file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.DM4F.Heap.IntStoreFixed.fst
FStar.DM4F.Heap.IntStoreFixed.index
val index (h:heap) (i:id) : int
val index (h:heap) (i:id) : int
let index h i = Seq.index h i
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 25, "start_col": 0, "start_line": 25 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap.IntStoreFixed open FStar.Seq let id = i:nat{i < store_size} let heap = h:seq int{length h == store_size} let to_id n = n
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.DM4F.Heap.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.DM4F.Heap.IntStoreFixed.heap -> i: FStar.DM4F.Heap.IntStoreFixed.id -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Heap.IntStoreFixed.heap", "FStar.DM4F.Heap.IntStoreFixed.id", "FStar.Seq.Base.index", "Prims.int" ]
[]
false
false
false
true
false
let index h i =
Seq.index h i
false
FStar.HyperStack.All.fst
FStar.HyperStack.All.all_pre
val all_pre : Type
let all_pre = all_pre_h HyperStack.mem
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 19, "start_col": 0, "start_line": 19 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.all_pre_h", "FStar.Monotonic.HyperStack.mem" ]
[]
false
false
false
true
true
let all_pre =
all_pre_h HyperStack.mem
false
FStar.DM4F.Heap.IntStoreFixed.fst
FStar.DM4F.Heap.IntStoreFixed.create
val create (x:int) : heap
val create (x:int) : heap
let create x = create #int store_size x
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 29, "start_col": 0, "start_line": 29 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap.IntStoreFixed open FStar.Seq let id = i:nat{i < store_size} let heap = h:seq int{length h == store_size} let to_id n = n let index h i = Seq.index h i let upd h i x = let h1 = upd h i x in assert (length h1 = store_size) ; h1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.DM4F.Heap.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.int -> FStar.DM4F.Heap.IntStoreFixed.heap
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "FStar.Seq.Base.create", "FStar.DM4F.Heap.IntStoreFixed.store_size", "FStar.DM4F.Heap.IntStoreFixed.heap" ]
[]
false
false
false
true
false
let create x =
create #int store_size x
false
FStar.DM4F.Heap.IntStoreFixed.fst
FStar.DM4F.Heap.IntStoreFixed.upd
val upd (h:heap) (i:id) (x:int) : heap
val upd (h:heap) (i:id) (x:int) : heap
let upd h i x = let h1 = upd h i x in assert (length h1 = store_size) ; h1
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 27, "start_col": 0, "start_line": 27 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap.IntStoreFixed open FStar.Seq let id = i:nat{i < store_size} let heap = h:seq int{length h == store_size} let to_id n = n let index h i = Seq.index h i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.DM4F.Heap.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.DM4F.Heap.IntStoreFixed.heap -> i: FStar.DM4F.Heap.IntStoreFixed.id -> x: Prims.int -> FStar.DM4F.Heap.IntStoreFixed.heap
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Heap.IntStoreFixed.heap", "FStar.DM4F.Heap.IntStoreFixed.id", "Prims.int", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_Equality", "FStar.Seq.Base.length", "FStar.DM4F.Heap.IntStoreFixed.store_size", "FStar.Seq.Base.seq", "FStar.Seq.Base.upd" ]
[]
false
false
false
true
false
let upd h i x =
let h1 = upd h i x in assert (length h1 = store_size); h1
false
FStar.HyperStack.All.fst
FStar.HyperStack.All.all_post
val all_post : a: Type -> Type
let all_post (a:Type) = all_post_h HyperStack.mem a
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 21, "start_col": 0, "start_line": 21 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST let all_pre = all_pre_h HyperStack.mem
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.all_post_h", "FStar.Monotonic.HyperStack.mem" ]
[]
false
false
false
true
true
let all_post (a: Type) =
all_post_h HyperStack.mem a
false
FStar.HyperStack.All.fst
FStar.HyperStack.All.all_wp
val all_wp : a: Type -> Type
let all_wp (a:Type) = all_wp_h HyperStack.mem a
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 22, "start_col": 0, "start_line": 22 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST let all_pre = all_pre_h HyperStack.mem let all_post' (a:Type) (pre:Type) = all_post_h' HyperStack.mem a pre
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.all_wp_h", "FStar.Monotonic.HyperStack.mem" ]
[]
false
false
false
true
true
let all_wp (a: Type) =
all_wp_h HyperStack.mem a
false
FStar.HyperStack.All.fst
FStar.HyperStack.All.lift_state_all
val lift_state_all : a: Type -> wp: FStar.HyperStack.ST.st_wp a -> p: FStar.HyperStack.All.all_post a -> FStar.Pervasives.st_pre_h FStar.Monotonic.HyperStack.mem
let lift_state_all (a:Type) (wp:st_wp a) (p:all_post a) = wp (fun a -> p (V a))
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 87, "end_line": 25, "start_col": 7, "start_line": 25 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST let all_pre = all_pre_h HyperStack.mem let all_post' (a:Type) (pre:Type) = all_post_h' HyperStack.mem a pre let all_post (a:Type) = all_post_h HyperStack.mem a let all_wp (a:Type) = all_wp_h HyperStack.mem a new_effect ALL = ALL_h HyperStack.mem
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> wp: FStar.HyperStack.ST.st_wp a -> p: FStar.HyperStack.All.all_post a -> FStar.Pervasives.st_pre_h FStar.Monotonic.HyperStack.mem
