file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.UInt.fst
FStar.UInt.from_vec_aux
val from_vec_aux: #n:nat -> a:bv_t n -> s1:nat{s1 < n} -> s2:nat{s2 < s1} -> Lemma (requires True) (ensures (from_vec #s2 (slice a 0 s2)) * pow2 (n - s2) + (from_vec #(s1 - s2) (slice a s2 s1)) * pow2 (n - s1) + (from_vec #(n - s1) (slice a s1 n)) = ((from_vec #s2 (slice a 0 s2)) * pow2 (s1 - s2) + (from_vec #(s1 - s2) (slice a s2 s1))) * pow2 (n - s1) + (from_vec #(n - s1) (slice a s1 n)))
val from_vec_aux: #n:nat -> a:bv_t n -> s1:nat{s1 < n} -> s2:nat{s2 < s1} -> Lemma (requires True) (ensures (from_vec #s2 (slice a 0 s2)) * pow2 (n - s2) + (from_vec #(s1 - s2) (slice a s2 s1)) * pow2 (n - s1) + (from_vec #(n - s1) (slice a s1 n)) = ((from_vec #s2 (slice a 0 s2)) * pow2 (s1 - s2) + (from_vec #(s1 - s2) (slice a s2 s1))) * pow2 (n - s1) + (from_vec #(n - s1) (slice a s1 n)))
let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 94, "start_col": 0, "start_line": 91 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.BitVector.bv_t n -> s1: Prims.nat{s1 < n} -> s2: Prims.nat{s2 < s1} -> FStar.Pervasives.Lemma (ensures FStar.UInt.from_vec (FStar.Seq.Base.slice a 0 s2) * Prims.pow2 (n - s2) + FStar.UInt.from_vec (FStar.Seq.Base.slice a s2 s1) * Prims.pow2 (n - s1) + FStar.UInt.from_vec (FStar.Seq.Base.slice a s1 n) = (FStar.UInt.from_vec (FStar.Seq.Base.slice a 0 s2) * Prims.pow2 (s1 - s2) + FStar.UInt.from_vec (FStar.Seq.Base.slice a s2 s1)) * Prims.pow2 (n - s1) + FStar.UInt.from_vec (FStar.Seq.Base.slice a s1 n))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.BitVector.bv_t", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Lemmas.pow2_plus", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.paren_mul_right", "FStar.UInt.from_vec", "FStar.Seq.Base.slice", "Prims.bool", "Prims.pow2", "FStar.Math.Lemmas.paren_mul_left" ]
[]
true
false
true
false
false
let from_vec_aux #n a s1 s2 =
paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1)
false
FStar.UInt.fst
FStar.UInt.inverse_aux
val inverse_aux: #n:nat -> vec:bv_t n -> i:nat{i < n} -> Lemma (requires True) (ensures index vec i = index (to_vec (from_vec vec)) i) [SMTPat (index (to_vec (from_vec vec)) i)]
val inverse_aux: #n:nat -> vec:bv_t n -> i:nat{i < n} -> Lemma (requires True) (ensures index vec i = index (to_vec (from_vec vec)) i) [SMTPat (index (to_vec (from_vec vec)) i)]
let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 80, "start_col": 0, "start_line": 77 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vec: FStar.BitVector.bv_t n -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index vec i = FStar.Seq.Base.index (FStar.UInt.to_vec (FStar.UInt.from_vec vec)) i) [SMTPat (FStar.Seq.Base.index (FStar.UInt.to_vec (FStar.UInt.from_vec vec)) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.BitVector.bv_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims._assert", "Prims.op_Modulus", "FStar.UInt.from_vec", "FStar.Seq.Base.index", "Prims.bool", "FStar.UInt.inverse_aux", "FStar.Seq.Base.slice", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec inverse_aux #n vec i =
if i = n - 1 then assert ((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i
false
FStar.UInt.fst
FStar.UInt.append_lemma
val append_lemma: #n:pos -> #m:pos -> a:bv_t n -> b:bv_t m -> Lemma (from_vec #(n + m) (append a b) = (from_vec #n a) * pow2 m + (from_vec #m b))
val append_lemma: #n:pos -> #m:pos -> a:bv_t n -> b:bv_t m -> Lemma (from_vec #(n + m) (append a b) = (from_vec #n a) * pow2 m + (from_vec #m b))
let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 116, "start_col": 0, "start_line": 113 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.BitVector.bv_t n -> b: FStar.BitVector.bv_t m -> FStar.Pervasives.Lemma (ensures FStar.UInt.from_vec (FStar.Seq.Base.append a b) = FStar.UInt.from_vec a * Prims.pow2 m + FStar.UInt.from_vec b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.BitVector.bv_t", "FStar.UInt.from_vec_propriety", "Prims.op_Addition", "FStar.Seq.Base.append", "Prims.bool", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice" ]
[]
true
false
true
false
false
let append_lemma #n #m a b =
assert (equal a (slice (append a b) 0 n)); assert (equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n
false
FStar.UInt.fst
FStar.UInt.one_to_vec_lemma
val one_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (one n)) i = index (elem_vec #n (n - 1)) i) [SMTPat (index (to_vec (one n)) i)]
val one_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (one n)) i = index (elem_vec #n (n - 1)) i) [SMTPat (index (to_vec (one n)) i)]
let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 134, "start_col": 0, "start_line": 133 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.UInt.to_vec (FStar.UInt.one n)) i = FStar.Seq.Base.index (FStar.BitVector.elem_vec (n - 1)) i) [SMTPat (FStar.Seq.Base.index (FStar.UInt.to_vec (FStar.UInt.one n)) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.bool", "FStar.UInt.zero_to_vec_lemma", "Prims.unit" ]
[]
false
false
true
false
false
let one_to_vec_lemma #n i =
if i = n - 1 then () else zero_to_vec_lemma #n i
false
Steel.ST.Array.fst
Steel.ST.Array.ghost_split
val ghost_split (#opened: _) (#elt: Type) (#x: Seq.seq elt) (#p: P.perm) (a: array elt) (i: US.t) : STGhost (squash (US.v i <= length a /\ US.v i <= Seq.length x)) opened (pts_to a p x) (fun res -> pts_to (split_l a i) p (Seq.slice x 0 (US.v i)) `star` pts_to (split_r a i) p (Seq.slice x (US.v i) (Seq.length x))) (US.v i <= length a) (fun res -> x == Seq.append (Seq.slice x 0 (US.v i)) (Seq.slice x (US.v i) (Seq.length x)) )
val ghost_split (#opened: _) (#elt: Type) (#x: Seq.seq elt) (#p: P.perm) (a: array elt) (i: US.t) : STGhost (squash (US.v i <= length a /\ US.v i <= Seq.length x)) opened (pts_to a p x) (fun res -> pts_to (split_l a i) p (Seq.slice x 0 (US.v i)) `star` pts_to (split_r a i) p (Seq.slice x (US.v i) (Seq.length x))) (US.v i <= length a) (fun res -> x == Seq.append (Seq.slice x 0 (US.v i)) (Seq.slice x (US.v i) (Seq.length x)) )
let ghost_split #_ #_ #x #p a i = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); let _ = H.ghost_split a i in //H.ghost_split a i; assert (seq_map raise (Seq.slice x 0 (US.v i)) `Seq.equal` Seq.slice (seq_map raise x) 0 (US.v i)); rewrite (H.pts_to (H.split_l a i) _ _) (H.pts_to (split_l a i) p (seq_map raise (Seq.slice x 0 (US.v i)))); rewrite (H.pts_to (split_l a i) _ _) (pts_to (split_l a i) _ _); assert (seq_map raise (Seq.slice x (US.v i) (Seq.length x)) `Seq.equal` Seq.slice (seq_map raise x) (US.v i) (Seq.length (seq_map raise x))); Seq.lemma_split x (US.v i); rewrite (H.pts_to (H.split_r a i) _ _) (H.pts_to (split_r a i) p (seq_map raise (Seq.slice x (US.v i) (Seq.length x)))); rewrite (H.pts_to (split_r a i) _ _) (pts_to (split_r a i) _ _)
{ "file_name": "lib/steel/Steel.ST.Array.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 30, "end_line": 228, "start_col": 0, "start_line": 206 }
(* Copyright 2020, 2021, 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Array module US = FStar.SizeT /// Lifting a value of universe 0 to universe 1. We use /// FStar.Universe, since FStar.Extraction.Krml is set to extract /// those functions to identity. inline_for_extraction [@@ noextract_to "krml"] let raise_t (t: Type0) : Type u#1 = FStar.Universe.raise_t t inline_for_extraction [@@noextract_to "krml"] let raise (#t: Type) (x: t) : Tot (raise_t t) = FStar.Universe.raise_val x inline_for_extraction [@@noextract_to "krml"] let lower (#t: Type) (x: raise_t t) : Tot t = FStar.Universe.downgrade_val x /// A map operation on sequences. Here we only need Ghost versions, /// because such sequences are only used in vprops or with their /// selectors. let rec seq_map (#t: Type u#a) (#t' : Type u#b) (f: (t -> GTot t')) (s: Seq.seq t) : Ghost (Seq.seq t') (requires True) (ensures (fun s' -> Seq.length s' == Seq.length s /\ (forall i . {:pattern (Seq.index s' i)} Seq.index s' i == f (Seq.index s i)) )) (decreases (Seq.length s)) = if Seq.length s = 0 then Seq.empty else Seq.cons (f (Seq.index s 0)) (seq_map f (Seq.slice s 1 (Seq.length s))) let seq_map_append (#t: Type u#a) (#t': Type u#b) (f: (t -> GTot t')) (s1 s2: Seq.seq t) : Lemma (seq_map f (s1 `Seq.append` s2) `Seq.equal` (seq_map f s1 `Seq.append` seq_map f s2)) = () let seq_map_raise_inj (#elt: Type0) (s1 s2: Seq.seq elt) : Lemma (requires (seq_map raise s1 == seq_map raise s2)) (ensures (s1 == s2)) [SMTPat (seq_map raise s1); SMTPat (seq_map raise s2)] = assert (seq_map lower (seq_map raise s1) `Seq.equal` s1); assert (seq_map lower (seq_map raise s2) `Seq.equal` s2) /// Implementation of the interface /// base, ptr, array, pts_to module H = Steel.ST.HigherArray let base_t elt = H.base_t (raise_t elt) let base_len b = H.base_len b let ptr elt = H.ptr (raise_t elt) let null_ptr elt = H.null_ptr (raise_t elt) let is_null_ptr p = H.is_null_ptr p let base p = H.base p let offset p = H.offset p let ptr_base_offset_inj p1 p2 = H.ptr_base_offset_inj p1 p2 let base_len_null_ptr elt = H.base_len_null_ptr (raise_t elt) let length_fits a = H.length_fits a let pts_to a p s = H.pts_to a p (seq_map raise s) let pts_to_length a s = H.pts_to_length a _ let h_array_eq' (#t: Type u#1) (a1 a2: H.array t) : Lemma (requires ( dfst a1 == dfst a2 /\ (Ghost.reveal (dsnd a1) <: nat) == Ghost.reveal (dsnd a2) )) (ensures ( a1 == a2 )) = () let pts_to_not_null #_ #t #p a s = let _ = H.pts_to_not_null #_ #_ #p a (seq_map raise s) in assert (a =!= H.null #(raise_t t)); Classical.move_requires (h_array_eq' a) (H.null #(raise_t t)); noop () let pts_to_inj a p1 s1 p2 s2 = H.pts_to_inj a p1 (seq_map raise s1) p2 (seq_map raise s2) /// Non-selector operations. let malloc x n = let res = H.malloc (raise x) n in assert (seq_map raise (Seq.create (US.v n) x) `Seq.equal` Seq.create (US.v n) (raise x)); rewrite (H.pts_to res _ _) (pts_to res _ _); return res let free #_ x = let s = elim_exists () in rewrite (pts_to x _ _) (H.pts_to x P.full_perm (seq_map raise s)); H.free x let share #_ #_ #x a p p1 p2 = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); H.share a p p1 p2; rewrite (H.pts_to a p1 _) (pts_to a p1 x); rewrite (H.pts_to a p2 _) (pts_to a p2 x) let gather #_ #_ a #x1 p1 #x2 p2 = rewrite (pts_to a p1 _) (H.pts_to a p1 (seq_map raise x1)); rewrite (pts_to a p2 _) (H.pts_to a p2 (seq_map raise x2)); H.gather a p1 p2; rewrite (H.pts_to a _ _) (pts_to _ _ _) let index #_ #p a #s i = rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise s)); let res = H.index a i in rewrite (H.pts_to _ _ _) (pts_to _ _ _); return (lower res) let upd #_ a #s i v = rewrite (pts_to a _ _) (H.pts_to a P.full_perm (seq_map raise s)); H.upd a i (raise v); assert (seq_map raise (Seq.upd s (US.v i) v) `Seq.equal` Seq.upd (seq_map raise s) (US.v i) (raise v)); rewrite (H.pts_to _ _ _) (pts_to _ _ _) let ghost_join #_ #_ #x1 #x2 #p a1 a2 h = rewrite (pts_to a1 _ _) (H.pts_to a1 p (seq_map raise x1)); rewrite (pts_to a2 _ _) (H.pts_to a2 p (seq_map raise x2)); H.ghost_join a1 a2 h; assert (seq_map raise (x1 `Seq.append` x2) `Seq.equal` (seq_map raise x1 `Seq.append` seq_map raise x2)); rewrite (H.pts_to _ _ _) (H.pts_to (merge a1 a2) p (seq_map raise (x1 `Seq.append` x2))); rewrite (H.pts_to _ _ _) (pts_to (merge a1 a2) _ _) let ptr_shift p off = H.ptr_shift p off
{ "checked_file": "/", "dependencies": [ "Steel.ST.Reference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.ST.HigherArray.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.Universe.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.Array.fst" }
[ { "abbrev": true, "full_module": "Steel.ST.HigherArray", "short_module": "H" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": true, "full_module": "FStar.PtrdiffT", "short_module": "UP" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.ST.Array.array elt -> i: FStar.SizeT.t -> Steel.ST.Effect.Ghost.STGhost (Prims.squash (FStar.SizeT.v i <= Steel.ST.Array.length a /\ FStar.SizeT.v i <= FStar.Seq.Base.length x))
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "FStar.Seq.Base.seq", "Steel.FractionalPermission.perm", "Steel.ST.Array.array", "FStar.SizeT.t", "Steel.ST.Util.rewrite", "Steel.ST.HigherArray.pts_to", "Steel.ST.Array.raise_t", "Steel.ST.Array.split_r", "Steel.ST.Array.seq_map", "Steel.ST.Array.raise", "FStar.Seq.Base.slice", "FStar.SizeT.v", "FStar.Seq.Base.length", "Steel.ST.Array.pts_to", "Prims.unit", "Steel.ST.HigherArray.split_r", "Prims.squash", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Steel.ST.Array.length", "FStar.Seq.Properties.lemma_split", "Prims._assert", "FStar.Seq.Base.equal", "Steel.ST.Array.split_l", "FStar.Ghost.hide", "Steel.ST.HigherArray.split_l", "Steel.ST.HigherArray.length", "Steel.ST.HigherArray.ghost_split" ]
[]
false
true
true
false
false
let ghost_split #_ #_ #x #p a i =
rewrite (pts_to a _ _) (H.pts_to a p (seq_map raise x)); let _ = H.ghost_split a i in assert ((seq_map raise (Seq.slice x 0 (US.v i))) `Seq.equal` (Seq.slice (seq_map raise x) 0 (US.v i))); rewrite (H.pts_to (H.split_l a i) _ _) (H.pts_to (split_l a i) p (seq_map raise (Seq.slice x 0 (US.v i)))); rewrite (H.pts_to (split_l a i) _ _) (pts_to (split_l a i) _ _); assert ((seq_map raise (Seq.slice x (US.v i) (Seq.length x))) `Seq.equal` (Seq.slice (seq_map raise x) (US.v i) (Seq.length (seq_map raise x)))); Seq.lemma_split x (US.v i); rewrite (H.pts_to (H.split_r a i) _ _) (H.pts_to (split_r a i) p (seq_map raise (Seq.slice x (US.v i) (Seq.length x)))); rewrite (H.pts_to (split_r a i) _ _) (pts_to (split_r a i) _ _)
false
FStar.UInt.fst
FStar.UInt.slice_right_lemma
val slice_right_lemma: #n:pos -> a:bv_t n -> s:pos{s < n} -> Lemma (requires True) (ensures from_vec #s (slice a (n - s) n) = (from_vec #n a) % (pow2 s))
val slice_right_lemma: #n:pos -> a:bv_t n -> s:pos{s < n} -> Lemma (requires True) (ensures from_vec #s (slice a (n - s) n) = (from_vec #n a) % (pow2 s))
let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 126, "start_col": 0, "start_line": 123 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.BitVector.bv_t n -> s: Prims.pos{s < n} -> FStar.Pervasives.Lemma (ensures FStar.UInt.from_vec (FStar.Seq.Base.slice a (n - s) n) = FStar.UInt.from_vec a % Prims.pow2 s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.BitVector.bv_t", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Lemmas.small_modulo_lemma_1", "FStar.UInt.from_vec", "FStar.Seq.Base.slice", "Prims.bool", "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.modulo_addition_lemma", "FStar.UInt.from_vec_propriety" ]
[]
true
false
true
false
false
let slice_right_lemma #n a s =
from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s)
false
FStar.UInt.fst
FStar.UInt.zero_from_vec_lemma
val zero_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (zero_vec #n) = zero n) [SMTPat (from_vec (zero_vec #n))]
val zero_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (zero_vec #n) = zero n) [SMTPat (from_vec (zero_vec #n))]
let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 77, "end_line": 131, "start_col": 0, "start_line": 131 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Pervasives.Lemma (ensures FStar.UInt.from_vec FStar.BitVector.zero_vec = FStar.UInt.zero n) [SMTPat (FStar.UInt.from_vec FStar.BitVector.zero_vec)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.to_vec_lemma_2", "FStar.UInt.from_vec", "FStar.BitVector.zero_vec", "FStar.UInt.zero", "Prims.unit" ]
[]
true
false
true
false
false
let zero_from_vec_lemma #n =
to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n)
false
FStar.UInt.fst
FStar.UInt.zero_to_vec_lemma
val zero_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (zero n)) i = index (zero_vec #n) i) [SMTPat (index (to_vec (zero n)) i)]
val zero_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (zero n)) i = index (zero_vec #n) i) [SMTPat (index (to_vec (zero n)) i)]
let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 129, "start_col": 0, "start_line": 128 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.UInt.to_vec (FStar.UInt.zero n)) i = FStar.Seq.Base.index FStar.BitVector.zero_vec i) [SMTPat (FStar.Seq.Base.index (FStar.UInt.to_vec (FStar.UInt.zero n)) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.bool", "FStar.UInt.zero_to_vec_lemma", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec zero_to_vec_lemma #n i =
if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i
false
FStar.UInt.fst
FStar.UInt.slice_left_lemma
val slice_left_lemma: #n:pos -> a:bv_t n -> s:pos{s < n} -> Lemma (requires True) (ensures from_vec #s (slice a 0 s) = (from_vec #n a) / (pow2 (n - s)))
val slice_left_lemma: #n:pos -> a:bv_t n -> s:pos{s < n} -> Lemma (requires True) (ensures from_vec #s (slice a 0 s) = (from_vec #n a) / (pow2 (n - s)))
let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 73, "end_line": 121, "start_col": 0, "start_line": 118 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.BitVector.bv_t n -> s: Prims.pos{s < n} -> FStar.Pervasives.Lemma (ensures FStar.UInt.from_vec (FStar.Seq.Base.slice a 0 s) = FStar.UInt.from_vec a / Prims.pow2 (n - s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.BitVector.bv_t", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Lemmas.small_division_lemma_1", "FStar.UInt.from_vec", "Prims.op_Subtraction", "FStar.Seq.Base.slice", "Prims.bool", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.division_addition_lemma", "FStar.UInt.from_vec_propriety" ]
[]
true
false
true
false
false
let slice_left_lemma #n a s =
from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s))
false
FStar.UInt.fst
FStar.UInt.pow2_to_vec_lemma
val pow2_to_vec_lemma: #n:pos -> p:nat{p < n} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (pow2_n #n p)) i = index (elem_vec #n (n - p - 1)) i) [SMTPat (index (to_vec (pow2_n #n p)) i)]
val pow2_to_vec_lemma: #n:pos -> p:nat{p < n} -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (pow2_n #n p)) i = index (elem_vec #n (n - p - 1)) i) [SMTPat (index (to_vec (pow2_n #n p)) i)]
let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 139, "start_col": 0, "start_line": 136 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.nat{p < n} -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.UInt.to_vec (FStar.UInt.pow2_n p)) i = FStar.Seq.Base.index (FStar.BitVector.elem_vec (n - p - 1)) i) [SMTPat (FStar.Seq.Base.index (FStar.UInt.to_vec (FStar.UInt.pow2_n p)) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.bool", "FStar.UInt.one_to_vec_lemma", "FStar.UInt.pow2_to_vec_lemma", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec pow2_to_vec_lemma #n p i =
if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i
false
FStar.UInt.fst
FStar.UInt.pow2_from_vec_lemma
val pow2_from_vec_lemma: #n:pos -> p:nat{p < n} -> Lemma (requires True) (ensures from_vec (elem_vec #n p) = pow2_n #n (n - p - 1)) [SMTPat (from_vec (elem_vec #n p))]
val pow2_from_vec_lemma: #n:pos -> p:nat{p < n} -> Lemma (requires True) (ensures from_vec (elem_vec #n p) = pow2_n #n (n - p - 1)) [SMTPat (from_vec (elem_vec #n p))]
let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 142, "start_col": 0, "start_line": 141 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.nat{p < n} -> FStar.Pervasives.Lemma (ensures FStar.UInt.from_vec (FStar.BitVector.elem_vec p) = FStar.UInt.pow2_n (n - p - 1)) [SMTPat (FStar.UInt.from_vec (FStar.BitVector.elem_vec p))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt.to_vec_lemma_2", "FStar.UInt.from_vec", "FStar.BitVector.elem_vec", "FStar.UInt.pow2_n", "Prims.op_Subtraction", "Prims.unit" ]
[]
true
false
true
false
false
let pow2_from_vec_lemma #n p =
to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1))
false
FStar.UInt.fst
FStar.UInt.nth_lemma
val nth_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires forall (i:nat{i < n}). nth a i = nth b i) (ensures a = b)
val nth_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires forall (i:nat{i < n}). nth a i = nth b i) (ensures a = b)
let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 152, "start_col": 0, "start_line": 150 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (requires forall (i: Prims.nat{i < n}). FStar.UInt.nth a i = FStar.UInt.nth b i) (ensures a = b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.to_vec_lemma_2", "Prims.unit", "Prims._assert", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.bool", "FStar.Seq.Base.index", "FStar.UInt.to_vec" ]
[]
false
false
true
false
false
let nth_lemma #n a b =
assert (forall (i: nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b
false
FStar.UInt.fst
FStar.UInt.ones_from_vec_lemma
val ones_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (ones_vec #n) = ones n) [SMTPat (from_vec (ones_vec #n))]
val ones_from_vec_lemma: #n:pos -> Lemma (requires True) (ensures from_vec (ones_vec #n) = ones n) [SMTPat (from_vec (ones_vec #n))]
let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 148, "start_col": 0, "start_line": 147 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Pervasives.Lemma (ensures FStar.UInt.from_vec FStar.BitVector.ones_vec = FStar.UInt.ones n) [SMTPat (FStar.UInt.from_vec FStar.BitVector.ones_vec)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.to_vec_lemma_2", "FStar.UInt.from_vec", "FStar.BitVector.ones_vec", "FStar.UInt.ones", "Prims.unit" ]
[]
true
false
true
false
false
let ones_from_vec_lemma #n =
to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n)
false
FStar.UInt.fst
FStar.UInt.ones_to_vec_lemma
val ones_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (ones n)) i = index (ones_vec #n) i) [SMTPat (index (to_vec (ones n)) i)]
val ones_to_vec_lemma: #n:pos -> i:nat{i < n} -> Lemma (requires True) (ensures index (to_vec (ones n)) i = index (ones_vec #n) i) [SMTPat (index (to_vec (ones n)) i)]
let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 145, "start_col": 0, "start_line": 144 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index (FStar.UInt.to_vec (FStar.UInt.ones n)) i = FStar.Seq.Base.index FStar.BitVector.ones_vec i) [SMTPat (FStar.Seq.Base.index (FStar.UInt.to_vec (FStar.UInt.ones n)) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.bool", "FStar.UInt.ones_to_vec_lemma", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec ones_to_vec_lemma #n i =
if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i
false
FStar.UInt.fst
FStar.UInt.from_vec_propriety
val from_vec_propriety: #n:pos -> a:bv_t n -> s:nat{s < n} -> Lemma (requires True) (ensures from_vec a = (from_vec #s (slice a 0 s)) * pow2 (n - s) + from_vec #(n - s) (slice a s n)) (decreases (n - s))
val from_vec_propriety: #n:pos -> a:bv_t n -> s:nat{s < n} -> Lemma (requires True) (ensures from_vec a = (from_vec #s (slice a 0 s)) * pow2 (n - s) + from_vec #(n - s) (slice a s n)) (decreases (n - s))
let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 110, "start_col": 0, "start_line": 100 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.BitVector.bv_t n -> s: Prims.nat{s < n} -> FStar.Pervasives.Lemma (ensures FStar.UInt.from_vec a = FStar.UInt.from_vec (FStar.Seq.Base.slice a 0 s) * Prims.pow2 (n - s) + FStar.UInt.from_vec (FStar.Seq.Base.slice a s n)) (decreases n - s)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.pos", "FStar.BitVector.bv_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "Prims.op_Subtraction", "Prims.bool", "FStar.UInt.seq_slice_lemma", "Prims.unit", "FStar.UInt.from_vec_propriety", "FStar.Seq.Base.slice", "FStar.UInt.from_vec_aux", "Prims.op_Addition" ]
[ "recursion" ]
false
false
true
false
false
let rec from_vec_propriety #n a s =
if s = n - 1 then () else (from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s))
false
Steel.ST.SeqMatch.fst
Steel.ST.SeqMatch.seq_list_match_nil
val seq_list_match_nil (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> v': t'{v' << v} -> vprop)) : STGhost unit opened emp (fun _ -> seq_list_match c v item_match) (c `Seq.equal` Seq.empty /\ Nil? v) (fun _ -> True)
val seq_list_match_nil (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> v': t'{v' << v} -> vprop)) : STGhost unit opened emp (fun _ -> seq_list_match c v item_match) (c `Seq.equal` Seq.empty /\ Nil? v) (fun _ -> True)
let seq_list_match_nil (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : STGhost unit opened emp (fun _ -> seq_list_match c v item_match) (c `Seq.equal` Seq.empty /\ Nil? v) (fun _ -> True) = noop (); rewrite (seq_list_match_nil0 c) (seq_list_match c v item_match)
{ "file_name": "lib/steel/Steel.ST.SeqMatch.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 35, "end_line": 78, "start_col": 0, "start_line": 63 }
module Steel.ST.SeqMatch include Steel.ST.OnRange open Steel.ST.GenElim module Seq = FStar.Seq module SZ = FStar.SizeT (* `seq_list_match` describes how to match a sequence of low-level values (the low-level contents of an array) with a list of high-level values. `seq_list_match` is carefully designed to be usable within (mutually) recursive definitions of matching functions on the type of high-level values. *) [@@__reduce__] let seq_list_match_nil0 (#t: Type) (c: Seq.seq t) : Tot vprop = pure (c `Seq.equal` Seq.empty) [@@__reduce__] let seq_list_match_cons0 (#t #t': Type) (c: Seq.seq t) (l: list t' { Cons? l }) (item_match: (t -> (v': t' { v' << l }) -> vprop)) (seq_list_match: (Seq.seq t -> (v': list t') -> (raw_data_item_match: (t -> (v'': t' { v'' << v' }) -> vprop) { v' << l }) -> vprop)) : Tot vprop = exists_ (fun (c1: t) -> exists_ (fun (c2: Seq.seq t) -> item_match c1 (List.Tot.hd l) `star` seq_list_match c2 (List.Tot.tl l) item_match `star` pure (c `Seq.equal` Seq.cons c1 c2) )) let rec seq_list_match (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Tot vprop (decreases v) = if Nil? v then seq_list_match_nil0 c else seq_list_match_cons0 c v item_match seq_list_match let seq_list_match_cons_eq (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Lemma (requires (Cons? v)) (ensures ( seq_list_match c v item_match == seq_list_match_cons0 c v item_match seq_list_match )) = let a :: q = v in assert_norm (seq_list_match c (a :: q) item_match == seq_list_match_cons0 c (a :: q) item_match seq_list_match )
{ "checked_file": "/", "dependencies": [ "Steel.ST.OnRange.fsti.checked", "Steel.ST.GenElim.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Steel.ST.SeqMatch.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.OnRange", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.Seq.Base.seq t -> v: Prims.list t' -> item_match: (_: t -> v': t'{v' << v} -> Steel.Effect.Common.vprop) -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "FStar.Seq.Base.seq", "Prims.list", "Prims.precedes", "Steel.Effect.Common.vprop", "Steel.ST.Util.rewrite", "Steel.ST.SeqMatch.seq_list_match_nil0", "Steel.ST.SeqMatch.seq_list_match", "Prims.unit", "Steel.ST.Util.noop", "Steel.Effect.Common.emp", "Prims.l_and", "FStar.Seq.Base.equal", "FStar.Seq.Base.empty", "Prims.b2t", "Prims.uu___is_Nil", "Prims.l_True" ]
[]
false
true
false
false
false
let seq_list_match_nil (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> v': t'{v' << v} -> vprop)) : STGhost unit opened emp (fun _ -> seq_list_match c v item_match) (c `Seq.equal` Seq.empty /\ Nil? v) (fun _ -> True) =
noop (); rewrite (seq_list_match_nil0 c) (seq_list_match c v item_match)
false
FStar.UInt.fst
FStar.UInt.logand_commutative
val logand_commutative: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires True) (ensures (logand #n a b = logand #n b a))
val logand_commutative: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires True) (ensures (logand #n a b = logand #n b a))
let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 170, "start_col": 0, "start_line": 170 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logand a b = FStar.UInt.logand b a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logand", "Prims.unit" ]
[]
true
false
true
false
false
let logand_commutative #n a b =
nth_lemma #n (logand #n a b) (logand #n b a)
false
FStar.UInt.fst
FStar.UInt.logand_associative
val logand_associative: #n:pos -> a:uint_t n -> b:uint_t n -> c:uint_t n -> Lemma (requires True) (ensures (logand #n (logand #n a b) c = logand #n a (logand #n b c)))
val logand_associative: #n:pos -> a:uint_t n -> b:uint_t n -> c:uint_t n -> Lemma (requires True) (ensures (logand #n (logand #n a b) c = logand #n a (logand #n b c)))
let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 106, "end_line": 172, "start_col": 0, "start_line": 172 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> c: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logand (FStar.UInt.logand a b) c = FStar.UInt.logand a (FStar.UInt.logand b c))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logand", "Prims.unit" ]
[]
true
false
true
false
false
let logand_associative #n a b c =
nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c))
false
FStar.UInt.fst
FStar.UInt.logand_self
val logand_self: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logand #n a a = a))
val logand_self: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logand #n a a = a))
let logand_self #n a = nth_lemma #n (logand #n a a) a
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 174, "start_col": 0, "start_line": 174 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logand a a = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logand", "Prims.unit" ]
[]
true
false
true
false
false
let logand_self #n a =
nth_lemma #n (logand #n a a) a
false
FStar.UInt.fst
FStar.UInt.logand_lemma_1
val logand_lemma_1: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logand #n a (zero n) = zero n))
val logand_lemma_1: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logand #n a (zero n) = zero n))
let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 70, "end_line": 176, "start_col": 0, "start_line": 176 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logand a (FStar.UInt.zero n) = FStar.UInt.zero n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logand", "FStar.UInt.zero", "Prims.unit" ]
[]
true
false
true
false
false
let logand_lemma_1 #n a =
nth_lemma #n (logand #n a (zero n)) (zero n)
false
FStar.UInt.fst
FStar.UInt.logand_lemma_2
val logand_lemma_2: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logand #n a (ones n) = a))
val logand_lemma_2: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logand #n a (ones n) = a))
let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 178, "start_col": 0, "start_line": 178 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logand a (FStar.UInt.ones n) = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logand", "FStar.UInt.ones", "Prims.unit" ]
[]
true
false
true
false
false
let logand_lemma_2 #n a =
nth_lemma #n (logand #n a (ones n)) a
false
FStar.UInt.fst
FStar.UInt.logxor_self
val logxor_self: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logxor #n a a = zero n))
val logxor_self: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logxor #n a a = zero n))
let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 196, "start_col": 0, "start_line": 196 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logxor a a = FStar.UInt.zero n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logxor", "FStar.UInt.zero", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_self #n a =
nth_lemma #n (logxor #n a a) (zero n)
false
FStar.UInt.fst
FStar.UInt.logand_le
val logand_le: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires True) (ensures (logand a b) <= a /\ (logand a b) <= b)
val logand_le: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires True) (ensures (logand a b) <= a /\ (logand a b) <= b)
let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 190, "start_col": 0, "start_line": 185 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logand a b <= a /\ FStar.UInt.logand a b <= b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.subset_vec_le_lemma", "Prims.unit", "FStar.BitVector.bv_t", "FStar.UInt.to_vec", "FStar.UInt.logand" ]
[]
true
false
true
false
false
let logand_le #n a b =
let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb
false
FStar.UInt.fst
FStar.UInt.logxor_commutative
val logxor_commutative: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires True) (ensures (logxor #n a b = logxor #n b a))
val logxor_commutative: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires True) (ensures (logxor #n a b = logxor #n b a))
let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 192, "start_col": 0, "start_line": 192 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logxor a b = FStar.UInt.logxor b a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logxor", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_commutative #n a b =
nth_lemma #n (logxor #n a b) (logxor #n b a)
false
FStar.UInt.fst
FStar.UInt.logxor_associative
val logxor_associative: #n:pos -> a:uint_t n -> b:uint_t n -> c:uint_t n -> Lemma (requires True) (ensures (logxor #n (logxor #n a b) c = logxor #n a (logxor #n b c)))
val logxor_associative: #n:pos -> a:uint_t n -> b:uint_t n -> c:uint_t n -> Lemma (requires True) (ensures (logxor #n (logxor #n a b) c = logxor #n a (logxor #n b c)))
let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 106, "end_line": 194, "start_col": 0, "start_line": 194 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> c: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logxor (FStar.UInt.logxor a b) c = FStar.UInt.logxor a (FStar.UInt.logxor b c))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logxor", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_associative #n a b c =
nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c))
false
FStar.UInt.fst
FStar.UInt.logxor_lemma_2
val logxor_lemma_2: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logxor #n a (ones n) = lognot #n a))
val logxor_lemma_2: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logxor #n a (ones n) = lognot #n a))
let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 75, "end_line": 200, "start_col": 0, "start_line": 200 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logxor a (FStar.UInt.ones n) = FStar.UInt.lognot a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logxor", "FStar.UInt.ones", "FStar.UInt.lognot", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_lemma_2 #n a =
nth_lemma #n (logxor #n a (ones n)) (lognot #n a)
false
CQueue.fst
CQueue.elim_llist_fragment_head_cons
val elim_llist_fragment_head_cons (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost (ll_uncons_t a) opened (llist_fragment_head l phead head) (fun res -> ccell head `star` llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) (fun _ -> Cons? (Ghost.reveal l)) (fun h res h' -> ccell_ptrvalue_is_null head == false /\ Ghost.reveal l == (h' (ccell head)).vcell_data :: Ghost.reveal res.ll_uncons_tl /\ Ghost.reveal res.ll_uncons_pnext == ccell_next head /\ Ghost.reveal res.ll_uncons_next == (h' (ccell head)).vcell_next /\ h' (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) == h (llist_fragment_head l phead head) )
val elim_llist_fragment_head_cons (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost (ll_uncons_t a) opened (llist_fragment_head l phead head) (fun res -> ccell head `star` llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) (fun _ -> Cons? (Ghost.reveal l)) (fun h res h' -> ccell_ptrvalue_is_null head == false /\ Ghost.reveal l == (h' (ccell head)).vcell_data :: Ghost.reveal res.ll_uncons_tl /\ Ghost.reveal res.ll_uncons_pnext == ccell_next head /\ Ghost.reveal res.ll_uncons_next == (h' (ccell head)).vcell_next /\ h' (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) == h (llist_fragment_head l phead head) )
let elim_llist_fragment_head_cons #_ #a l0 phead head = let l : (l : Ghost.erased (list a) { Cons? l }) = l0 in change_equal_slprop (llist_fragment_head l0 phead head) (llist_fragment_head l phead head); llist_fragment_head_eq_cons l phead head; change_equal_slprop (llist_fragment_head l phead head) (vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)))); let x = elim_vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l))) in let head2 = gget (ccell_is_lvalue head) in elim_ccell_is_lvalue head; elim_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l)); let vhead2 = gget (ccell head) in let res = { ll_uncons_pnext = ccell_next head2; ll_uncons_next = vhead2.vcell_next; ll_uncons_tl = L.tl l; } in change_equal_slprop (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)) (Ghost.reveal x)) (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next); res
{ "file_name": "share/steel/examples/steel/CQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 938, "start_col": 0, "start_line": 907 }
