_update_last a prev rem m s = let inlen = length m in let totlen = prev + inlen in let last_block = get_last_padded_block a m rem in blake2_update_block a true totlen last_block s val blake2_update_blocks: a:alg -> prev:nat -> m:bytes{prev + length m <= max_limb a} -> s:state a -> Tot (state a) let split (a:alg) (len:nat) : nb_rem:(nat & nat){let (nb,rem) = nb_rem in nb * size_block a + rem == len} = UpdateMulti.split_at_last_lazy_nb_rem (size_block a) len let blake2_update_blocks a prev m s = let (nb,rem) = split a (length m) in let s = repeati nb (blake2_update1 a prev m) s in blake2_update_last a prev rem m s val blake2_init_hash: a:alg -> p:blake2_params a -> kk:size_nat{kk <= max_key a} -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (state a) let blake2_init_hash a p kk nn = let iv0 = secret (ivTable a).[0] in let iv1 = secret (ivTable a).[1] in let iv2 = secret (ivTable a).[2] in let iv3 = secret (ivTable a).[3] in let iv4 = secret (ivTable a).[4] in let iv5 = secret (ivTable a).[5] in let iv6 = secret (ivTable a).[6] in let iv7 = secret (ivTable a).[7] in let r0 = create_row #a iv0 iv1 iv2 iv3 in let r1 = create_row #a iv4 iv5 iv6 iv7 in let p: blake2_params a = set_key_length (set_digest_length p nn) kk in let s = serialize_blake2_params p in let iv0' = iv0 ^. s.[0] in let iv1' = iv1 ^. s.[1] in let iv2' = iv2 ^. s.[2] in let iv3' = iv3 ^. s.[3] in let iv4' = iv4 ^. s.[4] in let iv5' = iv5 ^. s.[5] in let iv6' = iv6 ^. s.[6] in let iv7' = iv7 ^. s.[7] in let r0' = create_row #a iv0' iv1' iv2' iv3' in let r1' = create_row #a iv4' iv5' iv6' iv7' in let s_iv = createL [r0';r1';r0;r1] in s_iv val blake2_key_block: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> block_s a let blake2_key_block a kk k = let key_block = create (size_block a) (u8 0) in let key_block = update_sub key_block 0 kk k in key_block /// This function must be called only if the key is non empty (see the precondition) val blake2_update_key: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> ll:nat -> s:state a -> Tot (state a) let blake2_update_key a kk k ll s = let key_block = blake2_key_block a kk k in if ll = 0 then blake2_update_block a true (size_block a) key_block s else blake2_update_block a false (size_block a) key_block s val blake2_update: a:alg -> kk:size_nat{kk <= max_key a} -> k:lbytes kk -> d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a} -> s:state a -> Tot (state a) let blake2_update a kk k d s = let ll = length d in if kk > 0 then let s = blake2_update_key a kk k ll s in if ll = 0 then s // Skip update_last if ll = 0 (but kk > 0) else blake2_update_blocks a (size_block a) d s else blake2_update_blocks a 0 d s val blake2_finish: a:alg -> s:state a -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn) let blake2_finish a s nn = let full = (uints_to_bytes_le s.[0] @| uints_to_bytes_le s.[1]) in sub full 0 nn val blake2: a:alg -> d:bytes -> p:blake2_params a -> kk:size_nat{kk <= max_key a /\ (if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> d: Lib.ByteSequence.bytes -> p: Spec.Blake2.Definitions.blake2_params a -> kk: Lib.IntTypes.size_nat { kk <= Spec.Blake2.Definitions.max_key a /\ (match kk = 0 with | true -> Lib.Sequence.length d <= Spec.Blake2.Definitions.max_limb a | _ -> Lib.Sequence.length d + Spec.Blake2.Definitions.size_block a <= Spec.Blake2.Definitions.max_limb a) } -> k: Lib.ByteSequence.lbytes kk -> nn: Lib.IntTypes.size_nat{1 <= nn /\ nn <= Spec.Blake2.Definitions.max_output a} -> Lib.ByteSequence.lbytes nn
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.ByteSequence.bytes", "Spec.Blake2.Definitions.blake2_params", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_key", "Prims.op_Equality", "Prims.int", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.max_limb", "Prims.bool", "Prims.op_Addition", "Spec.Blake2.Definitions.size_block", "Prims.logical", "Lib.ByteSequence.lbytes", "Spec.Blake2.Definitions.max_output", "Spec.Blake2.blake2_finish", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Spec.Blake2.blake2_update", "Spec.Blake2.blake2_init_hash" ]
[]
false
false
false
false
false
let blake2 a d p kk k nn =
let s = blake2_init_hash a p kk nn in let s = blake2_update a kk k d s in blake2_finish a s nn
false
Spec.Blake2.fst
Spec.Blake2.blake2_key_block
val blake2_key_block: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> block_s a
val blake2_key_block: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> block_s a
let blake2_key_block a kk k = let key_block = create (size_block a) (u8 0) in let key_block = update_sub key_block 0 kk k in key_block
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 411, "start_col": 0, "start_line": 408 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a) let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag val blake2_update1: a:alg -> prev:nat -> m:bytes -> i:nat{i < length m / size_block a /\ prev + length m <= max_limb a} -> s:state a -> Tot (state a) let get_blocki (a:alg) (m:bytes) (i:nat{i < length m / size_block a}) : block_s a = Seq.slice m (i * size_block a) ((i+1) * size_block a) let blake2_update1 a prev m i s = let totlen = prev + (i+1) * size_block a in let d = get_blocki a m i in blake2_update_block a false totlen d s val blake2_update_last: a:alg -> prev:nat -> rem:nat -> m:bytes{prev + length m <= max_limb a /\ rem <= length m /\ rem <= size_block a} -> s:state a -> Tot (state a) let get_last_padded_block (a:alg) (m:bytes) (rem:nat{rem <= length m /\ rem <= size_block a}) : block_s a = let last = Seq.slice m (length m - rem) (length m) in let last_block = create (size_block a) (u8 0) in let last_block = update_sub last_block 0 rem last in last_block let blake2_update_last a prev rem m s = let inlen = length m in let totlen = prev + inlen in let last_block = get_last_padded_block a m rem in blake2_update_block a true totlen last_block s val blake2_update_blocks: a:alg -> prev:nat -> m:bytes{prev + length m <= max_limb a} -> s:state a -> Tot (state a) let split (a:alg) (len:nat) : nb_rem:(nat & nat){let (nb,rem) = nb_rem in nb * size_block a + rem == len} = UpdateMulti.split_at_last_lazy_nb_rem (size_block a) len let blake2_update_blocks a prev m s = let (nb,rem) = split a (length m) in let s = repeati nb (blake2_update1 a prev m) s in blake2_update_last a prev rem m s val blake2_init_hash: a:alg -> p:blake2_params a -> kk:size_nat{kk <= max_key a} -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (state a) let blake2_init_hash a p kk nn = let iv0 = secret (ivTable a).[0] in let iv1 = secret (ivTable a).[1] in let iv2 = secret (ivTable a).[2] in let iv3 = secret (ivTable a).[3] in let iv4 = secret (ivTable a).[4] in let iv5 = secret (ivTable a).[5] in let iv6 = secret (ivTable a).[6] in let iv7 = secret (ivTable a).[7] in let r0 = create_row #a iv0 iv1 iv2 iv3 in let r1 = create_row #a iv4 iv5 iv6 iv7 in let p: blake2_params a = set_key_length (set_digest_length p nn) kk in let s = serialize_blake2_params p in let iv0' = iv0 ^. s.[0] in let iv1' = iv1 ^. s.[1] in let iv2' = iv2 ^. s.[2] in let iv3' = iv3 ^. s.[3] in let iv4' = iv4 ^. s.[4] in let iv5' = iv5 ^. s.[5] in let iv6' = iv6 ^. s.[6] in let iv7' = iv7 ^. s.[7] in let r0' = create_row #a iv0' iv1' iv2' iv3' in let r1' = create_row #a iv4' iv5' iv6' iv7' in let s_iv = createL [r0';r1';r0;r1] in s_iv val blake2_key_block: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> kk: Lib.IntTypes.size_nat{0 < kk /\ kk <= Spec.Blake2.Definitions.max_key a} -> k: Lib.ByteSequence.lbytes kk -> Spec.Blake2.Definitions.block_s a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_key", "Lib.ByteSequence.lbytes", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.size_block", "Prims.eq2", "Lib.Sequence.sub", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "Lib.IntTypes.uint_t", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8", "Spec.Blake2.Definitions.block_s" ]