Prims.Tot
[ "total" ]
[]
[ "FStar.HyperStack.ST.st_wp", "FStar.HyperStack.All.all_post", "FStar.Pervasives.V", "FStar.Monotonic.HyperStack.mem", "Prims.l_True", "FStar.Pervasives.st_pre_h" ]
[]
false
false
false
true
false
let lift_state_all (a: Type) (wp: st_wp a) (p: all_post a) =
wp (fun a -> p (V a))
false
L0Types.fst
L0Types.aliasKeyCRT_t
val aliasKeyCRT_t : Type0
val aliasKeyCRT_t : Type0
let aliasKeyCRT_t : Type0 = UInt32.t
{ "file_name": "share/steel/examples/pulse/dice/l0/L0Types.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 36, "end_line": 30, "start_col": 0, "start_line": 30 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module L0Types open Pulse.Lib.Pervasives let x509_version_t : Type0 = UInt32.t let x509_serialNumber_t : Type0 = UInt32.t let deviceIDCRI_t : Type0 = UInt32.t let deviceIDCSR_t : Type0 = UInt32.t let aliasKeyTBS_t : Type0 = UInt32.t
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "L0Types.fst" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "HACL", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "Pulse.Lib.Vec", "short_module": "V" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t" ]
[]
false
false
false
true
true
let aliasKeyCRT_t:Type0 =
UInt32.t
false
Spec.Box.Test.fst
Spec.Box.Test.test
val test : _: Prims.unit -> FStar.All.ALL Prims.bool
let test () = let pk1 : lbytes 32 = Spec.Curve25519.secret_to_public sk1 in let pk2 : lbytes 32 = Spec.Curve25519.secret_to_public sk2 in let mac_cipher = box_detached sk1 pk2 nonce plain in let (mac, cipher) = match mac_cipher with | Some p -> p | None -> (create 16 (u8 0), create 72 (u8 0)) in let dec = box_open_detached pk1 sk2 nonce mac cipher in let dec_p = match dec with | Some p -> p | None -> create 72 (u8 0) in let result_decryption = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) dec_p plain in if result_decryption then begin IO.print_string "\nCryptoBox: Success!\n"; true end else begin IO.print_string "\nCryptoBox: Failure :("; false end
{ "file_name": "specs/tests/Spec.Box.Test.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 65, "end_line": 86, "start_col": 0, "start_line": 72 }
module Spec.Box.Test open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Box #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let plain : lbytes 72 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x05uy; 0x06uy; 0x07uy; 0x08uy; 0x09uy; 0x10uy; 0x11uy; 0x12uy; 0x13uy; 0x14uy; 0x15uy; 0x16uy; 0x17uy; 0x18uy; 0x19uy; 0x20uy; 0x21uy; 0x22uy; 0x23uy; 0x00uy; 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x05uy; 0x06uy; 0x07uy; 0x08uy; 0x09uy; 0x10uy; 0x11uy; 0x12uy; 0x13uy; 0x14uy; 0x15uy; 0x16uy; 0x17uy; 0x18uy; 0x19uy; 0x20uy; 0x21uy; 0x22uy; 0x23uy; 0x00uy; 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x05uy; 0x06uy; 0x07uy; 0x08uy; 0x09uy; 0x10uy; 0x11uy; 0x12uy; 0x13uy; 0x14uy; 0x15uy; 0x16uy; 0x17uy; 0x18uy; 0x19uy; 0x20uy; 0x21uy; 0x22uy; 0x23uy ] in assert_norm (List.Tot.length l == 72); of_list l let nonce : lbytes 24 = let l = List.Tot.map u8_from_UInt8 [ 0x00uy; 0x01uy; 0x02uy; 0x03uy; 0x04uy; 0x05uy; 0x06uy; 0x07uy; 0x08uy; 0x09uy; 0x10uy; 0x11uy; 0x12uy; 0x13uy; 0x14uy; 0x15uy; 0x16uy; 0x17uy; 0x18uy; 0x19uy; 0x20uy; 0x21uy; 0x22uy; 0x23uy ] in assert_norm (List.Tot.length l == 24); of_list l let key : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x85uy; 0xd6uy; 0xbeuy; 0x78uy; 0x57uy; 0x55uy; 0x6duy; 0x33uy; 0x7fuy; 0x44uy; 0x52uy; 0xfeuy; 0x42uy; 0xd5uy; 0x06uy; 0xa8uy; 0x01uy; 0x03uy; 0x80uy; 0x8auy; 0xfbuy; 0x0duy; 0xb2uy; 0xfduy; 0x4auy; 0xbfuy; 0xf6uy; 0xafuy; 0x41uy; 0x49uy; 0xf5uy; 0x1buy ] in assert_norm (List.Tot.length l == 32); of_list l let sk1 : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x85uy; 0xd6uy; 0xbeuy; 0x78uy; 0x57uy; 0x55uy; 0x6duy; 0x33uy; 0x7fuy; 0x44uy; 0x52uy; 0xfeuy; 0x42uy; 0xd5uy; 0x06uy; 0xa8uy; 0x01uy; 0x03uy; 0x80uy; 0x8auy; 0xfbuy; 0x0duy; 0xb2uy; 0xfduy; 0x4auy; 0xbfuy; 0xf6uy; 0xafuy; 0x41uy; 0x49uy; 0xf5uy; 0x1buy ] in assert_norm (List.Tot.length l == 32); of_list l let sk2 : lbytes 32 = let l = List.Tot.map u8_from_UInt8 [ 0x85uy; 0xd6uy; 0xbeuy; 0x78uy; 0x57uy; 0x55uy; 0x6duy; 0x33uy; 0x7fuy; 0x44uy; 0x52uy; 0xfeuy; 0x42uy; 0xd5uy; 0x06uy; 0xa8uy; 0x01uy; 0x03uy; 0x80uy; 0x8auy; 0xfbuy; 0x0duy; 0xb2uy; 0xfduy; 0x4auy; 0xbfuy; 0xf6uy; 0xafuy; 0x41uy; 0x49uy; 0xf5uy; 0x1cuy ] in assert_norm (List.Tot.length l == 32); of_list l
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "Spec.Box.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.IO.fst.checked" ], "interface_file": false, "source_file": "Spec.Box.Test.fst" }
[ { "abbrev": false, "full_module": "Spec.Box", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Box", "short_module": null }, { "abbrev": false, "full_module": "Spec.Box", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.All.ALL Prims.bool
FStar.All.ALL
[]
[]
[ "Prims.unit", "Spec.SecretBox.tag", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_Equality", "Prims.nat", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Box.Test.plain", "Prims.bool", "FStar.IO.print_string", "Lib.Sequence.for_all2", "Prims.l_or", "Prims.int", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.uint_v", "Lib.RawIntTypes.uint_to_nat", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.Sequence.create", "Lib.IntTypes.u8", "FStar.Pervasives.Native.option", "Lib.Sequence.seq", "Spec.Box.box_open_detached", "Spec.Box.Test.sk2", "Spec.Box.Test.nonce", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Spec.Box.box_detached", "Spec.Box.Test.sk1", "Spec.Curve25519.secret_to_public" ]