module CQueue open CQueue.LList #set-options "--ide_id_info_off" //Re-define squash, since this module explicitly //replies on proving equalities of the form `t_of v == squash p` //which are delicate in the presence of optimizations that //unfold `Prims.squash (p /\ q)`to _:unit{p /\ q} //See Issue #2496 let squash (p:Type u#a) : Type0 = squash p (* BEGIN library *) let intro_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: (t_of v) -> GTot t) : SteelGhost unit opened v (fun _ -> vrewrite v f) (fun _ -> True) (fun h _ h' -> h' (vrewrite v f) == f (h v)) = intro_vrewrite v f let elim_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: ((t_of v) -> GTot t)) : SteelGhost unit opened (vrewrite v f) (fun _ -> v) (fun _ -> True) (fun h _ h' -> h (vrewrite v f) == f (h' v)) = elim_vrewrite v f let vconst_sel (#a: Type) (x: a) : Tot (selector a (hp_of emp)) = fun _ -> x [@@ __steel_reduce__] let vconst' (#a: Type) (x: a) : GTot vprop' = { hp = hp_of emp; t = a; sel = vconst_sel x; } [@@ __steel_reduce__] let vconst (#a: Type) (x: a) : Tot vprop = VUnit (vconst' x) let intro_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened emp (fun _ -> vconst x) (fun _ -> True) (fun _ _ h' -> h' (vconst x) == x) = change_slprop_rel emp (vconst x) (fun _ y -> y == x) (fun _ -> ()) let elim_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened (vconst x) (fun _ -> emp) (fun _ -> True) (fun h _ _ -> h (vconst x) == x) = change_slprop_rel (vconst x) emp (fun y _ -> y == x) (fun _ -> ()) let vpure_sel' (p: prop) : Tot (selector' (squash p) (Steel.Memory.pure p)) = fun (m: Steel.Memory.hmem (Steel.Memory.pure p)) -> pure_interp p m let vpure_sel (p: prop) : Tot (selector (squash p) (Steel.Memory.pure p)) = vpure_sel' p [@@ __steel_reduce__] let vpure' (p: prop) : GTot vprop' = { hp = Steel.Memory.pure p; t = squash p; sel = vpure_sel p; } [@@ __steel_reduce__] let vpure (p: prop) : Tot vprop = VUnit (vpure' p) let intro_vpure (#opened: _) (p: prop) : SteelGhost unit opened emp (fun _ -> vpure p) (fun _ -> p) (fun _ _ h' -> p) = change_slprop_rel emp (vpure p) (fun _ _ -> p) (fun m -> pure_interp p m) let elim_vpure (#opened: _) (p: prop) : SteelGhost unit opened (vpure p) (fun _ -> emp) (fun _ -> True) (fun _ _ _ -> p) = change_slprop_rel (vpure p) emp (fun _ _ -> p) (fun m -> pure_interp p m; reveal_emp (); intro_emp m) val intro_vdep2 (#opened:inames) (v: vprop) (q: vprop) (x: t_of v) (p: (t_of v -> Tot vprop)) : SteelGhost unit opened (v `star` q) (fun _ -> vdep v p) (requires (fun h -> q == p x /\ x == h v )) (ensures (fun h _ h' -> let x2 = h' (vdep v p) in q == p (h v) /\ dfst x2 == (h v) /\ dsnd x2 == (h q) )) let intro_vdep2 v q x p = intro_vdep v q p let vbind0_payload (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: t_of a) : Tot vprop = vpure (t == t_of (b x)) `star` b x let vbind0_rewrite (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: normal (t_of (vdep a (vbind0_payload a t b)))) : Tot t = snd (dsnd x) [@@__steel_reduce__; __reduce__] let vbind0 (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = a `vdep` vbind0_payload a t b `vrewrite` vbind0_rewrite a t b let vbind_hp // necessary to hide the attribute on hp_of (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot (slprop u#1) = hp_of (vbind0 a t b) let vbind_sel // same for hp_sel (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : GTot (selector t (vbind_hp a t b)) = sel_of (vbind0 a t b) [@@__steel_reduce__] let vbind' (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : GTot vprop' = { hp = vbind_hp a t b; t = t; sel = vbind_sel a t b; } [@@__steel_reduce__] let vbind (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = VUnit (vbind' a t b) let intro_vbind (#opened: _) (a: vprop) (b' : vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : SteelGhost unit opened (a `star` b') (fun _ -> vbind a t b) (fun h -> t_of b' == t /\ b' == b (h a)) (fun h _ h' -> t_of b' == t /\ b' == b (h a) /\ h' (vbind a t b) == h b' ) = intro_vpure (t == t_of b'); intro_vdep a (vpure (t == t_of b') `star` b') (vbind0_payload a t b); intro_vrewrite (a `vdep` vbind0_payload a t b) (vbind0_rewrite a t b); change_slprop_rel (vbind0 a t b) (vbind a t b) (fun x y -> x == y) (fun _ -> ()) let elim_vbind (#opened: _) (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : SteelGhost (Ghost.erased (t_of a)) opened (vbind a t b) (fun res -> a `star` b (Ghost.reveal res)) (fun h -> True) (fun h res h' -> h' a == Ghost.reveal res /\ t == t_of (b (Ghost.reveal res)) /\ h' (b (Ghost.reveal res)) == h (vbind a t b) ) = change_slprop_rel (vbind a t b) (vbind0 a t b) (fun x y -> x == y) (fun _ -> ()); elim_vrewrite (a `vdep` vbind0_payload a t b) (vbind0_rewrite a t b); let res = elim_vdep a (vbind0_payload a t b) in change_equal_slprop (vbind0_payload a t b (Ghost.reveal res)) (vpure (t == t_of (b (Ghost.reveal res))) `star` b (Ghost.reveal res)); elim_vpure (t == t_of (b (Ghost.reveal res))); res let (==) (#a:_) (x y: a) : prop = x == y let snoc_inj (#a: Type) (hd1 hd2: list a) (tl1 tl2: a) : Lemma (requires (hd1 `L.append` [tl1] == hd2 `L.append` [tl2])) (ensures (hd1 == hd2 /\ tl1 == tl2)) [SMTPat (hd1 `L.append` [tl1]); SMTPat (hd2 `L.append` [tl2])] = L.lemma_snoc_unsnoc (hd1, tl1); L.lemma_snoc_unsnoc (hd2, tl2) [@"opaque_to_smt"] let unsnoc (#a: Type) (l: list a) : Pure (list a & a) (requires (Cons? l)) (ensures (fun (hd, tl) -> l == hd `L.append` [tl] /\ L.length hd < L.length l)) = L.lemma_unsnoc_snoc l; L.append_length (fst (L.unsnoc l)) [snd (L.unsnoc l)]; L.unsnoc l let unsnoc_hd (#a: Type) (l: list a) : Pure (list a) (requires (Cons? l)) (ensures (fun l' -> L.length l' < L.length l)) = fst (unsnoc l) let unsnoc_tl (#a: Type) (l: list a) : Pure (a) (requires (Cons? l)) (ensures (fun _ -> True)) = snd (unsnoc l) [@@"opaque_to_smt"] let snoc (#a: Type) (l: list a) (x: a) : Pure (list a) (requires True) (ensures (fun l' -> Cons? l' /\ unsnoc_hd l' == l /\ unsnoc_tl l' == x )) = let l' = L.snoc (l, x) in L.append_length l [x]; snoc_inj l (unsnoc_hd l') x (unsnoc_tl l'); l' let snoc_unsnoc (#a: Type) (l: list a) : Lemma (requires (Cons? l)) (ensures (snoc (unsnoc_hd l) (unsnoc_tl l) == l)) = () unfold let coerce (#a: Type) (x: a) (b: Type) : Pure b (requires (a == b)) (ensures (fun y -> a == b /\ x == y)) = x (* END library *) let t a = cllist_lvalue a let v (a: Type0) = list a let datas (#a: Type0) (l: v a) : Tot (list a) = l (* view from the tail *) let llist_fragment_tail_cons_data_refine (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (d: a) : Tot prop = d == unsnoc_tl (Ghost.reveal l) [@@ __steel_reduce__] let llist_fragment_tail_cons_lvalue_payload (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (c: ccell_lvalue a) : Tot vprop = vptr (ccell_data c) `vrefine` llist_fragment_tail_cons_data_refine l let ccell_is_lvalue_refine (a: Type) (c: ccell_ptrvalue a) : Tot prop = ccell_ptrvalue_is_null c == false [@@ __steel_reduce__ ] let llist_fragment_tail_cons_next_payload (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (ptail: ref (ccell_ptrvalue a)) : Tot vprop = vptr ptail `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l [@@ __steel_reduce__ ] let llist_fragment_tail_cons_rewrite (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (llist_fragment_tail: vprop { t_of llist_fragment_tail == ref (ccell_ptrvalue a) }) (x: normal (t_of (llist_fragment_tail `vdep` (llist_fragment_tail_cons_next_payload l)))) : Tot (ref (ccell_ptrvalue a)) = let (| _, (| c, _ |) |) = x in ccell_next c let rec llist_fragment_tail (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Pure vprop (requires True) (ensures (fun v -> t_of v == ref (ccell_ptrvalue a))) (decreases (Ghost.reveal (L.length l))) = if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) let llist_fragment_tail_eq (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Lemma (llist_fragment_tail l phead == ( if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) )) = assert_norm (llist_fragment_tail l phead == ( if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) )) let llist_fragment_tail_eq_cons (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Lemma (requires (Cons? l)) (ensures (Cons? l /\ llist_fragment_tail l phead == ( llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) ))) = llist_fragment_tail_eq l phead unfold let sel_llist_fragment_tail (#a:Type) (#p:vprop) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (h: rmem p { FStar.Tactics.with_tactic selector_tactic (can_be_split p (llist_fragment_tail l phead) /\ True) }) : GTot (ref (ccell_ptrvalue a)) = coerce (h (llist_fragment_tail l phead)) (ref (ccell_ptrvalue a)) val intro_llist_fragment_tail_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost unit opened emp (fun _ -> llist_fragment_tail l phead) (fun _ -> Nil? l) (fun _ _ h' -> sel_llist_fragment_tail l phead h' == phead) let intro_llist_fragment_tail_nil l phead = intro_vconst phead; change_equal_slprop (vconst phead) (llist_fragment_tail l phead) val elim_llist_fragment_tail_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_tail l phead) (fun _ -> emp) (fun _ -> Nil? l) (fun h _ _ -> sel_llist_fragment_tail l phead h == phead) let elim_llist_fragment_tail_nil l phead = change_equal_slprop (llist_fragment_tail l phead) (vconst phead); elim_vconst phead val intro_llist_fragment_tail_snoc (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (ptail: Ghost.erased (ref (ccell_ptrvalue a))) (tail: Ghost.erased (ccell_lvalue a)) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_tail l phead `star` vptr ptail `star` vptr (ccell_data tail)) (fun res -> llist_fragment_tail res phead) (fun h -> sel_llist_fragment_tail l phead h == Ghost.reveal ptail /\ sel ptail h == Ghost.reveal tail ) (fun h res h' -> Ghost.reveal res == snoc (Ghost.reveal l) (sel (ccell_data tail) h) /\ sel_llist_fragment_tail res phead h' == ccell_next tail ) #push-options "--z3rlimit 16" let intro_llist_fragment_tail_snoc #_ #a l phead ptail tail = let d = gget (vptr (ccell_data tail)) in let l' : (l' : Ghost.erased (list a) { Cons? (Ghost.reveal l') }) = Ghost.hide (snoc (Ghost.reveal l) (Ghost.reveal d)) in intro_vrefine (vptr (ccell_data tail)) (llist_fragment_tail_cons_data_refine l'); intro_vrefine (vptr ptail) (ccell_is_lvalue_refine a); intro_vdep (vptr ptail `vrefine` ccell_is_lvalue_refine a) (vptr (ccell_data tail) `vrefine` llist_fragment_tail_cons_data_refine l') (llist_fragment_tail_cons_lvalue_payload l'); change_equal_slprop (llist_fragment_tail l phead) (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead); intro_vdep (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead) (vptr ptail `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l') (llist_fragment_tail_cons_next_payload l'); intro_vrewrite_no_norm (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead `vdep` llist_fragment_tail_cons_next_payload l') (llist_fragment_tail_cons_rewrite l' (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead)); llist_fragment_tail_eq_cons l' phead; change_equal_slprop (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead `vdep` llist_fragment_tail_cons_next_payload l' `vrewrite` llist_fragment_tail_cons_rewrite l' (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead)) (llist_fragment_tail l' phead); let g' = gget (llist_fragment_tail l' phead) in assert (Ghost.reveal g' == ccell_next tail); noop (); l' #pop-options [@@erasable] noeq type ll_unsnoc_t (a: Type) = { ll_unsnoc_l: list a; ll_unsnoc_ptail: ref (ccell_ptrvalue a); ll_unsnoc_tail: ccell_lvalue a; } val elim_llist_fragment_tail_snoc (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost (ll_unsnoc_t a) opened (llist_fragment_tail l phead) (fun res -> llist_fragment_tail res.ll_unsnoc_l phead `star` vptr res.ll_unsnoc_ptail `star` vptr (ccell_data res.ll_unsnoc_tail)) (fun _ -> Cons? l) (fun h res h' -> Cons? l /\ Ghost.reveal res.ll_unsnoc_l == unsnoc_hd l /\ sel res.ll_unsnoc_ptail h' == res.ll_unsnoc_tail /\ sel (ccell_data res.ll_unsnoc_tail) h'== unsnoc_tl l /\ sel_llist_fragment_tail res.ll_unsnoc_l phead h' == res.ll_unsnoc_ptail /\ sel_llist_fragment_tail l phead h == (ccell_next res.ll_unsnoc_tail) ) #push-options "--z3rlimit 32" #restart-solver let elim_llist_fragment_tail_snoc #_ #a l phead = let l0 : (l0: Ghost.erased (list a) { Cons? l0 }) = Ghost.hide (Ghost.reveal l) in llist_fragment_tail_eq_cons l0 phead; change_equal_slprop (llist_fragment_tail l phead) (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead `vdep` llist_fragment_tail_cons_next_payload l0 `vrewrite` llist_fragment_tail_cons_rewrite l0 (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead)); elim_vrewrite_no_norm (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead `vdep` llist_fragment_tail_cons_next_payload l0) (llist_fragment_tail_cons_rewrite l0 (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead)); let ptail = elim_vdep (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead) (llist_fragment_tail_cons_next_payload l0) in let ptail0 : Ghost.erased (ref (ccell_ptrvalue a)) = ptail in change_equal_slprop (llist_fragment_tail_cons_next_payload l0 (Ghost.reveal ptail)) (vptr (Ghost.reveal ptail0) `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l0); let tail = elim_vdep (vptr (Ghost.reveal ptail0) `vrefine` ccell_is_lvalue_refine a) (llist_fragment_tail_cons_lvalue_payload l0) in elim_vrefine (vptr (Ghost.reveal ptail0)) (ccell_is_lvalue_refine a); let res = { ll_unsnoc_l = unsnoc_hd l0; ll_unsnoc_ptail = Ghost.reveal ptail0; ll_unsnoc_tail = Ghost.reveal tail; } in change_equal_slprop (vptr (Ghost.reveal ptail0)) (vptr res.ll_unsnoc_ptail); change_equal_slprop (llist_fragment_tail_cons_lvalue_payload l0 (Ghost.reveal tail)) (vptr (ccell_data res.ll_unsnoc_tail) `vrefine` llist_fragment_tail_cons_data_refine l0); elim_vrefine (vptr (ccell_data res.ll_unsnoc_tail)) (llist_fragment_tail_cons_data_refine l0); change_equal_slprop (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead) (llist_fragment_tail res.ll_unsnoc_l phead); res #pop-options let rec llist_fragment_tail_append (#opened: _) (#a: Type) (phead0: ref (ccell_ptrvalue a)) (l1: Ghost.erased (list a)) (phead1: Ghost.erased (ref (ccell_ptrvalue a))) (l2: Ghost.erased (list a)) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_tail l1 phead0 `star` llist_fragment_tail l2 phead1) (fun res -> llist_fragment_tail res phead0) (fun h -> Ghost.reveal phead1 == (sel_llist_fragment_tail l1 phead0) h ) (fun h res h' -> Ghost.reveal res == Ghost.reveal l1 `L.append` Ghost.reveal l2 /\ (sel_llist_fragment_tail res phead0) h' == (sel_llist_fragment_tail l2 phead1) h ) (decreases (L.length (Ghost.reveal l2))) = let g1 = gget (llist_fragment_tail l1 phead0) in assert (Ghost.reveal phead1 == Ghost.reveal g1); if Nil? l2 then begin L.append_l_nil (Ghost.reveal l1); elim_llist_fragment_tail_nil l2 phead1; l1 end else begin let res = elim_llist_fragment_tail_snoc l2 (Ghost.reveal phead1) in let d = gget (vptr (ccell_data res.ll_unsnoc_tail)) in L.append_assoc (Ghost.reveal l1) (Ghost.reveal res.ll_unsnoc_l) [Ghost.reveal d]; let l3 = llist_fragment_tail_append phead0 l1 phead1 res.ll_unsnoc_l in intro_llist_fragment_tail_snoc l3 phead0 res.ll_unsnoc_ptail res.ll_unsnoc_tail end let queue_tail_refine (#a: Type) (tail1: ref (ccell_ptrvalue a)) (tail2: ref (ccell_ptrvalue a)) (tl: normal (t_of (vptr tail2))) : Tot prop = ccell_ptrvalue_is_null tl == true /\ tail1 == tail2 [@@__steel_reduce__] let queue_tail_dep2 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail1: t_of (llist_fragment_tail l (cllist_head x))) (tail2: ref (ccell_ptrvalue a)) : Tot vprop = vptr tail2 `vrefine` queue_tail_refine tail1 tail2 [@@__steel_reduce__] let queue_tail_dep1 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail1: t_of (llist_fragment_tail l (cllist_head x))) : Tot vprop = vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail1 [@@__steel_reduce__; __reduce__] let queue_tail (#a: Type) (x: t a) (l: Ghost.erased (list a)) : Tot vprop = llist_fragment_tail l (cllist_head x) `vdep` queue_tail_dep1 x l val intro_queue_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail: ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_tail l (cllist_head x) `star` vptr (cllist_tail x) `star` vptr tail) (fun _ -> queue_tail x l) (fun h -> sel_llist_fragment_tail l (cllist_head x) h == tail /\ sel (cllist_tail x) h == tail /\ ccell_ptrvalue_is_null (sel tail h) ) (fun _ _ _ -> True) let intro_queue_tail x l tail = intro_vrefine (vptr tail) (queue_tail_refine tail tail); intro_vdep2 (vptr (cllist_tail x)) (vptr tail `vrefine` queue_tail_refine tail tail) tail (queue_tail_dep2 x l tail); intro_vdep2 (llist_fragment_tail l (cllist_head x)) (vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail) tail (queue_tail_dep1 x l) val elim_queue_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhost (Ghost.erased (ref (ccell_ptrvalue a))) opened (queue_tail x l) (fun tail -> llist_fragment_tail l (cllist_head x) `star` vptr (cllist_tail x) `star` vptr tail) (fun h -> True) (fun _ tail h -> sel_llist_fragment_tail l (cllist_head x) h == Ghost.reveal tail /\ sel (cllist_tail x) h == Ghost.reveal tail /\ ccell_ptrvalue_is_null (h (vptr tail)) ) let elim_queue_tail #_ #a x l = let tail0 = elim_vdep (llist_fragment_tail l (cllist_head x)) (queue_tail_dep1 x l) in let tail : Ghost.erased (ref (ccell_ptrvalue a)) = tail0 in change_equal_slprop (queue_tail_dep1 x l (Ghost.reveal tail0)) (vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail0); let tail2 = elim_vdep (vptr (cllist_tail x)) (queue_tail_dep2 x l tail0) in let tail3 : Ghost.erased (ref (ccell_ptrvalue a)) = tail2 in change_equal_slprop (queue_tail_dep2 x l tail0 (Ghost.reveal tail2)) (vptr tail3 `vrefine` queue_tail_refine tail0 tail3); elim_vrefine (vptr tail3) (queue_tail_refine tail0 tail3); change_equal_slprop (vptr tail3) (vptr tail); tail (* view from the head *) let llist_fragment_head_data_refine (#a: Type) (d: a) (c: vcell a) : Tot prop = c.vcell_data == d let llist_fragment_head_payload (#a: Type) (head: ccell_ptrvalue a) (d: a) (llist_fragment_head: (ref (ccell_ptrvalue a) -> ccell_ptrvalue a -> Tot vprop)) (x: t_of (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine d))) : Tot vprop = llist_fragment_head (ccell_next (fst x)) (snd x).vcell_next let rec llist_fragment_head (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Tot vprop (decreases (Ghost.reveal l)) = if Nil? l then vconst (phead, head) else vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) let t_of_llist_fragment_head (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Lemma (t_of (llist_fragment_head l phead head) == ref (ccell_ptrvalue a) & ccell_ptrvalue a) = () unfold let sel_llist_fragment_head (#a:Type) (#p:vprop) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) (h: rmem p { FStar.Tactics.with_tactic selector_tactic (can_be_split p (llist_fragment_head l phead head) /\ True) }) : GTot (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = coerce (h (llist_fragment_head l phead head)) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) val intro_llist_fragment_head_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened emp (fun _ -> llist_fragment_head l phead head) (fun _ -> Nil? l) (fun _ _ h' -> sel_llist_fragment_head l phead head h' == (phead, head)) let intro_llist_fragment_head_nil l phead head = intro_vconst (phead, head); change_equal_slprop (vconst (phead, head)) (llist_fragment_head l phead head) val elim_llist_fragment_head_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> emp) (fun _ -> Nil? l) (fun h _ _ -> sel_llist_fragment_head l phead head h == (phead, head)) let elim_llist_fragment_head_nil l phead head = change_equal_slprop (llist_fragment_head l phead head) (vconst (phead, head)); elim_vconst (phead, head) let llist_fragment_head_eq_cons (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Lemma (requires (Cons? (Ghost.reveal l))) (ensures ( llist_fragment_head l phead head == vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) )) = assert_norm (llist_fragment_head l phead head == ( if Nil? l then vconst (phead, head) else vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) )) val intro_llist_fragment_head_cons (#opened: _) (#a: Type) (phead: ref (ccell_ptrvalue a)) (head: ccell_lvalue a) (next: (ccell_ptrvalue a)) (tl: Ghost.erased (list a)) : SteelGhost (Ghost.erased (list a)) opened (ccell head `star` llist_fragment_head tl (ccell_next head) next) (fun res -> llist_fragment_head res phead head) (fun h -> (h (ccell head)).vcell_next == next) (fun h res h' -> Ghost.reveal res == (h (ccell head)).vcell_data :: Ghost.reveal tl /\ h' (llist_fragment_head res phead head) == h (llist_fragment_head tl (ccell_next head) next) ) let intro_llist_fragment_head_cons #_ #a phead head next tl = let vc = gget (ccell head) in let l' : (l' : Ghost.erased (list a) { Cons? l' }) = Ghost.hide (vc.vcell_data :: tl) in intro_ccell_is_lvalue head; intro_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l')); intro_vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l'))) (llist_fragment_head tl (ccell_next head) next) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l') (llist_fragment_head (L.tl l'))); llist_fragment_head_eq_cons l' phead head; change_equal_slprop (vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l'))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l') (llist_fragment_head (L.tl l')))) (llist_fragment_head l' phead head); l' [@@erasable] noeq type ll_uncons_t (a: Type) = { ll_uncons_pnext: Ghost.erased (ref (ccell_ptrvalue a)); ll_uncons_next: Ghost.erased (ccell_ptrvalue a); ll_uncons_tl: Ghost.erased (list a); } val elim_llist_fragment_head_cons (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost (ll_uncons_t a) opened (llist_fragment_head l phead head) (fun res -> ccell head `star` llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) (fun _ -> Cons? (Ghost.reveal l)) (fun h res h' -> ccell_ptrvalue_is_null head == false /\ Ghost.reveal l == (h' (ccell head)).vcell_data :: Ghost.reveal res.ll_uncons_tl /\ Ghost.reveal res.ll_uncons_pnext == ccell_next head /\ Ghost.reveal res.ll_uncons_next == (h' (ccell head)).vcell_next /\ h' (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) == h (llist_fragment_head l phead head) )
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "CQueue.LList.fsti.checked" ], "interface_file": true, "source_file": "CQueue.fst" }
[ { "abbrev": false, "full_module": "CQueue.LList", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: FStar.Ghost.erased (Prims.list a) -> phead: Steel.Reference.ref (CQueue.Cell.ccell_ptrvalue a) -> head: CQueue.Cell.ccell_ptrvalue a -> Steel.Effect.Atomic.SteelGhost (CQueue.ll_uncons_t a)
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "Prims.list", "Steel.Reference.ref", "CQueue.Cell.ccell_ptrvalue", "CQueue.ll_uncons_t", "Prims.unit", "Steel.Effect.Atomic.change_equal_slprop", "CQueue.llist_fragment_head_payload", "FStar.List.Tot.Base.hd", "FStar.Ghost.reveal", "CQueue.llist_fragment_head", "FStar.Ghost.hide", "FStar.List.Tot.Base.tl", "Steel.Effect.Common.t_of", "Steel.Effect.Common.star", "CQueue.Cell.ccell_is_lvalue", "Steel.Effect.Common.vrefine", "CQueue.Cell.ccell", "CQueue.llist_fragment_head_data_refine", "CQueue.__proj__Mkll_uncons_t__item__ll_uncons_tl", "CQueue.__proj__Mkll_uncons_t__item__ll_uncons_pnext", "CQueue.__proj__Mkll_uncons_t__item__ll_uncons_next", "CQueue.Mkll_uncons_t", "CQueue.Cell.ccell_next", "CQueue.Cell.__proj__Mkvcell__item__vcell_next", "Steel.Effect.Atomic.gget", "Steel.Effect.Atomic.elim_vrefine", "CQueue.Cell.elim_ccell_is_lvalue", "CQueue.elim_vbind", "FStar.Pervasives.Native.tuple2", "CQueue.vbind", "CQueue.llist_fragment_head_eq_cons", "Prims.b2t", "Prims.uu___is_Cons" ]
[]
false
true
false
false
false
let elim_llist_fragment_head_cons #_ #a l0 phead head =
let l:(l: Ghost.erased (list a) {Cons? l}) = l0 in change_equal_slprop (llist_fragment_head l0 phead head) (llist_fragment_head l phead head); llist_fragment_head_eq_cons l phead head; change_equal_slprop (llist_fragment_head l phead head) (vbind ((ccell_is_lvalue head) `star` ((ccell head) `vrefine` (llist_fragment_head_data_refine (L.hd l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)))); let x = elim_vbind ((ccell_is_lvalue head) `star` ((ccell head) `vrefine` (llist_fragment_head_data_refine (L.hd l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l))) in let head2 = gget (ccell_is_lvalue head) in elim_ccell_is_lvalue head; elim_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l)); let vhead2 = gget (ccell head) in let res = { ll_uncons_pnext = ccell_next head2; ll_uncons_next = vhead2.vcell_next; ll_uncons_tl = L.tl l } in change_equal_slprop (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)) (Ghost.reveal x)) (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next); res
false
FStar.UInt.fst
FStar.UInt.logxor_lemma_1
val logxor_lemma_1: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logxor #n a (zero n) = a))
val logxor_lemma_1: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logxor #n a (zero n) = a))
let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 198, "start_col": 0, "start_line": 198 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logxor a (FStar.UInt.zero n) = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logxor", "FStar.UInt.zero", "Prims.unit" ]
[]
true
false
true
false
false
let logxor_lemma_1 #n a =
nth_lemma #n (logxor #n a (zero n)) a
false
FStar.UInt.fst
FStar.UInt.subset_vec_le_lemma
val subset_vec_le_lemma: #n:pos -> a:bv_t n -> b:bv_t n -> Lemma (requires is_subset_vec #n a b) (ensures (from_vec a) <= (from_vec b))
val subset_vec_le_lemma: #n:pos -> a:bv_t n -> b:bv_t n -> Lemma (requires is_subset_vec #n a b) (ensures (from_vec a) <= (from_vec b))
let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 70, "end_line": 183, "start_col": 0, "start_line": 180 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.BitVector.bv_t n -> b: FStar.BitVector.bv_t n -> FStar.Pervasives.Lemma (requires FStar.BitVector.is_subset_vec a b) (ensures FStar.UInt.from_vec a <= FStar.UInt.from_vec b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.BitVector.bv_t", "Prims.int", "FStar.UInt.subset_vec_le_lemma", "Prims.op_Subtraction", "FStar.Seq.Base.slice", "Prims.bool", "Prims.unit", "FStar.BitVector.lemma_slice_subset_vec" ]
[ "recursion" ]
false
false
true
false
false
let rec subset_vec_le_lemma #n a b =
match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n - 1); subset_vec_le_lemma #(n - 1) (slice a 0 (n - 1)) (slice b 0 (n - 1))
false
FStar.UInt.fst
FStar.UInt.logxor_inv
val logxor_inv: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (a = logxor #n (logxor #n a b) b)
val logxor_inv: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (a = logxor #n (logxor #n a b) b)
let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 216, "start_col": 0, "start_line": 204 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures a = FStar.UInt.logxor (FStar.UInt.logxor a b) b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.inverse_num_lemma", "Prims.unit", "FStar.Seq.Base.lemma_eq_intro", "Prims.bool", "FStar.BitVector.logxor_vec", "Prims.cut", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "FStar.Seq.Base.index", "FStar.UInt.xor", "Prims.op_disEquality", "FStar.BitVector.bv_t", "FStar.UInt.to_vec" ]
[]
false
false
true
false
false
let logxor_inv #n a b =
let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut (forall (i: nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i: nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i: nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b
false
FStar.UInt.fst
FStar.UInt.logxor_neq_nonzero
val logxor_neq_nonzero: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (a <> b ==> logxor a b <> 0)
val logxor_neq_nonzero: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (a <> b ==> logxor a b <> 0)
let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 229, "start_col": 0, "start_line": 218 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures a <> b ==> FStar.UInt.logxor a b <> 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.op_Equality", "Prims.int", "FStar.UInt.logxor", "Prims._assert", "Prims.b2t", "FStar.UInt.from_vec", "Prims.unit", "FStar.Seq.Base.lemma_eq_intro", "Prims.bool", "Prims.l_Forall", "Prims.nat", "Prims.op_LessThan", "FStar.Seq.Base.index", "FStar.Classical.forall_intro", "Prims.op_Negation", "FStar.UInt.nth", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.UInt.zero_nth_lemma", "FStar.BitVector.bv_t", "FStar.UInt.to_vec" ]
[]
false
false
true
false
false
let logxor_neq_nonzero #n a b =
let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then let open FStar.Seq in let f (i: nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i: nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb)
false
FStar.UInt.fst
FStar.UInt.logor_commutative
val logor_commutative: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires True) (ensures (logor #n a b = logor #n b a))
val logor_commutative: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires True) (ensures (logor #n a b = logor #n b a))
let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 73, "end_line": 231, "start_col": 0, "start_line": 231 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logor a b = FStar.UInt.logor b a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logor", "Prims.unit" ]
[]
true
false
true
false
false
let logor_commutative #n a b =
nth_lemma #n (logor #n a b) (logor #n b a)
false
FStar.UInt.fst
FStar.UInt.logor_lemma_1
val logor_lemma_1: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logor #n a (zero n) = a))
val logor_lemma_1: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logor #n a (zero n) = a))
let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 237, "start_col": 0, "start_line": 237 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logor a (FStar.UInt.zero n) = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logor", "FStar.UInt.zero", "Prims.unit" ]
[]
true
false
true
false
false
let logor_lemma_1 #n a =
nth_lemma (logor #n a (zero n)) a
false
FStar.UInt.fst
FStar.UInt.superset_vec_ge_lemma
val superset_vec_ge_lemma: #n:pos -> a:bv_t n -> b:bv_t n -> Lemma (requires is_superset_vec #n a b) (ensures (from_vec a) >= (from_vec b))
val superset_vec_ge_lemma: #n:pos -> a:bv_t n -> b:bv_t n -> Lemma (requires is_superset_vec #n a b) (ensures (from_vec a) >= (from_vec b))
let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 244, "start_col": 0, "start_line": 241 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.BitVector.bv_t n -> b: FStar.BitVector.bv_t n -> FStar.Pervasives.Lemma (requires FStar.BitVector.is_superset_vec a b) (ensures FStar.UInt.from_vec a >= FStar.UInt.from_vec b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.BitVector.bv_t", "Prims.int", "FStar.UInt.superset_vec_ge_lemma", "Prims.op_Subtraction", "FStar.Seq.Base.slice", "Prims.bool", "Prims.unit", "FStar.BitVector.lemma_slice_superset_vec" ]
[ "recursion" ]
false
false
true
false
false
let rec superset_vec_ge_lemma #n a b =
match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n - 1); superset_vec_ge_lemma #(n - 1) (slice a 0 (n - 1)) (slice b 0 (n - 1))
false
FStar.UInt.fst
FStar.UInt.logor_self
val logor_self: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logor #n a a = a))
val logor_self: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logor #n a a = a))
let logor_self #n a = nth_lemma #n (logor #n a a) a
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 235, "start_col": 0, "start_line": 235 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logor a a = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logor", "Prims.unit" ]
[]
true
false
true
false
false
let logor_self #n a =
nth_lemma #n (logor #n a a) a
false
FStar.UInt.fst
FStar.UInt.logor_associative
val logor_associative: #n:pos -> a:uint_t n -> b:uint_t n -> c:uint_t n -> Lemma (requires True) (ensures (logor #n (logor #n a b) c = logor #n a (logor #n b c)))
val logor_associative: #n:pos -> a:uint_t n -> b:uint_t n -> c:uint_t n -> Lemma (requires True) (ensures (logor #n (logor #n a b) c = logor #n a (logor #n b c)))
let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 101, "end_line": 233, "start_col": 0, "start_line": 233 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> c: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logor (FStar.UInt.logor a b) c = FStar.UInt.logor a (FStar.UInt.logor b c))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logor", "Prims.unit" ]
[]
true
false
true
false
false
let logor_associative #n a b c =
nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c))
false
FStar.UInt.fst
FStar.UInt.logor_lemma_2
val logor_lemma_2: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logor #n a (ones n) = ones n))
val logor_lemma_2: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (logor #n a (ones n) = ones n))
let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 239, "start_col": 0, "start_line": 239 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logor a (FStar.UInt.ones n) = FStar.UInt.ones n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.logor", "FStar.UInt.ones", "Prims.unit" ]
[]
true
false
true
false
false
let logor_lemma_2 #n a =
nth_lemma (logor #n a (ones n)) (ones n)
false
FStar.UInt.fst
FStar.UInt.lognot_self
val lognot_self: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (lognot #n (lognot #n a) = a))
val lognot_self: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (lognot #n (lognot #n a) = a))
let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 253, "start_col": 0, "start_line": 253 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.lognot (FStar.UInt.lognot a) = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.nth_lemma", "FStar.UInt.lognot", "Prims.unit" ]
[]
true
false
true
false
false
let lognot_self #n a =
nth_lemma (lognot #n (lognot #n a)) a
false
FStar.UInt.fst
FStar.UInt.logor_ge
val logor_ge: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires True) (ensures (logor a b) >= a /\ (logor a b) >= b)
val logor_ge: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (requires True) (ensures (logor a b) >= a /\ (logor a b) >= b)
let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 251, "start_col": 0, "start_line": 246 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.logor a b >= a /\ FStar.UInt.logor a b >= b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.superset_vec_ge_lemma", "Prims.unit", "FStar.BitVector.bv_t", "FStar.UInt.to_vec", "FStar.UInt.logor" ]
[]
true
false
true
false
false
let logor_ge #n a b =
let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb
false
FStar.UInt.fst
FStar.UInt.lognot_lemma_1
val lognot_lemma_1: #n:pos -> Lemma (requires True) (ensures (lognot #n (zero n) = ones n))
val lognot_lemma_1: #n:pos -> Lemma (requires True) (ensures (lognot #n (zero n) = ones n))
let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 255, "start_col": 0, "start_line": 255 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Pervasives.Lemma (ensures FStar.UInt.lognot (FStar.UInt.zero n) = FStar.UInt.ones n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.nth_lemma", "FStar.UInt.lognot", "FStar.UInt.zero", "FStar.UInt.ones", "Prims.unit" ]
[]
true
false
true
false
false
let lognot_lemma_1 #n =
nth_lemma (lognot #n (zero n)) (ones n)
false
FStar.UInt.fst
FStar.UInt.to_vec_mod_pow2
val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)]
val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)]
let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 273, "start_col": 0, "start_line": 261 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> m: Prims.pos -> i: Prims.nat{n - m <= i /\ i < n} -> FStar.Pervasives.Lemma (requires a % Prims.pow2 m == 0) (ensures FStar.Seq.Base.index (FStar.UInt.to_vec a) i == false) [SMTPat (FStar.Seq.Base.index (FStar.UInt.to_vec a) i); SMTPat (Prims.pow2 m)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.UInt.uint_t", "Prims.pos", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "FStar.Math.Lemmas.mod_mult_exact", "Prims.pow2", "Prims.unit", "FStar.Seq.Base.lemma_index_app2", "Prims.bool", "FStar.UInt.to_vec", "Prims.op_Division", "FStar.Seq.Base.create", "Prims.op_Modulus", "FStar.UInt.to_vec_mod_pow2", "FStar.Math.Lemmas.mod_pow2_div2", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.lemma_index_app1" ]
[ "recursion" ]
false
false
true
false
false
let rec to_vec_mod_pow2 #n a m i =
if i = n - 1 then (lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1))) else (lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i)
false
FStar.UInt.fst
FStar.UInt.to_vec_lt_pow2
val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)]
val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)]