[]
false
false
false
false
false
let blake2_key_block a kk k =
let key_block = create (size_block a) (u8 0) in let key_block = update_sub key_block 0 kk k in key_block
false
Spec.Blake2.fst
Spec.Blake2.blake2s
val blake2s: d:bytes -> p:blake2_params Blake2S -> kk:size_nat{kk <= 32 /\ (if kk = 0 then length d < pow2 64 else length d + 64 < pow2 64)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= 32} -> Tot (lbytes nn)
val blake2s: d:bytes -> p:blake2_params Blake2S -> kk:size_nat{kk <= 32 /\ (if kk = 0 then length d < pow2 64 else length d + 64 < pow2 64)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= 32} -> Tot (lbytes nn)
let blake2s d p kk k n = blake2 Blake2S d p kk k n
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 475, "start_col": 0, "start_line": 475 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a) let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag val blake2_update1: a:alg -> prev:nat -> m:bytes -> i:nat{i < length m / size_block a /\ prev + length m <= max_limb a} -> s:state a -> Tot (state a) let get_blocki (a:alg) (m:bytes) (i:nat{i < length m / size_block a}) : block_s a = Seq.slice m (i * size_block a) ((i+1) * size_block a) let blake2_update1 a prev m i s = let totlen = prev + (i+1) * size_block a in let d = get_blocki a m i in blake2_update_block a false totlen d s val blake2_update_last: a:alg -> prev:nat -> rem:nat -> m:bytes{prev + length m <= max_limb a /\ rem <= length m /\ rem <= size_block a} -> s:state a -> Tot (state a) let get_last_padded_block (a:alg) (m:bytes) (rem:nat{rem <= length m /\ rem <= size_block a}) : block_s a = let last = Seq.slice m (length m - rem) (length m) in let last_block = create (size_block a) (u8 0) in let last_block = update_sub last_block 0 rem last in last_block let blake2_update_last a prev rem m s = let inlen = length m in let totlen = prev + inlen in let last_block = get_last_padded_block a m rem in blake2_update_block a true totlen last_block s val blake2_update_blocks: a:alg -> prev:nat -> m:bytes{prev + length m <= max_limb a} -> s:state a -> Tot (state a) let split (a:alg) (len:nat) : nb_rem:(nat & nat){let (nb,rem) = nb_rem in nb * size_block a + rem == len} = UpdateMulti.split_at_last_lazy_nb_rem (size_block a) len let blake2_update_blocks a prev m s = let (nb,rem) = split a (length m) in let s = repeati nb (blake2_update1 a prev m) s in blake2_update_last a prev rem m s val blake2_init_hash: a:alg -> p:blake2_params a -> kk:size_nat{kk <= max_key a} -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (state a) let blake2_init_hash a p kk nn = let iv0 = secret (ivTable a).[0] in let iv1 = secret (ivTable a).[1] in let iv2 = secret (ivTable a).[2] in let iv3 = secret (ivTable a).[3] in let iv4 = secret (ivTable a).[4] in let iv5 = secret (ivTable a).[5] in let iv6 = secret (ivTable a).[6] in let iv7 = secret (ivTable a).[7] in let r0 = create_row #a iv0 iv1 iv2 iv3 in let r1 = create_row #a iv4 iv5 iv6 iv7 in let p: blake2_params a = set_key_length (set_digest_length p nn) kk in let s = serialize_blake2_params p in let iv0' = iv0 ^. s.[0] in let iv1' = iv1 ^. s.[1] in let iv2' = iv2 ^. s.[2] in let iv3' = iv3 ^. s.[3] in let iv4' = iv4 ^. s.[4] in let iv5' = iv5 ^. s.[5] in let iv6' = iv6 ^. s.[6] in let iv7' = iv7 ^. s.[7] in let r0' = create_row #a iv0' iv1' iv2' iv3' in let r1' = create_row #a iv4' iv5' iv6' iv7' in let s_iv = createL [r0';r1';r0;r1] in s_iv val blake2_key_block: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> block_s a let blake2_key_block a kk k = let key_block = create (size_block a) (u8 0) in let key_block = update_sub key_block 0 kk k in key_block /// This function must be called only if the key is non empty (see the precondition) val blake2_update_key: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> ll:nat -> s:state a -> Tot (state a) let blake2_update_key a kk k ll s = let key_block = blake2_key_block a kk k in if ll = 0 then blake2_update_block a true (size_block a) key_block s else blake2_update_block a false (size_block a) key_block s val blake2_update: a:alg -> kk:size_nat{kk <= max_key a} -> k:lbytes kk -> d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a} -> s:state a -> Tot (state a) let blake2_update a kk k d s = let ll = length d in if kk > 0 then let s = blake2_update_key a kk k ll s in if ll = 0 then s // Skip update_last if ll = 0 (but kk > 0) else blake2_update_blocks a (size_block a) d s else blake2_update_blocks a 0 d s val blake2_finish: a:alg -> s:state a -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn) let blake2_finish a s nn = let full = (uints_to_bytes_le s.[0] @| uints_to_bytes_le s.[1]) in sub full 0 nn val blake2: a:alg -> d:bytes -> p:blake2_params a -> kk:size_nat{kk <= max_key a /\ (if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn) let blake2 a d p kk k nn = let s = blake2_init_hash a p kk nn in let s = blake2_update a kk k d s in blake2_finish a s nn val blake2s: d:bytes -> p:blake2_params Blake2S -> kk:size_nat{kk <= 32 /\ (if kk = 0 then length d < pow2 64 else length d + 64 < pow2 64)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= 32} -> Tot (lbytes nn)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.ByteSequence.bytes -> p: Spec.Blake2.Definitions.blake2_params Spec.Blake2.Definitions.Blake2S -> kk: Lib.IntTypes.size_nat { kk <= 32 /\ (match kk = 0 with | true -> Lib.Sequence.length d < Prims.pow2 64 | _ -> Lib.Sequence.length d + 64 < Prims.pow2 64) } -> k: Lib.ByteSequence.lbytes kk -> nn: Lib.IntTypes.size_nat{1 <= nn /\ nn <= 32} -> Lib.ByteSequence.lbytes nn
Prims.Tot
[ "total" ]
[]
[ "Lib.ByteSequence.bytes", "Spec.Blake2.Definitions.blake2_params", "Spec.Blake2.Definitions.Blake2S", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_LessThan", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.bool", "Prims.op_Addition", "Prims.logical", "Lib.ByteSequence.lbytes", "Spec.Blake2.blake2" ]
[]
false
false
false
false
false
let blake2s d p kk k n =
blake2 Blake2S d p kk k n
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.stt
val stt (a:Type u#a) (pre:slprop) (post:a -> slprop) : Type0
val stt (a:Type u#a) (pre:slprop) (post:a -> slprop) : Type0
let stt (a:Type u#a) (pre:slprop) (post:a -> slprop) : Type0 = lower (Sem.m u#2 u#100 u#a #state a pre (F.on_dom a post))
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 60, "end_line": 119, "start_col": 0, "start_line": 115 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash () let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q let slprop_equiv_unit p = unsquash () let slprop_equiv_comm p1 p2 = unsquash () let slprop_equiv_assoc p1 p2 p3 = unsquash () module T = FStar.Tactics.V2 let slprop_equiv_exists (#a:Type) (p q: a -> slprop) (_:squash (forall x. slprop_equiv (p x) (q x))) = introduce forall x. p x == q x with slprop_equiv_elim (p x) (q x); F.extensionality _ _ p q; let pf : squash (eq2 #(F.arrow a (fun _ -> slprop)) (F.on_dom a p) (F.on_dom a q)) = () in let x : squash (op_exists_Star p == op_exists_Star q) = _ by ( T.norm [delta_only [`%op_exists_Star; `%F.on_dom]; unascribe]; let bindings = T.cur_vars() in let bindings = List.Tot.rev bindings in match bindings with | hd::_ -> ( match T.term_as_formula hd.sort with | T.Comp (T.Eq _) lhs rhs -> T.grewrite lhs rhs; T.trefl(); T.exact (T.binding_to_term hd) | _ -> T.fail "Unexpected type of hd" ) | _ -> T.fail "empty bindings" ) in unsquash x (* The type of general-purpose computations *)