[]
false
true
false
false
false
let test () =
let pk1:lbytes 32 = Spec.Curve25519.secret_to_public sk1 in let pk2:lbytes 32 = Spec.Curve25519.secret_to_public sk2 in let mac_cipher = box_detached sk1 pk2 nonce plain in let mac, cipher = match mac_cipher with | Some p -> p | None -> (create 16 (u8 0), create 72 (u8 0)) in let dec = box_open_detached pk1 sk2 nonce mac cipher in let dec_p = match dec with | Some p -> p | None -> create 72 (u8 0) in let result_decryption = for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) dec_p plain in if result_decryption then (IO.print_string "\nCryptoBox: Success!\n"; true) else (IO.print_string "\nCryptoBox: Failure :("; false)
false
FStar.DM4F.Heap.IntStoreFixed.fst
FStar.DM4F.Heap.IntStoreFixed.lemma_index_create
val lemma_index_create: v:int -> i:id -> Lemma (requires True) (ensures (index (create v) i == v)) [SMTPat (index (create v) i)]
val lemma_index_create: v:int -> i:id -> Lemma (requires True) (ensures (index (create v) i == v)) [SMTPat (index (create v) i)]
let lemma_index_create v i = lemma_index_create #int store_size v i
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 35, "start_col": 0, "start_line": 35 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap.IntStoreFixed open FStar.Seq let id = i:nat{i < store_size} let heap = h:seq int{length h == store_size} let to_id n = n let index h i = Seq.index h i let upd h i x = let h1 = upd h i x in assert (length h1 = store_size) ; h1 let create x = create #int store_size x let lemma_index_upd1 s n v = lemma_index_upd1 #int s n v let lemma_index_upd2 s n v i = lemma_index_upd2 #int s n v i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.DM4F.Heap.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Prims.int -> i: FStar.DM4F.Heap.IntStoreFixed.id -> FStar.Pervasives.Lemma (ensures FStar.DM4F.Heap.IntStoreFixed.index (FStar.DM4F.Heap.IntStoreFixed.create v) i == v) [SMTPat (FStar.DM4F.Heap.IntStoreFixed.index (FStar.DM4F.Heap.IntStoreFixed.create v) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.DM4F.Heap.IntStoreFixed.id", "FStar.Seq.Base.lemma_index_create", "FStar.DM4F.Heap.IntStoreFixed.store_size", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_index_create v i =
lemma_index_create #int store_size v i
false
Hacl.Impl.Chacha20Poly1305.fst
Hacl.Impl.Chacha20Poly1305.aead_encrypt
val aead_encrypt: #w:field_spec -> aead_encrypt_st w
val aead_encrypt: #w:field_spec -> aead_encrypt_st w
let aead_encrypt #w output tag input input_len data data_len key nonce = chacha20_encrypt #w input_len output input key nonce 1ul; derive_key_poly1305_do #w key nonce data_len data input_len output tag
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 173, "start_col": 0, "start_line": 171 }
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize] let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame() unfold noextract let width_chacha20 (s:field_spec) : Hacl.Spec.Chacha20.Vec.lanes = match s with | M32 -> 1 | M128 -> 4 | M256 -> 8 [@ Meta.Attribute.specialize ] assume val chacha20_encrypt: #w:field_spec -> Hacl.Impl.Chacha20.Vec.chacha20_encrypt_st (width_chacha20 w) // Derives the key, and then perform poly1305 val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad))) [@ Meta.Attribute.inline_ ] let derive_key_poly1305_do #w k n aadlen aad mlen m out = push_frame (); // Create a new buffer to derive the key let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; // The derived key should only be the first 32 bytes let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame() inline_for_extraction noextract let aead_encrypt_st (w:field_spec) = output:buffer uint8 -> tag:lbuffer uint8 16ul -> input:buffer uint8 -> input_len:size_t { length input = v input_len /\ length output = v input_len } -> data:buffer uint8 -> data_len:size_t { length data = v data_len } -> key:lbuffer uint8 32ul -> nonce:lbuffer uint8 12ul -> Stack unit (requires fun h -> live h key /\ live h nonce /\ live h data /\ live h input /\ live h output /\ live h tag /\ disjoint key output /\ disjoint nonce output /\ disjoint key tag /\ disjoint nonce tag /\ disjoint output tag /\ eq_or_disjoint (input <: lbuffer uint8 input_len) (output <: lbuffer uint8 input_len) /\ disjoint data output) (ensures fun h0 _ h1 -> modifies2 output tag h0 h1 /\ Seq.append (as_seq h1 (output <: lbuffer uint8 input_len)) (as_seq h1 tag) == Spec.aead_encrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 (input <: lbuffer uint8 input_len)) (as_seq h0 (data <: lbuffer uint8 data_len))) noextract val aead_encrypt: #w:field_spec -> aead_encrypt_st w
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Chacha20Poly1305.aead_encrypt_st w
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.buffer", "Lib.IntTypes.uint8", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Lib.Buffer.length", "Lib.Buffer.MUT", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "Hacl.Impl.Chacha20Poly1305.derive_key_poly1305_do", "Prims.unit", "Hacl.Impl.Chacha20Poly1305.chacha20_encrypt" ]
[]
false
false
false
false
false