let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 9, "end_line": 289, "start_col": 0, "start_line": 279 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> m: Prims.nat -> i: Prims.nat{i < n - m} -> FStar.Pervasives.Lemma (requires a < Prims.pow2 m) (ensures FStar.Seq.Base.index (FStar.UInt.to_vec a) i == false) [SMTPat (FStar.Seq.Base.index (FStar.UInt.to_vec a) i); SMTPat (Prims.pow2 m)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims._assert", "Prims.eq2", "FStar.UInt.zero", "FStar.UInt.to_vec_lt_pow2", "Prims.op_Division", "Prims.unit", "FStar.Seq.Base.index", "FStar.UInt.to_vec", "FStar.Seq.Base.lemma_index_app1", "FStar.Seq.Base.create", "Prims.op_Modulus" ]
[ "recursion" ]
false
false
true
false
false
let rec to_vec_lt_pow2 #n a m i =
if n = 0 then () else if m = 0 then assert (a == zero n) else (lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i)
false
FStar.UInt.fst
FStar.UInt.logor_disjoint
val logor_disjoint: #n:pos -> a:uint_t n -> b:uint_t n -> m:pos{m < n} -> Lemma (requires (a % pow2 m == 0 /\ b < pow2 m)) (ensures (logor #n a b == a + b))
val logor_disjoint: #n:pos -> a:uint_t n -> b:uint_t n -> m:pos{m < n} -> Lemma (requires (a % pow2 m == 0 /\ b < pow2 m)) (ensures (logor #n a b == a + b))
let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 319, "start_col": 0, "start_line": 302 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> m: Prims.pos{m < n} -> FStar.Pervasives.Lemma (requires a % Prims.pow2 m == 0 /\ b < Prims.pow2 m) (ensures FStar.UInt.logor a b == a + b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt.from_vec", "FStar.Seq.Base.slice", "Prims.bool", "FStar.UInt.to_vec", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.small_modulo_lemma_1", "Prims.pow2", "FStar.UInt.slice_right_lemma", "FStar.Mul.op_Star", "FStar.Math.Lemmas.div_exact_r", "FStar.UInt.slice_left_lemma", "FStar.UInt.append_lemma", "FStar.Seq.Base.lemma_eq_intro", "FStar.BitVector.logor_vec", "FStar.Seq.Base.append", "FStar.Seq.Properties.lemma_split", "Prims.l_Forall", "Prims.nat", "FStar.Seq.Base.index", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Modulus" ]
[]
false
false
true
false
false
let logor_disjoint #n a b m =
assert (a % pow2 m == 0); assert (forall (i: nat{n - m <= i /\ i < n}). {:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); assert (forall (i: nat{i < n - m}). {:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b)
false
FStar.UInt.fst
FStar.UInt.shift_left_logand_lemma
val shift_left_logand_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_left #n (logand #n a b) s = logand #n (shift_left #n a s) (shift_left #n b s)))
val shift_left_logand_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_left #n (logand #n a b) s = logand #n (shift_left #n a s) (shift_left #n b s)))
let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 134, "end_line": 341, "start_col": 0, "start_line": 341 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_left (FStar.UInt.logand a b) s = FStar.UInt.logand (FStar.UInt.shift_left a s) (FStar.UInt.shift_left b s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "FStar.UInt.nth_lemma", "FStar.UInt.shift_left", "FStar.UInt.logand", "Prims.unit" ]
[]
true
false
true
false
false
let shift_left_logand_lemma #n a b s =
nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s))
false
FStar.UInt.fst
FStar.UInt.index_to_vec_ones
val index_to_vec_ones: #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> index (to_vec #n (pow2 m - 1)) i == false) /\ (n - m <= i ==> index (to_vec #n (pow2 m - 1)) i == true))) [SMTPat (index (to_vec #n (pow2 m - 1)) i)]
val index_to_vec_ones: #n:pos -> m:nat{m <= n} -> i:nat{i < n} -> Lemma (requires True) (ensures (pow2 m <= pow2 n /\ (i < n - m ==> index (to_vec #n (pow2 m - 1)) i == false) /\ (n - m <= i ==> index (to_vec #n (pow2 m - 1)) i == true))) [SMTPat (index (to_vec #n (pow2 m - 1)) i)]
let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 299, "start_col": 0, "start_line": 293 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.nat{m <= n} -> i: Prims.nat{i < n} -> FStar.Pervasives.Lemma (ensures Prims.pow2 m <= Prims.pow2 n /\ (i < n - m ==> FStar.Seq.Base.index (FStar.UInt.to_vec (Prims.pow2 m - 1)) i == false) /\ (n - m <= i ==> FStar.Seq.Base.index (FStar.UInt.to_vec (Prims.pow2 m - 1)) i == true)) [SMTPat (FStar.Seq.Base.index (FStar.UInt.to_vec (Prims.pow2 m - 1)) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Equality", "Prims.int", "FStar.UInt.one_to_vec_lemma", "Prims.bool", "Prims.l_or", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "FStar.UInt.ones_to_vec_lemma", "Prims.op_Subtraction", "FStar.UInt.index_to_vec_ones", "Prims.unit", "FStar.Math.Lemmas.pow2_le_compat", "Prims.pow2" ]
[ "recursion" ]
false
false
true
false
false
let rec index_to_vec_ones #n m i =
let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i
false
FStar.UInt.fst
FStar.UInt.shift_right_logand_lemma
val shift_right_logand_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_right #n (logand #n a b) s = logand #n (shift_right #n a s) (shift_right #n b s)))
val shift_right_logand_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_right #n (logand #n a b) s = logand #n (shift_right #n a s) (shift_right #n b s)))
let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 138, "end_line": 343, "start_col": 0, "start_line": 343 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_right (FStar.UInt.logand a b) s = FStar.UInt.logand (FStar.UInt.shift_right a s) (FStar.UInt.shift_right b s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "FStar.UInt.nth_lemma", "FStar.UInt.shift_right", "FStar.UInt.logand", "Prims.unit" ]
[]
true
false
true
false
false
let shift_right_logand_lemma #n a b s =
nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s))
false
FStar.UInt.fst
FStar.UInt.shift_left_logor_lemma
val shift_left_logor_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_left #n (logor #n a b) s = logor #n (shift_left #n a s) (shift_left #n b s)))
val shift_left_logor_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_left #n (logor #n a b) s = logor #n (shift_left #n a s) (shift_left #n b s)))
let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 131, "end_line": 349, "start_col": 0, "start_line": 349 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_left (FStar.UInt.logor a b) s = FStar.UInt.logor (FStar.UInt.shift_left a s) (FStar.UInt.shift_left b s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "FStar.UInt.nth_lemma", "FStar.UInt.shift_left", "FStar.UInt.logor", "Prims.unit" ]
[]
true
false
true
false
false
let shift_left_logor_lemma #n a b s =
nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s))
false
FStar.UInt.fst
FStar.UInt.shift_left_logxor_lemma
val shift_left_logxor_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_left #n (logxor #n a b) s = logxor #n (shift_left #n a s) (shift_left #n b s)))
val shift_left_logxor_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_left #n (logxor #n a b) s = logxor #n (shift_left #n a s) (shift_left #n b s)))
let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 134, "end_line": 345, "start_col": 0, "start_line": 345 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_left (FStar.UInt.logxor a b) s = FStar.UInt.logxor (FStar.UInt.shift_left a s) (FStar.UInt.shift_left b s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "FStar.UInt.nth_lemma", "FStar.UInt.shift_left", "FStar.UInt.logxor", "Prims.unit" ]
[]
true
false
true
false
false
let shift_left_logxor_lemma #n a b s =
nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s))
false
FStar.UInt.fst
FStar.UInt.shift_right_logxor_lemma
val shift_right_logxor_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_right #n (logxor #n a b) s = logxor #n (shift_right #n a s) (shift_right #n b s)))
val shift_right_logxor_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_right #n (logxor #n a b) s = logxor #n (shift_right #n a s) (shift_right #n b s)))
let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 138, "end_line": 347, "start_col": 0, "start_line": 347 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_right (FStar.UInt.logxor a b) s = FStar.UInt.logxor (FStar.UInt.shift_right a s) (FStar.UInt.shift_right b s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "FStar.UInt.nth_lemma", "FStar.UInt.shift_right", "FStar.UInt.logxor", "Prims.unit" ]
[]
true
false
true
false
false
let shift_right_logxor_lemma #n a b s =
nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s))
false
FStar.UInt.fst
FStar.UInt.shift_right_logor_lemma
val shift_right_logor_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_right #n (logor #n a b) s = logor #n (shift_right #n a s) (shift_right #n b s)))
val shift_right_logor_lemma: #n:pos -> a:uint_t n -> b:uint_t n -> s:nat -> Lemma (requires True) (ensures (shift_right #n (logor #n a b) s = logor #n (shift_right #n a s) (shift_right #n b s)))
let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s))
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 135, "end_line": 351, "start_col": 0, "start_line": 351 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_right (FStar.UInt.logor a b) s = FStar.UInt.logor (FStar.UInt.shift_right a s) (FStar.UInt.shift_right b s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "FStar.UInt.nth_lemma", "FStar.UInt.shift_right", "FStar.UInt.logor", "Prims.unit" ]
[]
true
false
true
false
false
let shift_right_logor_lemma #n a b s =
nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s))
false
FStar.UInt.fst
FStar.UInt.shift_left_value_aux_1
val shift_left_value_aux_1: #n:pos -> a:uint_t n -> s:nat{s >= n} -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) % pow2 n)
val shift_left_value_aux_1: #n:pos -> a:uint_t n -> s:nat{s >= n} -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) % pow2 n)
let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 354, "start_col": 0, "start_line": 354 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> s: Prims.nat{s >= n} -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_left a s = a * Prims.pow2 s % Prims.pow2 n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1", "Prims.unit" ]
[]
true
false
true
false
false
let shift_left_value_aux_1 #n a s =
pow2_multiplication_modulo_lemma_1 a n s
false
FStar.UInt.fst
FStar.UInt.shift_left_value_lemma
val shift_left_value_lemma: #n:pos -> a:uint_t n -> s:nat -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) % pow2 n) [SMTPat (shift_left #n a s)]
val shift_left_value_lemma: #n:pos -> a:uint_t n -> s:nat -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) % pow2 n) [SMTPat (shift_left #n a s)]
let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 368, "start_col": 0, "start_line": 365 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_left a s = a * Prims.pow2 s % Prims.pow2 n) [SMTPat (FStar.UInt.shift_left a s)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.op_GreaterThanOrEqual", "FStar.UInt.shift_left_value_aux_1", "Prims.bool", "Prims.op_Equality", "Prims.int", "FStar.UInt.shift_left_value_aux_2", "FStar.UInt.shift_left_value_aux_3", "Prims.unit" ]
[]
false
false
true
false
false
let shift_left_value_lemma #n a s =
if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s
false
FStar.UInt.fst
FStar.UInt.logand_mask
val logand_mask: #n:pos -> a:uint_t n -> m:pos{m < n} -> Lemma (pow2 m < pow2 n /\ logand #n a (pow2 m - 1) == a % pow2 m)
val logand_mask: #n:pos -> a:uint_t n -> m:pos{m < n} -> Lemma (pow2 m < pow2 n /\ logand #n a (pow2 m - 1) == a % pow2 m)
let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 331, "start_col": 0, "start_line": 321 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> m: Prims.pos{m < n} -> FStar.Pervasives.Lemma (ensures Prims.pow2 m < Prims.pow2 n /\ FStar.UInt.logand a (Prims.pow2 m - 1) == a % Prims.pow2 m)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "Prims._assert", "Prims.eq2", "Prims.int", "FStar.UInt.from_vec", "FStar.Seq.Base.slice", "Prims.bool", "FStar.UInt.to_vec", "Prims.op_Subtraction", "Prims.op_Modulus", "Prims.pow2", "Prims.unit", "FStar.UInt.slice_right_lemma", "FStar.BitVector.zero_vec", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.UInt.append_lemma", "FStar.Seq.Base.lemma_eq_intro", "FStar.BitVector.logand_vec", "FStar.Seq.Base.append", "FStar.Seq.Properties.lemma_split", "FStar.Math.Lemmas.pow2_lt_compat" ]
[]
true
false
true
false
false
let logand_mask #n a m =
pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m)
false
FStar.UInt.fst
FStar.UInt.shift_left_value_aux_2
val shift_left_value_aux_2: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures shift_left #n a 0 = (a * pow2 0) % pow2 n)
val shift_left_value_aux_2: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures shift_left #n a 0 = (a * pow2 0) % pow2 n)
let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 358, "start_col": 0, "start_line": 356 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_left a 0 = a * Prims.pow2 0 % Prims.pow2 n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.Math.Lemmas.small_modulo_lemma_1", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Mul.op_Star" ]
[]
true
false
true
false
false
let shift_left_value_aux_2 #n a =
assert_norm (a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n)
false
FStar.UInt.fst
FStar.UInt.shift_right_value_aux_2
val shift_right_value_aux_2: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures shift_right #n a 0 = a / pow2 0)
val shift_right_value_aux_2: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures shift_right #n a 0 = a / pow2 0)
let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 374, "start_col": 0, "start_line": 374 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_right a 0 = a / Prims.pow2 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.pow2", "Prims.unit" ]
[]
true
false
true
false
false
let shift_right_value_aux_2 #n a =
assert_norm (pow2 0 == 1)
false
FStar.UInt.fst
FStar.UInt.shift_right_value_lemma
val shift_right_value_lemma: #n:pos -> a:uint_t n -> s:nat -> Lemma (requires True) (ensures shift_right #n a s = a / pow2 s) [SMTPat (shift_right #n a s)]
val shift_right_value_lemma: #n:pos -> a:uint_t n -> s:nat -> Lemma (requires True) (ensures shift_right #n a s = a / pow2 s) [SMTPat (shift_right #n a s)]
let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 385, "start_col": 0, "start_line": 382 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> s: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_right a s = a / Prims.pow2 s) [SMTPat (FStar.UInt.shift_right a s)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.op_GreaterThanOrEqual", "FStar.UInt.shift_right_value_aux_1", "Prims.bool", "Prims.op_Equality", "Prims.int", "FStar.UInt.shift_right_value_aux_2", "FStar.UInt.shift_right_value_aux_3", "Prims.unit" ]
[]
false
false
true
false
false
let shift_right_value_lemma #n a s =
if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s
false
FStar.UInt.fst
FStar.UInt.shift_right_value_aux_1
val shift_right_value_aux_1: #n:pos -> a:uint_t n -> s:nat{s >= n} -> Lemma (requires True) (ensures shift_right #n a s = a / pow2 s)
val shift_right_value_aux_1: #n:pos -> a:uint_t n -> s:nat{s >= n} -> Lemma (requires True) (ensures shift_right #n a s = a / pow2 s)
let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 372, "start_col": 0, "start_line": 370 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> s: Prims.nat{s >= n} -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_right a s = a / Prims.pow2 s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Math.Lemmas.small_division_lemma_1", "Prims.pow2", "Prims.unit", "FStar.Math.Lemmas.pow2_le_compat" ]
[]
true
false
true
false
false
let shift_right_value_aux_1 #n a s =
pow2_le_compat s n; small_division_lemma_1 a (pow2 s)
false
FStar.UInt.fst
FStar.UInt.lemma_minus_zero
val lemma_minus_zero: #n:pos -> a:uint_t n -> Lemma (minus a = 0 ==> a = 0)
val lemma_minus_zero: #n:pos -> a:uint_t n -> Lemma (minus a = 0 ==> a = 0)
let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 400, "start_col": 0, "start_line": 393 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.minus a = 0 ==> a = 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.op_Equality", "Prims.int", "FStar.UInt.minus", "FStar.UInt.logxor_lemma_2", "FStar.UInt.ones", "Prims.unit", "FStar.UInt.logxor_self", "FStar.UInt.lognot_self", "FStar.UInt.plus_one_mod", "Prims.pow2", "FStar.UInt.lognot", "Prims.bool" ]
[]
false
false
true
false
false
let lemma_minus_zero #n a =
if minus a = 0 then (plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n))
false
FStar.UInt.fst
FStar.UInt.lemma_add_sub_cancel
val lemma_add_sub_cancel: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (add_mod (sub_mod a b) b = a)
val lemma_add_sub_cancel: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (add_mod (sub_mod a b) b = a)
let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 428, "start_col": 0, "start_line": 416 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.add_mod (FStar.UInt.sub_mod a b) b = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_Addition", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "FStar.UInt.add_mod", "FStar.UInt.sub_mod", "FStar.UInt.lemma_uint_mod", "Prims.pow2" ]
[]
true
false
true
false
false
let lemma_add_sub_cancel #n a b =
let ab = (a - b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a - b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a - b) b p; assert (((a - b) + b) % p = (((a - b) % p) + b) % p); assert (a % p = (((a - b) % p) + b) % p)
false
FStar.UInt.fst
FStar.UInt.lemma_msb_gte
val lemma_msb_gte: #n:pos{n > 1} -> a:uint_t n -> b:uint_t n -> Lemma ((a >= b && not (msb a)) ==> not (msb b))
val lemma_msb_gte: #n:pos{n > 1} -> a:uint_t n -> b:uint_t n -> Lemma ((a >= b && not (msb a)) ==> not (msb b))
let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 405, "start_col": 0, "start_line": 403 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures a >= b && Prims.op_Negation (FStar.UInt.msb a) ==> Prims.op_Negation (FStar.UInt.msb b) )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "Prims.b2t", "Prims.op_GreaterThan", "FStar.UInt.uint_t", "FStar.UInt.from_vec_propriety", "FStar.UInt.to_vec", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_msb_gte #n a b =
from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1
false
FStar.UInt.fst
FStar.UInt.lemma_mod_sub_distr_l
val lemma_mod_sub_distr_l: a:int -> b:int -> p:pos -> Lemma ((a - b) % p = ((a % p) - b) % p)
val lemma_mod_sub_distr_l: a:int -> b:int -> p:pos -> Lemma ((a - b) % p = ((a % p) - b) % p)
let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 433, "start_col": 0, "start_line": 430 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> p: Prims.pos -> FStar.Pervasives.Lemma (ensures (a - b) % p = (a % p - b) % p)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "Prims.pos", "FStar.Math.Lemmas.lemma_mod_plus", "Prims.op_Subtraction", "Prims.op_Modulus", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_spec2", "Prims.op_Division" ]
[]
true
false
true
false
false
let lemma_mod_sub_distr_l a b p =
let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p
false
FStar.UInt.fst
FStar.UInt.shift_left_value_aux_3
val shift_left_value_aux_3: #n:pos -> a:uint_t n -> s:pos{s < n} -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) % pow2 n)
val shift_left_value_aux_3: #n:pos -> a:uint_t n -> s:pos{s < n} -> Lemma (requires True) (ensures shift_left #n a s = (a * pow2 s) % pow2 n)
let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 363, "start_col": 0, "start_line": 360 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> s: Prims.pos{s < n} -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_left a s = a * Prims.pow2 s % Prims.pow2 n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_2", "Prims.unit", "FStar.UInt.slice_right_lemma", "FStar.UInt.to_vec", "Prims.op_Subtraction", "FStar.UInt.append_lemma", "FStar.Seq.Base.slice", "Prims.bool", "FStar.BitVector.zero_vec" ]
[]
true
false
true
false
false
let shift_left_value_aux_3 #n a s =
append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s
false
FStar.UInt.fst
FStar.UInt.lemma_sub_add_cancel
val lemma_sub_add_cancel: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (sub_mod (add_mod a b) b = a)
val lemma_sub_add_cancel: #n:pos -> a:uint_t n -> b:uint_t n -> Lemma (sub_mod (add_mod a b) b = a)
let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 442, "start_col": 0, "start_line": 435 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> b: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.sub_mod (FStar.UInt.add_mod a b) b = a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.lemma_mod_sub_distr_l", "Prims.op_Addition", "Prims.unit", "FStar.UInt.lemma_uint_mod", "Prims.pow2", "FStar.UInt.sub_mod", "FStar.UInt.add_mod", "Prims.int", "Prims.op_Modulus", "Prims.op_Subtraction" ]
[]
true
false
true
false
false
let lemma_sub_add_cancel #n a b =
let ab = (a + b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a + b) b p
false
FStar.UInt.fst
FStar.UInt.lemma_zero_extend
val lemma_zero_extend: #n:pos -> a:uint_t n -> Lemma (zero_extend a = a) [SMTPat (zero_extend a)]
val lemma_zero_extend: #n:pos -> a:uint_t n -> Lemma (zero_extend a = a) [SMTPat (zero_extend a)]
let lemma_zero_extend #n a = let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = a)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 16, "end_line": 452, "start_col": 0, "start_line": 444 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.zero_extend a = a) [SMTPat (FStar.UInt.zero_extend a)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "FStar.UInt.size", "Prims.op_Addition", "Prims.unit", "FStar.UInt.from_vec_propriety", "FStar.UInt.from_vec", "FStar.UInt.append_lemma", "FStar.UInt.zero_extend", "FStar.Seq.Base.seq", "Prims.bool", "FStar.Seq.Base.append", "FStar.BitVector.bv_t", "FStar.UInt.to_vec", "FStar.Seq.Base.create" ]
[]
true
false
true
false
false
let lemma_zero_extend #n a =
let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n + 1) eav 1; assert (r = a)
false
FStar.UInt.fst
FStar.UInt.lemma_msb_pow2
val lemma_msb_pow2: #n:pos -> a:uint_t n -> Lemma (msb a <==> a >= pow2 (n-1))
val lemma_msb_pow2: #n:pos -> a:uint_t n -> Lemma (msb a <==> a >= pow2 (n-1))
let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 387, "start_col": 0, "start_line": 387 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.msb a <==> a >= Prims.pow2 (n - 1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.UInt.from_vec_propriety", "FStar.UInt.to_vec", "Prims.unit" ]
[]
false
false
true
false
false
let lemma_msb_pow2 #n a =
if n = 1 then () else from_vec_propriety (to_vec a) 1
false
FStar.UInt.fst
FStar.UInt.lemma_lognot_value
val lemma_lognot_value: #n:pos -> a:uint_t n -> Lemma (lognot #n a = sub_mod (sub_mod 0 a) 1)
val lemma_lognot_value: #n:pos -> a:uint_t n -> Lemma (lognot #n a = sub_mod (sub_mod 0 a) 1)
let lemma_lognot_value #n a = if a = 0 then lemma_lognot_value_zero a else lemma_lognot_value_nonzero a
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 613, "start_col": 0, "start_line": 611 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p let lemma_zero_extend #n a = let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = a) #push-options "--z3rlimit 40" let lemma_one_extend #n a = let hd1 = Seq.create 1 true in let av = to_vec a in let eav = Seq.append hd1 av in let r = one_extend a in append_lemma #1 #n hd1 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = pow2 n + a) #pop-options #push-options "--fuel 1 --ifuel 0 --z3rlimit 40" let lemma_lognot_zero_ext #n a = let lhs = lognot #(n+1) a in let rhs = pow2 n + (lognot #n a) in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot a) in let eav = Seq.append hd0 av in append_lemma #1 #n hd0 av; assert (from_vec #(n+1) eav = op_Multiply (from_vec #1 hd0) (pow2 n) + from_vec av); assert (op_Multiply (from_vec #1 hd0) (pow2 n) = 0); assert (from_vec #(n+1) eav = from_vec #n av); assert (from_vec #(n+1) eav < pow2 n); let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd1 nav in append_lemma #1 #n hd1 nav; assert (from_vec #(n+1) neav_l = (op_Multiply (from_vec #1 hd1) (pow2 n)) + (from_vec #n nav)); assert (op_Multiply (from_vec #1 hd1) (pow2 n) = pow2 n); assert (from_vec #(n+1) neav_l = pow2 n + from_vec #n nav); assert (pow2 n + from_vec #n nav = rhs); assert (forall (i:pos{i < n+1}). Seq.index neav_r i = Seq.index neav_l i); Seq.Base.lemma_eq_intro neav_l neav_r; assert (neav_l = neav_r); assert (from_vec neav_r = lhs) let lemma_lognot_one_ext #n a = let lhs = lognot #(n+1) (one_extend a) in let rhs = lognot #n a in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot #n a) in let eav = Seq.append hd1 av in append_lemma #1 #n hd1 av; append_lemma #1 #n hd0 nav; let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd0 nav in Seq.Base.lemma_eq_elim neav_l neav_r #push-options "--z3rlimit 60" let rec lemma_lognot_value_mod #n a = if n = 1 then () else begin assert (-pow2 n <= (-(a+1)) && -(a+1) < 0); let av = to_vec a in let hd = from_vec #1 (Seq.slice (to_vec a) 0 1) in let tl = from_vec #(n-1) (Seq.slice (to_vec a) 1 n) in assert (hd = 0 || hd = 1); let hdpow = op_Multiply hd (pow2 (n-1)) in from_vec_propriety (to_vec a) 1; assert (from_vec av = (op_Multiply (from_vec #1 (Seq.slice av 0 1)) (pow2 (n-1))) + (from_vec #(n-1) (Seq.slice av 1 n))); let ntl = lognot tl in lemma_lognot_value_mod #(n-1) tl; assert (ntl = pow2 (n-1) - tl - 1); assert (a = hdpow + tl); assert (lognot a = lognot #n (hdpow + tl)); assert (tl < pow2 (n-1)); if hdpow = 0 then begin assert (lognot a = lognot #n tl); lemma_lognot_zero_ext #(n-1) tl; lemma_zero_extend tl end else begin lemma_lognot_one_ext #(n-1) tl; lemma_one_extend tl end end #pop-options let lemma_lognot_value_zero #n a = let p = pow2 n in calc (==) { sub_mod (sub_mod 0 a) 1; == { } sub_mod ((0 - a) % p) 1; == { } ((0 - a) % p - 1) % p; == { } (0 % p - 1) % p; == { modulo_lemma 0 p } (0 - 1) % p; == { lemma_mod_sub_0 p } p - 1; == { } p - 0 - 1; == { lemma_lognot_value_mod a } lognot a; } #pop-options #push-options "--z3rlimit 150" private val lemma_mod_variation: #n:pos -> a:uint_t n -> Lemma (a <> 0 ==> ((-a) % pow2 n) - 1 % pow2 n = (((-a) % pow2 n) - 1) % pow2 n) let lemma_mod_variation #n a = () #pop-options let lemma_one_mod_pow2 #n = () #push-options "--z3rlimit 50" private val lemma_lognot_value_variation: #n:pos -> a:uint_t n{a <> 0} -> Lemma (lognot a = (-a) % pow2 n - 1 % pow2 n) let lemma_lognot_value_variation #n a = let p = pow2 n in calc (==) { lognot a <: int; == { lemma_lognot_value_mod a } p - a - 1; == { FStar.Math.Lemmas.modulo_lemma a p } p - (a % p) - 1; == { FStar.Math.Lemmas.modulo_lemma 1 p } (p - (a % p)) - (1 % p); == { FStar.Math.Lemmas.lemma_mod_sub_1 a p } (-a) % p - 1 % p; } #pop-options let lemma_lognot_value_nonzero #n a = let p = pow2 n in lemma_lognot_value_variation #n a; assert (lognot a = (-a) % (pow2 n) - 1 % (pow2 n)); assert (sub_mod (sub_mod 0 a) 1 = (((0 - a) % p) - 1) % p); lemma_mod_variation #n a; assert (((-a) % p) - 1 % p = (((-a) % p) - 1) % p); assert ((-a) % p - 1 % p = (((0 - a) % p) - 1) % p)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.lognot a = FStar.UInt.sub_mod (FStar.UInt.sub_mod 0 a) 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.op_Equality", "Prims.int", "FStar.UInt.lemma_lognot_value_zero", "Prims.bool", "FStar.UInt.lemma_lognot_value_nonzero", "Prims.unit" ]
[]
false
false
true
false
false
let lemma_lognot_value #n a =
if a = 0 then lemma_lognot_value_zero a else lemma_lognot_value_nonzero a
false
FStar.UInt.fst
FStar.UInt.lemma_lognot_value_variation
val lemma_lognot_value_variation: #n:pos -> a:uint_t n{a <> 0} -> Lemma (lognot a = (-a) % pow2 n - 1 % pow2 n)
val lemma_lognot_value_variation: #n:pos -> a:uint_t n{a <> 0} -> Lemma (lognot a = (-a) % pow2 n - 1 % pow2 n)
let lemma_lognot_value_variation #n a = let p = pow2 n in calc (==) { lognot a <: int; == { lemma_lognot_value_mod a } p - a - 1; == { FStar.Math.Lemmas.modulo_lemma a p } p - (a % p) - 1; == { FStar.Math.Lemmas.modulo_lemma 1 p } (p - (a % p)) - (1 % p); == { FStar.Math.Lemmas.lemma_mod_sub_1 a p } (-a) % p - 1 % p; }
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 599, "start_col": 0, "start_line": 587 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p let lemma_zero_extend #n a = let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = a) #push-options "--z3rlimit 40" let lemma_one_extend #n a = let hd1 = Seq.create 1 true in let av = to_vec a in let eav = Seq.append hd1 av in let r = one_extend a in append_lemma #1 #n hd1 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = pow2 n + a) #pop-options #push-options "--fuel 1 --ifuel 0 --z3rlimit 40" let lemma_lognot_zero_ext #n a = let lhs = lognot #(n+1) a in let rhs = pow2 n + (lognot #n a) in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot a) in let eav = Seq.append hd0 av in append_lemma #1 #n hd0 av; assert (from_vec #(n+1) eav = op_Multiply (from_vec #1 hd0) (pow2 n) + from_vec av); assert (op_Multiply (from_vec #1 hd0) (pow2 n) = 0); assert (from_vec #(n+1) eav = from_vec #n av); assert (from_vec #(n+1) eav < pow2 n); let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd1 nav in append_lemma #1 #n hd1 nav; assert (from_vec #(n+1) neav_l = (op_Multiply (from_vec #1 hd1) (pow2 n)) + (from_vec #n nav)); assert (op_Multiply (from_vec #1 hd1) (pow2 n) = pow2 n); assert (from_vec #(n+1) neav_l = pow2 n + from_vec #n nav); assert (pow2 n + from_vec #n nav = rhs); assert (forall (i:pos{i < n+1}). Seq.index neav_r i = Seq.index neav_l i); Seq.Base.lemma_eq_intro neav_l neav_r; assert (neav_l = neav_r); assert (from_vec neav_r = lhs) let lemma_lognot_one_ext #n a = let lhs = lognot #(n+1) (one_extend a) in let rhs = lognot #n a in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot #n a) in let eav = Seq.append hd1 av in append_lemma #1 #n hd1 av; append_lemma #1 #n hd0 nav; let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd0 nav in Seq.Base.lemma_eq_elim neav_l neav_r #push-options "--z3rlimit 60" let rec lemma_lognot_value_mod #n a = if n = 1 then () else begin assert (-pow2 n <= (-(a+1)) && -(a+1) < 0); let av = to_vec a in let hd = from_vec #1 (Seq.slice (to_vec a) 0 1) in let tl = from_vec #(n-1) (Seq.slice (to_vec a) 1 n) in assert (hd = 0 || hd = 1); let hdpow = op_Multiply hd (pow2 (n-1)) in from_vec_propriety (to_vec a) 1; assert (from_vec av = (op_Multiply (from_vec #1 (Seq.slice av 0 1)) (pow2 (n-1))) + (from_vec #(n-1) (Seq.slice av 1 n))); let ntl = lognot tl in lemma_lognot_value_mod #(n-1) tl; assert (ntl = pow2 (n-1) - tl - 1); assert (a = hdpow + tl); assert (lognot a = lognot #n (hdpow + tl)); assert (tl < pow2 (n-1)); if hdpow = 0 then begin assert (lognot a = lognot #n tl); lemma_lognot_zero_ext #(n-1) tl; lemma_zero_extend tl end else begin lemma_lognot_one_ext #(n-1) tl; lemma_one_extend tl end end #pop-options let lemma_lognot_value_zero #n a = let p = pow2 n in calc (==) { sub_mod (sub_mod 0 a) 1; == { } sub_mod ((0 - a) % p) 1; == { } ((0 - a) % p - 1) % p; == { } (0 % p - 1) % p; == { modulo_lemma 0 p } (0 - 1) % p; == { lemma_mod_sub_0 p } p - 1; == { } p - 0 - 1; == { lemma_lognot_value_mod a } lognot a; } #pop-options #push-options "--z3rlimit 150" private val lemma_mod_variation: #n:pos -> a:uint_t n -> Lemma (a <> 0 ==> ((-a) % pow2 n) - 1 % pow2 n = (((-a) % pow2 n) - 1) % pow2 n) let lemma_mod_variation #n a = () #pop-options let lemma_one_mod_pow2 #n = () #push-options "--z3rlimit 50" private val lemma_lognot_value_variation: #n:pos -> a:uint_t n{a <> 0} ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n {a <> 0} -> FStar.Pervasives.Lemma (ensures FStar.UInt.lognot a = (- a) % Prims.pow2 n - 1 % Prims.pow2 n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.UInt.lognot", "Prims.op_Subtraction", "Prims.op_Modulus", "Prims.op_Minus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.UInt.lemma_lognot_value_mod", "Prims.squash", "FStar.Math.Lemmas.modulo_lemma", "FStar.Math.Lemmas.lemma_mod_sub_1", "Prims.pow2" ]
[]
false
false
true
false
false
let lemma_lognot_value_variation #n a =
let p = pow2 n in calc ( == ) { lognot a <: int; ( == ) { lemma_lognot_value_mod a } p - a - 1; ( == ) { FStar.Math.Lemmas.modulo_lemma a p } p - (a % p) - 1; ( == ) { FStar.Math.Lemmas.modulo_lemma 1 p } (p - (a % p)) - (1 % p); ( == ) { FStar.Math.Lemmas.lemma_mod_sub_1 a p } (- a) % p - 1 % p; }
false
FStar.UInt.fst
FStar.UInt.lemma_minus_eq_zero_sub
val lemma_minus_eq_zero_sub: #n:pos -> a:uint_t n -> Lemma (minus #n a = sub_mod #n 0 a)
val lemma_minus_eq_zero_sub: #n:pos -> a:uint_t n -> Lemma (minus #n a = sub_mod #n 0 a)
let lemma_minus_eq_zero_sub #n a = let na = lognot a in let ma = minus a in assert (sub_mod ma 1 = sub_mod (add_mod na 1) 1); lemma_sub_add_cancel na 1; assert (sub_mod ma 1 = na); lemma_lognot_value #n a; assert (na = sub_mod (sub_mod 0 a) 1); assert (ma = add_mod (sub_mod (sub_mod 0 a) 1) 1); lemma_add_sub_cancel (sub_mod 0 a) 1
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 624, "start_col": 0, "start_line": 615 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p let lemma_zero_extend #n a = let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = a) #push-options "--z3rlimit 40" let lemma_one_extend #n a = let hd1 = Seq.create 1 true in let av = to_vec a in let eav = Seq.append hd1 av in let r = one_extend a in append_lemma #1 #n hd1 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = pow2 n + a) #pop-options #push-options "--fuel 1 --ifuel 0 --z3rlimit 40" let lemma_lognot_zero_ext #n a = let lhs = lognot #(n+1) a in let rhs = pow2 n + (lognot #n a) in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot a) in let eav = Seq.append hd0 av in append_lemma #1 #n hd0 av; assert (from_vec #(n+1) eav = op_Multiply (from_vec #1 hd0) (pow2 n) + from_vec av); assert (op_Multiply (from_vec #1 hd0) (pow2 n) = 0); assert (from_vec #(n+1) eav = from_vec #n av); assert (from_vec #(n+1) eav < pow2 n); let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd1 nav in append_lemma #1 #n hd1 nav; assert (from_vec #(n+1) neav_l = (op_Multiply (from_vec #1 hd1) (pow2 n)) + (from_vec #n nav)); assert (op_Multiply (from_vec #1 hd1) (pow2 n) = pow2 n); assert (from_vec #(n+1) neav_l = pow2 n + from_vec #n nav); assert (pow2 n + from_vec #n nav = rhs); assert (forall (i:pos{i < n+1}). Seq.index neav_r i = Seq.index neav_l i); Seq.Base.lemma_eq_intro neav_l neav_r; assert (neav_l = neav_r); assert (from_vec neav_r = lhs) let lemma_lognot_one_ext #n a = let lhs = lognot #(n+1) (one_extend a) in let rhs = lognot #n a in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot #n a) in let eav = Seq.append hd1 av in append_lemma #1 #n hd1 av; append_lemma #1 #n hd0 nav; let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd0 nav in Seq.Base.lemma_eq_elim neav_l neav_r #push-options "--z3rlimit 60" let rec lemma_lognot_value_mod #n a = if n = 1 then () else begin assert (-pow2 n <= (-(a+1)) && -(a+1) < 0); let av = to_vec a in let hd = from_vec #1 (Seq.slice (to_vec a) 0 1) in let tl = from_vec #(n-1) (Seq.slice (to_vec a) 1 n) in assert (hd = 0 || hd = 1); let hdpow = op_Multiply hd (pow2 (n-1)) in from_vec_propriety (to_vec a) 1; assert (from_vec av = (op_Multiply (from_vec #1 (Seq.slice av 0 1)) (pow2 (n-1))) + (from_vec #(n-1) (Seq.slice av 1 n))); let ntl = lognot tl in lemma_lognot_value_mod #(n-1) tl; assert (ntl = pow2 (n-1) - tl - 1); assert (a = hdpow + tl); assert (lognot a = lognot #n (hdpow + tl)); assert (tl < pow2 (n-1)); if hdpow = 0 then begin assert (lognot a = lognot #n tl); lemma_lognot_zero_ext #(n-1) tl; lemma_zero_extend tl end else begin lemma_lognot_one_ext #(n-1) tl; lemma_one_extend tl end end #pop-options let lemma_lognot_value_zero #n a = let p = pow2 n in calc (==) { sub_mod (sub_mod 0 a) 1; == { } sub_mod ((0 - a) % p) 1; == { } ((0 - a) % p - 1) % p; == { } (0 % p - 1) % p; == { modulo_lemma 0 p } (0 - 1) % p; == { lemma_mod_sub_0 p } p - 1; == { } p - 0 - 1; == { lemma_lognot_value_mod a } lognot a; } #pop-options #push-options "--z3rlimit 150" private val lemma_mod_variation: #n:pos -> a:uint_t n -> Lemma (a <> 0 ==> ((-a) % pow2 n) - 1 % pow2 n = (((-a) % pow2 n) - 1) % pow2 n) let lemma_mod_variation #n a = () #pop-options let lemma_one_mod_pow2 #n = () #push-options "--z3rlimit 50" private val lemma_lognot_value_variation: #n:pos -> a:uint_t n{a <> 0} -> Lemma (lognot a = (-a) % pow2 n - 1 % pow2 n) let lemma_lognot_value_variation #n a = let p = pow2 n in calc (==) { lognot a <: int; == { lemma_lognot_value_mod a } p - a - 1; == { FStar.Math.Lemmas.modulo_lemma a p } p - (a % p) - 1; == { FStar.Math.Lemmas.modulo_lemma 1 p } (p - (a % p)) - (1 % p); == { FStar.Math.Lemmas.lemma_mod_sub_1 a p } (-a) % p - 1 % p; } #pop-options let lemma_lognot_value_nonzero #n a = let p = pow2 n in lemma_lognot_value_variation #n a; assert (lognot a = (-a) % (pow2 n) - 1 % (pow2 n)); assert (sub_mod (sub_mod 0 a) 1 = (((0 - a) % p) - 1) % p); lemma_mod_variation #n a; assert (((-a) % p) - 1 % p = (((-a) % p) - 1) % p); assert ((-a) % p - 1 % p = (((0 - a) % p) - 1) % p) let lemma_lognot_value #n a = if a = 0 then lemma_lognot_value_zero a else lemma_lognot_value_nonzero a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.minus a = FStar.UInt.sub_mod 0 a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.UInt.lemma_add_sub_cancel", "FStar.UInt.sub_mod", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "FStar.UInt.add_mod", "FStar.UInt.lemma_lognot_value", "FStar.UInt.lemma_sub_add_cancel", "FStar.UInt.minus", "FStar.UInt.lognot" ]