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> pre: PulseCore.InstantiatedSemantics.slprop -> post: (_: a -> PulseCore.InstantiatedSemantics.slprop) -> Type0
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "PulseCore.InstantiatedSemantics.lower", "PulseCore.Semantics.m", "PulseCore.InstantiatedSemantics.state", "FStar.FunctionalExtensionality.on_dom", "PulseCore.Semantics.__proj__Mkstate__item__pred" ]
[]
false
false
false
true
true
let stt (a: Type u#a) (pre: slprop) (post: (a -> slprop)) : Type0 =
lower (Sem.m u#2 u#100 u#a #state a pre (F.on_dom a post))
false
Spec.Blake2.fst
Spec.Blake2.blake2b
val blake2b: d:bytes -> p:blake2_params Blake2B -> kk:size_nat{kk <= 64 /\ (if kk = 0 then length d < pow2 128 else length d + 128 < pow2 128)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= 64} -> Tot (lbytes nn)
val blake2b: d:bytes -> p:blake2_params Blake2B -> kk:size_nat{kk <= 64 /\ (if kk = 0 then length d < pow2 128 else length d + 128 < pow2 128)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= 64} -> Tot (lbytes nn)
let blake2b d p kk k n = blake2 Blake2B d p kk k n
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 485, "start_col": 0, "start_line": 485 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a) let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag val blake2_update1: a:alg -> prev:nat -> m:bytes -> i:nat{i < length m / size_block a /\ prev + length m <= max_limb a} -> s:state a -> Tot (state a) let get_blocki (a:alg) (m:bytes) (i:nat{i < length m / size_block a}) : block_s a = Seq.slice m (i * size_block a) ((i+1) * size_block a) let blake2_update1 a prev m i s = let totlen = prev + (i+1) * size_block a in let d = get_blocki a m i in blake2_update_block a false totlen d s val blake2_update_last: a:alg -> prev:nat -> rem:nat -> m:bytes{prev + length m <= max_limb a /\ rem <= length m /\ rem <= size_block a} -> s:state a -> Tot (state a) let get_last_padded_block (a:alg) (m:bytes) (rem:nat{rem <= length m /\ rem <= size_block a}) : block_s a = let last = Seq.slice m (length m - rem) (length m) in let last_block = create (size_block a) (u8 0) in let last_block = update_sub last_block 0 rem last in last_block let blake2_update_last a prev rem m s = let inlen = length m in let totlen = prev + inlen in let last_block = get_last_padded_block a m rem in blake2_update_block a true totlen last_block s val blake2_update_blocks: a:alg -> prev:nat -> m:bytes{prev + length m <= max_limb a} -> s:state a -> Tot (state a) let split (a:alg) (len:nat) : nb_rem:(nat & nat){let (nb,rem) = nb_rem in nb * size_block a + rem == len} = UpdateMulti.split_at_last_lazy_nb_rem (size_block a) len let blake2_update_blocks a prev m s = let (nb,rem) = split a (length m) in let s = repeati nb (blake2_update1 a prev m) s in blake2_update_last a prev rem m s val blake2_init_hash: a:alg -> p:blake2_params a -> kk:size_nat{kk <= max_key a} -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (state a) let blake2_init_hash a p kk nn = let iv0 = secret (ivTable a).[0] in let iv1 = secret (ivTable a).[1] in let iv2 = secret (ivTable a).[2] in let iv3 = secret (ivTable a).[3] in let iv4 = secret (ivTable a).[4] in let iv5 = secret (ivTable a).[5] in let iv6 = secret (ivTable a).[6] in let iv7 = secret (ivTable a).[7] in let r0 = create_row #a iv0 iv1 iv2 iv3 in let r1 = create_row #a iv4 iv5 iv6 iv7 in let p: blake2_params a = set_key_length (set_digest_length p nn) kk in let s = serialize_blake2_params p in let iv0' = iv0 ^. s.[0] in let iv1' = iv1 ^. s.[1] in let iv2' = iv2 ^. s.[2] in let iv3' = iv3 ^. s.[3] in let iv4' = iv4 ^. s.[4] in let iv5' = iv5 ^. s.[5] in let iv6' = iv6 ^. s.[6] in let iv7' = iv7 ^. s.[7] in let r0' = create_row #a iv0' iv1' iv2' iv3' in let r1' = create_row #a iv4' iv5' iv6' iv7' in let s_iv = createL [r0';r1';r0;r1] in s_iv val blake2_key_block: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> block_s a let blake2_key_block a kk k = let key_block = create (size_block a) (u8 0) in let key_block = update_sub key_block 0 kk k in key_block /// This function must be called only if the key is non empty (see the precondition) val blake2_update_key: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> ll:nat -> s:state a -> Tot (state a) let blake2_update_key a kk k ll s = let key_block = blake2_key_block a kk k in if ll = 0 then blake2_update_block a true (size_block a) key_block s else blake2_update_block a false (size_block a) key_block s val blake2_update: a:alg -> kk:size_nat{kk <= max_key a} -> k:lbytes kk -> d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a} -> s:state a -> Tot (state a) let blake2_update a kk k d s = let ll = length d in if kk > 0 then let s = blake2_update_key a kk k ll s in if ll = 0 then s // Skip update_last if ll = 0 (but kk > 0) else blake2_update_blocks a (size_block a) d s else blake2_update_blocks a 0 d s val blake2_finish: a:alg -> s:state a -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn) let blake2_finish a s nn = let full = (uints_to_bytes_le s.[0] @| uints_to_bytes_le s.[1]) in sub full 0 nn val blake2: a:alg -> d:bytes -> p:blake2_params a -> kk:size_nat{kk <= max_key a /\ (if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn) let blake2 a d p kk k nn = let s = blake2_init_hash a p kk nn in let s = blake2_update a kk k d s in blake2_finish a s nn val blake2s: d:bytes -> p:blake2_params Blake2S -> kk:size_nat{kk <= 32 /\ (if kk = 0 then length d < pow2 64 else length d + 64 < pow2 64)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= 32} -> Tot (lbytes nn) let blake2s d p kk k n = blake2 Blake2S d p kk k n val blake2b: d:bytes -> p:blake2_params Blake2B -> kk:size_nat{kk <= 64 /\ (if kk = 0 then length d < pow2 128 else length d + 128 < pow2 128)} -> k:lbytes kk -> nn:size_nat{1 <= nn /\ nn <= 64} -> Tot (lbytes nn)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.ByteSequence.bytes -> p: Spec.Blake2.Definitions.blake2_params Spec.Blake2.Definitions.Blake2B -> kk: Lib.IntTypes.size_nat { kk <= 64 /\ (match kk = 0 with | true -> Lib.Sequence.length d < Prims.pow2 128 | _ -> Lib.Sequence.length d + 128 < Prims.pow2 128) } -> k: Lib.ByteSequence.lbytes kk -> nn: Lib.IntTypes.size_nat{1 <= nn /\ nn <= 64} -> Lib.ByteSequence.lbytes nn
Prims.Tot
[ "total" ]
[]
[ "Lib.ByteSequence.bytes", "Spec.Blake2.Definitions.blake2_params", "Spec.Blake2.Definitions.Blake2B", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.op_LessThan", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.bool", "Prims.op_Addition", "Prims.logical", "Lib.ByteSequence.lbytes", "Spec.Blake2.blake2" ]
[]
false
false
false
false
false
let blake2b d p kk k n =
blake2 Blake2B d p kk k n
false
Spec.Blake2.fst
Spec.Blake2.blake2_finish
val blake2_finish: a:alg -> s:state a -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn)
val blake2_finish: a:alg -> s:state a -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn)
let blake2_finish a s nn = let full = (uints_to_bytes_le s.[0] @| uints_to_bytes_le s.[1]) in sub full 0 nn
{ "file_name": "specs/Spec.Blake2.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 451, "start_col": 0, "start_line": 449 }