let aead_encrypt #w output tag input input_len data data_len key nonce =
chacha20_encrypt #w input_len output input key nonce 1ul; derive_key_poly1305_do #w key nonce data_len data input_len output tag
false
Even.fst
Even.prove_even
val prove_even : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
let prove_even () = compute (); ignore (repeat (fun () -> apply (`Even_SS))); apply (`Even_Z)
{ "file_name": "examples/tactics/Even.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 93, "end_line": 24, "start_col": 0, "start_line": 24 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Even open FStar.Tactics.V2 type unat = | Z : unat | S : unat → unat let rec nat2unary (n: nat) : Tot unat = if n = 0 then Z else S (nat2unary (n - 1)) type even : unat → Type = | Even_Z : even Z | Even_SS : #n: unat → even n → even (S (S n))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Even.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.apply", "FStar.Pervasives.ignore", "Prims.list", "FStar.Tactics.V2.Derived.repeat", "FStar.Tactics.V2.Derived.compute" ]
[]
false
true
false
false
false
let prove_even () =
compute (); ignore (repeat (fun () -> apply (`Even_SS))); apply (`Even_Z)
false
FStar.HyperStack.All.fst
FStar.HyperStack.All.lift_exn_all
val lift_exn_all : a: Type -> wp: FStar.Pervasives.ex_wp a -> p: FStar.HyperStack.All.all_post a -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.ex_pre
let lift_exn_all (a:Type) (wp:ex_wp a) (p:all_post a) (h:HyperStack.mem) = wp (fun ra -> p ra h)
{ "file_name": "ulib/FStar.HyperStack.All.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 105, "end_line": 28, "start_col": 7, "start_line": 28 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.All include FStar.HyperStack.ST let all_pre = all_pre_h HyperStack.mem let all_post' (a:Type) (pre:Type) = all_post_h' HyperStack.mem a pre let all_post (a:Type) = all_post_h HyperStack.mem a let all_wp (a:Type) = all_wp_h HyperStack.mem a new_effect ALL = ALL_h HyperStack.mem unfold let lift_state_all (a:Type) (wp:st_wp a) (p:all_post a) = wp (fun a -> p (V a)) sub_effect STATE ~> ALL = lift_state_all
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.All.fst" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> wp: FStar.Pervasives.ex_wp a -> p: FStar.HyperStack.All.all_post a -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.ex_pre
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.ex_wp", "FStar.HyperStack.All.all_post", "FStar.Monotonic.HyperStack.mem", "FStar.Pervasives.result", "Prims.l_True", "FStar.Pervasives.ex_pre" ]
[]
false
false
false
true
false
let lift_exn_all (a: Type) (wp: ex_wp a) (p: all_post a) (h: HyperStack.mem) =
wp (fun ra -> p ra h)
false
Even.fst
Even.even10
val even10:even (normalize_term (nat2unary 10))
val even10:even (normalize_term (nat2unary 10))
let even10 : even (normalize_term (nat2unary 10)) = synth prove_even
{ "file_name": "examples/tactics/Even.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 68, "end_line": 26, "start_col": 0, "start_line": 26 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Even open FStar.Tactics.V2 type unat = | Z : unat | S : unat → unat let rec nat2unary (n: nat) : Tot unat = if n = 0 then Z else S (nat2unary (n - 1)) type even : unat → Type = | Even_Z : even Z | Even_SS : #n: unat → even n → even (S (S n)) let prove_even () = compute (); ignore (repeat (fun () -> apply (`Even_SS))); apply (`Even_Z)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Even.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Even.even (Even.S (Even.S (Even.S (Even.S (Even.S (Even.S (Even.S (Even.S (Even.S (Even.S Even.Z))))))))))
Prims.Tot
[ "total" ]
[]
[ "Even.Even_SS", "Even.S", "Even.Z", "Even.Even_Z" ]
[]
false
false
false
true
false
let even10:even (normalize_term (nat2unary 10)) =
FStar.Tactics.Effect.synth_by_tactic prove_even
false
FStar.DM4F.Heap.IntStoreFixed.fst
FStar.DM4F.Heap.IntStoreFixed.lemma_index_upd1
val lemma_index_upd1: s:heap -> n:id -> v:int -> Lemma (requires True) (ensures (index (upd s n v) n == v)) [SMTPat (index (upd s n v) n)]
val lemma_index_upd1: s:heap -> n:id -> v:int -> Lemma (requires True) (ensures (index (upd s n v) n == v)) [SMTPat (index (upd s n v) n)]
let lemma_index_upd1 s n v = lemma_index_upd1 #int s n v
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 31, "start_col": 0, "start_line": 31 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap.IntStoreFixed open FStar.Seq let id = i:nat{i < store_size} let heap = h:seq int{length h == store_size} let to_id n = n let index h i = Seq.index h i let upd h i x = let h1 = upd h i x in assert (length h1 = store_size) ; h1 let create x = create #int store_size x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.DM4F.Heap.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.DM4F.Heap.IntStoreFixed.heap -> n: FStar.DM4F.Heap.IntStoreFixed.id -> v: Prims.int -> FStar.Pervasives.Lemma (ensures FStar.DM4F.Heap.IntStoreFixed.index (FStar.DM4F.Heap.IntStoreFixed.upd s n v) n == v) [SMTPat (FStar.DM4F.Heap.IntStoreFixed.index (FStar.DM4F.Heap.IntStoreFixed.upd s n v) n)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.DM4F.Heap.IntStoreFixed.heap", "FStar.DM4F.Heap.IntStoreFixed.id", "Prims.int", "FStar.Seq.Base.lemma_index_upd1", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_index_upd1 s n v =