[]
true
false
true
false
false
let lemma_minus_eq_zero_sub #n a =
let na = lognot a in let ma = minus a in assert (sub_mod ma 1 = sub_mod (add_mod na 1) 1); lemma_sub_add_cancel na 1; assert (sub_mod ma 1 = na); lemma_lognot_value #n a; assert (na = sub_mod (sub_mod 0 a) 1); assert (ma = add_mod (sub_mod (sub_mod 0 a) 1) 1); lemma_add_sub_cancel (sub_mod 0 a) 1
false
Trace.fst
Trace.tick
val tick (nm: fv) : fv
val tick (nm: fv) : fv
let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns)
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 66, "start_col": 0, "start_line": 64 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
nm: FStar.Stubs.Reflection.Types.fv -> FStar.Stubs.Reflection.Types.fv
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.fv", "FStar.Stubs.Reflection.V2.Builtins.pack_fv", "Trace.tick_last", "FStar.Stubs.Reflection.Types.name", "FStar.Stubs.Reflection.V2.Builtins.inspect_fv" ]
[]
false
false
false
true
false
let tick (nm: fv) : fv =
let ns = inspect_fv nm in pack_fv (tick_last ns)
false
Trace.fst
Trace.cons_fst
val cons_fst (x: 'a) (p: (list 'a * 'b)) : list 'a * 'b
val cons_fst (x: 'a) (p: (list 'a * 'b)) : list 'a * 'b
let cons_fst (x : 'a) (p : list 'a * 'b) : list 'a * 'b = let (y, z) = p in (x :: y, z)
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 69, "start_col": 0, "start_line": 68 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs) let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: 'a -> p: (Prims.list 'a * 'b) -> Prims.list 'a * 'b
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple2", "Prims.list", "FStar.Pervasives.Native.Mktuple2", "Prims.Cons" ]
[]
false
false
false
true
false
let cons_fst (x: 'a) (p: list 'a * 'b) : list 'a * 'b =
let y, z = p in (x :: y, z)
false
Trace.fst
Trace.cons_fst_qn
val cons_fst_qn : Prims.list Prims.string
let cons_fst_qn = ["Trace"; "cons_fst"]
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 71, "start_col": 0, "start_line": 71 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs) let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns) let cons_fst (x : 'a) (p : list 'a * 'b) : list 'a * 'b = let (y, z) = p in (x :: y, z)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.list Prims.string
Prims.Tot
[ "total" ]
[]
[ "Prims.Cons", "Prims.string", "Prims.Nil" ]
[]
false
false
false
true
false
let cons_fst_qn =
["Trace"; "cons_fst"]
false
Steel.ST.SeqMatch.fst
Steel.ST.SeqMatch.seq_seq_match_item_match_option_elim
val seq_seq_match_item_match_option_elim (#opened: _) (#t1 #t2: Type) (p: (t1 -> t2 -> vprop)) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhostT unit opened (seq_seq_match (item_match_option p) s1 (seq_map Some s2) i j) (fun _ -> seq_seq_match p s1 s2 i j)
val seq_seq_match_item_match_option_elim (#opened: _) (#t1 #t2: Type) (p: (t1 -> t2 -> vprop)) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhostT unit opened (seq_seq_match (item_match_option p) s1 (seq_map Some s2) i j) (fun _ -> seq_seq_match p s1 s2 i j)
let seq_seq_match_item_match_option_elim (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhostT unit opened (seq_seq_match (item_match_option p) s1 (seq_map Some s2) i j) (fun _ -> seq_seq_match p s1 s2 i j) = on_range_weaken (seq_seq_match_item (item_match_option p) s1 (seq_map Some s2)) (seq_seq_match_item p s1 s2) i j (fun k -> rewrite (seq_seq_match_item (item_match_option p) s1 (seq_map Some s2) k) (seq_seq_match_item p s1 s2 k) )
{ "file_name": "lib/steel/Steel.ST.SeqMatch.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 629, "start_col": 0, "start_line": 611 }
module Steel.ST.SeqMatch include Steel.ST.OnRange open Steel.ST.GenElim module Seq = FStar.Seq module SZ = FStar.SizeT (* `seq_list_match` describes how to match a sequence of low-level values (the low-level contents of an array) with a list of high-level values. `seq_list_match` is carefully designed to be usable within (mutually) recursive definitions of matching functions on the type of high-level values. *) [@@__reduce__] let seq_list_match_nil0 (#t: Type) (c: Seq.seq t) : Tot vprop = pure (c `Seq.equal` Seq.empty) [@@__reduce__] let seq_list_match_cons0 (#t #t': Type) (c: Seq.seq t) (l: list t' { Cons? l }) (item_match: (t -> (v': t' { v' << l }) -> vprop)) (seq_list_match: (Seq.seq t -> (v': list t') -> (raw_data_item_match: (t -> (v'': t' { v'' << v' }) -> vprop) { v' << l }) -> vprop)) : Tot vprop = exists_ (fun (c1: t) -> exists_ (fun (c2: Seq.seq t) -> item_match c1 (List.Tot.hd l) `star` seq_list_match c2 (List.Tot.tl l) item_match `star` pure (c `Seq.equal` Seq.cons c1 c2) )) let rec seq_list_match (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Tot vprop (decreases v) = if Nil? v then seq_list_match_nil0 c else seq_list_match_cons0 c v item_match seq_list_match let seq_list_match_cons_eq (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Lemma (requires (Cons? v)) (ensures ( seq_list_match c v item_match == seq_list_match_cons0 c v item_match seq_list_match )) = let a :: q = v in assert_norm (seq_list_match c (a :: q) item_match == seq_list_match_cons0 c (a :: q) item_match seq_list_match ) let seq_list_match_nil (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : STGhost unit opened emp (fun _ -> seq_list_match c v item_match) (c `Seq.equal` Seq.empty /\ Nil? v) (fun _ -> True) = noop (); rewrite (seq_list_match_nil0 c) (seq_list_match c v item_match) let list_cons_precedes (#t: Type) (a: t) (q: list t) : Lemma ((a << a :: q) /\ (q << a :: q)) [SMTPat (a :: q)] = assert (List.Tot.hd (a :: q) << (a :: q)); assert (List.Tot.tl (a :: q) << (a :: q)) let seq_list_match_cons_intro (#opened: _) (#t #t': Type) (a: t) (a' : t') (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << a' :: v }) -> vprop)) : STGhostT unit opened (item_match a a' `star` seq_list_match c v item_match) (fun _ -> seq_list_match (Seq.cons a c) (a' :: v) item_match) = seq_list_match_cons_eq (Seq.cons a c) (a' :: v) item_match; noop (); rewrite (seq_list_match_cons0 (Seq.cons a c) (a' :: v) item_match seq_list_match) (seq_list_match (Seq.cons a c) (a' :: v) item_match) let seq_list_match_cons_elim (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t' { Cons? v \/ Seq.length c > 0 }) (item_match: (t -> (v': t' { v' << v }) -> vprop)) : STGhostT (squash (Cons? v /\ Seq.length c > 0)) opened (seq_list_match c v item_match) (fun _ -> item_match (Seq.head c) (List.Tot.hd v) `star` seq_list_match (Seq.tail c) (List.Tot.tl v) item_match) = if Nil? v then begin rewrite (seq_list_match c v item_match) (seq_list_match_nil0 c); let _ = gen_elim () in assert False; rewrite // by contradiction emp (item_match (Seq.head c) (List.Tot.hd v) `star` seq_list_match (Seq.tail c) (List.Tot.tl v) item_match) end else begin seq_list_match_cons_eq c v item_match; noop (); rewrite (seq_list_match c v item_match) (seq_list_match_cons0 c v item_match seq_list_match); let _ = gen_elim () in let prf : squash (Cons? v /\ Seq.length c > 0) = () in let c1 = vpattern (fun c1 -> item_match c1 (List.Tot.hd v)) in let c2 = vpattern (fun c2 -> seq_list_match c2 (List.Tot.tl v) item_match) in Seq.lemma_cons_inj c1 (Seq.head c) c2 (Seq.tail c); vpattern_rewrite (fun c1 -> item_match c1 (List.Tot.hd v)) (Seq.head c); vpattern_rewrite (fun c2 -> seq_list_match c2 (List.Tot.tl v) item_match) (Seq.tail c); prf end // this one cannot be proven with seq_seq_match because of the << refinement in the type of item_match let rec seq_list_match_weaken (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match1 item_match2: (t -> (v': t' { v' << v }) -> vprop)) (prf: ( (#opened: _) -> (c': t) -> (v': t' { v' << v }) -> STGhostT unit opened (item_match1 c' v') (fun _ -> item_match2 c' v') )) : STGhostT unit opened (seq_list_match c v item_match1) (fun _ -> seq_list_match c v item_match2) (decreases v) = if Nil? v then rewrite (seq_list_match c v item_match1) (seq_list_match c v item_match2) else begin let _ : squash (Cons? v) = () in seq_list_match_cons_eq c v item_match1; seq_list_match_cons_eq c v item_match2; rewrite (seq_list_match c v item_match1) (seq_list_match_cons0 c v item_match1 seq_list_match); let _ = gen_elim () in prf _ _; seq_list_match_weaken _ (List.Tot.tl v) item_match1 item_match2 prf; rewrite (seq_list_match_cons0 c v item_match2 seq_list_match) (seq_list_match c v item_match2) end (* `seq_seq_match` describes how to match a sequence of low-level values (the low-level contents of an array) with a sequence of high-level values. Contrary to `seq_list_match`, `seq_seq_match` is not meant to be usable within (mutually) recursive definitions of matching functions on the type of high-level values, because no lemma ensures that `Seq.index s i << s` *) let seq_seq_match_item (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (i: nat) : Tot vprop = if i < Seq.length c && i < Seq.length l then p (Seq.index c i) (Seq.index l i) else pure (squash False) let seq_seq_match_item_tail (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (delta: nat) (i: nat) : Lemma (requires ( i + delta <= Seq.length c /\ i + delta <= Seq.length l )) (ensures ( seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) i == seq_seq_match_item p c l (i + delta) )) = () [@@__reduce__] let seq_seq_match (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (i j: nat) : Tot vprop = on_range (seq_seq_match_item p c l) i j let seq_seq_match_length (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p s1 s2 i j) (fun _ -> seq_seq_match p s1 s2 i j) True (fun _ -> i <= j /\ (i == j \/ (j <= Seq.length s1 /\ j <= Seq.length s2))) = on_range_le (seq_seq_match_item p s1 s2) i j; if i = j then noop () else begin let j' = j - 1 in if j' < Seq.length s1 && j' < Seq.length s2 then noop () else begin on_range_unsnoc (seq_seq_match_item p s1 s2) i j' j; rewrite (seq_seq_match_item p _ _ _) (pure (squash False)); let _ = gen_elim () in rewrite (seq_seq_match p s1 s2 i j') (seq_seq_match p s1 s2 i j) // by contradiction end end let seq_seq_match_weaken (#opened: _) (#t1 #t2: Type) (p p': t1 -> t2 -> vprop) (w: ((x1: t1) -> (x2: t2) -> STGhostT unit opened (p x1 x2) (fun _ -> p' x1 x2) )) (c1 c1': Seq.seq t1) (c2 c2': Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p c1 c2 i j) (fun _ -> seq_seq_match p' c1' c2' i j) (i <= j /\ (i == j \/ ( j <= Seq.length c1 /\ j <= Seq.length c2 /\ j <= Seq.length c1' /\ j <= Seq.length c2' /\ Seq.slice c1 i j `Seq.equal` Seq.slice c1' i j /\ Seq.slice c2 i j `Seq.equal` Seq.slice c2' i j ))) (fun _ -> True) = on_range_weaken (seq_seq_match_item p c1 c2) (seq_seq_match_item p' c1' c2') i j (fun k -> rewrite (seq_seq_match_item p c1 c2 k) (p (Seq.index (Seq.slice c1 i j) (k - i)) (Seq.index (Seq.slice c2 i j) (k - i))); w _ _; rewrite (p' _ _) (seq_seq_match_item p' c1' c2' k) ) let seq_seq_match_weaken_with_implies (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c1 c1': Seq.seq t1) (c2 c2': Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p c1 c2 i j) (fun _ -> seq_seq_match p c1' c2' i j `star` (seq_seq_match p c1' c2' i j `implies_` seq_seq_match p c1 c2 i j) ) (i <= j /\ (i == j \/ ( j <= Seq.length c1 /\ j <= Seq.length c2 /\ j <= Seq.length c1' /\ j <= Seq.length c2' /\ Seq.slice c1 i j `Seq.equal` Seq.slice c1' i j /\ Seq.slice c2 i j `Seq.equal` Seq.slice c2' i j ))) (fun _ -> True) = seq_seq_match_weaken p p (fun _ _ -> noop ()) c1 c1' c2 c2' i j; intro_implies (seq_seq_match p c1' c2' i j) (seq_seq_match p c1 c2 i j) emp (fun _ -> seq_seq_match_weaken p p (fun _ _ -> noop ()) c1' c1 c2' c2 i j ) (* Going between `seq_list_match` and `seq_seq_match` *) let seq_seq_match_tail_elim (#t1 #t2: Type) (#opened: _) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq (t2)) (delta: nat { delta <= Seq.length c /\ delta <= Seq.length l }) (i j: nat) : STGhostT unit opened (seq_seq_match p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) i j) (fun _ -> seq_seq_match p c l (i + delta) (j + delta)) = on_range_le (seq_seq_match_item p _ _) _ _; on_range_weaken_and_shift (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l))) (seq_seq_match_item p c l) delta i j (fun k -> if k < Seq.length c - delta && k < Seq.length l - delta then begin seq_seq_match_item_tail p c l delta k; rewrite (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) k) (seq_seq_match_item p c l (k + delta)) end else begin rewrite (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) k) (pure (squash False)); let _ = gen_elim () in rewrite emp (seq_seq_match_item p c l (k + delta)) // by contradiction end ) (i + delta) (j + delta) let seq_seq_match_tail_intro (#t1 #t2: Type) (#opened: _) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (delta: nat { delta <= Seq.length c /\ delta <= Seq.length l }) (i: nat { delta <= i }) (j: nat) : STGhostT (squash (i <= j)) opened (seq_seq_match p c l i j) (fun _ -> seq_seq_match p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) (i - delta) (j - delta)) = on_range_le (seq_seq_match_item p _ _) _ _; on_range_weaken_and_shift (seq_seq_match_item p c l) (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l))) (0 - delta) i j (fun k -> if k < Seq.length c && k < Seq.length l then begin seq_seq_match_item_tail p c l delta (k - delta); rewrite (seq_seq_match_item p c l k) (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) (k + (0 - delta))) end else begin rewrite (seq_seq_match_item p c l k) (pure (squash False)); let _ = gen_elim () in rewrite emp (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) (k + (0 - delta))) // by contradiction end ) (i - delta) (j - delta) let rec seq_seq_match_seq_list_match (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) (fun _ -> seq_list_match c l p) (Seq.length c == List.Tot.length l) (fun _ -> True) (decreases l) = match l with | [] -> drop (seq_seq_match p _ _ _ _); rewrite (seq_list_match_nil0 c) (seq_list_match c l p) | a :: q -> Seq.lemma_seq_of_list_induction (a :: q); seq_list_match_cons_eq c l p; on_range_uncons (seq_seq_match_item p _ _) _ 1 _; rewrite (seq_seq_match_item p _ _ _) (p (Seq.head c) (List.Tot.hd l)); let _ = seq_seq_match_tail_intro p _ _ 1 _ _ in rewrite (seq_seq_match p _ _ _ _) (seq_seq_match p (Seq.tail c) (Seq.seq_of_list (List.Tot.tl l)) 0 (List.Tot.length (List.Tot.tl l))); seq_seq_match_seq_list_match p _ (List.Tot.tl l); rewrite (seq_list_match_cons0 c l p seq_list_match) (seq_list_match c l p) let rec seq_list_match_seq_seq_match (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_list_match c l p) (fun _ -> seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) True (fun _ -> Seq.length c == List.Tot.length l) (decreases l) = match l with | [] -> rewrite (seq_list_match c l p) (seq_list_match_nil0 c); let _ = gen_elim () in on_range_empty (seq_seq_match_item p c (Seq.seq_of_list l)) 0 (List.Tot.length l) | a :: q -> let _l_nonempty : squash (Cons? l) = () in Seq.lemma_seq_of_list_induction (a :: q); seq_list_match_cons_eq c l p; noop (); rewrite (seq_list_match c l p) (seq_list_match_cons0 c l p seq_list_match); let _ = gen_elim () in let a' = vpattern (fun a' -> p a' _) in let c' = vpattern (fun c' -> seq_list_match c' _ _) in Seq.lemma_cons_inj (Seq.head c) a' (Seq.tail c) c'; assert (a' == Seq.head c); assert (c' == Seq.tail c); noop (); seq_list_match_seq_seq_match p _ _; rewrite (seq_seq_match p _ _ _ _) (seq_seq_match p (Seq.slice c 1 (Seq.length c)) (Seq.slice (Seq.seq_of_list l) 1 (Seq.length (Seq.seq_of_list l))) 0 (List.Tot.length (List.Tot.tl l))); let _ = seq_seq_match_tail_elim p c (Seq.seq_of_list l) 1 0 (List.Tot.length (List.Tot.tl l)) in rewrite (seq_seq_match p _ _ _ _) (seq_seq_match p c (Seq.seq_of_list l) 1 (List.Tot.length l)); rewrite (p _ _) (seq_seq_match_item p c (Seq.seq_of_list l) 0); on_range_cons (seq_seq_match_item p _ _) 0 1 (List.Tot.length l) let seq_seq_match_seq_list_match_with_implies (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) (fun _ -> seq_list_match c l p `star` (seq_list_match c l p `implies_` seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l))) (Seq.length c == List.Tot.length l) (fun _ -> True) = seq_seq_match_seq_list_match p c l; intro_implies (seq_list_match c l p) (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) emp (fun _ -> seq_list_match_seq_seq_match p c l) let seq_list_match_seq_seq_match_with_implies (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_list_match c l p) (fun _ -> seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l) `star` (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l) `implies_` seq_list_match c l p)) True (fun _ -> Seq.length c == List.Tot.length l) = seq_list_match_seq_seq_match p c l; intro_implies (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) (seq_list_match c l p) emp (fun _ -> seq_seq_match_seq_list_match p c l) let seq_list_match_length (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_list_match c l p) (fun _ -> seq_list_match c l p) True (fun _ -> Seq.length c == List.Tot.length l) = seq_list_match_seq_seq_match_with_implies p c l; seq_seq_match_length p _ _ _ _; elim_implies (seq_seq_match p _ _ _ _) (seq_list_match c l p) let seq_list_match_index (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (s1: Seq.seq t1) (s2: list t2) (i: nat) : STGhost (squash (i < Seq.length s1 /\ List.Tot.length s2 == Seq.length s1)) opened (seq_list_match s1 s2 p) (fun _ -> p (Seq.index s1 i) (List.Tot.index s2 i) `star` (p (Seq.index s1 i) (List.Tot.index s2 i) `implies_` seq_list_match s1 s2 p) ) (i < Seq.length s1 \/ i < List.Tot.length s2) (fun _ -> True) = seq_list_match_seq_seq_match_with_implies p s1 s2; let res : squash (i < Seq.length s1 /\ List.Tot.length s2 == Seq.length s1) = () in on_range_focus (seq_seq_match_item p s1 (Seq.seq_of_list s2)) 0 i (List.Tot.length s2); rewrite_with_implies (seq_seq_match_item p _ _ _) (p (Seq.index s1 i) (List.Tot.index s2 i)); implies_trans (p (Seq.index s1 i) (List.Tot.index s2 i)) (seq_seq_match_item p _ _ _) (seq_seq_match p s1 (Seq.seq_of_list s2) 0 (List.Tot.length s2)); implies_trans (p (Seq.index s1 i) (List.Tot.index s2 i)) (seq_seq_match p s1 (Seq.seq_of_list s2) 0 (List.Tot.length s2)) (seq_list_match s1 s2 p); res (* Random array access Since `seq_list_match` is defined recursively on the list of high-level values, it is used naturally left-to-right. By contrast, in practice, an application may populate an array in a different order, or even out-of-order. `seq_seq_match` supports that scenario better, as we show below. *) let seq_map (#t1 #t2: Type) (f: t1 -> t2) (s: Seq.seq t1) : Tot (Seq.seq t2) = Seq.init (Seq.length s) (fun i -> f (Seq.index s i)) let item_match_option (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (x1: t1) (x2: option t2) : Tot vprop = match x2 with | None -> emp | Some x2' -> p x1 x2'
{ "checked_file": "/", "dependencies": [ "Steel.ST.OnRange.fsti.checked", "Steel.ST.GenElim.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Steel.ST.SeqMatch.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.OnRange", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: t1 -> _: t2 -> Steel.Effect.Common.vprop) -> s1: FStar.Seq.Base.seq t1 -> s2: FStar.Seq.Base.seq t2 -> i: Prims.nat -> j: Prims.nat -> Steel.ST.Effect.Ghost.STGhostT Prims.unit
Steel.ST.Effect.Ghost.STGhostT
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "FStar.Seq.Base.seq", "Prims.nat", "Steel.ST.OnRange.on_range_weaken", "Steel.ST.SeqMatch.seq_seq_match_item", "FStar.Pervasives.Native.option", "Steel.ST.SeqMatch.item_match_option", "Steel.ST.SeqMatch.seq_map", "FStar.Pervasives.Native.Some", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Steel.ST.Util.rewrite", "Prims.unit", "Steel.ST.SeqMatch.seq_seq_match" ]
[]
false
true
false
false
false
let seq_seq_match_item_match_option_elim (#opened: _) (#t1 #t2: Type) (p: (t1 -> t2 -> vprop)) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhostT unit opened (seq_seq_match (item_match_option p) s1 (seq_map Some s2) i j) (fun _ -> seq_seq_match p s1 s2 i j) =
on_range_weaken (seq_seq_match_item (item_match_option p) s1 (seq_map Some s2)) (seq_seq_match_item p s1 s2) i j (fun k -> rewrite (seq_seq_match_item (item_match_option p) s1 (seq_map Some s2) k) (seq_seq_match_item p s1 s2 k))
false
Trace.fst
Trace.tick_last
val tick_last : ns: Prims.list Prims.string -> Prims.list Prims.string
let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs)
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 62, "start_col": 0, "start_line": 58 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ns: Prims.list Prims.string -> Prims.list Prims.string
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.string", "Prims.Nil", "Prims.Cons", "Prims.op_Hat", "Trace.tick_last" ]
[ "recursion" ]
false
false
false
true
false
let rec tick_last (ns: list string) =
match ns with | [] -> [] | [x] -> [x ^ "'"] | x :: xs -> x :: (tick_last xs)
false
FStar.UInt.fst
FStar.UInt.lemma_lognot_one_ext
val lemma_lognot_one_ext: #n:pos -> a:uint_t n -> Lemma (lognot #(n+1) (one_extend a) = lognot #n a)
val lemma_lognot_one_ext: #n:pos -> a:uint_t n -> Lemma (lognot #(n+1) (one_extend a) = lognot #n a)
let lemma_lognot_one_ext #n a = let lhs = lognot #(n+1) (one_extend a) in let rhs = lognot #n a in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot #n a) in let eav = Seq.append hd1 av in append_lemma #1 #n hd1 av; append_lemma #1 #n hd0 nav; let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd0 nav in Seq.Base.lemma_eq_elim neav_l neav_r
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 512, "start_col": 0, "start_line": 498 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p let lemma_zero_extend #n a = let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = a) #push-options "--z3rlimit 40" let lemma_one_extend #n a = let hd1 = Seq.create 1 true in let av = to_vec a in let eav = Seq.append hd1 av in let r = one_extend a in append_lemma #1 #n hd1 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = pow2 n + a) #pop-options #push-options "--fuel 1 --ifuel 0 --z3rlimit 40" let lemma_lognot_zero_ext #n a = let lhs = lognot #(n+1) a in let rhs = pow2 n + (lognot #n a) in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot a) in let eav = Seq.append hd0 av in append_lemma #1 #n hd0 av; assert (from_vec #(n+1) eav = op_Multiply (from_vec #1 hd0) (pow2 n) + from_vec av); assert (op_Multiply (from_vec #1 hd0) (pow2 n) = 0); assert (from_vec #(n+1) eav = from_vec #n av); assert (from_vec #(n+1) eav < pow2 n); let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd1 nav in append_lemma #1 #n hd1 nav; assert (from_vec #(n+1) neav_l = (op_Multiply (from_vec #1 hd1) (pow2 n)) + (from_vec #n nav)); assert (op_Multiply (from_vec #1 hd1) (pow2 n) = pow2 n); assert (from_vec #(n+1) neav_l = pow2 n + from_vec #n nav); assert (pow2 n + from_vec #n nav = rhs); assert (forall (i:pos{i < n+1}). Seq.index neav_r i = Seq.index neav_l i); Seq.Base.lemma_eq_intro neav_l neav_r; assert (neav_l = neav_r); assert (from_vec neav_r = lhs)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.lognot (FStar.UInt.one_extend a) = FStar.UInt.lognot a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "FStar.Seq.Base.lemma_eq_elim", "Prims.bool", "FStar.Seq.Base.seq", "FStar.Seq.Base.append", "FStar.BitVector.bv_t", "Prims.op_Addition", "FStar.BitVector.lognot_vec", "Prims.unit", "FStar.UInt.append_lemma", "FStar.UInt.to_vec", "FStar.UInt.lognot", "FStar.Seq.Base.create", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.UInt.one_extend" ]
[]
true
false
true
false
false
let lemma_lognot_one_ext #n a =
let lhs = lognot #(n + 1) (one_extend a) in let rhs = lognot #n a in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot #n a) in let eav = Seq.append hd1 av in append_lemma #1 #n hd1 av; append_lemma #1 #n hd0 nav; let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n + 1) eav in let neav_l = Seq.append hd0 nav in Seq.Base.lemma_eq_elim neav_l neav_r
false
FStar.UInt.fst
FStar.UInt.lemma_lognot_value_nonzero
val lemma_lognot_value_nonzero: #n:pos -> a:uint_t n{a <> 0} -> Lemma (lognot a = sub_mod (sub_mod 0 a) 1)
val lemma_lognot_value_nonzero: #n:pos -> a:uint_t n{a <> 0} -> Lemma (lognot a = sub_mod (sub_mod 0 a) 1)
let lemma_lognot_value_nonzero #n a = let p = pow2 n in lemma_lognot_value_variation #n a; assert (lognot a = (-a) % (pow2 n) - 1 % (pow2 n)); assert (sub_mod (sub_mod 0 a) 1 = (((0 - a) % p) - 1) % p); lemma_mod_variation #n a; assert (((-a) % p) - 1 % p = (((-a) % p) - 1) % p); assert ((-a) % p - 1 % p = (((0 - a) % p) - 1) % p)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 609, "start_col": 0, "start_line": 602 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p let lemma_zero_extend #n a = let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = a) #push-options "--z3rlimit 40" let lemma_one_extend #n a = let hd1 = Seq.create 1 true in let av = to_vec a in let eav = Seq.append hd1 av in let r = one_extend a in append_lemma #1 #n hd1 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = pow2 n + a) #pop-options #push-options "--fuel 1 --ifuel 0 --z3rlimit 40" let lemma_lognot_zero_ext #n a = let lhs = lognot #(n+1) a in let rhs = pow2 n + (lognot #n a) in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot a) in let eav = Seq.append hd0 av in append_lemma #1 #n hd0 av; assert (from_vec #(n+1) eav = op_Multiply (from_vec #1 hd0) (pow2 n) + from_vec av); assert (op_Multiply (from_vec #1 hd0) (pow2 n) = 0); assert (from_vec #(n+1) eav = from_vec #n av); assert (from_vec #(n+1) eav < pow2 n); let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd1 nav in append_lemma #1 #n hd1 nav; assert (from_vec #(n+1) neav_l = (op_Multiply (from_vec #1 hd1) (pow2 n)) + (from_vec #n nav)); assert (op_Multiply (from_vec #1 hd1) (pow2 n) = pow2 n); assert (from_vec #(n+1) neav_l = pow2 n + from_vec #n nav); assert (pow2 n + from_vec #n nav = rhs); assert (forall (i:pos{i < n+1}). Seq.index neav_r i = Seq.index neav_l i); Seq.Base.lemma_eq_intro neav_l neav_r; assert (neav_l = neav_r); assert (from_vec neav_r = lhs) let lemma_lognot_one_ext #n a = let lhs = lognot #(n+1) (one_extend a) in let rhs = lognot #n a in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot #n a) in let eav = Seq.append hd1 av in append_lemma #1 #n hd1 av; append_lemma #1 #n hd0 nav; let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd0 nav in Seq.Base.lemma_eq_elim neav_l neav_r #push-options "--z3rlimit 60" let rec lemma_lognot_value_mod #n a = if n = 1 then () else begin assert (-pow2 n <= (-(a+1)) && -(a+1) < 0); let av = to_vec a in let hd = from_vec #1 (Seq.slice (to_vec a) 0 1) in let tl = from_vec #(n-1) (Seq.slice (to_vec a) 1 n) in assert (hd = 0 || hd = 1); let hdpow = op_Multiply hd (pow2 (n-1)) in from_vec_propriety (to_vec a) 1; assert (from_vec av = (op_Multiply (from_vec #1 (Seq.slice av 0 1)) (pow2 (n-1))) + (from_vec #(n-1) (Seq.slice av 1 n))); let ntl = lognot tl in lemma_lognot_value_mod #(n-1) tl; assert (ntl = pow2 (n-1) - tl - 1); assert (a = hdpow + tl); assert (lognot a = lognot #n (hdpow + tl)); assert (tl < pow2 (n-1)); if hdpow = 0 then begin assert (lognot a = lognot #n tl); lemma_lognot_zero_ext #(n-1) tl; lemma_zero_extend tl end else begin lemma_lognot_one_ext #(n-1) tl; lemma_one_extend tl end end #pop-options let lemma_lognot_value_zero #n a = let p = pow2 n in calc (==) { sub_mod (sub_mod 0 a) 1; == { } sub_mod ((0 - a) % p) 1; == { } ((0 - a) % p - 1) % p; == { } (0 % p - 1) % p; == { modulo_lemma 0 p } (0 - 1) % p; == { lemma_mod_sub_0 p } p - 1; == { } p - 0 - 1; == { lemma_lognot_value_mod a } lognot a; } #pop-options #push-options "--z3rlimit 150" private val lemma_mod_variation: #n:pos -> a:uint_t n -> Lemma (a <> 0 ==> ((-a) % pow2 n) - 1 % pow2 n = (((-a) % pow2 n) - 1) % pow2 n) let lemma_mod_variation #n a = () #pop-options let lemma_one_mod_pow2 #n = () #push-options "--z3rlimit 50" private val lemma_lognot_value_variation: #n:pos -> a:uint_t n{a <> 0} -> Lemma (lognot a = (-a) % pow2 n - 1 % pow2 n) let lemma_lognot_value_variation #n a = let p = pow2 n in calc (==) { lognot a <: int; == { lemma_lognot_value_mod a } p - a - 1; == { FStar.Math.Lemmas.modulo_lemma a p } p - (a % p) - 1; == { FStar.Math.Lemmas.modulo_lemma 1 p } (p - (a % p)) - (1 % p); == { FStar.Math.Lemmas.lemma_mod_sub_1 a p } (-a) % p - 1 % p; } #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n {a <> 0} -> FStar.Pervasives.Lemma (ensures FStar.UInt.lognot a = FStar.UInt.sub_mod (FStar.UInt.sub_mod 0 a) 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "Prims._assert", "Prims.op_Equality", "Prims.op_Subtraction", "Prims.op_Modulus", "Prims.op_Minus", "Prims.unit", "FStar.UInt.lemma_mod_variation", "FStar.UInt.sub_mod", "FStar.UInt.lognot", "Prims.pow2", "FStar.UInt.lemma_lognot_value_variation" ]
[]
true
false
true
false
false
let lemma_lognot_value_nonzero #n a =
let p = pow2 n in lemma_lognot_value_variation #n a; assert (lognot a = (- a) % (pow2 n) - 1 % (pow2 n)); assert (sub_mod (sub_mod 0 a) 1 = (((0 - a) % p) - 1) % p); lemma_mod_variation #n a; assert (((- a) % p) - 1 % p = (((- a) % p) - 1) % p); assert ((- a) % p - 1 % p = (((0 - a) % p) - 1) % p)
false
FStar.UInt.fst
FStar.UInt.lemma_lognot_zero_ext
val lemma_lognot_zero_ext: #n:pos -> a:uint_t n -> Lemma (lognot #(n+1) (zero_extend a) = pow2 n + (lognot #n a))
val lemma_lognot_zero_ext: #n:pos -> a:uint_t n -> Lemma (lognot #(n+1) (zero_extend a) = pow2 n + (lognot #n a))
let lemma_lognot_zero_ext #n a = let lhs = lognot #(n+1) a in let rhs = pow2 n + (lognot #n a) in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot a) in let eav = Seq.append hd0 av in append_lemma #1 #n hd0 av; assert (from_vec #(n+1) eav = op_Multiply (from_vec #1 hd0) (pow2 n) + from_vec av); assert (op_Multiply (from_vec #1 hd0) (pow2 n) = 0); assert (from_vec #(n+1) eav = from_vec #n av); assert (from_vec #(n+1) eav < pow2 n); let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd1 nav in append_lemma #1 #n hd1 nav; assert (from_vec #(n+1) neav_l = (op_Multiply (from_vec #1 hd1) (pow2 n)) + (from_vec #n nav)); assert (op_Multiply (from_vec #1 hd1) (pow2 n) = pow2 n); assert (from_vec #(n+1) neav_l = pow2 n + from_vec #n nav); assert (pow2 n + from_vec #n nav = rhs); assert (forall (i:pos{i < n+1}). Seq.index neav_r i = Seq.index neav_l i); Seq.Base.lemma_eq_intro neav_l neav_r; assert (neav_l = neav_r); assert (from_vec neav_r = lhs)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 496, "start_col": 0, "start_line": 467 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p let lemma_zero_extend #n a = let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = a) #push-options "--z3rlimit 40" let lemma_one_extend #n a = let hd1 = Seq.create 1 true in let av = to_vec a in let eav = Seq.append hd1 av in let r = one_extend a in append_lemma #1 #n hd1 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = pow2 n + a) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.lognot (FStar.UInt.zero_extend a) = Prims.pow2 n + FStar.UInt.lognot a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.op_Addition", "FStar.UInt.from_vec", "Prims.unit", "FStar.Seq.Base.seq", "Prims.bool", "FStar.Seq.Base.lemma_eq_intro", "Prims.l_Forall", "Prims.op_LessThan", "FStar.Seq.Base.index", "Prims.int", "Prims.pow2", "Prims.op_Multiply", "FStar.UInt.append_lemma", "FStar.Seq.Base.append", "FStar.BitVector.bv_t", "FStar.BitVector.lognot_vec", "Prims.l_or", "FStar.UInt.size", "FStar.UInt.to_vec", "FStar.UInt.lognot", "FStar.Seq.Base.create", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "FStar.Seq.Base.length" ]
[]
false
false
true
false
false
let lemma_lognot_zero_ext #n a =
let lhs = lognot #(n + 1) a in let rhs = pow2 n + (lognot #n a) in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot a) in let eav = Seq.append hd0 av in append_lemma #1 #n hd0 av; assert (from_vec #(n + 1) eav = op_Multiply (from_vec #1 hd0) (pow2 n) + from_vec av); assert (op_Multiply (from_vec #1 hd0) (pow2 n) = 0); assert (from_vec #(n + 1) eav = from_vec #n av); assert (from_vec #(n + 1) eav < pow2 n); let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n + 1) eav in let neav_l = Seq.append hd1 nav in append_lemma #1 #n hd1 nav; assert (from_vec #(n + 1) neav_l = (op_Multiply (from_vec #1 hd1) (pow2 n)) + (from_vec #n nav)); assert (op_Multiply (from_vec #1 hd1) (pow2 n) = pow2 n); assert (from_vec #(n + 1) neav_l = pow2 n + from_vec #n nav); assert (pow2 n + from_vec #n nav = rhs); assert (forall (i: pos{i < n + 1}). Seq.index neav_r i = Seq.index neav_l i); Seq.Base.lemma_eq_intro neav_l neav_r; assert (neav_l = neav_r); assert (from_vec neav_r = lhs)
false
FStar.UInt.fst
FStar.UInt.lemma_one_extend
val lemma_one_extend: #n:pos -> a:uint_t n -> Lemma (one_extend a = pow2 n + a) [SMTPat (one_extend a)]
val lemma_one_extend: #n:pos -> a:uint_t n -> Lemma (one_extend a = pow2 n + a) [SMTPat (one_extend a)]
let lemma_one_extend #n a = let hd1 = Seq.create 1 true in let av = to_vec a in let eav = Seq.append hd1 av in let r = one_extend a in append_lemma #1 #n hd1 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = pow2 n + a)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 463, "start_col": 0, "start_line": 455 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p let lemma_zero_extend #n a = let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.one_extend a = Prims.pow2 n + a) [SMTPat (FStar.UInt.one_extend a)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Prims.pow2", "Prims.unit", "FStar.UInt.from_vec_propriety", "FStar.UInt.from_vec", "FStar.UInt.append_lemma", "FStar.UInt.one_extend", "FStar.Seq.Base.seq", "Prims.bool", "FStar.Seq.Base.append", "FStar.BitVector.bv_t", "FStar.UInt.to_vec", "FStar.Seq.Base.create" ]
[]
true
false
true
false
false
let lemma_one_extend #n a =
let hd1 = Seq.create 1 true in let av = to_vec a in let eav = Seq.append hd1 av in let r = one_extend a in append_lemma #1 #n hd1 av; assert (r = from_vec eav); from_vec_propriety #(n + 1) eav 1; assert (r = pow2 n + a)
false
Trace.fst
Trace.fact
val fact (n: nat) : Tot nat
val fact (n: nat) : Tot nat
let fact (n : nat) : Tot nat = fact_aux n 1
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 179, "start_col": 0, "start_line": 179 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs) let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns) let cons_fst (x : 'a) (p : list 'a * 'b) : list 'a * 'b = let (y, z) = p in (x :: y, z) let cons_fst_qn = ["Trace"; "cons_fst"] let term_is_fv hd nm : Tac bool = match inspect hd with | Tv_FVar fv -> inspect_fv fv = inspect_fv nm | _ -> false noeq type ins_info = { orig_name : fv; ins_name : fv; args : (args : list term{length args <= 8}); trace_arg : term; } let rec instrument_body (ii : ins_info) (t : term) : Tac term = match inspect_unascribe t with // descend into matches | Tv_Match t ret_opt brs -> begin let brs' = map (ins_br ii) brs in pack (Tv_Match t ret_opt brs') end // descend into lets | Tv_Let r attrs b t1 t2 -> begin let t2' = instrument_body ii t2 in pack (Tv_Let r attrs b t1 t2') end | _ -> begin let hd, args = collect_app t in let argpack = mktuple_n ii.args in if term_is_fv hd ii.orig_name then begin // modify the tail call // turn `nm <b1,...,bn>` into `nm' (<a1,...,an>::tr) <b1,...,bn>` let f' = pack (Tv_FVar ii.ins_name) in mk_app f' (args @ [mk_cons argpack ii.trace_arg, Q_Explicit]) end else begin // not a tail call, record the current set of args and be done mkpair (mk_cons argpack ii.trace_arg) t end end and ins_br (ii : ins_info) (br : branch) : Tac branch = let (p, t) = br in let t' = instrument_body ii t in (p, t') let rec cutlast (l : list 'a{length l > 0}) : list 'a * 'a = match l with | [x] -> [], x | x::xs -> let ys, y = cutlast xs in x::ys, y let instrument (f : 'a) : Tac unit = let t = quote f in // name let n = match inspect t with | Tv_FVar fv -> fv | _ -> fail "Not a top-level" in let n' = tick n in let all_args = intros () in if length all_args = 0 then fail "Function has no arguments?"; let real, trace_arg = cutlast all_args in let real = map (fun b -> pack (Tv_Var (binding_to_namedv b))) real in if length real > 8 then fail "Too many arguments to instrument function"; assert (length real <= 8); let ii = { orig_name = n; ins_name = n'; args = real; trace_arg = pack (Tv_Var (binding_to_namedv trace_arg)) } in (* Apply the function to the arguments and unfold it. This will only * unfold it once, so recursive calls are present *) let t = norm_term [delta; zeta] (mk_e_app t ii.args) in dup (); let t = instrument_body ii t in (* dump ""; *) let _ = focus (fun () -> exact_guard t; repeat smt) in norm []; trefl () let rec fall (n : mynat) : Tot mynat = match n with | Z -> Z | S n -> fall n // Because of the way we're building this recursive function, its termination is unprovable. // So admit queries for now. #push-options "--admit_smt_queries true" let rec fall' (n : mynat) (l : list mynat) = // We need to annotate the result type.. which sucks. // But we could use a tactic later :) synth_by_tactic #(mynat -> list mynat -> (list mynat * mynat)) (fun () -> instrument fall) n l #pop-options let _ = assert (fall' (S (S (S Z))) [] == ([Z; S Z; S (S Z); S (S (S Z))], Z)) // Beware: the `let acc' = `... gets normalized in the tactic, // so we're not actually descending through it. Maybe we need a flag // to control the evaluation of lets. let rec fact_aux (n acc : nat) : Tot nat = if n = 0 then acc else let acc' = acc `op_Multiply` n in fact_aux (n - 1) acc'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Trace.fact_aux" ]