module Spec.Blake2 open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators module UpdateMulti = Lib.UpdateMulti include Spec.Blake2.Definitions #set-options "--z3rlimit 50" /// Serialize blake2s parameters to be xor'ed with the state during initialization /// As the state is represented using uint32, we need to serialize to uint32 instead /// of the more standard bytes representation let serialize_blake2s_params (p: blake2s_params) : lseq uint32 8 = let s0 = (u32 (v p.digest_length)) ^. (u32 (v p.key_length) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le p.salt in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le p.personal in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l /// Serialize blake2b parameters to be xor'ed with the state during initialization /// As the state is represented using uint64, we need to serialize to uint64 instead /// of the more standard bytes representation let serialize_blake2b_params (p: blake2b_params) : lseq uint64 8 = let s0 = (u64 (v p.digest_length)) ^. (u64 (v p.key_length) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le p.salt in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le p.personal in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); createL l inline_for_extraction let serialize_blake2_params (#a: alg) (p: blake2_params a): lseq (word_t a) 8 = match a with | Blake2S -> serialize_blake2s_params p | Blake2B -> serialize_blake2b_params p [@"opaque_to_smt"] inline_for_extraction let rTable_list_S : List.Tot.llist (rotval U32) 4 = [ size 16; size 12; size 8; size 7 ] [@"opaque_to_smt"] inline_for_extraction let rTable_list_B: List.Tot.llist (rotval U64) 4 = [ size 32; size 24; size 16; size 63 ] inline_for_extraction let rTable (a:alg) : rtable_t a = match a with | Blake2S -> (of_list rTable_list_S) | Blake2B -> (of_list rTable_list_B) [@"opaque_to_smt"] inline_for_extraction let list_iv_S: List.Tot.llist (uint_t U32 PUB) 8 = [@inline_let] let l = [ 0x6A09E667ul; 0xBB67AE85ul; 0x3C6EF372ul; 0xA54FF53Aul; 0x510E527Ful; 0x9B05688Cul; 0x1F83D9ABul; 0x5BE0CD19ul] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv_B: List.Tot.llist (uint_t U64 PUB) 8 = [@inline_let] let l = [ 0x6A09E667F3BCC908uL; 0xBB67AE8584CAA73BuL; 0x3C6EF372FE94F82BuL; 0xA54FF53A5F1D36F1uL; 0x510E527FADE682D1uL; 0x9B05688C2B3E6C1FuL; 0x1F83D9ABFB41BD6BuL; 0x5BE0CD19137E2179uL] in assert_norm(List.Tot.length l == 8); l [@"opaque_to_smt"] inline_for_extraction let list_iv (a:alg): List.Tot.llist (pub_word_t a) 8 = match a with | Blake2S -> list_iv_S | Blake2B -> list_iv_B inline_for_extraction let ivTable (a:alg) : lseq (pub_word_t a) 8 = match a with | Blake2S -> of_list list_iv_S | Blake2B -> of_list list_iv_B [@"opaque_to_smt"] let list_sigma: list_sigma_t = [@inline_let] let l : list sigma_elt_t = [ size 0; size 1; size 2; size 3; size 4; size 5; size 6; size 7; size 8; size 9; size 10; size 11; size 12; size 13; size 14; size 15; size 14; size 10; size 4; size 8; size 9; size 15; size 13; size 6; size 1; size 12; size 0; size 2; size 11; size 7; size 5; size 3; size 11; size 8; size 12; size 0; size 5; size 2; size 15; size 13; size 10; size 14; size 3; size 6; size 7; size 1; size 9; size 4; size 7; size 9; size 3; size 1; size 13; size 12; size 11; size 14; size 2; size 6; size 5; size 10; size 4; size 0; size 15; size 8; size 9; size 0; size 5; size 7; size 2; size 4; size 10; size 15; size 14; size 1; size 11; size 12; size 6; size 8; size 3; size 13; size 2; size 12; size 6; size 10; size 0; size 11; size 8; size 3; size 4; size 13; size 7; size 5; size 15; size 14; size 1; size 9; size 12; size 5; size 1; size 15; size 14; size 13; size 4; size 10; size 0; size 7; size 6; size 3; size 9; size 2; size 8; size 11; size 13; size 11; size 7; size 14; size 12; size 1; size 3; size 9; size 5; size 0; size 15; size 4; size 8; size 6; size 2; size 10; size 6; size 15; size 14; size 9; size 11; size 3; size 0; size 8; size 12; size 2; size 13; size 7; size 1; size 4; size 10; size 5; size 10; size 2; size 8; size 4; size 7; size 6; size 1; size 5; size 15; size 11; size 9; size 14; size 3; size 12; size 13; size 0 ] in assert_norm(List.Tot.length l == 160); l inline_for_extraction let sigmaTable:lseq sigma_elt_t size_sigmaTable = assert_norm (List.Tot.length list_sigma == size_sigmaTable); of_list list_sigma (* Functions *) let g1 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (r:rotval (wt a)) : Tot (state a) = wv.[i] <- (wv.[i] ^| wv.[j]) >>>| r let g2 (a:alg) (wv:state a) (i:row_idx) (j:row_idx) (x:row a) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j] +| x) let g2z (a:alg) (wv:state a) (i:row_idx) (j:row_idx) : Tot (state a) = wv.[i] <- (wv.[i] +| wv.[j]) val blake2_mixing: a:alg -> ws:state a -> row a -> row a -> Tot (state a) let blake2_mixing al wv x y = let a = 0 in let b = 1 in let c = 2 in let d = 3 in let rt = rTable al in let wv = g2 al wv a b x in let wv = g1 al wv d a rt.[0] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[1] in let wv = g2 al wv a b y in let wv = g1 al wv d a rt.[2] in let wv = g2z al wv c d in let wv = g1 al wv b c rt.[3] in wv let diag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 1 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 3 in wv let undiag (#a:alg) (wv:state a) : state a = let wv = wv.[1] <- rotr wv.[1] 3 in let wv = wv.[2] <- rotr wv.[2] 2 in let wv = wv.[3] <- rotr wv.[3] 1 in wv inline_for_extraction let gather_row (#a:alg) (m:block_w a) (i0 i1 i2 i3:sigma_elt_t) : row a = create_row m.[v i0] m.[v i1] m.[v i2] m.[v i3] val gather_state: a:alg -> m:block_w a -> start:nat{start <= 144} -> state a let gather_state a m start = let x = gather_row m sigmaTable.[start] sigmaTable.[start+2] sigmaTable.[start+4] sigmaTable.[start+6] in let y = gather_row m sigmaTable.[start+1] sigmaTable.[start+3] sigmaTable.[start+5] sigmaTable.[start+7] in let z = gather_row m sigmaTable.[start+8] sigmaTable.[start+10] sigmaTable.[start+12] sigmaTable.[start+14] in let w = gather_row m sigmaTable.[start+9] sigmaTable.[start+11] sigmaTable.[start+13] sigmaTable.[start+15] in let l = [x;y;z;w] in assert_norm (List.Tot.length l == 4); createL l val blake2_round: a:alg -> m:block_w a -> i:size_nat -> wv:state a -> state a let blake2_round a m i wv = let start = (i%10) * 16 in let m_s = gather_state a m start in let wv = blake2_mixing a wv m_s.[0] m_s.[1] in let wv = diag wv in let wv = blake2_mixing a wv m_s.[2] m_s.[3] in undiag wv val blake2_compress0: a:alg -> m:block_s a -> block_w a let blake2_compress0 a m = uints_from_bytes_le m val blake2_compress1: a:alg -> s_iv:state a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress1 a s_iv offset flag = let wv : state a = s_iv in let low_offset = limb_to_word a offset in let high_offset = limb_to_word a (shift_right #(limb_inttype a) offset (size (bits (wt a)))) in let m_12 = low_offset in let m_13 = high_offset in let m_14 = if flag then (ones (wt a) SEC) else zero a in let m_15 = zero a in let mask = create_row m_12 m_13 m_14 m_15 in let wv = wv.[3] <- wv.[3] ^| mask in wv val blake2_compress2: a:alg -> wv:state a -> m:block_w a -> Tot (state a) let blake2_compress2 a wv m = repeati (rounds a) (blake2_round a m) wv val blake2_compress3: a:alg -> wv:state a -> s_iv:state a -> Tot (state a) let blake2_compress3 a wv s = let s = s.[0] <- (s.[0] ^| wv.[0]) ^| wv.[2] in let s = s.[1] <- (s.[1] ^| wv.[1]) ^| wv.