lemma_index_upd1 #int s n v
false
Steel.ST.SeqMatch.fst
Steel.ST.SeqMatch.seq_seq_match_weaken
val seq_seq_match_weaken (#opened: _) (#t1 #t2: Type) (p p': (t1 -> t2 -> vprop)) (w: (x1: t1 -> x2: t2 -> STGhostT unit opened (p x1 x2) (fun _ -> p' x1 x2))) (c1 c1': Seq.seq t1) (c2 c2': Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p c1 c2 i j) (fun _ -> seq_seq_match p' c1' c2' i j) (i <= j /\ (i == j \/ (j <= Seq.length c1 /\ j <= Seq.length c2 /\ j <= Seq.length c1' /\ j <= Seq.length c2' /\ (Seq.slice c1 i j) `Seq.equal` (Seq.slice c1' i j) /\ (Seq.slice c2 i j) `Seq.equal` (Seq.slice c2' i j)))) (fun _ -> True)
val seq_seq_match_weaken (#opened: _) (#t1 #t2: Type) (p p': (t1 -> t2 -> vprop)) (w: (x1: t1 -> x2: t2 -> STGhostT unit opened (p x1 x2) (fun _ -> p' x1 x2))) (c1 c1': Seq.seq t1) (c2 c2': Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p c1 c2 i j) (fun _ -> seq_seq_match p' c1' c2' i j) (i <= j /\ (i == j \/ (j <= Seq.length c1 /\ j <= Seq.length c2 /\ j <= Seq.length c1' /\ j <= Seq.length c2' /\ (Seq.slice c1 i j) `Seq.equal` (Seq.slice c1' i j) /\ (Seq.slice c2 i j) `Seq.equal` (Seq.slice c2' i j)))) (fun _ -> True)
let seq_seq_match_weaken (#opened: _) (#t1 #t2: Type) (p p': t1 -> t2 -> vprop) (w: ((x1: t1) -> (x2: t2) -> STGhostT unit opened (p x1 x2) (fun _ -> p' x1 x2) )) (c1 c1': Seq.seq t1) (c2 c2': Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p c1 c2 i j) (fun _ -> seq_seq_match p' c1' c2' i j) (i <= j /\ (i == j \/ ( j <= Seq.length c1 /\ j <= Seq.length c2 /\ j <= Seq.length c1' /\ j <= Seq.length c2' /\ Seq.slice c1 i j `Seq.equal` Seq.slice c1' i j /\ Seq.slice c2 i j `Seq.equal` Seq.slice c2' i j ))) (fun _ -> True) = on_range_weaken (seq_seq_match_item p c1 c2) (seq_seq_match_item p' c1' c2') i j (fun k -> rewrite (seq_seq_match_item p c1 c2 k) (p (Seq.index (Seq.slice c1 i j) (k - i)) (Seq.index (Seq.slice c2 i j) (k - i))); w _ _; rewrite (p' _ _) (seq_seq_match_item p' c1' c2' k) )
{ "file_name": "lib/steel/Steel.ST.SeqMatch.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 290, "start_col": 0, "start_line": 261 }
module Steel.ST.SeqMatch include Steel.ST.OnRange open Steel.ST.GenElim module Seq = FStar.Seq module SZ = FStar.SizeT (* `seq_list_match` describes how to match a sequence of low-level values (the low-level contents of an array) with a list of high-level values. `seq_list_match` is carefully designed to be usable within (mutually) recursive definitions of matching functions on the type of high-level values. *) [@@__reduce__] let seq_list_match_nil0 (#t: Type) (c: Seq.seq t) : Tot vprop = pure (c `Seq.equal` Seq.empty) [@@__reduce__] let seq_list_match_cons0 (#t #t': Type) (c: Seq.seq t) (l: list t' { Cons? l }) (item_match: (t -> (v': t' { v' << l }) -> vprop)) (seq_list_match: (Seq.seq t -> (v': list t') -> (raw_data_item_match: (t -> (v'': t' { v'' << v' }) -> vprop) { v' << l }) -> vprop)) : Tot vprop = exists_ (fun (c1: t) -> exists_ (fun (c2: Seq.seq t) -> item_match c1 (List.Tot.hd l) `star` seq_list_match c2 (List.Tot.tl l) item_match `star` pure (c `Seq.equal` Seq.cons c1 c2) )) let rec seq_list_match (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Tot vprop (decreases v) = if Nil? v then seq_list_match_nil0 c else seq_list_match_cons0 c v item_match seq_list_match let seq_list_match_cons_eq (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Lemma (requires (Cons? v)) (ensures ( seq_list_match c v item_match == seq_list_match_cons0 c v item_match seq_list_match )) = let a :: q = v in assert_norm (seq_list_match c (a :: q) item_match == seq_list_match_cons0 c (a :: q) item_match seq_list_match ) let seq_list_match_nil (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : STGhost unit opened emp (fun _ -> seq_list_match c v item_match) (c `Seq.equal` Seq.empty /\ Nil? v) (fun _ -> True) = noop (); rewrite (seq_list_match_nil0 c) (seq_list_match c v item_match) let list_cons_precedes (#t: Type) (a: t) (q: list t) : Lemma ((a << a :: q) /\ (q << a :: q)) [SMTPat (a :: q)] = assert (List.Tot.hd (a :: q) << (a :: q)); assert (List.Tot.tl (a :: q) << (a :: q)) let seq_list_match_cons_intro (#opened: _) (#t #t': Type) (a: t) (a' : t') (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << a' :: v }) -> vprop)) : STGhostT unit opened (item_match a a' `star` seq_list_match c v item_match) (fun _ -> seq_list_match (Seq.cons a c) (a' :: v) item_match) = seq_list_match_cons_eq (Seq.cons a c) (a' :: v) item_match; noop (); rewrite (seq_list_match_cons0 (Seq.cons a c) (a' :: v) item_match seq_list_match) (seq_list_match (Seq.cons a c) (a' :: v) item_match) let seq_list_match_cons_elim (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t' { Cons? v \/ Seq.length c > 0 }) (item_match: (t -> (v': t' { v' << v }) -> vprop)) : STGhostT (squash (Cons? v /\ Seq.length c > 0)) opened (seq_list_match c v item_match) (fun _ -> item_match (Seq.head c) (List.Tot.hd v) `star` seq_list_match (Seq.tail c) (List.Tot.tl v) item_match) = if Nil? v then begin rewrite (seq_list_match c v item_match) (seq_list_match_nil0 c); let _ = gen_elim () in assert False; rewrite // by contradiction emp (item_match (Seq.head c) (List.Tot.hd v) `star` seq_list_match (Seq.tail c) (List.Tot.tl v) item_match) end else begin seq_list_match_cons_eq c v item_match; noop (); rewrite (seq_list_match c