[]
false
false
false
true
false
let fact (n: nat) : Tot nat =
fact_aux n 1
false
Trace.fst
Trace.instrument_body
val instrument_body (ii: ins_info) (t: term) : Tac term
val instrument_body (ii: ins_info) (t: term) : Tac term
let rec instrument_body (ii : ins_info) (t : term) : Tac term = match inspect_unascribe t with // descend into matches | Tv_Match t ret_opt brs -> begin let brs' = map (ins_br ii) brs in pack (Tv_Match t ret_opt brs') end // descend into lets | Tv_Let r attrs b t1 t2 -> begin let t2' = instrument_body ii t2 in pack (Tv_Let r attrs b t1 t2') end | _ -> begin let hd, args = collect_app t in let argpack = mktuple_n ii.args in if term_is_fv hd ii.orig_name then begin // modify the tail call // turn `nm <b1,...,bn>` into `nm' (<a1,...,an>::tr) <b1,...,bn>` let f' = pack (Tv_FVar ii.ins_name) in mk_app f' (args @ [mk_cons argpack ii.trace_arg, Q_Explicit]) end else begin // not a tail call, record the current set of args and be done mkpair (mk_cons argpack ii.trace_arg) t end end and ins_br (ii : ins_info) (br : branch) : Tac branch = let (p, t) = br in let t' = instrument_body ii t in (p, t')
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 9, "end_line": 116, "start_col": 0, "start_line": 86 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs) let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns) let cons_fst (x : 'a) (p : list 'a * 'b) : list 'a * 'b = let (y, z) = p in (x :: y, z) let cons_fst_qn = ["Trace"; "cons_fst"] let term_is_fv hd nm : Tac bool = match inspect hd with | Tv_FVar fv -> inspect_fv fv = inspect_fv nm | _ -> false noeq type ins_info = { orig_name : fv; ins_name : fv; args : (args : list term{length args <= 8}); trace_arg : term; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ii: Trace.ins_info -> t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.term
FStar.Tactics.Effect.Tac
[]
[ "instrument_body", "ins_br" ]
[ "Trace.ins_info", "FStar.Tactics.NamedView.term", "FStar.Pervasives.Native.option", "FStar.Tactics.NamedView.match_returns_ascription", "Prims.list", "FStar.Tactics.NamedView.branch", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Match", "FStar.Tactics.Util.map", "Trace.ins_br", "Prims.bool", "FStar.Tactics.NamedView.simple_binder", "FStar.Tactics.NamedView.Tv_Let", "Trace.instrument_body", "FStar.Tactics.NamedView.named_term_view", "FStar.Stubs.Reflection.V2.Data.argv", "FStar.Reflection.V2.Derived.mk_app", "FStar.List.Tot.Base.op_At", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Reflection.V2.Derived.mk_cons", "Trace.__proj__Mkins_info__item__trace_arg", "FStar.Stubs.Reflection.V2.Data.Q_Explicit", "Prims.Nil", "FStar.Tactics.NamedView.Tv_FVar", "Trace.__proj__Mkins_info__item__ins_name", "FStar.Reflection.V2.Derived.mkpair", "Trace.term_is_fv", "Trace.__proj__Mkins_info__item__orig_name", "FStar.Reflection.V2.Derived.mktuple_n", "Trace.__proj__Mkins_info__item__args", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V2.SyntaxHelpers.collect_app", "FStar.Tactics.NamedView.term_view", "Prims.b2t", "FStar.Tactics.NamedView.notAscription", "FStar.Tactics.V2.SyntaxHelpers.inspect_unascribe" ]
[ "mutual recursion" ]
false
true
false
false
false
let rec instrument_body (ii: ins_info) (t: term) : Tac term =
match inspect_unascribe t with | Tv_Match t ret_opt brs -> let brs' = map (ins_br ii) brs in pack (Tv_Match t ret_opt brs') | Tv_Let r attrs b t1 t2 -> let t2' = instrument_body ii t2 in pack (Tv_Let r attrs b t1 t2') | _ -> let hd, args = collect_app t in let argpack = mktuple_n ii.args in if term_is_fv hd ii.orig_name then let f' = pack (Tv_FVar ii.ins_name) in mk_app f' (args @ [mk_cons argpack ii.trace_arg, Q_Explicit]) else mkpair (mk_cons argpack ii.trace_arg) t
false
Steel.ST.SeqMatch.fst
Steel.ST.SeqMatch.seq_seq_match_item_match_option_intro
val seq_seq_match_item_match_option_intro (#opened: _) (#t1 #t2: Type) (p: (t1 -> t2 -> vprop)) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhostT unit opened (seq_seq_match p s1 s2 i j) (fun _ -> seq_seq_match (item_match_option p) s1 (seq_map Some s2) i j)
val seq_seq_match_item_match_option_intro (#opened: _) (#t1 #t2: Type) (p: (t1 -> t2 -> vprop)) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhostT unit opened (seq_seq_match p s1 s2 i j) (fun _ -> seq_seq_match (item_match_option p) s1 (seq_map Some s2) i j)
let seq_seq_match_item_match_option_intro (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhostT unit opened (seq_seq_match p s1 s2 i j) (fun _ -> seq_seq_match (item_match_option p) s1 (seq_map Some s2) i j) = on_range_weaken (seq_seq_match_item p s1 s2) (seq_seq_match_item (item_match_option p) s1 (seq_map Some s2)) i j (fun k -> rewrite (seq_seq_match_item p s1 s2 k) (seq_seq_match_item (item_match_option p) s1 (seq_map Some s2) k) )
{ "file_name": "lib/steel/Steel.ST.SeqMatch.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 649, "start_col": 0, "start_line": 631 }
module Steel.ST.SeqMatch include Steel.ST.OnRange open Steel.ST.GenElim module Seq = FStar.Seq module SZ = FStar.SizeT (* `seq_list_match` describes how to match a sequence of low-level values (the low-level contents of an array) with a list of high-level values. `seq_list_match` is carefully designed to be usable within (mutually) recursive definitions of matching functions on the type of high-level values. *) [@@__reduce__] let seq_list_match_nil0 (#t: Type) (c: Seq.seq t) : Tot vprop = pure (c `Seq.equal` Seq.empty) [@@__reduce__] let seq_list_match_cons0 (#t #t': Type) (c: Seq.seq t) (l: list t' { Cons? l }) (item_match: (t -> (v': t' { v' << l }) -> vprop)) (seq_list_match: (Seq.seq t -> (v': list t') -> (raw_data_item_match: (t -> (v'': t' { v'' << v' }) -> vprop) { v' << l }) -> vprop)) : Tot vprop = exists_ (fun (c1: t) -> exists_ (fun (c2: Seq.seq t) -> item_match c1 (List.Tot.hd l) `star` seq_list_match c2 (List.Tot.tl l) item_match `star` pure (c `Seq.equal` Seq.cons c1 c2) )) let rec seq_list_match (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Tot vprop (decreases v) = if Nil? v then seq_list_match_nil0 c else seq_list_match_cons0 c v item_match seq_list_match let seq_list_match_cons_eq (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Lemma (requires (Cons? v)) (ensures ( seq_list_match c v item_match == seq_list_match_cons0 c v item_match seq_list_match )) = let a :: q = v in assert_norm (seq_list_match c (a :: q) item_match == seq_list_match_cons0 c (a :: q) item_match seq_list_match ) let seq_list_match_nil (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : STGhost unit opened emp (fun _ -> seq_list_match c v item_match) (c `Seq.equal` Seq.empty /\ Nil? v) (fun _ -> True) = noop (); rewrite (seq_list_match_nil0 c) (seq_list_match c v item_match) let list_cons_precedes (#t: Type) (a: t) (q: list t) : Lemma ((a << a :: q) /\ (q << a :: q)) [SMTPat (a :: q)] = assert (List.Tot.hd (a :: q) << (a :: q)); assert (List.Tot.tl (a :: q) << (a :: q)) let seq_list_match_cons_intro (#opened: _) (#t #t': Type) (a: t) (a' : t') (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << a' :: v }) -> vprop)) : STGhostT unit opened (item_match a a' `star` seq_list_match c v item_match) (fun _ -> seq_list_match (Seq.cons a c) (a' :: v) item_match) = seq_list_match_cons_eq (Seq.cons a c) (a' :: v) item_match; noop (); rewrite (seq_list_match_cons0 (Seq.cons a c) (a' :: v) item_match seq_list_match) (seq_list_match (Seq.cons a c) (a' :: v) item_match) let seq_list_match_cons_elim (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t' { Cons? v \/ Seq.length c > 0 }) (item_match: (t -> (v': t' { v' << v }) -> vprop)) : STGhostT (squash (Cons? v /\ Seq.length c > 0)) opened (seq_list_match c v item_match) (fun _ -> item_match (Seq.head c) (List.Tot.hd v) `star` seq_list_match (Seq.tail c) (List.Tot.tl v) item_match) = if Nil? v then begin rewrite (seq_list_match c v item_match) (seq_list_match_nil0 c); let _ = gen_elim () in assert False; rewrite // by contradiction emp (item_match (Seq.head c) (List.Tot.hd v) `star` seq_list_match (Seq.tail c) (List.Tot.tl v) item_match) end else begin seq_list_match_cons_eq c v item_match; noop (); rewrite (seq_list_match c v item_match) (seq_list_match_cons0 c v item_match seq_list_match); let _ = gen_elim () in let prf : squash (Cons? v /\ Seq.length c > 0) = () in let c1 = vpattern (fun c1 -> item_match c1 (List.Tot.hd v)) in let c2 = vpattern (fun c2 -> seq_list_match c2 (List.Tot.tl v) item_match) in Seq.lemma_cons_inj c1 (Seq.head c) c2 (Seq.tail c); vpattern_rewrite (fun c1 -> item_match c1 (List.Tot.hd v)) (Seq.head c); vpattern_rewrite (fun c2 -> seq_list_match c2 (List.Tot.tl v) item_match) (Seq.tail c); prf end // this one cannot be proven with seq_seq_match because of the << refinement in the type of item_match let rec seq_list_match_weaken (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match1 item_match2: (t -> (v': t' { v' << v }) -> vprop)) (prf: ( (#opened: _) -> (c': t) -> (v': t' { v' << v }) -> STGhostT unit opened (item_match1 c' v') (fun _ -> item_match2 c' v') )) : STGhostT unit opened (seq_list_match c v item_match1) (fun _ -> seq_list_match c v item_match2) (decreases v) = if Nil? v then rewrite (seq_list_match c v item_match1) (seq_list_match c v item_match2) else begin let _ : squash (Cons? v) = () in seq_list_match_cons_eq c v item_match1; seq_list_match_cons_eq c v item_match2; rewrite (seq_list_match c v item_match1) (seq_list_match_cons0 c v item_match1 seq_list_match); let _ = gen_elim () in prf _ _; seq_list_match_weaken _ (List.Tot.tl v) item_match1 item_match2 prf; rewrite (seq_list_match_cons0 c v item_match2 seq_list_match) (seq_list_match c v item_match2) end (* `seq_seq_match` describes how to match a sequence of low-level values (the low-level contents of an array) with a sequence of high-level values. Contrary to `seq_list_match`, `seq_seq_match` is not meant to be usable within (mutually) recursive definitions of matching functions on the type of high-level values, because no lemma ensures that `Seq.index s i << s` *) let seq_seq_match_item (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (i: nat) : Tot vprop = if i < Seq.length c && i < Seq.length l then p (Seq.index c i) (Seq.index l i) else pure (squash False) let seq_seq_match_item_tail (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (delta: nat) (i: nat) : Lemma (requires ( i + delta <= Seq.length c /\ i + delta <= Seq.length l )) (ensures ( seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) i == seq_seq_match_item p c l (i + delta) )) = () [@@__reduce__] let seq_seq_match (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (i j: nat) : Tot vprop = on_range (seq_seq_match_item p c l) i j let seq_seq_match_length (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p s1 s2 i j) (fun _ -> seq_seq_match p s1 s2 i j) True (fun _ -> i <= j /\ (i == j \/ (j <= Seq.length s1 /\ j <= Seq.length s2))) = on_range_le (seq_seq_match_item p s1 s2) i j; if i = j then noop () else begin let j' = j - 1 in if j' < Seq.length s1 && j' < Seq.length s2 then noop () else begin on_range_unsnoc (seq_seq_match_item p s1 s2) i j' j; rewrite (seq_seq_match_item p _ _ _) (pure (squash False)); let _ = gen_elim () in rewrite (seq_seq_match p s1 s2 i j') (seq_seq_match p s1 s2 i j) // by contradiction end end let seq_seq_match_weaken (#opened: _) (#t1 #t2: Type) (p p': t1 -> t2 -> vprop) (w: ((x1: t1) -> (x2: t2) -> STGhostT unit opened (p x1 x2) (fun _ -> p' x1 x2) )) (c1 c1': Seq.seq t1) (c2 c2': Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p c1 c2 i j) (fun _ -> seq_seq_match p' c1' c2' i j) (i <= j /\ (i == j \/ ( j <= Seq.length c1 /\ j <= Seq.length c2 /\ j <= Seq.length c1' /\ j <= Seq.length c2' /\ Seq.slice c1 i j `Seq.equal` Seq.slice c1' i j /\ Seq.slice c2 i j `Seq.equal` Seq.slice c2' i j ))) (fun _ -> True) = on_range_weaken (seq_seq_match_item p c1 c2) (seq_seq_match_item p' c1' c2') i j (fun k -> rewrite (seq_seq_match_item p c1 c2 k) (p (Seq.index (Seq.slice c1 i j) (k - i)) (Seq.index (Seq.slice c2 i j) (k - i))); w _ _; rewrite (p' _ _) (seq_seq_match_item p' c1' c2' k) ) let seq_seq_match_weaken_with_implies (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c1 c1': Seq.seq t1) (c2 c2': Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p c1 c2 i j) (fun _ -> seq_seq_match p c1' c2' i j `star` (seq_seq_match p c1' c2' i j `implies_` seq_seq_match p c1 c2 i j) ) (i <= j /\ (i == j \/ ( j <= Seq.length c1 /\ j <= Seq.length c2 /\ j <= Seq.length c1' /\ j <= Seq.length c2' /\ Seq.slice c1 i j `Seq.equal` Seq.slice c1' i j /\ Seq.slice c2 i j `Seq.equal` Seq.slice c2' i j ))) (fun _ -> True) = seq_seq_match_weaken p p (fun _ _ -> noop ()) c1 c1' c2 c2' i j; intro_implies (seq_seq_match p c1' c2' i j) (seq_seq_match p c1 c2 i j) emp (fun _ -> seq_seq_match_weaken p p (fun _ _ -> noop ()) c1' c1 c2' c2 i j ) (* Going between `seq_list_match` and `seq_seq_match` *) let seq_seq_match_tail_elim (#t1 #t2: Type) (#opened: _) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq (t2)) (delta: nat { delta <= Seq.length c /\ delta <= Seq.length l }) (i j: nat) : STGhostT unit opened (seq_seq_match p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) i j) (fun _ -> seq_seq_match p c l (i + delta) (j + delta)) = on_range_le (seq_seq_match_item p _ _) _ _; on_range_weaken_and_shift (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l))) (seq_seq_match_item p c l) delta i j (fun k -> if k < Seq.length c - delta && k < Seq.length l - delta then begin seq_seq_match_item_tail p c l delta k; rewrite (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) k) (seq_seq_match_item p c l (k + delta)) end else begin rewrite (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) k) (pure (squash False)); let _ = gen_elim () in rewrite emp (seq_seq_match_item p c l (k + delta)) // by contradiction end ) (i + delta) (j + delta) let seq_seq_match_tail_intro (#t1 #t2: Type) (#opened: _) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (delta: nat { delta <= Seq.length c /\ delta <= Seq.length l }) (i: nat { delta <= i }) (j: nat) : STGhostT (squash (i <= j)) opened (seq_seq_match p c l i j) (fun _ -> seq_seq_match p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) (i - delta) (j - delta)) = on_range_le (seq_seq_match_item p _ _) _ _; on_range_weaken_and_shift (seq_seq_match_item p c l) (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l))) (0 - delta) i j (fun k -> if k < Seq.length c && k < Seq.length l then begin seq_seq_match_item_tail p c l delta (k - delta); rewrite (seq_seq_match_item p c l k) (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) (k + (0 - delta))) end else begin rewrite (seq_seq_match_item p c l k) (pure (squash False)); let _ = gen_elim () in rewrite emp (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) (k + (0 - delta))) // by contradiction end ) (i - delta) (j - delta) let rec seq_seq_match_seq_list_match (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) (fun _ -> seq_list_match c l p) (Seq.length c == List.Tot.length l) (fun _ -> True) (decreases l) = match l with | [] -> drop (seq_seq_match p _ _ _ _); rewrite (seq_list_match_nil0 c) (seq_list_match c l p) | a :: q -> Seq.lemma_seq_of_list_induction (a :: q); seq_list_match_cons_eq c l p; on_range_uncons (seq_seq_match_item p _ _) _ 1 _; rewrite (seq_seq_match_item p _ _ _) (p (Seq.head c) (List.Tot.hd l)); let _ = seq_seq_match_tail_intro p _ _ 1 _ _ in rewrite (seq_seq_match p _ _ _ _) (seq_seq_match p (Seq.tail c) (Seq.seq_of_list (List.Tot.tl l)) 0 (List.Tot.length (List.Tot.tl l))); seq_seq_match_seq_list_match p _ (List.Tot.tl l); rewrite (seq_list_match_cons0 c l p seq_list_match) (seq_list_match c l p) let rec seq_list_match_seq_seq_match (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_list_match c l p) (fun _ -> seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) True (fun _ -> Seq.length c == List.Tot.length l) (decreases l) = match l with | [] -> rewrite (seq_list_match c l p) (seq_list_match_nil0 c); let _ = gen_elim () in on_range_empty (seq_seq_match_item p c (Seq.seq_of_list l)) 0 (List.Tot.length l) | a :: q -> let _l_nonempty : squash (Cons? l) = () in Seq.lemma_seq_of_list_induction (a :: q); seq_list_match_cons_eq c l p; noop (); rewrite (seq_list_match c l p) (seq_list_match_cons0 c l p seq_list_match); let _ = gen_elim () in let a' = vpattern (fun a' -> p a' _) in let c' = vpattern (fun c' -> seq_list_match c' _ _) in Seq.lemma_cons_inj (Seq.head c) a' (Seq.tail c) c'; assert (a' == Seq.head c); assert (c' == Seq.tail c); noop (); seq_list_match_seq_seq_match p _ _; rewrite (seq_seq_match p _ _ _ _) (seq_seq_match p (Seq.slice c 1 (Seq.length c)) (Seq.slice (Seq.seq_of_list l) 1 (Seq.length (Seq.seq_of_list l))) 0 (List.Tot.length (List.Tot.tl l))); let _ = seq_seq_match_tail_elim p c (Seq.seq_of_list l) 1 0 (List.Tot.length (List.Tot.tl l)) in rewrite (seq_seq_match p _ _ _ _) (seq_seq_match p c (Seq.seq_of_list l) 1 (List.Tot.length l)); rewrite (p _ _) (seq_seq_match_item p c (Seq.seq_of_list l) 0); on_range_cons (seq_seq_match_item p _ _) 0 1 (List.Tot.length l) let seq_seq_match_seq_list_match_with_implies (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) (fun _ -> seq_list_match c l p `star` (seq_list_match c l p `implies_` seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l))) (Seq.length c == List.Tot.length l) (fun _ -> True) = seq_seq_match_seq_list_match p c l; intro_implies (seq_list_match c l p) (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) emp (fun _ -> seq_list_match_seq_seq_match p c l) let seq_list_match_seq_seq_match_with_implies (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_list_match c l p) (fun _ -> seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l) `star` (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l) `implies_` seq_list_match c l p)) True (fun _ -> Seq.length c == List.Tot.length l) = seq_list_match_seq_seq_match p c l; intro_implies (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) (seq_list_match c l p) emp (fun _ -> seq_seq_match_seq_list_match p c l) let seq_list_match_length (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_list_match c l p) (fun _ -> seq_list_match c l p) True (fun _ -> Seq.length c == List.Tot.length l) = seq_list_match_seq_seq_match_with_implies p c l; seq_seq_match_length p _ _ _ _; elim_implies (seq_seq_match p _ _ _ _) (seq_list_match c l p) let seq_list_match_index (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (s1: Seq.seq t1) (s2: list t2) (i: nat) : STGhost (squash (i < Seq.length s1 /\ List.Tot.length s2 == Seq.length s1)) opened (seq_list_match s1 s2 p) (fun _ -> p (Seq.index s1 i) (List.Tot.index s2 i) `star` (p (Seq.index s1 i) (List.Tot.index s2 i) `implies_` seq_list_match s1 s2 p) ) (i < Seq.length s1 \/ i < List.Tot.length s2) (fun _ -> True) = seq_list_match_seq_seq_match_with_implies p s1 s2; let res : squash (i < Seq.length s1 /\ List.Tot.length s2 == Seq.length s1) = () in on_range_focus (seq_seq_match_item p s1 (Seq.seq_of_list s2)) 0 i (List.Tot.length s2); rewrite_with_implies (seq_seq_match_item p _ _ _) (p (Seq.index s1 i) (List.Tot.index s2 i)); implies_trans (p (Seq.index s1 i) (List.Tot.index s2 i)) (seq_seq_match_item p _ _ _) (seq_seq_match p s1 (Seq.seq_of_list s2) 0 (List.Tot.length s2)); implies_trans (p (Seq.index s1 i) (List.Tot.index s2 i)) (seq_seq_match p s1 (Seq.seq_of_list s2) 0 (List.Tot.length s2)) (seq_list_match s1 s2 p); res (* Random array access Since `seq_list_match` is defined recursively on the list of high-level values, it is used naturally left-to-right. By contrast, in practice, an application may populate an array in a different order, or even out-of-order. `seq_seq_match` supports that scenario better, as we show below. *) let seq_map (#t1 #t2: Type) (f: t1 -> t2) (s: Seq.seq t1) : Tot (Seq.seq t2) = Seq.init (Seq.length s) (fun i -> f (Seq.index s i)) let item_match_option (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (x1: t1) (x2: option t2) : Tot vprop = match x2 with | None -> emp | Some x2' -> p x1 x2' let seq_seq_match_item_match_option_elim (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhostT unit opened (seq_seq_match (item_match_option p) s1 (seq_map Some s2) i j) (fun _ -> seq_seq_match p s1 s2 i j) = on_range_weaken (seq_seq_match_item (item_match_option p) s1 (seq_map Some s2)) (seq_seq_match_item p s1 s2) i j (fun k -> rewrite (seq_seq_match_item (item_match_option p) s1 (seq_map Some s2) k) (seq_seq_match_item p s1 s2 k) )
{ "checked_file": "/", "dependencies": [ "Steel.ST.OnRange.fsti.checked", "Steel.ST.GenElim.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Steel.ST.SeqMatch.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.OnRange", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: t1 -> _: t2 -> Steel.Effect.Common.vprop) -> s1: FStar.Seq.Base.seq t1 -> s2: FStar.Seq.Base.seq t2 -> i: Prims.nat -> j: Prims.nat -> Steel.ST.Effect.Ghost.STGhostT Prims.unit
Steel.ST.Effect.Ghost.STGhostT
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "FStar.Seq.Base.seq", "Prims.nat", "Steel.ST.OnRange.on_range_weaken", "Steel.ST.SeqMatch.seq_seq_match_item", "FStar.Pervasives.Native.option", "Steel.ST.SeqMatch.item_match_option", "Steel.ST.SeqMatch.seq_map", "FStar.Pervasives.Native.Some", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Steel.ST.Util.rewrite", "Prims.unit", "Steel.ST.SeqMatch.seq_seq_match" ]
[]
false
true
false
false
false
let seq_seq_match_item_match_option_intro (#opened: _) (#t1 #t2: Type) (p: (t1 -> t2 -> vprop)) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhostT unit opened (seq_seq_match p s1 s2 i j) (fun _ -> seq_seq_match (item_match_option p) s1 (seq_map Some s2) i j) =
on_range_weaken (seq_seq_match_item p s1 s2) (seq_seq_match_item (item_match_option p) s1 (seq_map Some s2)) i j (fun k -> rewrite (seq_seq_match_item p s1 s2 k) (seq_seq_match_item (item_match_option p) s1 (seq_map Some s2) k))
false
Trace.fst
Trace.ins_br
val ins_br (ii: ins_info) (br: branch) : Tac branch
val ins_br (ii: ins_info) (br: branch) : Tac branch
let rec instrument_body (ii : ins_info) (t : term) : Tac term = match inspect_unascribe t with // descend into matches | Tv_Match t ret_opt brs -> begin let brs' = map (ins_br ii) brs in pack (Tv_Match t ret_opt brs') end // descend into lets | Tv_Let r attrs b t1 t2 -> begin let t2' = instrument_body ii t2 in pack (Tv_Let r attrs b t1 t2') end | _ -> begin let hd, args = collect_app t in let argpack = mktuple_n ii.args in if term_is_fv hd ii.orig_name then begin // modify the tail call // turn `nm <b1,...,bn>` into `nm' (<a1,...,an>::tr) <b1,...,bn>` let f' = pack (Tv_FVar ii.ins_name) in mk_app f' (args @ [mk_cons argpack ii.trace_arg, Q_Explicit]) end else begin // not a tail call, record the current set of args and be done mkpair (mk_cons argpack ii.trace_arg) t end end and ins_br (ii : ins_info) (br : branch) : Tac branch = let (p, t) = br in let t' = instrument_body ii t in (p, t')
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 9, "end_line": 116, "start_col": 0, "start_line": 86 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs) let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns) let cons_fst (x : 'a) (p : list 'a * 'b) : list 'a * 'b = let (y, z) = p in (x :: y, z) let cons_fst_qn = ["Trace"; "cons_fst"] let term_is_fv hd nm : Tac bool = match inspect hd with | Tv_FVar fv -> inspect_fv fv = inspect_fv nm | _ -> false noeq type ins_info = { orig_name : fv; ins_name : fv; args : (args : list term{length args <= 8}); trace_arg : term; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ii: Trace.ins_info -> br: FStar.Tactics.NamedView.branch -> FStar.Tactics.Effect.Tac FStar.Tactics.NamedView.branch
FStar.Tactics.Effect.Tac
[]
[ "instrument_body", "ins_br" ]
[ "Trace.ins_info", "FStar.Tactics.NamedView.branch", "FStar.Tactics.NamedView.pattern", "FStar.Tactics.NamedView.term", "FStar.Pervasives.Native.Mktuple2", "Trace.instrument_body" ]
[ "mutual recursion" ]
false
true
false
false
false
let rec ins_br (ii: ins_info) (br: branch) : Tac branch =
let p, t = br in let t' = instrument_body ii t in (p, t')
false
Lib.ByteSequence.fst
Lib.ByteSequence.some_arithmetic
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma (let m = numbytes t in n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 == n / pow2 (8 * i) % pow2 8)
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma (let m = numbytes t in n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 == n / pow2 (8 * i) % pow2 8)
let some_arithmetic t n i = let m = numbytes t in calc (==) { n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8; == { assert (bits t == 8 * m) } n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8; == { FStar.Math.Lemmas.paren_mul_right 8 m (i / m); FStar.Math.Lemmas.euclidean_division_definition i m } n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8; == { Math.Lemmas.distributivity_sub_right 8 i (i % m) } n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8; == { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) } (n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8; == { Math.Lemmas.division_multiplication_lemma n (pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) } (n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8; == { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) } (n / pow2 (8 * i)) % pow2 8; }
{ "file_name": "lib/Lib.ByteSequence.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 625, "start_col": 0, "start_line": 607 }
module Lib.ByteSequence open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.RawIntTypes open Lib.LoopCombinators #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0" /// BEGIN constant-time sequence equality val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat -> k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } -> Lemma (requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j))) (ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k))) let lemma_not_equal_slice #a b1 b2 i j k = assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i)) val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} -> Lemma (requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1))) (ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j))) let lemma_not_equal_last #a b1 b2 i j = Seq.lemma_index_slice b1 i j (j - i - 1); Seq.lemma_index_slice b2 i j (j - i - 1) val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat -> b1:lseq (int_t t SEC) len1 -> b2:lseq (int_t t SEC) len2 -> len:size_nat{len <= len1 /\ len <= len2} -> i:size_nat{i < len} -> res:int_t t SEC{ (sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\ (sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))} -> res':int_t t SEC{ (sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\ (sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))} let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res = logand_zeros (ones t SEC); logand_ones (ones t SEC); logand_zeros (zeros t SEC); logand_ones (zeros t SEC); let z0 = res in let res = eq_mask b1.[i] b2.[i] &. z0 in logand_spec (eq_mask b1.[i] b2.[i]) z0; if v res = ones_v t then begin let s1 = sub b1 0 (i + 1) in let s2 = sub b2 0 (i + 1) in Seq.lemma_split s1 i; Seq.lemma_split s2 i; assert (equal s1 s2) end else if v z0 = 0 then lemma_not_equal_slice b1 b2 0 i (i + 1) else lemma_not_equal_last b1 b2 0 (i + 1); res let seq_eq_mask #t #len1 #len2 b1 b2 len = repeati_inductive len (fun (i:nat{i <= len}) res -> (sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\ (sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))) (seq_eq_mask_inner b1 b2 len) (ones t SEC) let lbytes_eq #len b1 b2 = let res = seq_eq_mask b1 b2 len in RawIntTypes.u8_to_UInt8 res = 255uy /// END constant-time sequence equality let mask_select #t mask a b = b ^. (mask &. (a ^. b)) let mask_select_lemma #t mask a b = let t1 = mask &. (a ^. b) in let t2 = b ^. t1 in logand_lemma mask (a ^.b); if v mask = 0 then begin assert (v t1 == 0); logxor_lemma b t1; assert (v t2 = v b); () end else begin assert (v t1 == v (a ^. b)); logxor_lemma b a; assert (v t2 = v a); () end let seq_mask_select #t #len a b mask = let res = map2 (mask_select mask) a b in let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) = mask_select_lemma mask a.[i] b.[i] in Classical.forall_intro lemma_aux; if v mask = 0 then eq_intro res b else eq_intro res a; res val nat_from_intseq_be_: #t:inttype{unsigned t} -> #l:secrecy_level -> b:seq (uint_t t l) -> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) let rec nat_from_intseq_be_ #t #l b = let len = length b in if len = 0 then 0 else let l = v (Seq.index b (len - 1)) in let pre = Seq.slice b 0 (len - 1) in let shift = pow2 (bits t) in let n' = nat_from_intseq_be_ pre in Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t); l + shift * n' let nat_from_intseq_be = nat_from_intseq_be_ val nat_from_intseq_le_: #t:inttype{unsigned t} -> #l:secrecy_level -> b:seq (uint_t t l) -> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) let rec nat_from_intseq_le_ #t #l b = let len = length b in if len = 0 then 0 else let shift = pow2 (bits t) in let tt = Seq.slice b 1 len in let n' = nat_from_intseq_le_ #t #l tt in let l = v (Seq.index b 0) in Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t); let n = l + shift * n' in n let nat_from_intseq_le = nat_from_intseq_le_ #set-options "--max_fuel 1" val nat_to_intseq_be_: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> n:nat{n < pow2 (bits t * len)} -> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len) let rec nat_to_intseq_be_ #t #l len n = if len = 0 then Seq.empty else let len' = len - 1 in let tt = uint #t #l (n % modulus t) in let n' = n / modulus t in assert (modulus t = pow2 (bits t)); FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t); let b' = nat_to_intseq_be_ len' n' in let b = Seq.append b' (create 1 tt) in Seq.append_slices b' (create 1 tt); b let nat_to_intseq_be = nat_to_intseq_be_ val nat_to_intseq_le_: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> n:nat{n < pow2 (bits t * len)} -> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len) let rec nat_to_intseq_le_ #t #l len n = if len = 0 then Seq.empty else let len' = len - 1 in let tt = uint #t #l (n % modulus t) in let n' = n / modulus t in assert (modulus t = pow2 (bits t)); FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t); let b' = nat_to_intseq_le_ len' n' in let b = Seq.append (create 1 tt) b' in Seq.append_slices (create 1 tt) b'; b let nat_to_intseq_le = nat_to_intseq_le_ /// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using /// fuel > 0 below, which makes the proof more expensive val head_nat_to_intseq_le: #t:inttype{unsigned t} -> #l:secrecy_level -> len:size_pos -> n:nat{n < pow2 (bits t * len)} -> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 == uint #t #l (n % pow2 (bits t))) let head_nat_to_intseq_le #t #l len n = () val nat_to_intseq_le_pos: #t:inttype{unsigned t} -> #l:secrecy_level -> len:size_pos -> n:nat{n < pow2 (bits t * len)} -> Lemma (nat_to_intseq_le #t #l len n == Seq.append (create 1 (uint #t #l (n % modulus t))) (nat_to_intseq_le (len - 1) (n / modulus t))) let nat_to_intseq_le_pos #t #l len n = () val head_nat_to_intseq_be: #t:inttype{unsigned t} -> #l:secrecy_level -> len:size_pos -> n:nat{n < pow2 (bits t * len)} -> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) == uint #t #l (n % pow2 (bits t))) let head_nat_to_intseq_be #t #l len n = () val nat_to_intseq_be_pos: #t:inttype{unsigned t} -> #l:secrecy_level -> len:size_pos -> n:nat{n < pow2 (bits t * len)} -> Lemma (nat_to_intseq_be #t #l len n == Seq.append (nat_to_intseq_be (len - 1) (n / modulus t)) (create 1 (uint #t #l (n % modulus t)))) let nat_to_intseq_be_pos #t #l len n = () #push-options "--fuel 0 --ifuel 0" let rec index_nat_to_intseq_le #t #l len n i = if i = 0 then if len = 0 then () else head_nat_to_intseq_le #t #l len n else begin FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t); calc (==) { Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1); == { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) } uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t); == { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) } uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t); == { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) } uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t); == { Math.Lemmas.distributivity_add_right (bits t) i (-1) } uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t); == { } uint (n / pow2 (bits t * i) % pow2 (bits t)); }; nat_to_intseq_le_pos #t #l len n end let rec index_nat_to_intseq_be #t #l len n i = if i = 0 then if len = 0 then () else head_nat_to_intseq_be #t #l len n else begin let len' = len - 1 in let i' = i - 1 in let n' = n / pow2 (bits t) in FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t); calc (==) { Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1); == {index_nat_to_intseq_be #t #l len' n' i'} uint (n' / pow2 (bits t * i') % pow2 (bits t)); == {} uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t)); == {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))} uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t)); == {Math.Lemmas.pow2_plus (bits t) (bits t * i')} uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t)); == {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)} uint (n / (pow2 (bits t * i)) % pow2 (bits t)); }; nat_to_intseq_be_pos #t #l len n end let uint_to_bytes_le #t #l n = nat_to_bytes_le (numbytes t) (v n) let index_uint_to_bytes_le #t #l u = Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u)) let uint_to_bytes_be #t #l n = nat_to_bytes_be (numbytes t) (v n) let index_uint_to_bytes_be #t #l u = Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u)) let uint_from_bytes_le #t #l b = let n = nat_from_intseq_le #U8 b in uint #t #l n let uint_from_bytes_be #t #l b = let n = nat_from_intseq_be #U8 b in uint #t #l n val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32} -> lseq (int_t t l) len -> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t)) let uints_to_bytes_le_inner #t #l #len b i () = let open Lib.Sequence in (), uint_to_bytes_le #t #l b.[i] let uints_to_bytes_le #t #l #len ul = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (uints_to_bytes_le_inner #t #l #len ul) () in o (* Could also be written more simply as: let uints_to_bytes_le #t #l #len ul = createi (len * numbytes t) (fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in s.[i % numbytes t]) *) let index_uints_to_bytes_le #t #l #len ul i = index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32} -> lseq (int_t t l) len -> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t)) let uints_to_bytes_be_inner #t #l #len b i () = let open Lib.Sequence in (), uint_to_bytes_be #t #l b.