[3] in s val blake2_compress: a:alg -> s_iv:state a -> m:block_s a -> offset:limb_t a -> flag:bool -> Tot (state a) let blake2_compress a s_iv m offset flag = let m_w = blake2_compress0 a m in let wv = blake2_compress1 a s_iv offset flag in let wv = blake2_compress2 a wv m_w in let s_iv = blake2_compress3 a wv s_iv in s_iv val blake2_update_block: a:alg -> flag:bool -> totlen:nat{totlen <= max_limb a} -> d:block_s a -> s_iv:state a -> Tot (state a) let blake2_update_block a flag totlen d s = let offset = nat_to_limb a totlen in blake2_compress a s d offset flag val blake2_update1: a:alg -> prev:nat -> m:bytes -> i:nat{i < length m / size_block a /\ prev + length m <= max_limb a} -> s:state a -> Tot (state a) let get_blocki (a:alg) (m:bytes) (i:nat{i < length m / size_block a}) : block_s a = Seq.slice m (i * size_block a) ((i+1) * size_block a) let blake2_update1 a prev m i s = let totlen = prev + (i+1) * size_block a in let d = get_blocki a m i in blake2_update_block a false totlen d s val blake2_update_last: a:alg -> prev:nat -> rem:nat -> m:bytes{prev + length m <= max_limb a /\ rem <= length m /\ rem <= size_block a} -> s:state a -> Tot (state a) let get_last_padded_block (a:alg) (m:bytes) (rem:nat{rem <= length m /\ rem <= size_block a}) : block_s a = let last = Seq.slice m (length m - rem) (length m) in let last_block = create (size_block a) (u8 0) in let last_block = update_sub last_block 0 rem last in last_block let blake2_update_last a prev rem m s = let inlen = length m in let totlen = prev + inlen in let last_block = get_last_padded_block a m rem in blake2_update_block a true totlen last_block s val blake2_update_blocks: a:alg -> prev:nat -> m:bytes{prev + length m <= max_limb a} -> s:state a -> Tot (state a) let split (a:alg) (len:nat) : nb_rem:(nat & nat){let (nb,rem) = nb_rem in nb * size_block a + rem == len} = UpdateMulti.split_at_last_lazy_nb_rem (size_block a) len let blake2_update_blocks a prev m s = let (nb,rem) = split a (length m) in let s = repeati nb (blake2_update1 a prev m) s in blake2_update_last a prev rem m s val blake2_init_hash: a:alg -> p:blake2_params a -> kk:size_nat{kk <= max_key a} -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (state a) let blake2_init_hash a p kk nn = let iv0 = secret (ivTable a).[0] in let iv1 = secret (ivTable a).[1] in let iv2 = secret (ivTable a).[2] in let iv3 = secret (ivTable a).[3] in let iv4 = secret (ivTable a).[4] in let iv5 = secret (ivTable a).[5] in let iv6 = secret (ivTable a).[6] in let iv7 = secret (ivTable a).[7] in let r0 = create_row #a iv0 iv1 iv2 iv3 in let r1 = create_row #a iv4 iv5 iv6 iv7 in let p: blake2_params a = set_key_length (set_digest_length p nn) kk in let s = serialize_blake2_params p in let iv0' = iv0 ^. s.[0] in let iv1' = iv1 ^. s.[1] in let iv2' = iv2 ^. s.[2] in let iv3' = iv3 ^. s.[3] in let iv4' = iv4 ^. s.[4] in let iv5' = iv5 ^. s.[5] in let iv6' = iv6 ^. s.[6] in let iv7' = iv7 ^. s.[7] in let r0' = create_row #a iv0' iv1' iv2' iv3' in let r1' = create_row #a iv4' iv5' iv6' iv7' in let s_iv = createL [r0';r1';r0;r1] in s_iv val blake2_key_block: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> block_s a let blake2_key_block a kk k = let key_block = create (size_block a) (u8 0) in let key_block = update_sub key_block 0 kk k in key_block /// This function must be called only if the key is non empty (see the precondition) val blake2_update_key: a:alg -> kk:size_nat{0 < kk /\ kk <= max_key a} -> k:lbytes kk -> ll:nat -> s:state a -> Tot (state a) let blake2_update_key a kk k ll s = let key_block = blake2_key_block a kk k in if ll = 0 then blake2_update_block a true (size_block a) key_block s else blake2_update_block a false (size_block a) key_block s val blake2_update: a:alg -> kk:size_nat{kk <= max_key a} -> k:lbytes kk -> d:bytes{if kk = 0 then length d <= max_limb a else length d + (size_block a) <= max_limb a} -> s:state a -> Tot (state a) let blake2_update a kk k d s = let ll = length d in if kk > 0 then let s = blake2_update_key a kk k ll s in if ll = 0 then s // Skip update_last if ll = 0 (but kk > 0) else blake2_update_blocks a (size_block a) d s else blake2_update_blocks a 0 d s val blake2_finish: a:alg -> s:state a -> nn:size_nat{1 <= nn /\ nn <= max_output a} -> Tot (lbytes nn)
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.Definitions.fst.checked", "prims.fst.checked", "Lib.UpdateMulti.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.fst" }
[ { "abbrev": false, "full_module": "Spec.Blake2.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Lib.UpdateMulti", "short_module": "UpdateMulti" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> s: Spec.Blake2.Definitions.state a -> nn: Lib.IntTypes.size_nat{1 <= nn /\ nn <= Spec.Blake2.Definitions.max_output a} -> Lib.ByteSequence.lbytes nn
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.state", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_output", "Lib.Sequence.sub", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Spec.Blake2.Definitions.wt", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.op_Multiply", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.append", "Lib.ByteSequence.uints_to_bytes_le", "Lib.Sequence.index", "Lib.Sequence.op_At_Bar", "Lib.Sequence.op_String_Access", "Spec.Blake2.Definitions.row", "Lib.ByteSequence.lbytes" ]
[]
false
false
false
false
false
let blake2_finish a s nn =
let full = (uints_to_bytes_le s.[ 0 ] @| uints_to_bytes_le s.[ 1 ]) in sub full 0 nn
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.bind
val bind (#a:Type u#a) (#b:Type u#b) (#pre1:slprop) (#post1:a -> slprop) (#post2:b -> slprop) (e1:stt a pre1 post1) (e2:(x:a -> stt b (post1 x) post2)) : stt b pre1 post2
val bind (#a:Type u#a) (#b:Type u#b) (#pre1:slprop) (#post1:a -> slprop) (#post2:b -> slprop) (e1:stt a pre1 post1) (e2:(x:a -> stt b (post1 x) post2)) : stt b pre1 post2
let bind (#a:Type u#a) (#b:Type u#b) (#pre1:slprop) (#post1:a -> slprop) (#post2:b -> slprop) (e1:stt a pre1 post1) (e2:(x:a -> stt b (post1 x) post2)) : stt b pre1 post2 = fun _ -> Sem.mbind (e1()) (fun x -> e2 x ())
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 46, "end_line": 131, "start_col": 0, "start_line": 125 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash () let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q let slprop_equiv_unit p = unsquash () let slprop_equiv_comm p1 p2 = unsquash () let slprop_equiv_assoc p1 p2 p3 = unsquash () module T = FStar.Tactics.V2 let slprop_equiv_exists (#a:Type) (p q: a -> slprop) (_:squash (forall x. slprop_equiv (p x) (q x))) = introduce forall x. p x == q x with slprop_equiv_elim (p x) (q x); F.extensionality _ _ p q; let pf : squash (eq2 #(F.arrow a (fun _ -> slprop)) (F.on_dom a p) (F.on_dom a q)) = () in let x : squash (op_exists_Star p == op_exists_Star q) = _ by ( T.norm [delta_only [`%op_exists_Star; `%F.on_dom]; unascribe]; let bindings = T.cur_vars() in let bindings = List.Tot.rev bindings in match bindings with | hd::_ -> ( match T.term_as_formula hd.sort with | T.Comp (T.Eq _) lhs rhs -> T.grewrite lhs rhs; T.trefl(); T.exact (T.binding_to_term hd) | _ -> T.fail "Unexpected type of hd" ) | _ -> T.fail "empty bindings" ) in unsquash x (* The type of general-purpose computations *) let lower (t:Type u#a) : Type0 = unit -> Dv t let stt (a:Type u#a) (pre:slprop) (post:a -> slprop) : Type0 = lower (Sem.m u#2 u#100 u#a #state a pre (F.on_dom a post)) let return (#a:Type u#a) (x:a) (p:a -> slprop) : stt a (p x) p = fun _ -> Sem.ret x (F.on_dom a p)
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e1: PulseCore.InstantiatedSemantics.stt a pre1 post1 -> e2: (x: a -> PulseCore.InstantiatedSemantics.stt b (post1 x) post2) -> PulseCore.InstantiatedSemantics.stt b pre1 post2
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "PulseCore.InstantiatedSemantics.stt", "Prims.unit", "PulseCore.Semantics.mbind", "PulseCore.InstantiatedSemantics.state", "FStar.FunctionalExtensionality.on_dom", "PulseCore.Semantics.__proj__Mkstate__item__pred", "PulseCore.Semantics.m", "FStar.FunctionalExtensionality.on_domain" ]