v item_match) (seq_list_match_cons0 c v item_match seq_list_match); let _ = gen_elim () in let prf : squash (Cons? v /\ Seq.length c > 0) = () in let c1 = vpattern (fun c1 -> item_match c1 (List.Tot.hd v)) in let c2 = vpattern (fun c2 -> seq_list_match c2 (List.Tot.tl v) item_match) in Seq.lemma_cons_inj c1 (Seq.head c) c2 (Seq.tail c); vpattern_rewrite (fun c1 -> item_match c1 (List.Tot.hd v)) (Seq.head c); vpattern_rewrite (fun c2 -> seq_list_match c2 (List.Tot.tl v) item_match) (Seq.tail c); prf end // this one cannot be proven with seq_seq_match because of the << refinement in the type of item_match let rec seq_list_match_weaken (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match1 item_match2: (t -> (v': t' { v' << v }) -> vprop)) (prf: ( (#opened: _) -> (c': t) -> (v': t' { v' << v }) -> STGhostT unit opened (item_match1 c' v') (fun _ -> item_match2 c' v') )) : STGhostT unit opened (seq_list_match c v item_match1) (fun _ -> seq_list_match c v item_match2) (decreases v) = if Nil? v then rewrite (seq_list_match c v item_match1) (seq_list_match c v item_match2) else begin let _ : squash (Cons? v) = () in seq_list_match_cons_eq c v item_match1; seq_list_match_cons_eq c v item_match2; rewrite (seq_list_match c v item_match1) (seq_list_match_cons0 c v item_match1 seq_list_match); let _ = gen_elim () in prf _ _; seq_list_match_weaken _ (List.Tot.tl v) item_match1 item_match2 prf; rewrite (seq_list_match_cons0 c v item_match2 seq_list_match) (seq_list_match c v item_match2) end (* `seq_seq_match` describes how to match a sequence of low-level values (the low-level contents of an array) with a sequence of high-level values. Contrary to `seq_list_match`, `seq_seq_match` is not meant to be usable within (mutually) recursive definitions of matching functions on the type of high-level values, because no lemma ensures that `Seq.index s i << s` *) let seq_seq_match_item (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (i: nat) : Tot vprop = if i < Seq.length c && i < Seq.length l then p (Seq.index c i) (Seq.index l i) else pure (squash False) let seq_seq_match_item_tail (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (delta: nat) (i: nat) : Lemma (requires ( i + delta <= Seq.length c /\ i + delta <= Seq.length l )) (ensures ( seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) i == seq_seq_match_item p c l (i + delta) )) = () [@@__reduce__] let seq_seq_match (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (i j: nat) : Tot vprop = on_range (seq_seq_match_item p c l) i j let seq_seq_match_length (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p s1 s2 i j) (fun _ -> seq_seq_match p s1 s2 i j) True (fun _ -> i <= j /\ (i == j \/ (j <= Seq.length s1 /\ j <= Seq.length s2))) = on_range_le (seq_seq_match_item p s1 s2) i j; if i = j then noop () else begin let j' = j - 1 in if j' < Seq.length s1 && j' < Seq.length s2 then noop () else begin on_range_unsnoc (seq_seq_match_item p s1 s2) i j' j; rewrite (seq_seq_match_item p _ _ _) (pure (squash False)); let _ = gen_elim () in rewrite (seq_seq_match p s1 s2 i j') (seq_seq_match p s1 s2 i j) // by contradiction end end
{ "checked_file": "/", "dependencies": [ "Steel.ST.OnRange.fsti.checked", "Steel.ST.GenElim.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Steel.ST.SeqMatch.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.OnRange", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: t1 -> _: t2 -> Steel.Effect.Common.vprop) -> p': (_: t1 -> _: t2 -> Steel.Effect.Common.vprop) -> w: (x1: t1 -> x2: t2 -> Steel.ST.Effect.Ghost.STGhostT Prims.unit) -> c1: FStar.Seq.Base.seq t1 -> c1': FStar.Seq.Base.seq t1 -> c2: FStar.Seq.Base.seq t2 -> c2': FStar.Seq.Base.seq t2 -> i: Prims.nat -> j: Prims.nat -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Prims.unit", "FStar.Seq.Base.seq", "Prims.nat", "Steel.ST.OnRange.on_range_weaken", "Steel.ST.SeqMatch.seq_seq_match_item", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Steel.ST.Util.rewrite", "FStar.Seq.Base.index", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "Steel.ST.SeqMatch.seq_seq_match", "Prims.l_or", "Prims.eq2", "FStar.Seq.Base.length", "FStar.Seq.Base.equal", "Prims.l_True" ]
[]
false
true
false
false
false
let seq_seq_match_weaken (#opened: _) (#t1 #t2: Type) (p p': (t1 -> t2 -> vprop)) (w: (x1: t1 -> x2: t2 -> STGhostT unit opened (p x1 x2) (fun _ -> p' x1 x2))) (c1 c1': Seq.seq t1) (c2 c2': Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p c1 c2 i j) (fun _ -> seq_seq_match p' c1' c2' i j) (i <= j /\ (i == j \/ (j <= Seq.length c1 /\ j <= Seq.length c2 /\ j <= Seq.length c1' /\ j <= Seq.length c2' /\ (Seq.slice c1 i j) `Seq.equal` (Seq.slice c1' i j) /\ (Seq.slice c2 i j) `Seq.equal` (Seq.slice c2' i j)))) (fun _ -> True) =
on_range_weaken (seq_seq_match_item p c1 c2) (seq_seq_match_item p' c1' c2') i j (fun k -> rewrite (seq_seq_match_item p c1 c2 k) (p (Seq.index (Seq.slice c1 i j) (k - i)) (Seq.index (Seq.slice c2 i j) (k - i))); w _ _; rewrite (p' _ _) (seq_seq_match_item p' c1' c2' k))
false
FStar.Array.fsti
FStar.Array.contains
val contains (#a: Type0) (h: heap) (s: array a) : Type0
val contains (#a: Type0) (h: heap) (s: array a) : Type0
let contains (#a:Type0) (h:heap) (s:array a) : Type0 = Heap.contains h (as_ref s)