[i] let uints_to_bytes_be #t #l #len ul = let a_spec (i:nat{i <= len}) = unit in let _, o = generate_blocks (numbytes t) len len a_spec (uints_to_bytes_be_inner #t #l #len ul) () in o let index_uints_to_bytes_be #t #l #len ul i = index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i let uints_from_bytes_le #t #l #len b = Lib.Sequence.createi #(int_t t l) len (fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))) let index_uints_from_bytes_le #t #l #len b i = () let uints_from_bytes_be #t #l #len b = Lib.Sequence.createi #(int_t t l) len (fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))) let index_uints_from_bytes_be #t #l #len b i = () let uint_at_index_le #t #l #len b i = uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)) let uint_at_index_be #t #l #len b i = uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)) #push-options "--max_fuel 1" val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} -> Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b) let nat_from_intseq_slice_lemma_aux len a b c i = FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b); FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b; FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c val nat_from_intseq_le_slice_lemma_: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat -> b:lseq (int_t t l) len -> i:nat{i <= len} -> Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len)) let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i = if len = 0 then () else begin if i = 0 then () else begin let b1 = slice b 0 i in nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1); assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]); nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1); assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len)); nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i end end let nat_from_intseq_le_lemma0 #t #l b = () let nat_from_intseq_le_slice_lemma #t #l #len b i = nat_from_intseq_le_slice_lemma_ b i val nat_from_intseq_be_slice_lemma_: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat -> b:lseq (int_t t l) len -> i:nat{i <= len} -> Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i))) (decreases (len - i)) let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i = if len = 0 then () else begin if i = len then () else begin let b1 = slice b i len in nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1; assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]); nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1); assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1))); nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i) end end let nat_from_intseq_be_lemma0 #t #l b = () #pop-options let nat_from_intseq_be_slice_lemma #t #l #len b i = nat_from_intseq_be_slice_lemma_ #t #l #len b i val uints_from_bytes_le_slice_lemma_lp: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32} -> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} -> Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k = let r = slice (uints_from_bytes_le #t #l #len b) i j in index_uints_from_bytes_le #t #l #len b (i + k); assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) val uints_from_bytes_le_slice_lemma_rp: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32} -> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} -> Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k = let b1 = slice b (i * numbytes t) (j * numbytes t) in let r = uints_from_bytes_le #t #l #(j-i) b1 in index_uints_from_bytes_le #t #l #(j-i) b1 k; assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t))); assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) let uints_from_bytes_le_slice_lemma #t #l #len b i j = FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j); FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j); eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) #push-options "--max_fuel 1" val uints_from_bytes_le_nat_lemma_aux: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32} -> b:lbytes_l l (len * numbytes t) -> Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))) let uints_from_bytes_le_nat_lemma_aux #t #l #len b = let r = uints_from_bytes_le #t #l #len b in assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len)); assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]); uints_from_bytes_le_slice_lemma #t #l #len b 1 len; assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) val uints_from_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32} -> b:lbytes_l l (len * numbytes t) -> Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b) let rec uints_from_bytes_le_nat_lemma_ #t #l #len b = if len = 0 then () else begin let b1 = slice b (numbytes t) (len * numbytes t) in nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t); assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1); uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1; assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1); uints_from_bytes_le_nat_lemma_aux #t #l #len b end let uints_from_bytes_le_nat_lemma #t #l #len b = uints_from_bytes_le_nat_lemma_ #t #l #len b val uints_from_bytes_be_slice_lemma_lp: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32} -> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} -> Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k = let r = slice (uints_from_bytes_le #t #l #len b) i j in index_uints_from_bytes_be #t #l #len b (i + k); assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) val uints_from_bytes_be_slice_lemma_rp: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32} -> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} -> Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k = let b1 = slice b (i * numbytes t) (j * numbytes t) in let r = uints_from_bytes_be #t #l #(j-i) b1 in index_uints_from_bytes_be #t #l #(j-i) b1 k; assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t))); assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32} -> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) let uints_from_bytes_be_slice_lemma #t #l #len b i j = FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j); FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j); eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) val uints_from_bytes_be_nat_lemma_aux: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32} -> b:lbytes_l l (len * numbytes t) -> Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t))) let uints_from_bytes_be_nat_lemma_aux #t #l #len b = let r = uints_from_bytes_be #t #l #len b in uints_from_bytes_be_slice_lemma #t #l #len b 1 len; nat_from_intseq_be_slice_lemma r 1; assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0]) val uints_from_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32} -> b:lbytes_l l (len * numbytes t) -> Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b) let rec uints_from_bytes_be_nat_lemma_ #t #l #len b = if len = 0 then () else begin uints_from_bytes_be_nat_lemma_aux #t #l #len b; nat_from_intseq_be_slice_lemma_ b (numbytes t); uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t)) end let uints_from_bytes_be_nat_lemma #t #l #len b = uints_from_bytes_be_nat_lemma_ #t #l #len b #pop-options val index_uints_to_bytes_le_aux: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> len:nat{len * numbytes t < pow2 32} -> n:nat{n < pow2 (bits t * len)} -> i:nat{i < len * numbytes t} -> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in Seq.index (uints_to_bytes_le #t #l #len s) i == Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) let index_uints_to_bytes_le_aux #t #l len n i = let open Lib.Sequence in let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len s) i val index_uints_to_bytes_be_aux: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> len:nat{len * numbytes t < pow2 32} -> n:nat{n < pow2 (bits t * len)} -> i:nat{i < len * numbytes t} -> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in Seq.index (uints_to_bytes_be #t #l #len s) i == Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) let index_uints_to_bytes_be_aux #t #l len n i = let open Lib.Sequence in let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len s) i val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma ((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r) let modulo_pow2_prop r a b c = calc (==) { ((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r; == { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) } ((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r; == { Math.Lemmas.lemma_mul_sub_distr r b c } ((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r; == { Math.Lemmas.pow2_plus r (r * (b - c) - r) } (a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r; == { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))} (a / pow2 (r * c)) % pow2 r; } val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma (let m = numbytes t in n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 == n / pow2 (8 * i) % pow2 8)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Lib.ByteSequence.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Lib.IntTypes.inttype{~(U1? t)} -> n: Prims.nat -> i: Prims.nat -> FStar.Pervasives.Lemma (ensures (let m = Lib.IntTypes.numbytes t in n / Prims.pow2 (Lib.IntTypes.bits t * (i / m)) % Prims.pow2 (Lib.IntTypes.bits t) / Prims.pow2 (8 * (i % m)) % Prims.pow2 8 == n / Prims.pow2 (8 * i) % Prims.pow2 8))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.IntTypes.inttype", "Prims.l_not", "Prims.b2t", "Lib.IntTypes.uu___is_U1", "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Prims.op_Division", "Prims.pow2", "FStar.Mul.op_Star", "Lib.IntTypes.bits", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Subtraction", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims._assert", "Prims.squash", "FStar.Math.Lemmas.euclidean_division_definition", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.distributivity_sub_right", "Lib.ByteSequence.modulo_pow2_prop", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.pow2_plus", "Lib.IntTypes.numbytes" ]
[]
false
false
true
false
false
let some_arithmetic t n i =
let m = numbytes t in calc ( == ) { n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8; ( == ) { assert (bits t == 8 * m) } n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8; ( == ) { (FStar.Math.Lemmas.paren_mul_right 8 m (i / m); FStar.Math.Lemmas.euclidean_division_definition i m) } n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8; ( == ) { Math.Lemmas.distributivity_sub_right 8 i (i % m) } n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8; ( == ) { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) } (n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8; ( == ) { Math.Lemmas.division_multiplication_lemma n (pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) } (n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8; ( == ) { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) } (n / pow2 (8 * i)) % pow2 8; }
false
Trace.fst
Trace.cutlast
val cutlast (l: list 'a {length l > 0}) : list 'a * 'a
val cutlast (l: list 'a {length l > 0}) : list 'a * 'a
let rec cutlast (l : list 'a{length l > 0}) : list 'a * 'a = match l with | [x] -> [], x | x::xs -> let ys, y = cutlast xs in x::ys, y
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 121, "start_col": 0, "start_line": 118 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs) let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns) let cons_fst (x : 'a) (p : list 'a * 'b) : list 'a * 'b = let (y, z) = p in (x :: y, z) let cons_fst_qn = ["Trace"; "cons_fst"] let term_is_fv hd nm : Tac bool = match inspect hd with | Tv_FVar fv -> inspect_fv fv = inspect_fv nm | _ -> false noeq type ins_info = { orig_name : fv; ins_name : fv; args : (args : list term{length args <= 8}); trace_arg : term; } let rec instrument_body (ii : ins_info) (t : term) : Tac term = match inspect_unascribe t with // descend into matches | Tv_Match t ret_opt brs -> begin let brs' = map (ins_br ii) brs in pack (Tv_Match t ret_opt brs') end // descend into lets | Tv_Let r attrs b t1 t2 -> begin let t2' = instrument_body ii t2 in pack (Tv_Let r attrs b t1 t2') end | _ -> begin let hd, args = collect_app t in let argpack = mktuple_n ii.args in if term_is_fv hd ii.orig_name then begin // modify the tail call // turn `nm <b1,...,bn>` into `nm' (<a1,...,an>::tr) <b1,...,bn>` let f' = pack (Tv_FVar ii.ins_name) in mk_app f' (args @ [mk_cons argpack ii.trace_arg, Q_Explicit]) end else begin // not a tail call, record the current set of args and be done mkpair (mk_cons argpack ii.trace_arg) t end end and ins_br (ii : ins_info) (br : branch) : Tac branch = let (p, t) = br in let t' = instrument_body ii t in (p, t')
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list 'a {FStar.List.Tot.Base.length l > 0} -> Prims.list 'a * 'a
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.b2t", "Prims.op_GreaterThan", "FStar.List.Tot.Base.length", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "Trace.cutlast" ]
[ "recursion" ]
false
false
false
false
false
let rec cutlast (l: list 'a {length l > 0}) : list 'a * 'a =
match l with | [x] -> [], x | x :: xs -> let ys, y = cutlast xs in x :: ys, y
false
Trace.fst
Trace.fall
val fall (n: mynat) : Tot mynat
val fall (n: mynat) : Tot mynat
let rec fall (n : mynat) : Tot mynat = match n with | Z -> Z | S n -> fall n
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 19, "end_line": 158, "start_col": 0, "start_line": 155 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs) let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns) let cons_fst (x : 'a) (p : list 'a * 'b) : list 'a * 'b = let (y, z) = p in (x :: y, z) let cons_fst_qn = ["Trace"; "cons_fst"] let term_is_fv hd nm : Tac bool = match inspect hd with | Tv_FVar fv -> inspect_fv fv = inspect_fv nm | _ -> false noeq type ins_info = { orig_name : fv; ins_name : fv; args : (args : list term{length args <= 8}); trace_arg : term; } let rec instrument_body (ii : ins_info) (t : term) : Tac term = match inspect_unascribe t with // descend into matches | Tv_Match t ret_opt brs -> begin let brs' = map (ins_br ii) brs in pack (Tv_Match t ret_opt brs') end // descend into lets | Tv_Let r attrs b t1 t2 -> begin let t2' = instrument_body ii t2 in pack (Tv_Let r attrs b t1 t2') end | _ -> begin let hd, args = collect_app t in let argpack = mktuple_n ii.args in if term_is_fv hd ii.orig_name then begin // modify the tail call // turn `nm <b1,...,bn>` into `nm' (<a1,...,an>::tr) <b1,...,bn>` let f' = pack (Tv_FVar ii.ins_name) in mk_app f' (args @ [mk_cons argpack ii.trace_arg, Q_Explicit]) end else begin // not a tail call, record the current set of args and be done mkpair (mk_cons argpack ii.trace_arg) t end end and ins_br (ii : ins_info) (br : branch) : Tac branch = let (p, t) = br in let t' = instrument_body ii t in (p, t') let rec cutlast (l : list 'a{length l > 0}) : list 'a * 'a = match l with | [x] -> [], x | x::xs -> let ys, y = cutlast xs in x::ys, y let instrument (f : 'a) : Tac unit = let t = quote f in // name let n = match inspect t with | Tv_FVar fv -> fv | _ -> fail "Not a top-level" in let n' = tick n in let all_args = intros () in if length all_args = 0 then fail "Function has no arguments?"; let real, trace_arg = cutlast all_args in let real = map (fun b -> pack (Tv_Var (binding_to_namedv b))) real in if length real > 8 then fail "Too many arguments to instrument function"; assert (length real <= 8); let ii = { orig_name = n; ins_name = n'; args = real; trace_arg = pack (Tv_Var (binding_to_namedv trace_arg)) } in (* Apply the function to the arguments and unfold it. This will only * unfold it once, so recursive calls are present *) let t = norm_term [delta; zeta] (mk_e_app t ii.args) in dup (); let t = instrument_body ii t in (* dump ""; *) let _ = focus (fun () -> exact_guard t; repeat smt) in norm []; trefl ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Trace.mynat -> Trace.mynat
Prims.Tot
[ "total" ]
[]
[ "Trace.mynat", "Trace.Z", "Trace.fall" ]
[ "recursion" ]
false
false
false
true
false
let rec fall (n: mynat) : Tot mynat =
match n with | Z -> Z | S n -> fall n
false
FStar.UInt.fst
FStar.UInt.lemma_lognot_value_mod
val lemma_lognot_value_mod: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (lognot a = pow2 n - a - 1)) (decreases n)
val lemma_lognot_value_mod: #n:pos -> a:uint_t n -> Lemma (requires True) (ensures (lognot a = pow2 n - a - 1)) (decreases n)
let rec lemma_lognot_value_mod #n a = if n = 1 then () else begin assert (-pow2 n <= (-(a+1)) && -(a+1) < 0); let av = to_vec a in let hd = from_vec #1 (Seq.slice (to_vec a) 0 1) in let tl = from_vec #(n-1) (Seq.slice (to_vec a) 1 n) in assert (hd = 0 || hd = 1); let hdpow = op_Multiply hd (pow2 (n-1)) in from_vec_propriety (to_vec a) 1; assert (from_vec av = (op_Multiply (from_vec #1 (Seq.slice av 0 1)) (pow2 (n-1))) + (from_vec #(n-1) (Seq.slice av 1 n))); let ntl = lognot tl in lemma_lognot_value_mod #(n-1) tl; assert (ntl = pow2 (n-1) - tl - 1); assert (a = hdpow + tl); assert (lognot a = lognot #n (hdpow + tl)); assert (tl < pow2 (n-1)); if hdpow = 0 then begin assert (lognot a = lognot #n tl); lemma_lognot_zero_ext #(n-1) tl; lemma_zero_extend tl end else begin lemma_lognot_one_ext #(n-1) tl; lemma_one_extend tl end end
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 550, "start_col": 0, "start_line": 515 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p let lemma_zero_extend #n a = let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = a) #push-options "--z3rlimit 40" let lemma_one_extend #n a = let hd1 = Seq.create 1 true in let av = to_vec a in let eav = Seq.append hd1 av in let r = one_extend a in append_lemma #1 #n hd1 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = pow2 n + a) #pop-options #push-options "--fuel 1 --ifuel 0 --z3rlimit 40" let lemma_lognot_zero_ext #n a = let lhs = lognot #(n+1) a in let rhs = pow2 n + (lognot #n a) in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot a) in let eav = Seq.append hd0 av in append_lemma #1 #n hd0 av; assert (from_vec #(n+1) eav = op_Multiply (from_vec #1 hd0) (pow2 n) + from_vec av); assert (op_Multiply (from_vec #1 hd0) (pow2 n) = 0); assert (from_vec #(n+1) eav = from_vec #n av); assert (from_vec #(n+1) eav < pow2 n); let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd1 nav in append_lemma #1 #n hd1 nav; assert (from_vec #(n+1) neav_l = (op_Multiply (from_vec #1 hd1) (pow2 n)) + (from_vec #n nav)); assert (op_Multiply (from_vec #1 hd1) (pow2 n) = pow2 n); assert (from_vec #(n+1) neav_l = pow2 n + from_vec #n nav); assert (pow2 n + from_vec #n nav = rhs); assert (forall (i:pos{i < n+1}). Seq.index neav_r i = Seq.index neav_l i); Seq.Base.lemma_eq_intro neav_l neav_r; assert (neav_l = neav_r); assert (from_vec neav_r = lhs) let lemma_lognot_one_ext #n a = let lhs = lognot #(n+1) (one_extend a) in let rhs = lognot #n a in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot #n a) in let eav = Seq.append hd1 av in append_lemma #1 #n hd1 av; append_lemma #1 #n hd0 nav; let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd0 nav in Seq.Base.lemma_eq_elim neav_l neav_r
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 60, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> FStar.Pervasives.Lemma (ensures FStar.UInt.lognot a = Prims.pow2 n - a - 1) (decreases n)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.op_Equality", "Prims.int", "Prims.bool", "FStar.UInt.lemma_zero_extend", "Prims.op_Subtraction", "Prims.unit", "FStar.UInt.lemma_lognot_zero_ext", "Prims._assert", "Prims.b2t", "FStar.UInt.lognot", "FStar.UInt.lemma_one_extend", "FStar.UInt.lemma_lognot_one_ext", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Addition", "FStar.UInt.lemma_lognot_value_mod", "FStar.UInt.from_vec", "Prims.op_Multiply", "FStar.Seq.Base.slice", "FStar.UInt.from_vec_propriety", "FStar.UInt.to_vec", "Prims.op_BarBar", "FStar.BitVector.bv_t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_Minus" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_lognot_value_mod #n a =
if n = 1 then () else (assert (- pow2 n <= (- (a + 1)) && - (a + 1) < 0); let av = to_vec a in let hd = from_vec #1 (Seq.slice (to_vec a) 0 1) in let tl = from_vec #(n - 1) (Seq.slice (to_vec a) 1 n) in assert (hd = 0 || hd = 1); let hdpow = op_Multiply hd (pow2 (n - 1)) in from_vec_propriety (to_vec a) 1; assert (from_vec av = (op_Multiply (from_vec #1 (Seq.slice av 0 1)) (pow2 (n - 1))) + (from_vec #(n - 1) (Seq.slice av 1 n))); let ntl = lognot tl in lemma_lognot_value_mod #(n - 1) tl; assert (ntl = pow2 (n - 1) - tl - 1); assert (a = hdpow + tl); assert (lognot a = lognot #n (hdpow + tl)); assert (tl < pow2 (n - 1)); if hdpow = 0 then (assert (lognot a = lognot #n tl); lemma_lognot_zero_ext #(n - 1) tl; lemma_zero_extend tl) else (lemma_lognot_one_ext #(n - 1) tl; lemma_one_extend tl))
false
FStar.UInt.fst
FStar.UInt.lemma_lognot_value_zero
val lemma_lognot_value_zero: #n:pos -> a:uint_t n{a = 0} -> Lemma (lognot a = sub_mod (sub_mod 0 a) 1)
val lemma_lognot_value_zero: #n:pos -> a:uint_t n{a = 0} -> Lemma (lognot a = sub_mod (sub_mod 0 a) 1)
let lemma_lognot_value_zero #n a = let p = pow2 n in calc (==) { sub_mod (sub_mod 0 a) 1; == { } sub_mod ((0 - a) % p) 1; == { } ((0 - a) % p - 1) % p; == { } (0 % p - 1) % p; == { modulo_lemma 0 p } (0 - 1) % p; == { lemma_mod_sub_0 p } p - 1; == { } p - 0 - 1; == { lemma_lognot_value_mod a } lognot a; }
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 571, "start_col": 0, "start_line": 553 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1) #push-options "--z3rlimit 50" let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s) #pop-options let shift_right_value_lemma #n a s = if s >= n then shift_right_value_aux_1 #n a s else if s = 0 then shift_right_value_aux_2 #n a else shift_right_value_aux_3 #n a s let lemma_msb_pow2 #n a = if n = 1 then () else from_vec_propriety (to_vec a) 1 val plus_one_mod : p:pos -> a:nat -> Lemma (requires (a < p /\ ((a + 1) % p == 0))) (ensures (a == p - 1)) let plus_one_mod p a = () let lemma_minus_zero #n a = if minus a = 0 then begin plus_one_mod (pow2 n) (lognot a); lognot_self a; logxor_self (ones n); logxor_lemma_2 #n (ones n) end #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let lemma_msb_gte #n a b = from_vec_propriety (to_vec a) 1; from_vec_propriety (to_vec b) 1 #pop-options (* Lemmas toward showing ~n + 1 = -a *) // #set-options "--initial_fuel 1 --max_fuel 1 --initial_ifuel 1 --max_ifuel 1" #push-options "--z3rlimit 80" let lemma_uint_mod #n a = () #pop-options let lemma_add_sub_cancel #n a b = let ab = (a-b) % pow2 n in let abb = (ab + b) % pow2 n in let ab_mod = sub_mod a b in let abb_mod = add_mod ab b in let p = pow2 n in lemma_uint_mod a; assert (add_mod (sub_mod a b) b = add_mod ab_mod b); assert (add_mod ab_mod b = (ab_mod + b) % p); assert (add_mod ab_mod b = ((a-b) % p + b) % p); FStar.Math.Lemmas.lemma_mod_plus_distr_l (a-b) b p; assert (((a-b) + b) % p = (((a-b) % p) + b) % p); assert (a % p = (((a-b) % p) + b) % p) let lemma_mod_sub_distr_l a b p = let q = (a - (a % p)) / p in FStar.Math.Lemmas.lemma_mod_spec2 a p; FStar.Math.Lemmas.lemma_mod_plus (a % p - b) q p let lemma_sub_add_cancel #n a b = let ab = (a+b) % pow2 n in let abb = (ab - b) % pow2 n in let ab_mod = add_mod a b in let abb_mod = sub_mod ab b in let p = pow2 n in lemma_uint_mod a; lemma_mod_sub_distr_l (a+b) b p let lemma_zero_extend #n a = let hd0 = Seq.create 1 false in let av = to_vec a in let eav = Seq.append hd0 av in let r = zero_extend a in append_lemma #1 #n hd0 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = a) #push-options "--z3rlimit 40" let lemma_one_extend #n a = let hd1 = Seq.create 1 true in let av = to_vec a in let eav = Seq.append hd1 av in let r = one_extend a in append_lemma #1 #n hd1 av; assert (r = from_vec eav); from_vec_propriety #(n+1) eav 1; assert (r = pow2 n + a) #pop-options #push-options "--fuel 1 --ifuel 0 --z3rlimit 40" let lemma_lognot_zero_ext #n a = let lhs = lognot #(n+1) a in let rhs = pow2 n + (lognot #n a) in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot a) in let eav = Seq.append hd0 av in append_lemma #1 #n hd0 av; assert (from_vec #(n+1) eav = op_Multiply (from_vec #1 hd0) (pow2 n) + from_vec av); assert (op_Multiply (from_vec #1 hd0) (pow2 n) = 0); assert (from_vec #(n+1) eav = from_vec #n av); assert (from_vec #(n+1) eav < pow2 n); let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd1 nav in append_lemma #1 #n hd1 nav; assert (from_vec #(n+1) neav_l = (op_Multiply (from_vec #1 hd1) (pow2 n)) + (from_vec #n nav)); assert (op_Multiply (from_vec #1 hd1) (pow2 n) = pow2 n); assert (from_vec #(n+1) neav_l = pow2 n + from_vec #n nav); assert (pow2 n + from_vec #n nav = rhs); assert (forall (i:pos{i < n+1}). Seq.index neav_r i = Seq.index neav_l i); Seq.Base.lemma_eq_intro neav_l neav_r; assert (neav_l = neav_r); assert (from_vec neav_r = lhs) let lemma_lognot_one_ext #n a = let lhs = lognot #(n+1) (one_extend a) in let rhs = lognot #n a in let av = to_vec a in assert (Seq.length av = n); let hd0 = Seq.create 1 false in let hd1 = Seq.create 1 true in let nav = to_vec (lognot #n a) in let eav = Seq.append hd1 av in append_lemma #1 #n hd1 av; append_lemma #1 #n hd0 nav; let nav = BitVector.lognot_vec #n av in let neav_r = BitVector.lognot_vec #(n+1) eav in let neav_l = Seq.append hd0 nav in Seq.Base.lemma_eq_elim neav_l neav_r #push-options "--z3rlimit 60" let rec lemma_lognot_value_mod #n a = if n = 1 then () else begin assert (-pow2 n <= (-(a+1)) && -(a+1) < 0); let av = to_vec a in let hd = from_vec #1 (Seq.slice (to_vec a) 0 1) in let tl = from_vec #(n-1) (Seq.slice (to_vec a) 1 n) in assert (hd = 0 || hd = 1); let hdpow = op_Multiply hd (pow2 (n-1)) in from_vec_propriety (to_vec a) 1; assert (from_vec av = (op_Multiply (from_vec #1 (Seq.slice av 0 1)) (pow2 (n-1))) + (from_vec #(n-1) (Seq.slice av 1 n))); let ntl = lognot tl in lemma_lognot_value_mod #(n-1) tl; assert (ntl = pow2 (n-1) - tl - 1); assert (a = hdpow + tl); assert (lognot a = lognot #n (hdpow + tl)); assert (tl < pow2 (n-1)); if hdpow = 0 then begin assert (lognot a = lognot #n tl); lemma_lognot_zero_ext #(n-1) tl; lemma_zero_extend tl end else begin lemma_lognot_one_ext #(n-1) tl; lemma_one_extend tl end end #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n {a = 0} -> FStar.Pervasives.Lemma (ensures FStar.UInt.lognot a = FStar.UInt.sub_mod (FStar.UInt.sub_mod 0 a) 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.UInt.sub_mod", "FStar.UInt.lognot", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Subtraction", "Prims.op_Modulus", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.modulo_lemma", "FStar.Math.Lemmas.lemma_mod_sub_0", "FStar.UInt.lemma_lognot_value_mod", "Prims.pow2" ]
[]
false
false
true
false
false
let lemma_lognot_value_zero #n a =
let p = pow2 n in calc ( == ) { sub_mod (sub_mod 0 a) 1; ( == ) { () } sub_mod ((0 - a) % p) 1; ( == ) { () } ((0 - a) % p - 1) % p; ( == ) { () } (0 % p - 1) % p; ( == ) { modulo_lemma 0 p } (0 - 1) % p; ( == ) { lemma_mod_sub_0 p } p - 1; ( == ) { () } p - 0 - 1; ( == ) { lemma_lognot_value_mod a } lognot a; }
false
Trace.fst
Trace.instrument
val instrument (f: 'a) : Tac unit
val instrument (f: 'a) : Tac unit
let instrument (f : 'a) : Tac unit = let t = quote f in // name let n = match inspect t with | Tv_FVar fv -> fv | _ -> fail "Not a top-level" in let n' = tick n in let all_args = intros () in if length all_args = 0 then fail "Function has no arguments?"; let real, trace_arg = cutlast all_args in let real = map (fun b -> pack (Tv_Var (binding_to_namedv b))) real in if length real > 8 then fail "Too many arguments to instrument function"; assert (length real <= 8); let ii = { orig_name = n; ins_name = n'; args = real; trace_arg = pack (Tv_Var (binding_to_namedv trace_arg)) } in (* Apply the function to the arguments and unfold it. This will only * unfold it once, so recursive calls are present *) let t = norm_term [delta; zeta] (mk_e_app t ii.args) in dup (); let t = instrument_body ii t in (* dump ""; *) let _ = focus (fun () -> exact_guard t; repeat smt) in norm []; trefl ()
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 12, "end_line": 153, "start_col": 0, "start_line": 123 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs) let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns) let cons_fst (x : 'a) (p : list 'a * 'b) : list 'a * 'b = let (y, z) = p in (x :: y, z) let cons_fst_qn = ["Trace"; "cons_fst"] let term_is_fv hd nm : Tac bool = match inspect hd with | Tv_FVar fv -> inspect_fv fv = inspect_fv nm | _ -> false noeq type ins_info = { orig_name : fv; ins_name : fv; args : (args : list term{length args <= 8}); trace_arg : term; } let rec instrument_body (ii : ins_info) (t : term) : Tac term = match inspect_unascribe t with // descend into matches | Tv_Match t ret_opt brs -> begin let brs' = map (ins_br ii) brs in pack (Tv_Match t ret_opt brs') end // descend into lets | Tv_Let r attrs b t1 t2 -> begin let t2' = instrument_body ii t2 in pack (Tv_Let r attrs b t1 t2') end | _ -> begin let hd, args = collect_app t in let argpack = mktuple_n ii.args in if term_is_fv hd ii.orig_name then begin // modify the tail call // turn `nm <b1,...,bn>` into `nm' (<a1,...,an>::tr) <b1,...,bn>` let f' = pack (Tv_FVar ii.ins_name) in mk_app f' (args @ [mk_cons argpack ii.trace_arg, Q_Explicit]) end else begin // not a tail call, record the current set of args and be done mkpair (mk_cons argpack ii.trace_arg) t end end and ins_br (ii : ins_info) (br : branch) : Tac branch = let (p, t) = br in let t' = instrument_body ii t in (p, t') let rec cutlast (l : list 'a{length l > 0}) : list 'a * 'a = match l with | [x] -> [], x | x::xs -> let ys, y = cutlast xs in x::ys, y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: 'a -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.list", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.trefl", "Prims.unit", "FStar.Stubs.Tactics.V2.Builtins.norm", "Prims.Nil", "FStar.Pervasives.norm_step", "FStar.Tactics.V2.Derived.focus", "FStar.Tactics.V2.Derived.repeat", "FStar.Tactics.V2.Derived.smt", "FStar.Tactics.V2.Derived.exact_guard", "FStar.Tactics.NamedView.term", "Trace.instrument_body", "FStar.Stubs.Tactics.V2.Builtins.dup", "FStar.Tactics.V2.Derived.norm_term", "Prims.Cons", "FStar.Pervasives.delta", "FStar.Pervasives.zeta", "FStar.Reflection.V2.Derived.mk_e_app", "Trace.__proj__Mkins_info__item__args", "Trace.ins_info", "Trace.Mkins_info", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Var", "FStar.Tactics.V2.SyntaxCoercions.binding_to_namedv", "Prims._assert", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.List.Tot.Base.length", "Prims.op_GreaterThan", "FStar.Tactics.V2.Derived.fail", "Prims.bool", "FStar.Tactics.Util.map", "FStar.Pervasives.Native.tuple2", "Trace.cutlast", "Prims.op_Equality", "Prims.int", "FStar.Tactics.V2.Derived.intros", "FStar.Stubs.Reflection.Types.fv", "Trace.tick", "FStar.Tactics.NamedView.named_term_view", "FStar.Tactics.NamedView.inspect", "FStar.Stubs.Reflection.Types.term" ]
[]
false
true
false
false
false
let instrument (f: 'a) : Tac unit =
let t = quote f in let n = match inspect t with | Tv_FVar fv -> fv | _ -> fail "Not a top-level" in let n' = tick n in let all_args = intros () in if length all_args = 0 then fail "Function has no arguments?"; let real, trace_arg = cutlast all_args in let real = map (fun b -> pack (Tv_Var (binding_to_namedv b))) real in if length real > 8 then fail "Too many arguments to instrument function"; assert (length real <= 8); let ii = { orig_name = n; ins_name = n'; args = real; trace_arg = pack (Tv_Var (binding_to_namedv trace_arg)) } in let t = norm_term [delta; zeta] (mk_e_app t ii.args) in dup (); let t = instrument_body ii t in let _ = focus (fun () -> exact_guard t; repeat smt) in norm []; trefl ()
false
Trace.fst
Trace.fact_aux
val fact_aux (n acc: nat) : Tot nat
val fact_aux (n acc: nat) : Tot nat
let rec fact_aux (n acc : nat) : Tot nat = if n = 0 then acc else let acc' = acc `op_Multiply` n in fact_aux (n - 1) acc'
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 177, "start_col": 0, "start_line": 174 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs) let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns) let cons_fst (x : 'a) (p : list 'a * 'b) : list 'a * 'b = let (y, z) = p in (x :: y, z) let cons_fst_qn = ["Trace"; "cons_fst"] let term_is_fv hd nm : Tac bool = match inspect hd with | Tv_FVar fv -> inspect_fv fv = inspect_fv nm | _ -> false noeq type ins_info = { orig_name : fv; ins_name : fv; args : (args : list term{length args <= 8}); trace_arg : term; } let rec instrument_body (ii : ins_info) (t : term) : Tac term = match inspect_unascribe t with // descend into matches | Tv_Match t ret_opt brs -> begin let brs' = map (ins_br ii) brs in pack (Tv_Match t ret_opt brs') end // descend into lets | Tv_Let r attrs b t1 t2 -> begin let t2' = instrument_body ii t2 in pack (Tv_Let r attrs b t1 t2') end | _ -> begin let hd, args = collect_app t in let argpack = mktuple_n ii.args in if term_is_fv hd ii.orig_name then begin // modify the tail call // turn `nm <b1,...,bn>` into `nm' (<a1,...,an>::tr) <b1,...,bn>` let f' = pack (Tv_FVar ii.ins_name) in mk_app f' (args @ [mk_cons argpack ii.trace_arg, Q_Explicit]) end else begin // not a tail call, record the current set of args and be done mkpair (mk_cons argpack ii.trace_arg) t end end and ins_br (ii : ins_info) (br : branch) : Tac branch = let (p, t) = br in let t' = instrument_body ii t in (p, t') let rec cutlast (l : list 'a{length l > 0}) : list 'a * 'a = match l with | [x] -> [], x | x::xs -> let ys, y = cutlast xs in x::ys, y let instrument (f : 'a) : Tac unit = let t = quote f in // name let n = match inspect t with | Tv_FVar fv -> fv | _ -> fail "Not a top-level" in let n' = tick n in let all_args = intros () in if length all_args = 0 then fail "Function has no arguments?"; let real, trace_arg = cutlast all_args in let real = map (fun b -> pack (Tv_Var (binding_to_namedv b))) real in if length real > 8 then fail "Too many arguments to instrument function"; assert (length real <= 8); let ii = { orig_name = n; ins_name = n'; args = real; trace_arg = pack (Tv_Var (binding_to_namedv trace_arg)) } in (* Apply the function to the arguments and unfold it. This will only * unfold it once, so recursive calls are present *) let t = norm_term [delta; zeta] (mk_e_app t ii.args) in dup (); let t = instrument_body ii t in (* dump ""; *) let _ = focus (fun () -> exact_guard t; repeat smt) in norm []; trefl () let rec fall (n : mynat) : Tot mynat = match n with | Z -> Z | S n -> fall n // Because of the way we're building this recursive function, its termination is unprovable. // So admit queries for now. #push-options "--admit_smt_queries true" let rec fall' (n : mynat) (l : list mynat) = // We need to annotate the result type.. which sucks. // But we could use a tactic later :) synth_by_tactic #(mynat -> list mynat -> (list mynat * mynat)) (fun () -> instrument fall) n l #pop-options let _ = assert (fall' (S (S (S Z))) [] == ([Z; S Z; S (S Z); S (S (S Z))], Z)) // Beware: the `let acc' = `... gets normalized in the tactic, // so we're not actually descending through it. Maybe we need a flag
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> acc: Prims.nat -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "Trace.fact_aux", "Prims.op_Subtraction", "Prims.op_Multiply" ]
[ "recursion" ]
false
false
false
true
false
let rec fact_aux (n acc: nat) : Tot nat =
if n = 0 then acc else let acc' = acc `op_Multiply` n in fact_aux (n - 1) acc'
false
Trace.fst
Trace.fact'
val fact' (n: nat) (tr: list nat) : Tot (list nat * int)
val fact' (n: nat) (tr: list nat) : Tot (list nat * int)
let rec fact' (n : nat) (tr : list nat) : Tot (list nat * int) = synth_by_tactic #(nat -> list nat -> (list nat * int)) (fun () -> instrument fact) n tr