[]
false
false
false
false
false
let bind (#a: Type u#a) (#b: Type u#b) (#pre1: slprop) (#post1: (a -> slprop)) (#post2: (b -> slprop)) (e1: stt a pre1 post1) (e2: (x: a -> stt b (post1 x) post2)) : stt b pre1 post2 =
fun _ -> Sem.mbind (e1 ()) (fun x -> e2 x ())
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.frame
val frame (#a:Type u#a) (#pre:slprop) (#post:a -> slprop) (frame:slprop) (e:stt a pre post) : stt a (pre ** frame) (fun x -> post x ** frame)
val frame (#a:Type u#a) (#pre:slprop) (#post:a -> slprop) (frame:slprop) (e:stt a pre post) : stt a (pre ** frame) (fun x -> post x ** frame)
let frame (#a:Type u#a) (#pre:slprop) (#post:a -> slprop) (frame:slprop) (e:stt a pre post) : stt a (pre `star` frame) (fun x -> post x `star` frame) = fun _ -> Sem.frame frame (e())
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 32, "end_line": 139, "start_col": 0, "start_line": 133 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash () let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q let slprop_equiv_unit p = unsquash () let slprop_equiv_comm p1 p2 = unsquash () let slprop_equiv_assoc p1 p2 p3 = unsquash () module T = FStar.Tactics.V2 let slprop_equiv_exists (#a:Type) (p q: a -> slprop) (_:squash (forall x. slprop_equiv (p x) (q x))) = introduce forall x. p x == q x with slprop_equiv_elim (p x) (q x); F.extensionality _ _ p q; let pf : squash (eq2 #(F.arrow a (fun _ -> slprop)) (F.on_dom a p) (F.on_dom a q)) = () in let x : squash (op_exists_Star p == op_exists_Star q) = _ by ( T.norm [delta_only [`%op_exists_Star; `%F.on_dom]; unascribe]; let bindings = T.cur_vars() in let bindings = List.Tot.rev bindings in match bindings with | hd::_ -> ( match T.term_as_formula hd.sort with | T.Comp (T.Eq _) lhs rhs -> T.grewrite lhs rhs; T.trefl(); T.exact (T.binding_to_term hd) | _ -> T.fail "Unexpected type of hd" ) | _ -> T.fail "empty bindings" ) in unsquash x (* The type of general-purpose computations *) let lower (t:Type u#a) : Type0 = unit -> Dv t let stt (a:Type u#a) (pre:slprop) (post:a -> slprop) : Type0 = lower (Sem.m u#2 u#100 u#a #state a pre (F.on_dom a post)) let return (#a:Type u#a) (x:a) (p:a -> slprop) : stt a (p x) p = fun _ -> Sem.ret x (F.on_dom a p) let bind (#a:Type u#a) (#b:Type u#b) (#pre1:slprop) (#post1:a -> slprop) (#post2:b -> slprop) (e1:stt a pre1 post1) (e2:(x:a -> stt b (post1 x) post2)) : stt b pre1 post2 = fun _ -> Sem.mbind (e1()) (fun x -> e2 x ())
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
frame: PulseCore.InstantiatedSemantics.slprop -> e: PulseCore.InstantiatedSemantics.stt a pre post -> PulseCore.InstantiatedSemantics.stt a (pre ** frame) (fun x -> post x ** frame)
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "PulseCore.InstantiatedSemantics.stt", "Prims.unit", "PulseCore.Semantics.frame", "PulseCore.InstantiatedSemantics.state", "FStar.FunctionalExtensionality.on_dom", "PulseCore.Semantics.__proj__Mkstate__item__pred", "PulseCore.Semantics.m", "PulseCore.Semantics.__proj__Mkstate__item__star", "FStar.FunctionalExtensionality.on_domain", "PulseCore.Memory.star", "PulseCore.InstantiatedSemantics.op_Star_Star" ]
[]
false
false
false
false
false
let frame (#a: Type u#a) (#pre: slprop) (#post: (a -> slprop)) (frame: slprop) (e: stt a pre post) : stt a (pre `star` frame) (fun x -> (post x) `star` frame) =
fun _ -> Sem.frame frame (e ())
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.hide_div
val hide_div #a #pre #post (f:unit -> Dv (stt a pre post)) : stt a pre post
val hide_div #a #pre #post (f:unit -> Dv (stt a pre post)) : stt a pre post
let hide_div #a #pre #post (f:unit -> Dv (stt a pre post)) : stt a pre post = fun _ -> f () ()
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 170, "start_col": 0, "start_line": 168 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash () let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q let slprop_equiv_unit p = unsquash () let slprop_equiv_comm p1 p2 = unsquash () let slprop_equiv_assoc p1 p2 p3 = unsquash () module T = FStar.Tactics.V2 let slprop_equiv_exists (#a:Type) (p q: a -> slprop) (_:squash (forall x. slprop_equiv (p x) (q x))) = introduce forall x. p x == q x with slprop_equiv_elim (p x) (q x); F.extensionality _ _ p q; let pf : squash (eq2 #(F.arrow a (fun _ -> slprop)) (F.on_dom a p) (F.on_dom a q)) = () in let x : squash (op_exists_Star p == op_exists_Star q) = _ by ( T.norm [delta_only [`%op_exists_Star; `%F.on_dom]; unascribe]; let bindings = T.cur_vars() in let bindings = List.Tot.rev bindings in match bindings with | hd::_ -> ( match T.term_as_formula hd.sort with | T.Comp (T.Eq _) lhs rhs -> T.grewrite lhs rhs; T.trefl(); T.exact (T.binding_to_term hd) | _ -> T.fail "Unexpected type of hd" ) | _ -> T.fail "empty bindings" ) in unsquash x (* The type of general-purpose computations *) let lower (t:Type u#a) : Type0 = unit -> Dv t let stt (a:Type u#a) (pre:slprop) (post:a -> slprop) : Type0 = lower (Sem.m u#2 u#100 u#a #state a pre (F.on_dom a post)) let return (#a:Type u#a) (x:a) (p:a -> slprop) : stt a (p x) p = fun _ -> Sem.ret x (F.on_dom a p) let bind (#a:Type u#a) (#b:Type u#b) (#pre1:slprop) (#post1:a -> slprop) (#post2:b -> slprop) (e1:stt a pre1 post1) (e2:(x:a -> stt b (post1 x) post2)) : stt b pre1 post2 = fun _ -> Sem.mbind (e1()) (fun x -> e2 x ()) let frame (#a:Type u#a) (#pre:slprop) (#post:a -> slprop) (frame:slprop) (e:stt a pre post) : stt a (pre `star` frame) (fun x -> post x `star` frame) = fun _ -> Sem.frame frame (e()) let conv (#a:Type u#a) (pre1:slprop) (pre2:slprop) (post1:a -> slprop) (post2:a -> slprop) (pf1:slprop_equiv pre1 pre2) (pf2:slprop_post_equiv post1 post2) : Lemma (stt a pre1 post1 == stt a pre2 post2) = slprop_equiv_elim pre1 pre2; introduce forall x. post1 x == post2 x with slprop_equiv_elim (post1 x) (post2 x); Sem.conv #state a #pre1 #(F.on_dom _ post1) (F.on_dom _ post2); () let sub (#a:Type u#a) (#pre1:slprop) (pre2:slprop) (#post1:a -> slprop) (post2:a -> slprop) (pf1:slprop_equiv pre1 pre2) (pf2:slprop_post_equiv post1 post2) (e:stt a pre1 post1) : stt a pre2 post2 = coerce_eq (conv pre1 pre2 post1 post2 pf1 pf2) e let par f0 f1 = fun _ -> Sem.par (f0 ()) (f1 ())
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: Prims.unit -> FStar.Pervasives.Dv (PulseCore.InstantiatedSemantics.stt a pre post)) -> PulseCore.InstantiatedSemantics.stt a pre post
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "Prims.unit", "PulseCore.InstantiatedSemantics.stt", "PulseCore.Semantics.m", "PulseCore.InstantiatedSemantics.state", "FStar.FunctionalExtensionality.on_dom", "PulseCore.Semantics.__proj__Mkstate__item__pred" ]
[]
false
false
false
false
false
let hide_div #a #pre #post (f: (unit -> Dv (stt a pre post))) : stt a pre post =
fun _ -> f () ()
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.par
val par (#p0 #q0 #p1 #q1:_) (f0:stt unit p0 (fun _ -> q0)) (f1:stt unit p1 (fun _ -> q1)) : stt unit (p0 ** p1) (fun _ -> q0 ** q1)
val par (#p0 #q0 #p1 #q1:_) (f0:stt unit p0 (fun _ -> q0)) (f1:stt unit p1 (fun _ -> q1)) : stt unit (p0 ** p1) (fun _ -> q0 ** q1)
let par f0 f1 = fun _ -> Sem.par (f0 ()) (f1 ())