{ "file_name": "ulib/legacy/FStar.Array.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 81, "end_line": 37, "start_col": 0, "start_line": 37 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Array (** F* standard library mutable arrays module. @summary Mutable arrays *) open FStar.All open FStar.Seq open FStar.Ref #set-options "--max_fuel 0 --initial_fuel 0 --initial_ifuel 0 --max_ifuel 0" val array (a:Type0) : Type0 val as_ref (#a:Type0) (arr:array a) : GTot (ref (seq a)) let sel (#a:Type0) (h:heap) (s:array a) : GTot (seq a) = Heap.sel h (as_ref s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.Array.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.Heap.heap -> s: FStar.Array.array a -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.Heap.heap", "FStar.Array.array", "FStar.Monotonic.Heap.contains", "FStar.Seq.Base.seq", "FStar.Heap.trivial_preorder", "FStar.Array.as_ref" ]
[]
false
false
false
true
true
let contains (#a: Type0) (h: heap) (s: array a) : Type0 =
Heap.contains h (as_ref s)
false
FStar.DM4F.Heap.IntStoreFixed.fst
FStar.DM4F.Heap.IntStoreFixed.lemma_index_upd2
val lemma_index_upd2: s:heap -> n:id -> v:int -> i:id{i<>n} -> Lemma (requires True) (ensures (index (upd s n v) i == index s i)) [SMTPat (index (upd s n v) i)]
val lemma_index_upd2: s:heap -> n:id -> v:int -> i:id{i<>n} -> Lemma (requires True) (ensures (index (upd s n v) i == index s i)) [SMTPat (index (upd s n v) i)]
let lemma_index_upd2 s n v i = lemma_index_upd2 #int s n v i
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 33, "start_col": 0, "start_line": 33 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap.IntStoreFixed open FStar.Seq let id = i:nat{i < store_size} let heap = h:seq int{length h == store_size} let to_id n = n let index h i = Seq.index h i let upd h i x = let h1 = upd h i x in assert (length h1 = store_size) ; h1 let create x = create #int store_size x let lemma_index_upd1 s n v = lemma_index_upd1 #int s n v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "FStar.DM4F.Heap.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.DM4F.Heap.IntStoreFixed.heap -> n: FStar.DM4F.Heap.IntStoreFixed.id -> v: Prims.int -> i: FStar.DM4F.Heap.IntStoreFixed.id{i <> n} -> FStar.Pervasives.Lemma (ensures FStar.DM4F.Heap.IntStoreFixed.index (FStar.DM4F.Heap.IntStoreFixed.upd s n v) i == FStar.DM4F.Heap.IntStoreFixed.index s i) [SMTPat (FStar.DM4F.Heap.IntStoreFixed.index (FStar.DM4F.Heap.IntStoreFixed.upd s n v) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.DM4F.Heap.IntStoreFixed.heap", "FStar.DM4F.Heap.IntStoreFixed.id", "Prims.int", "Prims.b2t", "Prims.op_disEquality", "FStar.Seq.Base.lemma_index_upd2", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_index_upd2 s n v i =
lemma_index_upd2 #int s n v i
false
FStar.Array.fsti
FStar.Array.sel
val sel (#a: Type0) (h: heap) (s: array a) : GTot (seq a)
val sel (#a: Type0) (h: heap) (s: array a) : GTot (seq a)
let sel (#a:Type0) (h:heap) (s:array a) : GTot (seq a) = Heap.sel h (as_ref s)
{ "file_name": "ulib/legacy/FStar.Array.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 35, "start_col": 0, "start_line": 35 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Array (** F* standard library mutable arrays module. @summary Mutable arrays *) open FStar.All open FStar.Seq open FStar.Ref #set-options "--max_fuel 0 --initial_fuel 0 --initial_ifuel 0 --max_ifuel 0" val array (a:Type0) : Type0 val as_ref (#a:Type0) (arr:array a) : GTot (ref (seq a))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.Array.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.Heap.heap -> s: FStar.Array.array a -> Prims.GTot (FStar.Seq.Base.seq a)
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.Heap.heap", "FStar.Array.array", "FStar.Monotonic.Heap.sel", "FStar.Seq.Base.seq", "FStar.Heap.trivial_preorder", "FStar.Array.as_ref" ]
[]
false
false
false
false
false
let sel (#a: Type0) (h: heap) (s: array a) : GTot (seq a) =
Heap.sel h (as_ref s)
false
Hacl.Impl.Chacha20Poly1305.fst
Hacl.Impl.Chacha20Poly1305.aead_encrypt_st
val aead_encrypt_st : w: Hacl.Impl.Poly1305.Fields.field_spec -> Type0
let aead_encrypt_st (w:field_spec) = output:buffer uint8 -> tag:lbuffer uint8 16ul -> input:buffer uint8 -> input_len:size_t { length input = v input_len /\ length output = v input_len } -> data:buffer uint8 -> data_len:size_t { length data = v data_len } -> key:lbuffer uint8 32ul -> nonce:lbuffer uint8 12ul -> Stack unit (requires fun h -> live h key /\ live h nonce /\ live h data /\ live h input /\ live h output /\ live h tag /\ disjoint key output /\ disjoint nonce output /\ disjoint key tag /\ disjoint nonce tag /\ disjoint output tag /\ eq_or_disjoint (input <: lbuffer uint8 input_len) (output <: lbuffer uint8 input_len) /\ disjoint data output) (ensures fun h0 _ h1 -> modifies2 output tag h0 h1 /\ Seq.append (as_seq h1 (output <: lbuffer uint8 input_len)) (as_seq h1 tag) == Spec.aead_encrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 (input <: lbuffer uint8 input_len)) (as_seq h0 (data <: lbuffer uint8 data_len)))
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 148, "end_line": 165, "start_col": 0, "start_line": 145 }