{ "file_name": "examples/tactics/Trace.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 91, "end_line": 193, "start_col": 0, "start_line": 192 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Trace open FStar.List.Tot (* Instrumenting recursive functions to provide a trace of their calls *) (* TODO: update to make use of metaprogrammed let-recs and splicing *) (* Do not warn about recursive functions not used in their bodies: since we metaprogram them, the desugaring phase wrongly concludes they do not have to be recursive, but they do. *) #push-options "--warn_error -328" (* We take a function such as * * val fall : mynat -> Tot mynat * let rec fall (n : mynat) : Tot mynat = * match n with * | Z -> Z * | S n -> fall n * * and automatically instrument it to keep a trace of its recursive calls, * obtaining the definition: * * val fall' : mynat -> list mynat -> (list mynat) * mynat * let rec fall' n t = * match n with * | Z -> (n :: t, Z) * | S n -> fall' n (n :: t) * * The trace is taken as the last argument to (hopefully) have less impact over * termination criteria: having it first would need annotations, since the trace always * grows. * * We don't actually require all recursive calls to be in tail positions, but those * are the only ones we will detect and instrument. Note that the instrumented function * is also tail-recursive (and the trace is "backwards"). *) open FStar.Tactics.V2 type mynat = | Z | S of mynat let rec tick_last (ns:list string) = match ns with | [] -> [] | [x] -> [x ^ "'"] | x::xs -> x :: (tick_last xs) let tick (nm : fv) : fv = let ns = inspect_fv nm in pack_fv (tick_last ns) let cons_fst (x : 'a) (p : list 'a * 'b) : list 'a * 'b = let (y, z) = p in (x :: y, z) let cons_fst_qn = ["Trace"; "cons_fst"] let term_is_fv hd nm : Tac bool = match inspect hd with | Tv_FVar fv -> inspect_fv fv = inspect_fv nm | _ -> false noeq type ins_info = { orig_name : fv; ins_name : fv; args : (args : list term{length args <= 8}); trace_arg : term; } let rec instrument_body (ii : ins_info) (t : term) : Tac term = match inspect_unascribe t with // descend into matches | Tv_Match t ret_opt brs -> begin let brs' = map (ins_br ii) brs in pack (Tv_Match t ret_opt brs') end // descend into lets | Tv_Let r attrs b t1 t2 -> begin let t2' = instrument_body ii t2 in pack (Tv_Let r attrs b t1 t2') end | _ -> begin let hd, args = collect_app t in let argpack = mktuple_n ii.args in if term_is_fv hd ii.orig_name then begin // modify the tail call // turn `nm <b1,...,bn>` into `nm' (<a1,...,an>::tr) <b1,...,bn>` let f' = pack (Tv_FVar ii.ins_name) in mk_app f' (args @ [mk_cons argpack ii.trace_arg, Q_Explicit]) end else begin // not a tail call, record the current set of args and be done mkpair (mk_cons argpack ii.trace_arg) t end end and ins_br (ii : ins_info) (br : branch) : Tac branch = let (p, t) = br in let t' = instrument_body ii t in (p, t') let rec cutlast (l : list 'a{length l > 0}) : list 'a * 'a = match l with | [x] -> [], x | x::xs -> let ys, y = cutlast xs in x::ys, y let instrument (f : 'a) : Tac unit = let t = quote f in // name let n = match inspect t with | Tv_FVar fv -> fv | _ -> fail "Not a top-level" in let n' = tick n in let all_args = intros () in if length all_args = 0 then fail "Function has no arguments?"; let real, trace_arg = cutlast all_args in let real = map (fun b -> pack (Tv_Var (binding_to_namedv b))) real in if length real > 8 then fail "Too many arguments to instrument function"; assert (length real <= 8); let ii = { orig_name = n; ins_name = n'; args = real; trace_arg = pack (Tv_Var (binding_to_namedv trace_arg)) } in (* Apply the function to the arguments and unfold it. This will only * unfold it once, so recursive calls are present *) let t = norm_term [delta; zeta] (mk_e_app t ii.args) in dup (); let t = instrument_body ii t in (* dump ""; *) let _ = focus (fun () -> exact_guard t; repeat smt) in norm []; trefl () let rec fall (n : mynat) : Tot mynat = match n with | Z -> Z | S n -> fall n // Because of the way we're building this recursive function, its termination is unprovable. // So admit queries for now. #push-options "--admit_smt_queries true" let rec fall' (n : mynat) (l : list mynat) = // We need to annotate the result type.. which sucks. // But we could use a tactic later :) synth_by_tactic #(mynat -> list mynat -> (list mynat * mynat)) (fun () -> instrument fall) n l #pop-options let _ = assert (fall' (S (S (S Z))) [] == ([Z; S Z; S (S Z); S (S (S Z))], Z)) // Beware: the `let acc' = `... gets normalized in the tactic, // so we're not actually descending through it. Maybe we need a flag // to control the evaluation of lets. let rec fact_aux (n acc : nat) : Tot nat = if n = 0 then acc else let acc' = acc `op_Multiply` n in fact_aux (n - 1) acc' let fact (n : nat) : Tot nat = fact_aux n 1 #push-options "--admit_smt_queries true" let rec fact_aux' (n acc : nat) (tr : list (nat * nat)) : Tot (list (nat * nat) * nat) = synth_by_tactic #(nat -> nat -> list (nat * nat) -> (list (nat * nat) * nat)) (fun () -> instrument fact_aux) n acc tr #pop-options let _ = assert (fact_aux' 5 1 [] == ([(0, 120); (1, 120); (2, 60); (3, 20); (4, 5); (5, 1)], 120)) (* We can also instrument `fact`, but we won't get anything too * interesting as that's not the tail-recursive function *) #push-options "--admit_smt_queries true"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Trace.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> tr: Prims.list Prims.nat -> Prims.list Prims.nat * Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.list", "Prims.op_Equality", "Prims.int", "FStar.Pervasives.Native.Mktuple2", "Prims.Cons", "Prims.bool", "Trace.fact_aux", "Prims.op_Subtraction", "Prims.op_Multiply", "FStar.Pervasives.Native.tuple2" ]
[ "recursion" ]
false
false
false
true
false
let rec fact' (n: nat) (tr: list nat) : Tot (list nat * int) =
synth_by_tactic #(nat -> list nat -> (list nat * int)) (fun () -> instrument fact) n tr
false
Steel.ST.SeqMatch.fst
Steel.ST.SeqMatch.seq_list_match_cons_intro
val seq_list_match_cons_intro (#opened: _) (#t #t': Type) (a: t) (a': t') (c: Seq.seq t) (v: list t') (item_match: (t -> v': t'{v' << a' :: v} -> vprop)) : STGhostT unit opened ((item_match a a') `star` (seq_list_match c v item_match)) (fun _ -> seq_list_match (Seq.cons a c) (a' :: v) item_match)
val seq_list_match_cons_intro (#opened: _) (#t #t': Type) (a: t) (a': t') (c: Seq.seq t) (v: list t') (item_match: (t -> v': t'{v' << a' :: v} -> vprop)) : STGhostT unit opened ((item_match a a') `star` (seq_list_match c v item_match)) (fun _ -> seq_list_match (Seq.cons a c) (a' :: v) item_match)
let seq_list_match_cons_intro (#opened: _) (#t #t': Type) (a: t) (a' : t') (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << a' :: v }) -> vprop)) : STGhostT unit opened (item_match a a' `star` seq_list_match c v item_match) (fun _ -> seq_list_match (Seq.cons a c) (a' :: v) item_match) = seq_list_match_cons_eq (Seq.cons a c) (a' :: v) item_match; noop (); rewrite (seq_list_match_cons0 (Seq.cons a c) (a' :: v) item_match seq_list_match) (seq_list_match (Seq.cons a c) (a' :: v) item_match)
{ "file_name": "lib/steel/Steel.ST.SeqMatch.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 56, "end_line": 105, "start_col": 0, "start_line": 90 }
module Steel.ST.SeqMatch include Steel.ST.OnRange open Steel.ST.GenElim module Seq = FStar.Seq module SZ = FStar.SizeT (* `seq_list_match` describes how to match a sequence of low-level values (the low-level contents of an array) with a list of high-level values. `seq_list_match` is carefully designed to be usable within (mutually) recursive definitions of matching functions on the type of high-level values. *) [@@__reduce__] let seq_list_match_nil0 (#t: Type) (c: Seq.seq t) : Tot vprop = pure (c `Seq.equal` Seq.empty) [@@__reduce__] let seq_list_match_cons0 (#t #t': Type) (c: Seq.seq t) (l: list t' { Cons? l }) (item_match: (t -> (v': t' { v' << l }) -> vprop)) (seq_list_match: (Seq.seq t -> (v': list t') -> (raw_data_item_match: (t -> (v'': t' { v'' << v' }) -> vprop) { v' << l }) -> vprop)) : Tot vprop = exists_ (fun (c1: t) -> exists_ (fun (c2: Seq.seq t) -> item_match c1 (List.Tot.hd l) `star` seq_list_match c2 (List.Tot.tl l) item_match `star` pure (c `Seq.equal` Seq.cons c1 c2) )) let rec seq_list_match (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Tot vprop (decreases v) = if Nil? v then seq_list_match_nil0 c else seq_list_match_cons0 c v item_match seq_list_match let seq_list_match_cons_eq (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Lemma (requires (Cons? v)) (ensures ( seq_list_match c v item_match == seq_list_match_cons0 c v item_match seq_list_match )) = let a :: q = v in assert_norm (seq_list_match c (a :: q) item_match == seq_list_match_cons0 c (a :: q) item_match seq_list_match ) let seq_list_match_nil (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : STGhost unit opened emp (fun _ -> seq_list_match c v item_match) (c `Seq.equal` Seq.empty /\ Nil? v) (fun _ -> True) = noop (); rewrite (seq_list_match_nil0 c) (seq_list_match c v item_match) let list_cons_precedes (#t: Type) (a: t) (q: list t) : Lemma ((a << a :: q) /\ (q << a :: q)) [SMTPat (a :: q)] = assert (List.Tot.hd (a :: q) << (a :: q)); assert (List.Tot.tl (a :: q) << (a :: q))
{ "checked_file": "/", "dependencies": [ "Steel.ST.OnRange.fsti.checked", "Steel.ST.GenElim.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Steel.ST.SeqMatch.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.OnRange", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: t -> a': t' -> c: FStar.Seq.Base.seq t -> v: Prims.list t' -> item_match: (_: t -> v': t'{v' << a' :: v} -> Steel.Effect.Common.vprop) -> Steel.ST.Effect.Ghost.STGhostT Prims.unit
Steel.ST.Effect.Ghost.STGhostT
[]
[]
[ "Steel.Memory.inames", "FStar.Seq.Base.seq", "Prims.list", "Prims.precedes", "Prims.Cons", "Steel.Effect.Common.vprop", "Steel.ST.Util.rewrite", "Steel.ST.SeqMatch.seq_list_match_cons0", "FStar.Seq.Base.cons", "Steel.ST.SeqMatch.seq_list_match", "Prims.unit", "Steel.ST.Util.noop", "Steel.ST.SeqMatch.seq_list_match_cons_eq", "Steel.Effect.Common.star" ]
[]
false
true
false
false
false
let seq_list_match_cons_intro (#opened: _) (#t #t': Type) (a: t) (a': t') (c: Seq.seq t) (v: list t') (item_match: (t -> v': t'{v' << a' :: v} -> vprop)) : STGhostT unit opened ((item_match a a') `star` (seq_list_match c v item_match)) (fun _ -> seq_list_match (Seq.cons a c) (a' :: v) item_match) =
seq_list_match_cons_eq (Seq.cons a c) (a' :: v) item_match; noop (); rewrite (seq_list_match_cons0 (Seq.cons a c) (a' :: v) item_match seq_list_match) (seq_list_match (Seq.cons a c) (a' :: v) item_match)
false
CQueue.fst
CQueue.llist_fragment_head_append
val llist_fragment_head_append (#opened: _) (#a: Type) (l1: Ghost.erased (list a)) (phead1: ref (ccell_ptrvalue a)) (head1: ccell_ptrvalue a) (l2: Ghost.erased (list a)) (phead2: ref (ccell_ptrvalue a)) (head2: ccell_ptrvalue a) : SteelGhost (Ghost.erased (list a)) opened ((llist_fragment_head l1 phead1 head1) `star` (llist_fragment_head l2 phead2 head2)) (fun l -> llist_fragment_head l phead1 head1) (fun h -> sel_llist_fragment_head l1 phead1 head1 h == (Ghost.reveal phead2, Ghost.reveal head2)) (fun h l h' -> Ghost.reveal l == (Ghost.reveal l1) `L.append` (Ghost.reveal l2) /\ h' (llist_fragment_head l phead1 head1) == h (llist_fragment_head l2 phead2 head2)) (decreases (Ghost.reveal l1))
val llist_fragment_head_append (#opened: _) (#a: Type) (l1: Ghost.erased (list a)) (phead1: ref (ccell_ptrvalue a)) (head1: ccell_ptrvalue a) (l2: Ghost.erased (list a)) (phead2: ref (ccell_ptrvalue a)) (head2: ccell_ptrvalue a) : SteelGhost (Ghost.erased (list a)) opened ((llist_fragment_head l1 phead1 head1) `star` (llist_fragment_head l2 phead2 head2)) (fun l -> llist_fragment_head l phead1 head1) (fun h -> sel_llist_fragment_head l1 phead1 head1 h == (Ghost.reveal phead2, Ghost.reveal head2)) (fun h l h' -> Ghost.reveal l == (Ghost.reveal l1) `L.append` (Ghost.reveal l2) /\ h' (llist_fragment_head l phead1 head1) == h (llist_fragment_head l2 phead2 head2)) (decreases (Ghost.reveal l1))
let rec llist_fragment_head_append (#opened: _) (#a: Type) (l1: Ghost.erased (list a)) (phead1: ref (ccell_ptrvalue a)) (head1: ccell_ptrvalue a) (l2: Ghost.erased (list a)) (phead2: ref (ccell_ptrvalue a)) (head2: ccell_ptrvalue a) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_head l1 phead1 head1 `star` llist_fragment_head l2 phead2 head2) (fun l -> llist_fragment_head l phead1 head1) (fun h -> sel_llist_fragment_head l1 phead1 head1 h == (Ghost.reveal phead2, Ghost.reveal head2)) (fun h l h' -> Ghost.reveal l == Ghost.reveal l1 `L.append` Ghost.reveal l2 /\ h' (llist_fragment_head l phead1 head1) == h (llist_fragment_head l2 phead2 head2) ) (decreases (Ghost.reveal l1)) = if Nil? l1 then begin elim_llist_fragment_head_nil l1 phead1 head1; change_equal_slprop (llist_fragment_head l2 phead2 head2) (llist_fragment_head l2 phead1 head1); l2 end else begin let u = elim_llist_fragment_head_cons l1 phead1 head1 in let head1' : Ghost.erased (ccell_lvalue a) = head1 in let l3 = llist_fragment_head_append u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next l2 phead2 head2 in change_equal_slprop (llist_fragment_head l3 u.ll_uncons_pnext u.ll_uncons_next) (llist_fragment_head l3 (ccell_next head1') u.ll_uncons_next); change_equal_slprop (ccell head1) (ccell head1'); let l4 = intro_llist_fragment_head_cons phead1 head1' u.ll_uncons_next l3 in change_equal_slprop (llist_fragment_head l4 phead1 head1') (llist_fragment_head l4 phead1 head1); l4 end
{ "file_name": "share/steel/examples/steel/CQueue.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 981, "start_col": 0, "start_line": 940 }
module CQueue open CQueue.LList #set-options "--ide_id_info_off" //Re-define squash, since this module explicitly //replies on proving equalities of the form `t_of v == squash p` //which are delicate in the presence of optimizations that //unfold `Prims.squash (p /\ q)`to _:unit{p /\ q} //See Issue #2496 let squash (p:Type u#a) : Type0 = squash p (* BEGIN library *) let intro_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: (t_of v) -> GTot t) : SteelGhost unit opened v (fun _ -> vrewrite v f) (fun _ -> True) (fun h _ h' -> h' (vrewrite v f) == f (h v)) = intro_vrewrite v f let elim_vrewrite_no_norm (#opened:inames) (v: vprop) (#t: Type) (f: ((t_of v) -> GTot t)) : SteelGhost unit opened (vrewrite v f) (fun _ -> v) (fun _ -> True) (fun h _ h' -> h (vrewrite v f) == f (h' v)) = elim_vrewrite v f let vconst_sel (#a: Type) (x: a) : Tot (selector a (hp_of emp)) = fun _ -> x [@@ __steel_reduce__] let vconst' (#a: Type) (x: a) : GTot vprop' = { hp = hp_of emp; t = a; sel = vconst_sel x; } [@@ __steel_reduce__] let vconst (#a: Type) (x: a) : Tot vprop = VUnit (vconst' x) let intro_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened emp (fun _ -> vconst x) (fun _ -> True) (fun _ _ h' -> h' (vconst x) == x) = change_slprop_rel emp (vconst x) (fun _ y -> y == x) (fun _ -> ()) let elim_vconst (#opened: _) (#a: Type) (x: a) : SteelGhost unit opened (vconst x) (fun _ -> emp) (fun _ -> True) (fun h _ _ -> h (vconst x) == x) = change_slprop_rel (vconst x) emp (fun y _ -> y == x) (fun _ -> ()) let vpure_sel' (p: prop) : Tot (selector' (squash p) (Steel.Memory.pure p)) = fun (m: Steel.Memory.hmem (Steel.Memory.pure p)) -> pure_interp p m let vpure_sel (p: prop) : Tot (selector (squash p) (Steel.Memory.pure p)) = vpure_sel' p [@@ __steel_reduce__] let vpure' (p: prop) : GTot vprop' = { hp = Steel.Memory.pure p; t = squash p; sel = vpure_sel p; } [@@ __steel_reduce__] let vpure (p: prop) : Tot vprop = VUnit (vpure' p) let intro_vpure (#opened: _) (p: prop) : SteelGhost unit opened emp (fun _ -> vpure p) (fun _ -> p) (fun _ _ h' -> p) = change_slprop_rel emp (vpure p) (fun _ _ -> p) (fun m -> pure_interp p m) let elim_vpure (#opened: _) (p: prop) : SteelGhost unit opened (vpure p) (fun _ -> emp) (fun _ -> True) (fun _ _ _ -> p) = change_slprop_rel (vpure p) emp (fun _ _ -> p) (fun m -> pure_interp p m; reveal_emp (); intro_emp m) val intro_vdep2 (#opened:inames) (v: vprop) (q: vprop) (x: t_of v) (p: (t_of v -> Tot vprop)) : SteelGhost unit opened (v `star` q) (fun _ -> vdep v p) (requires (fun h -> q == p x /\ x == h v )) (ensures (fun h _ h' -> let x2 = h' (vdep v p) in q == p (h v) /\ dfst x2 == (h v) /\ dsnd x2 == (h q) )) let intro_vdep2 v q x p = intro_vdep v q p let vbind0_payload (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: t_of a) : Tot vprop = vpure (t == t_of (b x)) `star` b x let vbind0_rewrite (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) (x: normal (t_of (vdep a (vbind0_payload a t b)))) : Tot t = snd (dsnd x) [@@__steel_reduce__; __reduce__] let vbind0 (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = a `vdep` vbind0_payload a t b `vrewrite` vbind0_rewrite a t b let vbind_hp // necessary to hide the attribute on hp_of (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot (slprop u#1) = hp_of (vbind0 a t b) let vbind_sel // same for hp_sel (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : GTot (selector t (vbind_hp a t b)) = sel_of (vbind0 a t b) [@@__steel_reduce__] let vbind' (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : GTot vprop' = { hp = vbind_hp a t b; t = t; sel = vbind_sel a t b; } [@@__steel_reduce__] let vbind (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : Tot vprop = VUnit (vbind' a t b) let intro_vbind (#opened: _) (a: vprop) (b' : vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : SteelGhost unit opened (a `star` b') (fun _ -> vbind a t b) (fun h -> t_of b' == t /\ b' == b (h a)) (fun h _ h' -> t_of b' == t /\ b' == b (h a) /\ h' (vbind a t b) == h b' ) = intro_vpure (t == t_of b'); intro_vdep a (vpure (t == t_of b') `star` b') (vbind0_payload a t b); intro_vrewrite (a `vdep` vbind0_payload a t b) (vbind0_rewrite a t b); change_slprop_rel (vbind0 a t b) (vbind a t b) (fun x y -> x == y) (fun _ -> ()) let elim_vbind (#opened: _) (a: vprop) (t: Type0) (b: (t_of a -> Tot vprop)) : SteelGhost (Ghost.erased (t_of a)) opened (vbind a t b) (fun res -> a `star` b (Ghost.reveal res)) (fun h -> True) (fun h res h' -> h' a == Ghost.reveal res /\ t == t_of (b (Ghost.reveal res)) /\ h' (b (Ghost.reveal res)) == h (vbind a t b) ) = change_slprop_rel (vbind a t b) (vbind0 a t b) (fun x y -> x == y) (fun _ -> ()); elim_vrewrite (a `vdep` vbind0_payload a t b) (vbind0_rewrite a t b); let res = elim_vdep a (vbind0_payload a t b) in change_equal_slprop (vbind0_payload a t b (Ghost.reveal res)) (vpure (t == t_of (b (Ghost.reveal res))) `star` b (Ghost.reveal res)); elim_vpure (t == t_of (b (Ghost.reveal res))); res let (==) (#a:_) (x y: a) : prop = x == y let snoc_inj (#a: Type) (hd1 hd2: list a) (tl1 tl2: a) : Lemma (requires (hd1 `L.append` [tl1] == hd2 `L.append` [tl2])) (ensures (hd1 == hd2 /\ tl1 == tl2)) [SMTPat (hd1 `L.append` [tl1]); SMTPat (hd2 `L.append` [tl2])] = L.lemma_snoc_unsnoc (hd1, tl1); L.lemma_snoc_unsnoc (hd2, tl2) [@"opaque_to_smt"] let unsnoc (#a: Type) (l: list a) : Pure (list a & a) (requires (Cons? l)) (ensures (fun (hd, tl) -> l == hd `L.append` [tl] /\ L.length hd < L.length l)) = L.lemma_unsnoc_snoc l; L.append_length (fst (L.unsnoc l)) [snd (L.unsnoc l)]; L.unsnoc l let unsnoc_hd (#a: Type) (l: list a) : Pure (list a) (requires (Cons? l)) (ensures (fun l' -> L.length l' < L.length l)) = fst (unsnoc l) let unsnoc_tl (#a: Type) (l: list a) : Pure (a) (requires (Cons? l)) (ensures (fun _ -> True)) = snd (unsnoc l) [@@"opaque_to_smt"] let snoc (#a: Type) (l: list a) (x: a) : Pure (list a) (requires True) (ensures (fun l' -> Cons? l' /\ unsnoc_hd l' == l /\ unsnoc_tl l' == x )) = let l' = L.snoc (l, x) in L.append_length l [x]; snoc_inj l (unsnoc_hd l') x (unsnoc_tl l'); l' let snoc_unsnoc (#a: Type) (l: list a) : Lemma (requires (Cons? l)) (ensures (snoc (unsnoc_hd l) (unsnoc_tl l) == l)) = () unfold let coerce (#a: Type) (x: a) (b: Type) : Pure b (requires (a == b)) (ensures (fun y -> a == b /\ x == y)) = x (* END library *) let t a = cllist_lvalue a let v (a: Type0) = list a let datas (#a: Type0) (l: v a) : Tot (list a) = l (* view from the tail *) let llist_fragment_tail_cons_data_refine (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (d: a) : Tot prop = d == unsnoc_tl (Ghost.reveal l) [@@ __steel_reduce__] let llist_fragment_tail_cons_lvalue_payload (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (c: ccell_lvalue a) : Tot vprop = vptr (ccell_data c) `vrefine` llist_fragment_tail_cons_data_refine l let ccell_is_lvalue_refine (a: Type) (c: ccell_ptrvalue a) : Tot prop = ccell_ptrvalue_is_null c == false [@@ __steel_reduce__ ] let llist_fragment_tail_cons_next_payload (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (ptail: ref (ccell_ptrvalue a)) : Tot vprop = vptr ptail `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l [@@ __steel_reduce__ ] let llist_fragment_tail_cons_rewrite (#a: Type) (l: Ghost.erased (list a) { Cons? (Ghost.reveal l) }) (llist_fragment_tail: vprop { t_of llist_fragment_tail == ref (ccell_ptrvalue a) }) (x: normal (t_of (llist_fragment_tail `vdep` (llist_fragment_tail_cons_next_payload l)))) : Tot (ref (ccell_ptrvalue a)) = let (| _, (| c, _ |) |) = x in ccell_next c let rec llist_fragment_tail (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Pure vprop (requires True) (ensures (fun v -> t_of v == ref (ccell_ptrvalue a))) (decreases (Ghost.reveal (L.length l))) = if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) let llist_fragment_tail_eq (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Lemma (llist_fragment_tail l phead == ( if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) )) = assert_norm (llist_fragment_tail l phead == ( if Nil? l then vconst phead else llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) )) let llist_fragment_tail_eq_cons (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : Lemma (requires (Cons? l)) (ensures (Cons? l /\ llist_fragment_tail l phead == ( llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead `vdep` llist_fragment_tail_cons_next_payload l `vrewrite` llist_fragment_tail_cons_rewrite l (llist_fragment_tail (Ghost.hide (unsnoc_hd (Ghost.reveal l))) phead) ))) = llist_fragment_tail_eq l phead unfold let sel_llist_fragment_tail (#a:Type) (#p:vprop) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (h: rmem p { FStar.Tactics.with_tactic selector_tactic (can_be_split p (llist_fragment_tail l phead) /\ True) }) : GTot (ref (ccell_ptrvalue a)) = coerce (h (llist_fragment_tail l phead)) (ref (ccell_ptrvalue a)) val intro_llist_fragment_tail_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost unit opened emp (fun _ -> llist_fragment_tail l phead) (fun _ -> Nil? l) (fun _ _ h' -> sel_llist_fragment_tail l phead h' == phead) let intro_llist_fragment_tail_nil l phead = intro_vconst phead; change_equal_slprop (vconst phead) (llist_fragment_tail l phead) val elim_llist_fragment_tail_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_tail l phead) (fun _ -> emp) (fun _ -> Nil? l) (fun h _ _ -> sel_llist_fragment_tail l phead h == phead) let elim_llist_fragment_tail_nil l phead = change_equal_slprop (llist_fragment_tail l phead) (vconst phead); elim_vconst phead val intro_llist_fragment_tail_snoc (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (ptail: Ghost.erased (ref (ccell_ptrvalue a))) (tail: Ghost.erased (ccell_lvalue a)) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_tail l phead `star` vptr ptail `star` vptr (ccell_data tail)) (fun res -> llist_fragment_tail res phead) (fun h -> sel_llist_fragment_tail l phead h == Ghost.reveal ptail /\ sel ptail h == Ghost.reveal tail ) (fun h res h' -> Ghost.reveal res == snoc (Ghost.reveal l) (sel (ccell_data tail) h) /\ sel_llist_fragment_tail res phead h' == ccell_next tail ) #push-options "--z3rlimit 16" let intro_llist_fragment_tail_snoc #_ #a l phead ptail tail = let d = gget (vptr (ccell_data tail)) in let l' : (l' : Ghost.erased (list a) { Cons? (Ghost.reveal l') }) = Ghost.hide (snoc (Ghost.reveal l) (Ghost.reveal d)) in intro_vrefine (vptr (ccell_data tail)) (llist_fragment_tail_cons_data_refine l'); intro_vrefine (vptr ptail) (ccell_is_lvalue_refine a); intro_vdep (vptr ptail `vrefine` ccell_is_lvalue_refine a) (vptr (ccell_data tail) `vrefine` llist_fragment_tail_cons_data_refine l') (llist_fragment_tail_cons_lvalue_payload l'); change_equal_slprop (llist_fragment_tail l phead) (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead); intro_vdep (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead) (vptr ptail `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l') (llist_fragment_tail_cons_next_payload l'); intro_vrewrite_no_norm (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead `vdep` llist_fragment_tail_cons_next_payload l') (llist_fragment_tail_cons_rewrite l' (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead)); llist_fragment_tail_eq_cons l' phead; change_equal_slprop (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead `vdep` llist_fragment_tail_cons_next_payload l' `vrewrite` llist_fragment_tail_cons_rewrite l' (llist_fragment_tail (Ghost.hide (unsnoc_hd l')) phead)) (llist_fragment_tail l' phead); let g' = gget (llist_fragment_tail l' phead) in assert (Ghost.reveal g' == ccell_next tail); noop (); l' #pop-options [@@erasable] noeq type ll_unsnoc_t (a: Type) = { ll_unsnoc_l: list a; ll_unsnoc_ptail: ref (ccell_ptrvalue a); ll_unsnoc_tail: ccell_lvalue a; } val elim_llist_fragment_tail_snoc (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) : SteelGhost (ll_unsnoc_t a) opened (llist_fragment_tail l phead) (fun res -> llist_fragment_tail res.ll_unsnoc_l phead `star` vptr res.ll_unsnoc_ptail `star` vptr (ccell_data res.ll_unsnoc_tail)) (fun _ -> Cons? l) (fun h res h' -> Cons? l /\ Ghost.reveal res.ll_unsnoc_l == unsnoc_hd l /\ sel res.ll_unsnoc_ptail h' == res.ll_unsnoc_tail /\ sel (ccell_data res.ll_unsnoc_tail) h'== unsnoc_tl l /\ sel_llist_fragment_tail res.ll_unsnoc_l phead h' == res.ll_unsnoc_ptail /\ sel_llist_fragment_tail l phead h == (ccell_next res.ll_unsnoc_tail) ) #push-options "--z3rlimit 32" #restart-solver let elim_llist_fragment_tail_snoc #_ #a l phead = let l0 : (l0: Ghost.erased (list a) { Cons? l0 }) = Ghost.hide (Ghost.reveal l) in llist_fragment_tail_eq_cons l0 phead; change_equal_slprop (llist_fragment_tail l phead) (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead `vdep` llist_fragment_tail_cons_next_payload l0 `vrewrite` llist_fragment_tail_cons_rewrite l0 (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead)); elim_vrewrite_no_norm (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead `vdep` llist_fragment_tail_cons_next_payload l0) (llist_fragment_tail_cons_rewrite l0 (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead)); let ptail = elim_vdep (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead) (llist_fragment_tail_cons_next_payload l0) in let ptail0 : Ghost.erased (ref (ccell_ptrvalue a)) = ptail in change_equal_slprop (llist_fragment_tail_cons_next_payload l0 (Ghost.reveal ptail)) (vptr (Ghost.reveal ptail0) `vrefine` ccell_is_lvalue_refine a `vdep` llist_fragment_tail_cons_lvalue_payload l0); let tail = elim_vdep (vptr (Ghost.reveal ptail0) `vrefine` ccell_is_lvalue_refine a) (llist_fragment_tail_cons_lvalue_payload l0) in elim_vrefine (vptr (Ghost.reveal ptail0)) (ccell_is_lvalue_refine a); let res = { ll_unsnoc_l = unsnoc_hd l0; ll_unsnoc_ptail = Ghost.reveal ptail0; ll_unsnoc_tail = Ghost.reveal tail; } in change_equal_slprop (vptr (Ghost.reveal ptail0)) (vptr res.ll_unsnoc_ptail); change_equal_slprop (llist_fragment_tail_cons_lvalue_payload l0 (Ghost.reveal tail)) (vptr (ccell_data res.ll_unsnoc_tail) `vrefine` llist_fragment_tail_cons_data_refine l0); elim_vrefine (vptr (ccell_data res.ll_unsnoc_tail)) (llist_fragment_tail_cons_data_refine l0); change_equal_slprop (llist_fragment_tail (Ghost.hide (unsnoc_hd l0)) phead) (llist_fragment_tail res.ll_unsnoc_l phead); res #pop-options let rec llist_fragment_tail_append (#opened: _) (#a: Type) (phead0: ref (ccell_ptrvalue a)) (l1: Ghost.erased (list a)) (phead1: Ghost.erased (ref (ccell_ptrvalue a))) (l2: Ghost.erased (list a)) : SteelGhost (Ghost.erased (list a)) opened (llist_fragment_tail l1 phead0 `star` llist_fragment_tail l2 phead1) (fun res -> llist_fragment_tail res phead0) (fun h -> Ghost.reveal phead1 == (sel_llist_fragment_tail l1 phead0) h ) (fun h res h' -> Ghost.reveal res == Ghost.reveal l1 `L.append` Ghost.reveal l2 /\ (sel_llist_fragment_tail res phead0) h' == (sel_llist_fragment_tail l2 phead1) h ) (decreases (L.length (Ghost.reveal l2))) = let g1 = gget (llist_fragment_tail l1 phead0) in assert (Ghost.reveal phead1 == Ghost.reveal g1); if Nil? l2 then begin L.append_l_nil (Ghost.reveal l1); elim_llist_fragment_tail_nil l2 phead1; l1 end else begin let res = elim_llist_fragment_tail_snoc l2 (Ghost.reveal phead1) in let d = gget (vptr (ccell_data res.ll_unsnoc_tail)) in L.append_assoc (Ghost.reveal l1) (Ghost.reveal res.ll_unsnoc_l) [Ghost.reveal d]; let l3 = llist_fragment_tail_append phead0 l1 phead1 res.ll_unsnoc_l in intro_llist_fragment_tail_snoc l3 phead0 res.ll_unsnoc_ptail res.ll_unsnoc_tail end let queue_tail_refine (#a: Type) (tail1: ref (ccell_ptrvalue a)) (tail2: ref (ccell_ptrvalue a)) (tl: normal (t_of (vptr tail2))) : Tot prop = ccell_ptrvalue_is_null tl == true /\ tail1 == tail2 [@@__steel_reduce__] let queue_tail_dep2 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail1: t_of (llist_fragment_tail l (cllist_head x))) (tail2: ref (ccell_ptrvalue a)) : Tot vprop = vptr tail2 `vrefine` queue_tail_refine tail1 tail2 [@@__steel_reduce__] let queue_tail_dep1 (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail1: t_of (llist_fragment_tail l (cllist_head x))) : Tot vprop = vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail1 [@@__steel_reduce__; __reduce__] let queue_tail (#a: Type) (x: t a) (l: Ghost.erased (list a)) : Tot vprop = llist_fragment_tail l (cllist_head x) `vdep` queue_tail_dep1 x l val intro_queue_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) (tail: ref (ccell_ptrvalue a)) : SteelGhost unit opened (llist_fragment_tail l (cllist_head x) `star` vptr (cllist_tail x) `star` vptr tail) (fun _ -> queue_tail x l) (fun h -> sel_llist_fragment_tail l (cllist_head x) h == tail /\ sel (cllist_tail x) h == tail /\ ccell_ptrvalue_is_null (sel tail h) ) (fun _ _ _ -> True) let intro_queue_tail x l tail = intro_vrefine (vptr tail) (queue_tail_refine tail tail); intro_vdep2 (vptr (cllist_tail x)) (vptr tail `vrefine` queue_tail_refine tail tail) tail (queue_tail_dep2 x l tail); intro_vdep2 (llist_fragment_tail l (cllist_head x)) (vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail) tail (queue_tail_dep1 x l) val elim_queue_tail (#opened: _) (#a: Type) (x: t a) (l: Ghost.erased (list a)) : SteelGhost (Ghost.erased (ref (ccell_ptrvalue a))) opened (queue_tail x l) (fun tail -> llist_fragment_tail l (cllist_head x) `star` vptr (cllist_tail x) `star` vptr tail) (fun h -> True) (fun _ tail h -> sel_llist_fragment_tail l (cllist_head x) h == Ghost.reveal tail /\ sel (cllist_tail x) h == Ghost.reveal tail /\ ccell_ptrvalue_is_null (h (vptr tail)) ) let elim_queue_tail #_ #a x l = let tail0 = elim_vdep (llist_fragment_tail l (cllist_head x)) (queue_tail_dep1 x l) in let tail : Ghost.erased (ref (ccell_ptrvalue a)) = tail0 in change_equal_slprop (queue_tail_dep1 x l (Ghost.reveal tail0)) (vptr (cllist_tail x) `vdep` queue_tail_dep2 x l tail0); let tail2 = elim_vdep (vptr (cllist_tail x)) (queue_tail_dep2 x l tail0) in let tail3 : Ghost.erased (ref (ccell_ptrvalue a)) = tail2 in change_equal_slprop (queue_tail_dep2 x l tail0 (Ghost.reveal tail2)) (vptr tail3 `vrefine` queue_tail_refine tail0 tail3); elim_vrefine (vptr tail3) (queue_tail_refine tail0 tail3); change_equal_slprop (vptr tail3) (vptr tail); tail (* view from the head *) let llist_fragment_head_data_refine (#a: Type) (d: a) (c: vcell a) : Tot prop = c.vcell_data == d let llist_fragment_head_payload (#a: Type) (head: ccell_ptrvalue a) (d: a) (llist_fragment_head: (ref (ccell_ptrvalue a) -> ccell_ptrvalue a -> Tot vprop)) (x: t_of (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine d))) : Tot vprop = llist_fragment_head (ccell_next (fst x)) (snd x).vcell_next let rec llist_fragment_head (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Tot vprop (decreases (Ghost.reveal l)) = if Nil? l then vconst (phead, head) else vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) let t_of_llist_fragment_head (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Lemma (t_of (llist_fragment_head l phead head) == ref (ccell_ptrvalue a) & ccell_ptrvalue a) = () unfold let sel_llist_fragment_head (#a:Type) (#p:vprop) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) (h: rmem p { FStar.Tactics.with_tactic selector_tactic (can_be_split p (llist_fragment_head l phead head) /\ True) }) : GTot (ref (ccell_ptrvalue a) & ccell_ptrvalue a) = coerce (h (llist_fragment_head l phead head)) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) val intro_llist_fragment_head_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened emp (fun _ -> llist_fragment_head l phead head) (fun _ -> Nil? l) (fun _ _ h' -> sel_llist_fragment_head l phead head h' == (phead, head)) let intro_llist_fragment_head_nil l phead head = intro_vconst (phead, head); change_equal_slprop (vconst (phead, head)) (llist_fragment_head l phead head) val elim_llist_fragment_head_nil (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost unit opened (llist_fragment_head l phead head) (fun _ -> emp) (fun _ -> Nil? l) (fun h _ _ -> sel_llist_fragment_head l phead head h == (phead, head)) let elim_llist_fragment_head_nil l phead head = change_equal_slprop (llist_fragment_head l phead head) (vconst (phead, head)); elim_vconst (phead, head) let llist_fragment_head_eq_cons (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : Lemma (requires (Cons? (Ghost.reveal l))) (ensures ( llist_fragment_head l phead head == vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) )) = assert_norm (llist_fragment_head l phead head == ( if Nil? l then vconst (phead, head) else vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd (Ghost.reveal l)))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd (Ghost.reveal l)) (llist_fragment_head (L.tl (Ghost.reveal l)))) )) val intro_llist_fragment_head_cons (#opened: _) (#a: Type) (phead: ref (ccell_ptrvalue a)) (head: ccell_lvalue a) (next: (ccell_ptrvalue a)) (tl: Ghost.erased (list a)) : SteelGhost (Ghost.erased (list a)) opened (ccell head `star` llist_fragment_head tl (ccell_next head) next) (fun res -> llist_fragment_head res phead head) (fun h -> (h (ccell head)).vcell_next == next) (fun h res h' -> Ghost.reveal res == (h (ccell head)).vcell_data :: Ghost.reveal tl /\ h' (llist_fragment_head res phead head) == h (llist_fragment_head tl (ccell_next head) next) ) let intro_llist_fragment_head_cons #_ #a phead head next tl = let vc = gget (ccell head) in let l' : (l' : Ghost.erased (list a) { Cons? l' }) = Ghost.hide (vc.vcell_data :: tl) in intro_ccell_is_lvalue head; intro_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l')); intro_vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l'))) (llist_fragment_head tl (ccell_next head) next) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l') (llist_fragment_head (L.tl l'))); llist_fragment_head_eq_cons l' phead head; change_equal_slprop (vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l'))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l') (llist_fragment_head (L.tl l')))) (llist_fragment_head l' phead head); l' [@@erasable] noeq type ll_uncons_t (a: Type) = { ll_uncons_pnext: Ghost.erased (ref (ccell_ptrvalue a)); ll_uncons_next: Ghost.erased (ccell_ptrvalue a); ll_uncons_tl: Ghost.erased (list a); } val elim_llist_fragment_head_cons (#opened: _) (#a: Type) (l: Ghost.erased (list a)) (phead: ref (ccell_ptrvalue a)) (head: ccell_ptrvalue a) : SteelGhost (ll_uncons_t a) opened (llist_fragment_head l phead head) (fun res -> ccell head `star` llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) (fun _ -> Cons? (Ghost.reveal l)) (fun h res h' -> ccell_ptrvalue_is_null head == false /\ Ghost.reveal l == (h' (ccell head)).vcell_data :: Ghost.reveal res.ll_uncons_tl /\ Ghost.reveal res.ll_uncons_pnext == ccell_next head /\ Ghost.reveal res.ll_uncons_next == (h' (ccell head)).vcell_next /\ h' (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next) == h (llist_fragment_head l phead head) ) let elim_llist_fragment_head_cons #_ #a l0 phead head = let l : (l : Ghost.erased (list a) { Cons? l }) = l0 in change_equal_slprop (llist_fragment_head l0 phead head) (llist_fragment_head l phead head); llist_fragment_head_eq_cons l phead head; change_equal_slprop (llist_fragment_head l phead head) (vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)))); let x = elim_vbind (ccell_is_lvalue head `star` (ccell head `vrefine` llist_fragment_head_data_refine (L.hd l))) (ref (ccell_ptrvalue a) & ccell_ptrvalue a) (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l))) in let head2 = gget (ccell_is_lvalue head) in elim_ccell_is_lvalue head; elim_vrefine (ccell head) (llist_fragment_head_data_refine (L.hd l)); let vhead2 = gget (ccell head) in let res = { ll_uncons_pnext = ccell_next head2; ll_uncons_next = vhead2.vcell_next; ll_uncons_tl = L.tl l; } in change_equal_slprop (llist_fragment_head_payload head (L.hd l) (llist_fragment_head (L.tl l)) (Ghost.reveal x)) (llist_fragment_head res.ll_uncons_tl res.ll_uncons_pnext res.ll_uncons_next); res
{ "checked_file": "/", "dependencies": [ "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "CQueue.LList.fsti.checked" ], "interface_file": true, "source_file": "CQueue.fst" }