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 48, "end_line": 166, "start_col": 0, "start_line": 166 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash () let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q let slprop_equiv_unit p = unsquash () let slprop_equiv_comm p1 p2 = unsquash () let slprop_equiv_assoc p1 p2 p3 = unsquash () module T = FStar.Tactics.V2 let slprop_equiv_exists (#a:Type) (p q: a -> slprop) (_:squash (forall x. slprop_equiv (p x) (q x))) = introduce forall x. p x == q x with slprop_equiv_elim (p x) (q x); F.extensionality _ _ p q; let pf : squash (eq2 #(F.arrow a (fun _ -> slprop)) (F.on_dom a p) (F.on_dom a q)) = () in let x : squash (op_exists_Star p == op_exists_Star q) = _ by ( T.norm [delta_only [`%op_exists_Star; `%F.on_dom]; unascribe]; let bindings = T.cur_vars() in let bindings = List.Tot.rev bindings in match bindings with | hd::_ -> ( match T.term_as_formula hd.sort with | T.Comp (T.Eq _) lhs rhs -> T.grewrite lhs rhs; T.trefl(); T.exact (T.binding_to_term hd) | _ -> T.fail "Unexpected type of hd" ) | _ -> T.fail "empty bindings" ) in unsquash x (* The type of general-purpose computations *) let lower (t:Type u#a) : Type0 = unit -> Dv t let stt (a:Type u#a) (pre:slprop) (post:a -> slprop) : Type0 = lower (Sem.m u#2 u#100 u#a #state a pre (F.on_dom a post)) let return (#a:Type u#a) (x:a) (p:a -> slprop) : stt a (p x) p = fun _ -> Sem.ret x (F.on_dom a p) let bind (#a:Type u#a) (#b:Type u#b) (#pre1:slprop) (#post1:a -> slprop) (#post2:b -> slprop) (e1:stt a pre1 post1) (e2:(x:a -> stt b (post1 x) post2)) : stt b pre1 post2 = fun _ -> Sem.mbind (e1()) (fun x -> e2 x ()) let frame (#a:Type u#a) (#pre:slprop) (#post:a -> slprop) (frame:slprop) (e:stt a pre post) : stt a (pre `star` frame) (fun x -> post x `star` frame) = fun _ -> Sem.frame frame (e()) let conv (#a:Type u#a) (pre1:slprop) (pre2:slprop) (post1:a -> slprop) (post2:a -> slprop) (pf1:slprop_equiv pre1 pre2) (pf2:slprop_post_equiv post1 post2) : Lemma (stt a pre1 post1 == stt a pre2 post2) = slprop_equiv_elim pre1 pre2; introduce forall x. post1 x == post2 x with slprop_equiv_elim (post1 x) (post2 x); Sem.conv #state a #pre1 #(F.on_dom _ post1) (F.on_dom _ post2); () let sub (#a:Type u#a) (#pre1:slprop) (pre2:slprop) (#post1:a -> slprop) (post2:a -> slprop) (pf1:slprop_equiv pre1 pre2) (pf2:slprop_post_equiv post1 post2) (e:stt a pre1 post1) : stt a pre2 post2 = coerce_eq (conv pre1 pre2 post1 post2 pf1 pf2) e
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f0: PulseCore.InstantiatedSemantics.stt Prims.unit p0 (fun _ -> q0) -> f1: PulseCore.InstantiatedSemantics.stt Prims.unit p1 (fun _ -> q1) -> PulseCore.InstantiatedSemantics.stt Prims.unit (p0 ** p1) (fun _ -> q0 ** q1)
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "PulseCore.InstantiatedSemantics.stt", "Prims.unit", "PulseCore.Semantics.par", "PulseCore.InstantiatedSemantics.state", "PulseCore.Semantics.m", "PulseCore.Semantics.__proj__Mkstate__item__star", "PulseCore.Semantics.as_post", "FStar.FunctionalExtensionality.on_dom", "PulseCore.Semantics.__proj__Mkstate__item__pred", "PulseCore.InstantiatedSemantics.op_Star_Star" ]
[]
false
false
false
false
false
let par f0 f1 =
fun _ -> Sem.par (f0 ()) (f1 ())
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.sub
val sub (#a:Type u#a) (#pre1:slprop) (pre2:slprop) (#post1:a -> slprop) (post2:a -> slprop) (pf1:slprop_equiv pre1 pre2) (pf2:slprop_post_equiv post1 post2) (e:stt a pre1 post1) : stt a pre2 post2
val sub (#a:Type u#a) (#pre1:slprop) (pre2:slprop) (#post1:a -> slprop) (post2:a -> slprop) (pf1:slprop_equiv pre1 pre2) (pf2:slprop_post_equiv post1 post2) (e:stt a pre1 post1) : stt a pre2 post2
let sub (#a:Type u#a) (#pre1:slprop) (pre2:slprop) (#post1:a -> slprop) (post2:a -> slprop) (pf1:slprop_equiv pre1 pre2) (pf2:slprop_post_equiv post1 post2) (e:stt a pre1 post1) : stt a pre2 post2 = coerce_eq (conv pre1 pre2 post1 post2 pf1 pf2) e
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 50, "end_line": 164, "start_col": 0, "start_line": 155 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash () let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q let slprop_equiv_unit p = unsquash () let slprop_equiv_comm p1 p2 = unsquash () let slprop_equiv_assoc p1 p2 p3 = unsquash () module T = FStar.Tactics.V2 let slprop_equiv_exists (#a:Type) (p q: a -> slprop) (_:squash (forall x. slprop_equiv (p x) (q x))) = introduce forall x. p x == q x with slprop_equiv_elim (p x) (q x); F.extensionality _ _ p q; let pf : squash (eq2 #(F.arrow a (fun _ -> slprop)) (F.on_dom a p) (F.on_dom a q)) = () in let x : squash (op_exists_Star p == op_exists_Star q) = _ by ( T.norm [delta_only [`%op_exists_Star; `%F.on_dom]; unascribe]; let bindings = T.cur_vars() in let bindings = List.Tot.rev bindings in match bindings with | hd::_ -> ( match T.term_as_formula hd.sort with | T.Comp (T.Eq _) lhs rhs -> T.grewrite lhs rhs; T.trefl(); T.exact (T.binding_to_term hd) | _ -> T.fail "Unexpected type of hd" ) | _ -> T.fail "empty bindings" ) in unsquash x (* The type of general-purpose computations *) let lower (t:Type u#a) : Type0 = unit -> Dv t let stt (a:Type u#a) (pre:slprop) (post:a -> slprop) : Type0 = lower (Sem.m u#2 u#100 u#a #state a pre (F.on_dom a post)) let return (#a:Type u#a) (x:a) (p:a -> slprop) : stt a (p x) p = fun _ -> Sem.ret x (F.on_dom a p) let bind (#a:Type u#a) (#b:Type u#b) (#pre1:slprop) (#post1:a -> slprop) (#post2:b -> slprop) (e1:stt a pre1 post1) (e2:(x:a -> stt b (post1 x) post2)) : stt b pre1 post2 = fun _ -> Sem.mbind (e1()) (fun x -> e2 x ()) let frame (#a:Type u#a) (#pre:slprop) (#post:a -> slprop) (frame:slprop) (e:stt a pre post) : stt a (pre `star` frame) (fun x -> post x `star` frame) = fun _ -> Sem.frame frame (e()) let conv (#a:Type u#a) (pre1:slprop) (pre2:slprop) (post1:a -> slprop) (post2:a -> slprop) (pf1:slprop_equiv pre1 pre2) (pf2:slprop_post_equiv post1 post2) : Lemma (stt a pre1 post1 == stt a pre2 post2) = slprop_equiv_elim pre1 pre2; introduce forall x. post1 x == post2 x with slprop_equiv_elim (post1 x) (post2 x); Sem.conv #state a #pre1 #(F.on_dom _ post1) (F.on_dom _ post2); ()
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pre2: PulseCore.InstantiatedSemantics.slprop -> post2: (_: a -> PulseCore.InstantiatedSemantics.slprop) -> pf1: PulseCore.InstantiatedSemantics.slprop_equiv pre1 pre2 -> pf2: PulseCore.InstantiatedSemantics.slprop_post_equiv post1 post2 -> e: PulseCore.InstantiatedSemantics.stt a pre1 post1 -> PulseCore.InstantiatedSemantics.stt a pre2 post2
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "PulseCore.InstantiatedSemantics.slprop_equiv", "PulseCore.InstantiatedSemantics.slprop_post_equiv", "PulseCore.InstantiatedSemantics.stt", "FStar.Pervasives.coerce_eq", "PulseCore.InstantiatedSemantics.conv" ]
[]
false
false
false
false
false
let sub (#a: Type u#a) (#pre1 pre2: slprop) (#post1 post2: (a -> slprop)) (pf1: slprop_equiv pre1 pre2) (pf2: slprop_post_equiv post1 post2) (e: stt a pre1 post1) : stt a pre2 post2 =
coerce_eq (conv pre1 pre2 post1 post2 pf1 pf2) e
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.laws
val laws: Prims.unit -> squash (Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star)
val laws: Prims.unit -> squash (Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star)
let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in ()
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 4, "end_line": 40, "start_col": 0, "start_line": 8 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Prims.squash (PulseCore.Semantics.associative PulseCore.Memory.star /\ PulseCore.Semantics.commutative PulseCore.Memory.star /\ PulseCore.Semantics.is_unit PulseCore.Memory.emp PulseCore.Memory.star)