[ { "abbrev": false, "full_module": "CQueue.LList", "short_module": null }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: FStar.Ghost.erased (Prims.list a) -> phead1: Steel.Reference.ref (CQueue.Cell.ccell_ptrvalue a) -> head1: CQueue.Cell.ccell_ptrvalue a -> l2: FStar.Ghost.erased (Prims.list a) -> phead2: Steel.Reference.ref (CQueue.Cell.ccell_ptrvalue a) -> head2: CQueue.Cell.ccell_ptrvalue a -> Steel.Effect.Atomic.SteelGhost (FStar.Ghost.erased (Prims.list a))
Steel.Effect.Atomic.SteelGhost
[ "" ]
[]
[ "Steel.Memory.inames", "FStar.Ghost.erased", "Prims.list", "Steel.Reference.ref", "CQueue.Cell.ccell_ptrvalue", "Prims.uu___is_Nil", "FStar.Ghost.reveal", "Prims.unit", "Steel.Effect.Atomic.change_equal_slprop", "CQueue.llist_fragment_head", "CQueue.elim_llist_fragment_head_nil", "Prims.bool", "CQueue.Cell.ccell_lvalue", "CQueue.intro_llist_fragment_head_cons", "CQueue.__proj__Mkll_uncons_t__item__ll_uncons_next", "CQueue.Cell.ccell", "CQueue.__proj__Mkll_uncons_t__item__ll_uncons_pnext", "CQueue.Cell.ccell_next", "CQueue.llist_fragment_head_append", "CQueue.__proj__Mkll_uncons_t__item__ll_uncons_tl", "FStar.Ghost.hide", "CQueue.ll_uncons_t", "CQueue.elim_llist_fragment_head_cons", "Steel.Effect.Common.star", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "CQueue.op_Equals_Equals", "FStar.Pervasives.Native.tuple2", "CQueue.sel_llist_fragment_head", "FStar.Pervasives.Native.Mktuple2", "Prims.l_and", "FStar.List.Tot.Base.append", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of" ]
[ "recursion" ]
false
true
false
false
false
let rec llist_fragment_head_append (#opened: _) (#a: Type) (l1: Ghost.erased (list a)) (phead1: ref (ccell_ptrvalue a)) (head1: ccell_ptrvalue a) (l2: Ghost.erased (list a)) (phead2: ref (ccell_ptrvalue a)) (head2: ccell_ptrvalue a) : SteelGhost (Ghost.erased (list a)) opened ((llist_fragment_head l1 phead1 head1) `star` (llist_fragment_head l2 phead2 head2)) (fun l -> llist_fragment_head l phead1 head1) (fun h -> sel_llist_fragment_head l1 phead1 head1 h == (Ghost.reveal phead2, Ghost.reveal head2)) (fun h l h' -> Ghost.reveal l == (Ghost.reveal l1) `L.append` (Ghost.reveal l2) /\ h' (llist_fragment_head l phead1 head1) == h (llist_fragment_head l2 phead2 head2)) (decreases (Ghost.reveal l1)) =
if Nil? l1 then (elim_llist_fragment_head_nil l1 phead1 head1; change_equal_slprop (llist_fragment_head l2 phead2 head2) (llist_fragment_head l2 phead1 head1); l2) else let u = elim_llist_fragment_head_cons l1 phead1 head1 in let head1':Ghost.erased (ccell_lvalue a) = head1 in let l3 = llist_fragment_head_append u.ll_uncons_tl u.ll_uncons_pnext u.ll_uncons_next l2 phead2 head2 in change_equal_slprop (llist_fragment_head l3 u.ll_uncons_pnext u.ll_uncons_next) (llist_fragment_head l3 (ccell_next head1') u.ll_uncons_next); change_equal_slprop (ccell head1) (ccell head1'); let l4 = intro_llist_fragment_head_cons phead1 head1' u.ll_uncons_next l3 in change_equal_slprop (llist_fragment_head l4 phead1 head1') (llist_fragment_head l4 phead1 head1); l4
false
FStar.UInt.fst
FStar.UInt.shift_right_value_aux_3
val shift_right_value_aux_3: #n:pos -> a:uint_t n -> s:pos{s < n} -> Lemma (requires True) (ensures shift_right #n a s = a / pow2 s)
val shift_right_value_aux_3: #n:pos -> a:uint_t n -> s:pos{s < n} -> Lemma (requires True) (ensures shift_right #n a s = a / pow2 s)
let shift_right_value_aux_3 #n a s = append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s)
{ "file_name": "ulib/FStar.UInt.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 379, "start_col": 0, "start_line": 377 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt (* NOTE: anything that you fix/update here should be reflected in [FStar.Int.fst], which is mostly * a copy-paste of this module. *) open FStar.Mul open FStar.BitVector open FStar.Math.Lemmas let pow2_values x = match x with | 0 -> assert_norm (pow2 0 == 1) | 1 -> assert_norm (pow2 1 == 2) | 8 -> assert_norm (pow2 8 == 256) | 16 -> assert_norm (pow2 16 == 65536) | 31 -> assert_norm (pow2 31 == 2147483648) | 32 -> assert_norm (pow2 32 == 4294967296) | 63 -> assert_norm (pow2 63 == 9223372036854775808) | 64 -> assert_norm (pow2 64 == 18446744073709551616) | 128 -> assert_norm (pow2 128 = 0x100000000000000000000000000000000) | _ -> () let incr_underspec #n a = if a < max_int n then a + 1 else 0 let decr_underspec #n a = if a > min_int n then a - 1 else 0 let add_underspec #n a b = if fits (a+b) n then a + b else 0 let sub_underspec #n a b = if fits (a-b) n then a - b else 0 let mul_underspec #n a b = if fits (a*b) n then a * b else 0 #push-options "--fuel 0 --ifuel 0" let lt_square_div_lt a b = () let div_underspec #n a b = if fits (a / b) n then a / b else 0 #pop-options let div_size #n a b = FStar.Math.Lib.slash_decr_axiom a b; () open FStar.Seq let to_vec_lemma_1 #n a b = () let rec to_vec_lemma_2 #n a b = if n = 0 then () else begin assert(equal (slice (to_vec b) 0 (n - 1)) (to_vec #(n - 1) (b / 2))); assert(equal (slice (to_vec a) 0 (n - 1)) (to_vec #(n - 1) (a / 2))); to_vec_lemma_2 #(n - 1) (a / 2) (b / 2); assert(a % 2 = (if index (to_vec a) (n - 1) then 1 else 0)); assert(b % 2 = (if index (to_vec b) (n - 1) then 1 else 0)); assert(a % 2 = b % 2) end let rec inverse_aux #n vec i = if i = n - 1 then assert((from_vec vec) % 2 = (if index vec (n - 1) then 1 else 0)) else inverse_aux #(n - 1) (slice vec 0 (n - 1)) i let inverse_vec_lemma #n vec = () let inverse_num_lemma #n num = to_vec_lemma_2 #n num (from_vec (to_vec num)) let from_vec_lemma_1 #n a b = () let from_vec_lemma_2 #n a b = inverse_vec_lemma a; inverse_vec_lemma b #push-options "--fuel 0 --ifuel 0" let from_vec_aux #n a s1 s2 = paren_mul_left (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); paren_mul_right (from_vec #s2 (slice a 0 s2)) (pow2 (s1 - s2)) (pow2 (n - s1)); pow2_plus (s1 - s2) (n - s1) #pop-options let seq_slice_lemma #n a s1 t1 s2 t2 = () #push-options "--initial_fuel 1 --max_fuel 1" let rec from_vec_propriety #n a s = if s = n - 1 then () else begin from_vec_propriety #n a (s + 1); from_vec_propriety #(s + 1) (slice a 0 (s + 1)) s; seq_slice_lemma #n a 0 (s + 1) 0 s; seq_slice_lemma #n a 0 (s + 1) s (s + 1); from_vec_aux #n a (s + 1) s; from_vec_propriety #(n - s) (slice a s n) 1; seq_slice_lemma #n a s n 0 1; seq_slice_lemma #n a s n 1 (n - s) end #pop-options let append_lemma #n #m a b = assert(equal a (slice (append a b) 0 n)); assert(equal b (slice (append a b) n (n + m))); from_vec_propriety #(n + m) (append a b) n let slice_left_lemma #n a s = from_vec_propriety #n a s; division_addition_lemma (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) (from_vec #s (slice a 0 s)); small_division_lemma_1 (from_vec #(n - s) (slice a s n)) (pow2 (n - s)) let slice_right_lemma #n a s = from_vec_propriety #n a (n - s); modulo_addition_lemma (from_vec #s (slice a (n - s) n)) (pow2 s) (from_vec #(n - s) (slice a 0 (n - s))); small_modulo_lemma_1 (from_vec #s (slice a (n - s) n)) (pow2 s) let rec zero_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #(n - 1) i let zero_from_vec_lemma #n = to_vec_lemma_2 (from_vec (zero_vec #n)) (zero n) let one_to_vec_lemma #n i = if i = n - 1 then () else zero_to_vec_lemma #n i let rec pow2_to_vec_lemma #n p i = if i = n - 1 then () else if p = 0 then one_to_vec_lemma #n i else pow2_to_vec_lemma #(n - 1) (p - 1) i let pow2_from_vec_lemma #n p = to_vec_lemma_2 (from_vec (elem_vec #n p)) (pow2_n #n (n - p - 1)) let rec ones_to_vec_lemma #n i = if i = n - 1 then () else ones_to_vec_lemma #(n - 1) i let ones_from_vec_lemma #n = to_vec_lemma_2 (from_vec (ones_vec #n)) (ones n) let nth_lemma #n a b = assert(forall (i:nat{i < n}). index (to_vec #n a) i = index (to_vec #n b) i); to_vec_lemma_2 a b let zero_nth_lemma #n i = () let pow2_nth_lemma #n p i = () let one_nth_lemma #n i = () let ones_nth_lemma #n i = () let logand_definition #n a b i = () let logxor_definition #n a b i = () let logor_definition #n a b i = () let lognot_definition #n a i = () let logand_commutative #n a b = nth_lemma #n (logand #n a b) (logand #n b a) let logand_associative #n a b c = nth_lemma #n (logand #n (logand #n a b) c) (logand #n a (logand #n b c)) let logand_self #n a = nth_lemma #n (logand #n a a) a let logand_lemma_1 #n a = nth_lemma #n (logand #n a (zero n)) (zero n) let logand_lemma_2 #n a = nth_lemma #n (logand #n a (ones n)) a let rec subset_vec_le_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_subset_vec #n a b 0 (n-1); subset_vec_le_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logand_le #n a b = let va = to_vec a in let vb = to_vec b in let vand = to_vec (logand a b) in subset_vec_le_lemma #n vand va; subset_vec_le_lemma #n vand vb let logxor_commutative #n a b = nth_lemma #n (logxor #n a b) (logxor #n b a) let logxor_associative #n a b c = nth_lemma #n (logxor #n (logxor #n a b) c) (logxor #n a (logxor #n b c)) let logxor_self #n a = nth_lemma #n (logxor #n a a) (zero n) let logxor_lemma_1 #n a = nth_lemma #n (logxor #n a (zero n)) a let logxor_lemma_2 #n a = nth_lemma #n (logxor #n a (ones n)) (lognot #n a) let xor_lemma _ _ = () let logxor_inv #n a b = let open FStar.BitVector in let open FStar.Seq in let va = to_vec a in let vb = to_vec b in cut(forall (i:nat). i < n ==> index (logxor_vec #n va vb) i = (index va i <> index vb i)); cut (forall (i:nat). {:pattern (index (logxor_vec (logxor_vec va vb) vb) i)} i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = (xor (xor (index va i) (index vb i)) (index vb i))); cut (forall (i:nat). i < n ==> index (logxor_vec (logxor_vec va vb) vb) i = index va i); Seq.lemma_eq_intro (logxor_vec (logxor_vec va vb) vb) va; inverse_num_lemma a; inverse_num_lemma b let logxor_neq_nonzero #n a b = let va = to_vec a in let vb = to_vec b in if logxor a b = 0 then begin let open FStar.Seq in let f (i:nat{i < n}) : Lemma (not (nth #n 0 i)) = zero_nth_lemma #n i in Classical.forall_intro f; assert (forall (i:nat{i < n}). index va i = index vb i); lemma_eq_intro va vb; assert (from_vec va = from_vec vb) end let logor_commutative #n a b = nth_lemma #n (logor #n a b) (logor #n b a) let logor_associative #n a b c = nth_lemma #n (logor #n (logor #n a b) c) (logor #n a (logor #n b c)) let logor_self #n a = nth_lemma #n (logor #n a a) a let logor_lemma_1 #n a = nth_lemma (logor #n a (zero n)) a let logor_lemma_2 #n a = nth_lemma (logor #n a (ones n)) (ones n) let rec superset_vec_ge_lemma #n a b = match n with | 1 -> () | _ -> lemma_slice_superset_vec #n a b 0 (n-1); superset_vec_ge_lemma #(n-1) (slice a 0 (n-1)) (slice b 0 (n-1)) let logor_ge #n a b = let va = to_vec a in let vb = to_vec b in let vor = to_vec (logor a b) in superset_vec_ge_lemma #n vor va; superset_vec_ge_lemma #n vor vb let lognot_self #n a = nth_lemma (lognot #n (lognot #n a)) a let lognot_lemma_1 #n = nth_lemma (lognot #n (zero n)) (ones n) val to_vec_mod_pow2: #n:nat -> a:uint_t n -> m:pos -> i:nat{n - m <= i /\ i < n} -> Lemma (requires (a % pow2 m == 0)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_mod_pow2 #n a m i = if i = n - 1 then begin lemma_index_app2 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; mod_mult_exact a 2 (pow2 (m - 1)) end else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); mod_pow2_div2 a m; to_vec_mod_pow2 #(n - 1) (a / 2) (m - 1) i end val to_vec_lt_pow2: #n:nat -> a:uint_t n -> m:nat -> i:nat{i < n - m} -> Lemma (requires (a < pow2 m)) (ensures (index (to_vec a) i == false)) [SMTPat (index (to_vec #n a) i); SMTPat (pow2 m)] let rec to_vec_lt_pow2 #n a m i = if n = 0 then () else if m = 0 then assert (a == zero n) else begin lemma_index_app1 (to_vec #(n - 1) (a / 2)) (Seq.create 1 (a % 2 = 1)) i; assert (index (to_vec a) i == index (to_vec #(n - 1) (a / 2)) i); to_vec_lt_pow2 #(n - 1) (a / 2) (m - 1) i end (** Used in the next two lemmas *) #push-options "--initial_fuel 0 --max_fuel 1 --z3rlimit 40" let rec index_to_vec_ones #n m i = let a = pow2 m - 1 in pow2_le_compat n m; if m = 0 then one_to_vec_lemma #n i else if m = n then ones_to_vec_lemma #n i else if i = n - 1 then () else index_to_vec_ones #(n - 1) (m - 1) i #pop-options let logor_disjoint #n a b m = assert (a % pow2 m == 0); // To trigger pattern above assert (forall (i:nat{n - m <= i /\ i < n}).{:pattern (index (to_vec a) i)} index (to_vec a) i == false); assert (b < pow2 m); // To trigger pattern above assert (forall (i:nat{i < n - m}).{:pattern (index (to_vec b) i)} index (to_vec b) i == false); Seq.lemma_split (logor_vec (to_vec a) (to_vec b)) (n - m); Seq.lemma_eq_intro (logor_vec (to_vec a) (to_vec b)) (append (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n)); append_lemma #(n - m) #m (slice (to_vec a) 0 (n - m)) (slice (to_vec b) (n - m) n); slice_left_lemma #n (to_vec a) (n - m); div_exact_r a (pow2 m); assert (from_vec #(n - m) (slice (to_vec a) 0 (n - m)) * pow2 m == a); slice_right_lemma #n (to_vec b) m; small_modulo_lemma_1 b (pow2 m); assert (from_vec #m (slice (to_vec b) (n - m) n) == b) let logand_mask #n a m = pow2_lt_compat n m; Seq.lemma_split (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (n - m); Seq.lemma_eq_intro (logand_vec (to_vec a) (to_vec (pow2 m - 1))) (append (zero_vec #(n - m)) (slice (to_vec a) (n - m) n)); append_lemma #(n - m) #m (zero_vec #(n - m)) (slice (to_vec a) (n - m) n); assert (0 * pow2 m + a % pow2 m == a % pow2 m); assert (from_vec #(n - m) (zero_vec #(n - m)) == 0); slice_right_lemma #n (to_vec a) m; assert (from_vec #m (slice (to_vec a) (n - m) n) == a % pow2 m) let shift_left_lemma_1 #n a s i = () let shift_left_lemma_2 #n a s i = () let shift_right_lemma_1 #n a s i = () let shift_right_lemma_2 #n a s i = () let shift_left_logand_lemma #n a b s = nth_lemma (shift_left #n (logand #n a b) s) (logand #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logand_lemma #n a b s = nth_lemma (shift_right #n (logand #n a b) s) (logand #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logxor_lemma #n a b s = nth_lemma (shift_left #n (logxor #n a b) s) (logxor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logxor_lemma #n a b s = nth_lemma (shift_right #n (logxor #n a b) s) (logxor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_logor_lemma #n a b s = nth_lemma (shift_left #n (logor #n a b) s) (logor #n (shift_left #n a s) (shift_left #n b s)) let shift_right_logor_lemma #n a b s = nth_lemma (shift_right #n (logor #n a b) s) (logor #n (shift_right #n a s) (shift_right #n b s)) let shift_left_value_aux_1 #n a s = pow2_multiplication_modulo_lemma_1 a n s let shift_left_value_aux_2 #n a = assert_norm(a * pow2 0 = a); small_modulo_lemma_1 a (pow2 n) let shift_left_value_aux_3 #n a s = append_lemma #(n - s) #s (slice (to_vec a) s n) (zero_vec #s); slice_right_lemma #n (to_vec a) (n - s); pow2_multiplication_modulo_lemma_2 a n s let shift_left_value_lemma #n a s = if s >= n then shift_left_value_aux_1 #n a s else if s = 0 then shift_left_value_aux_2 #n a else shift_left_value_aux_3 #n a s let shift_right_value_aux_1 #n a s = pow2_le_compat s n; small_division_lemma_1 a (pow2 s) let shift_right_value_aux_2 #n a = assert_norm (pow2 0 == 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt.uint_t n -> s: Prims.pos{s < n} -> FStar.Pervasives.Lemma (ensures FStar.UInt.shift_right a s = a / Prims.pow2 s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.UInt.uint_t", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt.slice_left_lemma", "FStar.UInt.to_vec", "Prims.op_Subtraction", "Prims.unit", "FStar.UInt.append_lemma", "FStar.BitVector.zero_vec", "FStar.Seq.Base.slice", "Prims.bool" ]
[]
true
false
true
false
false
let shift_right_value_aux_3 #n a s =
append_lemma #s #(n - s) (zero_vec #s) (slice (to_vec a) 0 (n - s)); slice_left_lemma #n (to_vec a) (n - s)
false
Pulse.Checker.VPropEquiv.fst
Pulse.Checker.VPropEquiv.ve_unit_r
val ve_unit_r (g:env) (p:term) : vprop_equiv g (tm_star p tm_emp) p
val ve_unit_r (g:env) (p:term) : vprop_equiv g (tm_star p tm_emp) p
let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _)
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 48, "end_line": 23, "start_col": 0, "start_line": 22 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> p: Pulse.Syntax.Base.term -> Pulse.Typing.vprop_equiv g (Pulse.Syntax.Base.tm_star p Pulse.Syntax.Base.tm_emp) p
Prims.Tot
[ "total" ]
[]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.term", "Pulse.Typing.VE_Trans", "Pulse.Syntax.Base.tm_star", "Pulse.Syntax.Base.tm_emp", "Pulse.Typing.VE_Comm", "Pulse.Typing.VE_Unit", "Pulse.Typing.vprop_equiv" ]
[]
false
false
false
false
false
let ve_unit_r g (p: term) : vprop_equiv g (tm_star p tm_emp) p =
VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _)
false
Pulse.Checker.VPropEquiv.fst
Pulse.Checker.VPropEquiv.list_as_vprop_comm
val list_as_vprop_comm (g:env) (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0)))
val list_as_vprop_comm (g:env) (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0)))
let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 26, "end_line": 63, "start_col": 0, "start_line": 57 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | [hd] -> (* Need to check vp1 too in this case *) begin match vp1 with | [] -> VE_Sym _ _ _ (VE_Trans _ _ _ _ (VE_Comm g hd tm_emp) (VE_Unit _ hd)) | _::_ -> VE_Refl _ _ end | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> vp0: Prims.list Pulse.Syntax.Base.term -> vp1: Prims.list Pulse.Syntax.Base.term -> Prims.GTot (Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop (vp0 @ vp1)) (Pulse.Typing.Combinators.list_as_vprop (vp1 @ vp0)))
Prims.GTot
[ "sometrivial" ]
[]
[ "Pulse.Typing.Env.env", "Prims.list", "Pulse.Syntax.Base.term", "Pulse.Typing.VE_Trans", "Pulse.Typing.Combinators.list_as_vprop", "FStar.List.Tot.Base.op_At", "Pulse.Syntax.Base.tm_star", "Pulse.Typing.vprop_equiv", "Pulse.Typing.VE_Comm", "Pulse.Typing.VE_Sym", "Pulse.Checker.VPropEquiv.list_as_vprop_append" ]
[]
false
false
false
false
false
let list_as_vprop_comm g (vp0: list term) (vp1: list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) =
let d1:_ = list_as_vprop_append g vp0 vp1 in let d2:_ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1:_ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2
false
Pulse.Checker.VPropEquiv.fst
Pulse.Checker.VPropEquiv.list_as_vprop_ctx
val list_as_vprop_ctx (g:env) (vp0 vp0' vp1 vp1':list term) (_:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (_:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1')))
val list_as_vprop_ctx (g:env) (vp0 vp0' vp1 vp1':list term) (_:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (_:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1')))
let list_as_vprop_ctx g (vp0 vp0' vp1 vp1':list term) (d0:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) = let split_app = list_as_vprop_append _ vp0 vp1 in let split_app' = list_as_vprop_append _ vp0' vp1' in let ctxt = VE_Ctxt _ _ _ _ _ d0 d1 in VE_Trans _ _ _ _ split_app (VE_Trans _ _ _ _ ctxt (VE_Sym _ _ _ split_app'))
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 80, "end_line": 79, "start_col": 0, "start_line": 71 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | [hd] -> (* Need to check vp1 too in this case *) begin match vp1 with | [] -> VE_Sym _ _ _ (VE_Trans _ _ _ _ (VE_Comm g hd tm_emp) (VE_Unit _ hd)) | _::_ -> VE_Refl _ _ end | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2 let list_as_vprop_assoc g (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) = List.Tot.append_assoc vp0 vp1 vp2; VE_Refl _ _
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> vp0: Prims.list Pulse.Syntax.Base.term -> vp0': Prims.list Pulse.Syntax.Base.term -> vp1: Prims.list Pulse.Syntax.Base.term -> vp1': Prims.list Pulse.Syntax.Base.term -> d0: Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop vp0) (Pulse.Typing.Combinators.list_as_vprop vp0') -> d1: Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop vp1) (Pulse.Typing.Combinators.list_as_vprop vp1') -> Prims.GTot (Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop (vp0 @ vp1)) (Pulse.Typing.Combinators.list_as_vprop (vp0' @ vp1')))
Prims.GTot
[ "sometrivial" ]
[]
[ "Pulse.Typing.Env.env", "Prims.list", "Pulse.Syntax.Base.term", "Pulse.Typing.vprop_equiv", "Pulse.Typing.Combinators.list_as_vprop", "Pulse.Typing.VE_Trans", "FStar.List.Tot.Base.op_At", "Pulse.Syntax.Base.tm_star", "Pulse.Typing.VE_Sym", "Pulse.Typing.VE_Ctxt", "Pulse.Checker.VPropEquiv.list_as_vprop_append" ]
[]
false
false
false
false
false
let list_as_vprop_ctx g (vp0: list term) (vp0': list term) (vp1: list term) (vp1': list term) (d0: vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1: vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) =
let split_app = list_as_vprop_append _ vp0 vp1 in let split_app' = list_as_vprop_append _ vp0' vp1' in let ctxt = VE_Ctxt _ _ _ _ _ d0 d1 in VE_Trans _ _ _ _ split_app (VE_Trans _ _ _ _ ctxt (VE_Sym _ _ _ split_app'))
false
Pulse.Checker.VPropEquiv.fst
Pulse.Checker.VPropEquiv.list_as_vprop_singleton
val list_as_vprop_singleton (g:env) (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q]))
val list_as_vprop_singleton (g:env) (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q]))
let list_as_vprop_singleton g (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q])) = d
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 85, "start_col": 0, "start_line": 81 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | [hd] -> (* Need to check vp1 too in this case *) begin match vp1 with | [] -> VE_Sym _ _ _ (VE_Trans _ _ _ _ (VE_Comm g hd tm_emp) (VE_Unit _ hd)) | _::_ -> VE_Refl _ _ end | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2 let list_as_vprop_assoc g (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) = List.Tot.append_assoc vp0 vp1 vp2; VE_Refl _ _ let list_as_vprop_ctx g (vp0 vp0' vp1 vp1':list term) (d0:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) = let split_app = list_as_vprop_append _ vp0 vp1 in let split_app' = list_as_vprop_append _ vp0' vp1' in let ctxt = VE_Ctxt _ _ _ _ _ d0 d1 in VE_Trans _ _ _ _ split_app (VE_Trans _ _ _ _ ctxt (VE_Sym _ _ _ split_app'))
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> p: Pulse.Syntax.Base.term -> q: Pulse.Syntax.Base.term -> d: Pulse.Typing.vprop_equiv g p q -> Prims.GTot (Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop [p]) (Pulse.Typing.Combinators.list_as_vprop [q]))
Prims.GTot
[ "sometrivial" ]
[]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.term", "Pulse.Typing.vprop_equiv", "Pulse.Typing.Combinators.list_as_vprop", "Prims.Cons", "Prims.Nil" ]
[]
false
false
false
false
false
let list_as_vprop_singleton g (p: term) (q: term) (d: vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q])) =
d
false
Pulse.Checker.VPropEquiv.fst
Pulse.Checker.VPropEquiv.vprop_equiv_swap_equiv
val vprop_equiv_swap_equiv (g:_) (l0 l2:list term) (p q:term) (d_p_q:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([p] @ (l0 @ l2))))
val vprop_equiv_swap_equiv (g:_) (l0 l2:list term) (p q:term) (d_p_q:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([p] @ (l0 @ l2))))
let vprop_equiv_swap_equiv (g:_) (l0 l2:list term) (p q:term) (d_p_q:vprop_equiv g p q) : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([p] @ (l0 @ l2))) = let d : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop (([q] @ l0) @ l2)) = list_as_vprop_ctx g (l0 @ [q]) ([q] @ l0) l2 l2 (list_as_vprop_comm g l0 [q]) (VE_Refl _ _) in let d' : vprop_equiv g (list_as_vprop (([q] @ l0) @ l2)) (list_as_vprop ([q] @ (l0 @ l2))) = List.Tot.append_assoc [q] l0 l2; VE_Refl _ _ in let d : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([q] @ (l0 @ l2))) = VE_Trans _ _ _ _ d d' in let d_q_p = VE_Sym _ _ _ d_p_q in let d' : vprop_equiv g (list_as_vprop [q]) (list_as_vprop [p]) = d_q_p in let d' : vprop_equiv g (list_as_vprop ([q] @ (l0 @ l2))) (list_as_vprop ([p] @ (l0 @ l2))) = list_as_vprop_ctx g [q] [p] (l0 @ l2) _ d' (VE_Refl _ _) in VE_Trans _ _ _ _ d d'
{ "file_name": "lib/steel/pulse/Pulse.Checker.VPropEquiv.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 25, "end_line": 131, "start_col": 0, "start_line": 109 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.VPropEquiv open Pulse.Syntax open Pulse.Typing open FStar.List.Tot let ve_unit_r g (p:term) : vprop_equiv g (tm_star p tm_emp) p = VE_Trans _ _ _ _ (VE_Comm _ _ _) (VE_Unit _ _) let rec list_as_vprop_append g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (list_as_vprop vp0) (list_as_vprop vp1))) (decreases vp0) = match vp0 with | [] -> let v : vprop_equiv g (list_as_vprop vp1) (tm_star tm_emp (list_as_vprop vp1)) = VE_Sym _ _ _ (VE_Unit _ _) in v | [hd] -> (* Need to check vp1 too in this case *) begin match vp1 with | [] -> VE_Sym _ _ _ (VE_Trans _ _ _ _ (VE_Comm g hd tm_emp) (VE_Unit _ hd)) | _::_ -> VE_Refl _ _ end | hd::tl -> let tl_vp1 = list_as_vprop_append g tl vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star hd (tm_star (list_as_vprop tl) (list_as_vprop vp1))) = VE_Ctxt _ _ _ _ _ (VE_Refl _ hd) tl_vp1 in let d : vprop_equiv g (list_as_vprop (vp0 @ vp1)) (tm_star (tm_star hd (list_as_vprop tl)) (list_as_vprop vp1)) = VE_Trans _ _ _ _ d (VE_Assoc _ _ _ _) in d let list_as_vprop_comm g (vp0 vp1:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp1 @ vp0))) = let d1 : _ = list_as_vprop_append g vp0 vp1 in let d2 : _ = VE_Sym _ _ _ (list_as_vprop_append g vp1 vp0) in let d1 : _ = VE_Trans _ _ _ _ d1 (VE_Comm _ _ _) in VE_Trans _ _ _ _ d1 d2 let list_as_vprop_assoc g (vp0 vp1 vp2:list term) : GTot (vprop_equiv g (list_as_vprop (vp0 @ (vp1 @ vp2))) (list_as_vprop ((vp0 @ vp1) @ vp2))) = List.Tot.append_assoc vp0 vp1 vp2; VE_Refl _ _ let list_as_vprop_ctx g (vp0 vp0' vp1 vp1':list term) (d0:vprop_equiv g (list_as_vprop vp0) (list_as_vprop vp0')) (d1:vprop_equiv g (list_as_vprop vp1) (list_as_vprop vp1')) : GTot (vprop_equiv g (list_as_vprop (vp0 @ vp1)) (list_as_vprop (vp0' @ vp1'))) = let split_app = list_as_vprop_append _ vp0 vp1 in let split_app' = list_as_vprop_append _ vp0' vp1' in let ctxt = VE_Ctxt _ _ _ _ _ d0 d1 in VE_Trans _ _ _ _ split_app (VE_Trans _ _ _ _ ctxt (VE_Sym _ _ _ split_app')) let list_as_vprop_singleton g (p q:term) (d:vprop_equiv g p q) : GTot (vprop_equiv g (list_as_vprop [p]) (list_as_vprop [q])) = d let rec vprop_list_equiv (g:env) (vp:term) : GTot (vprop_equiv g vp (canon_vprop vp)) (decreases vp) = match vp.t with | Tm_Emp -> VE_Refl _ _ | Tm_Star vp0 vp1 -> let eq0 = vprop_list_equiv g vp0 in let eq1 = vprop_list_equiv g vp1 in let app_eq : vprop_equiv _ (canon_vprop vp) (tm_star (canon_vprop vp0) (canon_vprop vp1)) = list_as_vprop_append g (vprop_as_list vp0) (vprop_as_list vp1) in let step : vprop_equiv _ vp (tm_star (canon_vprop vp0) (canon_vprop vp1)) = VE_Ctxt _ _ _ _ _ eq0 eq1 in VE_Trans _ _ _ _ step (VE_Sym _ _ _ app_eq) | _ -> VE_Refl _ _
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.VPropEquiv.fst" }
[ { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> l0: Prims.list Pulse.Syntax.Base.term -> l2: Prims.list Pulse.Syntax.Base.term -> p: Pulse.Syntax.Base.term -> q: Pulse.Syntax.Base.term -> d_p_q: Pulse.Typing.vprop_equiv g p q -> Prims.GTot (Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop ((l0 @ [q]) @ l2)) (Pulse.Typing.Combinators.list_as_vprop ([p] @ l0 @ l2)))
Prims.GTot
[ "sometrivial" ]
[]
[ "Pulse.Typing.Env.env", "Prims.list", "Pulse.Syntax.Base.term", "Pulse.Typing.vprop_equiv", "Pulse.Typing.VE_Trans", "Pulse.Typing.Combinators.list_as_vprop", "FStar.List.Tot.Base.op_At", "Prims.Cons", "Prims.Nil", "Pulse.Checker.VPropEquiv.list_as_vprop_ctx", "Pulse.Typing.VE_Refl", "Pulse.Typing.VE_Sym", "Prims.unit", "FStar.List.Tot.Properties.append_assoc", "Pulse.Checker.VPropEquiv.list_as_vprop_comm" ]
[]
false
false
false
false
false
let vprop_equiv_swap_equiv (g: _) (l0 l2: list term) (p q: term) (d_p_q: vprop_equiv g p q) : vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([p] @ (l0 @ l2))) =
let d:vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop (([q] @ l0) @ l2)) = list_as_vprop_ctx g (l0 @ [q]) ([q] @ l0) l2 l2 (list_as_vprop_comm g l0 [q]) (VE_Refl _ _) in let d':vprop_equiv g (list_as_vprop (([q] @ l0) @ l2)) (list_as_vprop ([q] @ (l0 @ l2))) = List.Tot.append_assoc [q] l0 l2; VE_Refl _ _ in let d:vprop_equiv g (list_as_vprop ((l0 @ [q]) @ l2)) (list_as_vprop ([q] @ (l0 @ l2))) = VE_Trans _ _ _ _ d d' in let d_q_p = VE_Sym _ _ _ d_p_q in let d':vprop_equiv g (list_as_vprop [q]) (list_as_vprop [p]) = d_q_p in let d':vprop_equiv g (list_as_vprop ([q] @ (l0 @ l2))) (list_as_vprop ([p] @ (l0 @ l2))) = list_as_vprop_ctx g [q] [p] (l0 @ l2) _ d' (VE_Refl _ _) in VE_Trans _ _ _ _ d d'
false
LowParseWriters.NoHoare.fst
LowParseWriters.NoHoare.read_reify_trivial
val read_reify_trivial (#a: Type) (#l: memory_invariant) (f: (unit -> ERead a True (fun _ -> True) (fun _ -> True) l)) : Tot (read_repr a l)
val read_reify_trivial (#a: Type) (#l: memory_invariant) (f: (unit -> ERead a True (fun _ -> True) (fun _ -> True) l)) : Tot (read_repr a l)
let read_reify_trivial (#a: Type) (#l: memory_invariant) (f: (unit -> ERead a True (fun _ -> True) (fun _ -> True) l)) : Tot (read_repr a l) = reify (f ())
{ "file_name": "examples/layeredeffects/LowParseWriters.NoHoare.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 17, "start_col": 0, "start_line": 12 }
module LowParseWriters.NoHoare include LowParseWriters inline_for_extraction let read_repr (t: Type) (inv: memory_invariant) : Tot Type = read_repr t True (fun _ -> True) (fun _ -> True) inv
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParseWriters.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowParseWriters.NoHoare.fst" }
[ { "abbrev": false, "full_module": "LowParseWriters", "short_module": null }, { "abbrev": false, "full_module": "LowParseWriters", "short_module": null }, { "abbrev": false, "full_module": "LowParseWriters", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: Prims.unit -> LowParseWriters.ERead a) -> LowParseWriters.NoHoare.read_repr a l
Prims.Tot
[ "total" ]
[]
[ "LowParseWriters.memory_invariant", "Prims.unit", "Prims.l_True", "LowParseWriters.NoHoare.read_repr" ]
[]
false
false
false
false
false
let read_reify_trivial (#a: Type) (#l: memory_invariant) (f: (unit -> ERead a True (fun _ -> True) (fun _ -> True) l)) : Tot (read_repr a l) =
reify (f ())
false
Hacl.Impl.HSalsa20.fst
Hacl.Impl.HSalsa20.hsalsa20
val hsalsa20: out:lbuffer uint8 32ul -> key:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h n /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.hsalsa20 (as_seq h0 key) (as_seq h0 n))
val hsalsa20: out:lbuffer uint8 32ul -> key:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h n /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.hsalsa20 (as_seq h0 key) (as_seq h0 n))
let hsalsa20 out key n = push_frame(); let ctx = create 16ul (u32 0) in hsalsa20_init ctx key n; Salsa20.rounds ctx; let r0 = ctx.(0ul) in let r1 = ctx.(5ul) in let r2 = ctx.(10ul) in let r3 = ctx.(15ul) in let r4 = ctx.(6ul) in let r5 = ctx.(7ul) in let r6 = ctx.(8ul) in let r7 = ctx.(9ul) in [@inline_let] let res_l = [r0;r1;r2;r3;r4;r5;r6;r7] in assert_norm (List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le #U32 8ul out res; pop_frame()
{ "file_name": "code/salsa20/Hacl.Impl.HSalsa20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 86, "start_col": 0, "start_line": 68 }
module Hacl.Impl.HSalsa20 open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Salsa20.Core32 module ST = FStar.HyperStack.ST module Spec = Spec.Salsa20 module Loop = Lib.LoopCombinators module Salsa20 = Hacl.Impl.Salsa20 #set-options "--z3rlimit 100 --max_fuel 1 --max_ifuel 1" inline_for_extraction val hsalsa20_init: ctx:state -> k:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h ctx /\ live h k /\ live h n /\ disjoint ctx k /\ disjoint ctx n /\ as_seq h ctx == Lib.Sequence.create 16 (u32 0)) (ensures fun h0 _ h1 -> modifies (loc ctx) h0 h1 /\ as_seq h1 ctx == Spec.hsalsa20_init (as_seq h0 k) (as_seq h0 n)) let hsalsa20_init ctx k n = let h0 = ST.get() in push_frame(); let k32 = create 8ul (u32 0) in let n32 = create 4ul (u32 0) in let h0' = ST.get() in uints_from_bytes_le k32 k; uints_from_bytes_le n32 n; let k0 = sub k32 0ul 4ul in let k1 = sub k32 4ul 4ul in ctx.(0ul) <- Spec.constant0; update_sub #MUT ctx 1ul 4ul k0; ctx.(5ul) <- Spec.constant1; update_sub #MUT ctx 6ul 4ul n32; ctx.(10ul) <- Spec.constant2; update_sub #MUT ctx 11ul 4ul k1; ctx.(15ul) <- Spec.constant3; let h1' = ST.get() in assert (modifies (loc ctx |+| loc k32 |+| loc n32) h0' h1'); pop_frame(); let h1 = ST.get() in assert (modifies (loc ctx) h0 h1) val hsalsa20: out:lbuffer uint8 32ul -> key:lbuffer uint8 32ul -> n:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h key /\ live h n /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.hsalsa20 (as_seq h0 key) (as_seq h0 n))
{ "checked_file": "/", "dependencies": [ "Spec.Salsa20.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Salsa20.Core32.fst.checked", "Hacl.Impl.Salsa20.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.HSalsa20.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Salsa20", "short_module": "Salsa20" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loop" }, { "abbrev": true, "full_module": "Spec.Salsa20", "short_module": "Spec" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Salsa20.Core32", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> n: Lib.Buffer.lbuffer Lib.IntTypes.uint8 16ul -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.ByteBuffer.uints_to_bytes_le", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.mk_int", "Lib.IntTypes.PUB", "FStar.Pervasives.normalize_term", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "FStar.List.Tot.Base.length", "Lib.Buffer.createL", "Lib.IntTypes.uint_t", "Lib.IntTypes.size", "Lib.IntTypes.size_nat", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "Prims.list", "Prims.Cons", "Prims.Nil", "Lib.Buffer.op_Array_Access", "Lib.IntTypes.uint32", "Hacl.Impl.Salsa20.rounds", "Hacl.Impl.HSalsa20.hsalsa20_init", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.u32", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let hsalsa20 out key n =
push_frame (); let ctx = create 16ul (u32 0) in hsalsa20_init ctx key n; Salsa20.rounds ctx; let r0 = ctx.(0ul) in let r1 = ctx.(5ul) in let r2 = ctx.(10ul) in let r3 = ctx.(15ul) in let r4 = ctx.(6ul) in let r5 = ctx.(7ul) in let r6 = ctx.(8ul) in let r7 = ctx.(9ul) in [@@ inline_let ]let res_l = [r0; r1; r2; r3; r4; r5; r6; r7] in assert_norm (List.Tot.length res_l == 8); let res = createL res_l in uints_to_bytes_le #U32 8ul out res; pop_frame ()
false
Spec.Box.Test.fst
Spec.Box.Test.nonce
val nonce:lbytes 24
val nonce:lbytes 24
let nonce : lbytes 24 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x05uy; 0x06uy; 0x07uy; 0x08uy; 0x09uy; 0x10uy; 0x11uy; 0x12uy; 0x13uy; 0x14uy; 0x15uy; 0x16uy; 0x17uy; 0x18uy; 0x19uy; 0x20uy; 0x21uy; 0x22uy; 0x23uy ] in assert_norm (List.Tot.length l == 24); of_list l
{ "file_name": "specs/tests/Spec.Box.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 36, "start_col": 0, "start_line": 29 }
module Spec.Box.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Box #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let plain : lbytes 72 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x05uy; 0x06uy; 0x07uy; 0x08uy; 0x09uy; 0x10uy; 0x11uy; 0x12uy; 0x13uy; 0x14uy; 0x15uy; 0x16uy; 0x17uy; 0x18uy; 0x19uy; 0x20uy; 0x21uy; 0x22uy; 0x23uy; 0x00uy; 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x05uy; 0x06uy; 0x07uy; 0x08uy; 0x09uy; 0x10uy; 0x11uy; 0x12uy; 0x13uy; 0x14uy; 0x15uy; 0x16uy; 0x17uy; 0x18uy; 0x19uy; 0x20uy; 0x21uy; 0x22uy; 0x23uy; 0x00uy; 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x05uy; 0x06uy; 0x07uy; 0x08uy; 0x09uy; 0x10uy; 0x11uy; 0x12uy; 0x13uy; 0x14uy; 0x15uy; 0x16uy; 0x17uy; 0x18uy; 0x19uy; 0x20uy; 0x21uy; 0x22uy; 0x23uy ] in assert_norm (List.Tot.length l == 72); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "Spec.Box.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked" ], "interface_file": false, "source_file": "Spec.Box.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.Box", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Box", "short_module": null }, { "abbrev": false, "full_module": "Spec.Box", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) 24
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.of_list", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "FStar.List.Tot.Base.map", "FStar.UInt8.t", "Lib.RawIntTypes.u8_from_UInt8", "Prims.Cons", "FStar.UInt8.__uint_to_t", "Prims.Nil" ]
[]
false
false
false
false
false
let nonce:lbytes 24 =
let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x05uy; 0x06uy; 0x07uy; 0x08uy; 0x09uy; 0x10uy; 0x11uy; 0x12uy; 0x13uy; 0x14uy; 0x15uy; 0x16uy; 0x17uy; 0x18uy; 0x19uy; 0x20uy; 0x21uy; 0x22uy; 0x23uy ] in assert_norm (List.Tot.length l == 24); of_list l
false