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "Prims.squash", "PulseCore.Semantics.is_unit", "PulseCore.Memory.slprop", "PulseCore.Memory.emp", "PulseCore.Memory.star", "FStar.Classical.Sugar.forall_intro", "Prims.l_and", "Prims.eq2", "PulseCore.Memory.emp_unit", "PulseCore.Semantics.commutative", "Prims.l_Forall", "PulseCore.Memory.star_commutative", "PulseCore.Semantics.associative", "PulseCore.Memory.star_associative", "Prims.l_True", "Prims.l_iff", "PulseCore.Memory.equiv", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.prop", "Prims.Nil", "FStar.Classical.Sugar.implies_intro", "PulseCore.Memory.slprop_extensionality" ]
[]
false
false
true
true
false
let laws () : squash (Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star) =
let equiv_eq (x y: slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h. slprop_extensionality x y in let _:squash (Sem.associative star) = introduce forall x y z . ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _:squash (Sem.commutative star) = introduce forall x y . x `star` y == y `star` x with star_commutative x y in let _:squash (Sem.is_unit emp star) = introduce forall x . (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in ()
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.slprop_equiv_unit
val slprop_equiv_unit (x:slprop) : slprop_equiv (emp ** x) x
val slprop_equiv_unit (x:slprop) : slprop_equiv (emp ** x) x
let slprop_equiv_unit p = unsquash ()
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 37, "end_line": 80, "start_col": 0, "start_line": 80 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash () let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: PulseCore.InstantiatedSemantics.slprop -> PulseCore.InstantiatedSemantics.slprop_equiv (PulseCore.InstantiatedSemantics.emp ** x) x
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "PulseCore.InstantiatedSemantics.unsquash", "PulseCore.InstantiatedSemantics.op_Star_Star", "PulseCore.InstantiatedSemantics.emp", "PulseCore.InstantiatedSemantics.slprop_equiv" ]
[]
false
false
false
false
false
let slprop_equiv_unit p =
unsquash ()
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.slprop_equiv_refl
val slprop_equiv_refl (p:slprop) : slprop_equiv p p
val slprop_equiv_refl (p:slprop) : slprop_equiv p p
let slprop_equiv_refl p = unsquash ()
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 37, "end_line": 74, "start_col": 0, "start_line": 74 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: PulseCore.InstantiatedSemantics.slprop -> PulseCore.InstantiatedSemantics.slprop_equiv p p
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "PulseCore.InstantiatedSemantics.unsquash", "PulseCore.InstantiatedSemantics.slprop_equiv" ]
[]
false
false
false
false
false
let slprop_equiv_refl p =
unsquash ()
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.prop_squash_idem
val prop_squash_idem (p: prop) : Tot (squash (p == squash p))
val prop_squash_idem (p: prop) : Tot (squash (p == squash p))
let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p)
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 56, "end_line": 66, "start_col": 0, "start_line": 64 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p)
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.prop -> Prims.squash (p == Prims.squash p)
Prims.Tot
[ "total" ]
[]
[ "Prims.prop", "FStar.PropositionalExtensionality.apply", "Prims.squash", "Prims.eq2" ]
[]
false
false
true
false
false
let prop_squash_idem (p: prop) : Tot (squash (p == squash p)) =
FStar.PropositionalExtensionality.apply p (squash p)
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.slprop_equiv_elim
val slprop_equiv_elim (p q:slprop) : Lemma (p `slprop_equiv` q <==> p==q)
val slprop_equiv_elim (p q:slprop) : Lemma (p `slprop_equiv` q <==> p==q)
let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 42, "end_line": 78, "start_col": 0, "start_line": 76 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash ()
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: PulseCore.InstantiatedSemantics.slprop -> q: PulseCore.InstantiatedSemantics.slprop -> FStar.Pervasives.Lemma (ensures PulseCore.InstantiatedSemantics.slprop_equiv p q <==> p == q)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "FStar.Classical.Sugar.implies_intro", "PulseCore.InstantiatedSemantics.slprop_equiv", "Prims.squash", "Prims.eq2", "PulseCore.Memory.slprop_extensionality", "Prims.unit" ]
[]
false
false
true
false
false
let slprop_equiv_elim p q =
introduce (p `slprop_equiv` q) ==> p == q with _. Mem.slprop_extensionality p q
false
PulseCore.InstantiatedSemantics.fst
PulseCore.InstantiatedSemantics.slprop_equiv_comm
val slprop_equiv_comm (p1 p2:slprop) : slprop_equiv (p1 ** p2) (p2 ** p1)
val slprop_equiv_comm (p1 p2:slprop) : slprop_equiv (p1 ** p2) (p2 ** p1)
let slprop_equiv_comm p1 p2 = unsquash ()
{ "file_name": "lib/pulse_core/PulseCore.InstantiatedSemantics.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 41, "end_line": 81, "start_col": 0, "start_line": 81 }
module PulseCore.InstantiatedSemantics module Sem = PulseCore.Semantics module Mem = PulseCore.Memory module U = FStar.Universe module F = FStar.FunctionalExtensionality open PulseCore.Memory let laws () : squash ( Sem.associative star /\ Sem.commutative star /\ Sem.is_unit emp star ) = let equiv_eq (x y:slprop) : Lemma (x `equiv` y <==> x == y) [SMTPat (x `equiv` y)] = introduce x `equiv` y ==> x == y with _h . slprop_extensionality x y in let _ : squash (Sem.associative star) = introduce forall x y z. ((x `star` y) `star` z) == (x `star` (y `star` z)) with star_associative x y z in let _ : squash (Sem.commutative star) = introduce forall x y. x `star` y == y `star` x with star_commutative x y in let _ : squash (Sem.is_unit emp star) = introduce forall x. (x `star` emp) == x /\ (emp `star` x) == x with emp_unit x in () let state0 (e:inames) : Sem.state = { max_act = U.raise_t u#0 u#100 unit; s = mem; is_full_mem = full_mem_pred; pred = slprop; emp = emp; star = star; interp = interp; evolves = mem_evolves; invariant = locks_invariant e; laws = laws () } let state : Sem.state = state0 Set.empty let slprop = slprop let _eq : squash (slprop == state.pred) = () let emp = emp let pure p = pure p let ( ** ) p q = p `star` q let ( exists* ) #a p = h_exists (F.on_dom a p) let prop_squash_idem (p:prop) : Tot (squash (p == squash p)) = FStar.PropositionalExtensionality.apply p (squash p) let slprop_equiv p q = Mem.equiv p q let unsquash (p:squash (slprop_equiv 'p 'q)) : slprop_equiv 'p 'q = prop_squash_idem (slprop_equiv 'p 'q); coerce_eq () p let slprop_equiv_refl p = unsquash () let slprop_equiv_elim p q = introduce (p `slprop_equiv` q) ==> p==q with _ . Mem.slprop_extensionality p q
{ "checked_file": "/", "dependencies": [ "PulseCore.Semantics.fst.checked", "PulseCore.Memory.fsti.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Set.fsti.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": true, "source_file": "PulseCore.InstantiatedSemantics.fst" }
[ { "abbrev": false, "full_module": "PulseCore.Memory", "short_module": null }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": true, "full_module": "PulseCore.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "PulseCore.Semantics", "short_module": "Sem" }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "PulseCore", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: PulseCore.InstantiatedSemantics.slprop -> p2: PulseCore.InstantiatedSemantics.slprop -> PulseCore.InstantiatedSemantics.slprop_equiv (p1 ** p2) (p2 ** p1)
Prims.Tot
[ "total" ]
[]
[ "PulseCore.InstantiatedSemantics.slprop", "PulseCore.InstantiatedSemantics.unsquash", "PulseCore.InstantiatedSemantics.op_Star_Star", "PulseCore.InstantiatedSemantics.slprop_equiv" ]
[]
false
false
false
false
false
let slprop_equiv_comm p1 p2 =
unsquash ()
false