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize] let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame() unfold noextract let width_chacha20 (s:field_spec) : Hacl.Spec.Chacha20.Vec.lanes = match s with | M32 -> 1 | M128 -> 4 | M256 -> 8 [@ Meta.Attribute.specialize ] assume val chacha20_encrypt: #w:field_spec -> Hacl.Impl.Chacha20.Vec.chacha20_encrypt_st (width_chacha20 w) // Derives the key, and then perform poly1305 val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad))) [@ Meta.Attribute.inline_ ] let derive_key_poly1305_do #w k n aadlen aad mlen m out = push_frame (); // Create a new buffer to derive the key let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; // The derived key should only be the first 32 bytes let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame()
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
w: Hacl.Impl.Poly1305.Fields.field_spec -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.buffer", "Lib.IntTypes.uint8", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Lib.Buffer.length", "Lib.Buffer.MUT", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.disjoint", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies2", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.Seq.Base.append", "Lib.Buffer.as_seq", "Spec.Chacha20Poly1305.aead_encrypt" ]
[]
false
false
false
true
true
let aead_encrypt_st (w: field_spec) =
output: buffer uint8 -> tag: lbuffer uint8 16ul -> input: buffer uint8 -> input_len: size_t{length input = v input_len /\ length output = v input_len} -> data: buffer uint8 -> data_len: size_t{length data = v data_len} -> key: lbuffer uint8 32ul -> nonce: lbuffer uint8 12ul -> Stack unit (requires fun h -> live h key /\ live h nonce /\ live h data /\ live h input /\ live h output /\ live h tag /\ disjoint key output /\ disjoint nonce output /\ disjoint key tag /\ disjoint nonce tag /\ disjoint output tag /\ eq_or_disjoint (input <: lbuffer uint8 input_len) (output <: lbuffer uint8 input_len) /\ disjoint data output) (ensures fun h0 _ h1 -> modifies2 output tag h0 h1 /\ Seq.append (as_seq h1 (output <: lbuffer uint8 input_len)) (as_seq h1 tag) == Spec.aead_encrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 (input <: lbuffer uint8 input_len)) (as_seq h0 (data <: lbuffer uint8 data_len)))
false
FStar.Array.fsti
FStar.Array.addr_of
val addr_of (#a: Type0) (arr: array a) : GTot nat
val addr_of (#a: Type0) (arr: array a) : GTot nat
let addr_of (#a:Type0) (arr:array a) : GTot nat = addr_of (as_ref arr)
{ "file_name": "ulib/legacy/FStar.Array.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 70, "end_line": 43, "start_col": 0, "start_line": 43 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Array (** F* standard library mutable arrays module. @summary Mutable arrays *) open FStar.All open FStar.Seq open FStar.Ref #set-options "--max_fuel 0 --initial_fuel 0 --initial_ifuel 0 --max_ifuel 0" val array (a:Type0) : Type0 val as_ref (#a:Type0) (arr:array a) : GTot (ref (seq a)) let sel (#a:Type0) (h:heap) (s:array a) : GTot (seq a) = Heap.sel h (as_ref s) let contains (#a:Type0) (h:heap) (s:array a) : Type0 = Heap.contains h (as_ref s) let unused_in (#a:Type0) (arr:array a) (h:heap) : Type0 = Heap.unused_in (as_ref arr) h let heap_upd (#a:Type0) (h:heap) (r:array a) (v:seq a) : GTot heap = Heap.upd h (as_ref r) v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.Array.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
arr: FStar.Array.array a -> Prims.GTot Prims.nat
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Array.array", "FStar.Ref.addr_of", "FStar.Seq.Base.seq", "FStar.Array.as_ref", "Prims.nat" ]
[]
false
false
false
false
false
let addr_of (#a: Type0) (arr: array a) : GTot nat =
addr_of (as_ref arr)
false
FStar.Array.fsti
FStar.Array.heap_upd
val heap_upd (#a: Type0) (h: heap) (r: array a) (v: seq a) : GTot heap
val heap_upd (#a: Type0) (h: heap) (r: array a) (v: seq a) : GTot heap
let heap_upd (#a:Type0) (h:heap) (r:array a) (v:seq a) : GTot heap = Heap.upd h (as_ref r) v
{ "file_name": "ulib/legacy/FStar.Array.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 92, "end_line": 41, "start_col": 0, "start_line": 41 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Array (** F* standard library mutable arrays module. @summary Mutable arrays *) open FStar.All open FStar.Seq open FStar.Ref #set-options "--max_fuel 0 --initial_fuel 0 --initial_ifuel 0 --max_ifuel 0" val array (a:Type0) : Type0 val as_ref (#a:Type0) (arr:array a) : GTot (ref (seq a)) let sel (#a:Type0) (h:heap) (s:array a) : GTot (seq a) = Heap.sel h (as_ref s) let contains (#a:Type0) (h:heap) (s:array a) : Type0 = Heap.contains h (as_ref s) let unused_in (#a:Type0) (arr:array a) (h:heap) : Type0 = Heap.unused_in (as_ref arr) h
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.Array.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.Heap.heap -> r: FStar.Array.array a -> v: FStar.Seq.Base.seq a -> Prims.GTot FStar.Monotonic.Heap.heap
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.Heap.heap", "FStar.Array.array", "FStar.Seq.Base.seq", "FStar.Monotonic.Heap.upd", "FStar.Heap.trivial_preorder", "FStar.Array.as_ref" ]
[]
false
false
false
false
false
let heap_upd (#a: Type0) (h: heap) (r: array a) (v: seq a) : GTot heap =
Heap.upd h (as_ref r) v
false
FStar.Array.fsti
FStar.Array.unused_in
val unused_in (#a: Type0) (arr: array a) (h: heap) : Type0
val unused_in (#a: Type0) (arr: array a) (h: heap) : Type0
let unused_in (#a:Type0) (arr:array a) (h:heap) : Type0 = Heap.unused_in (as_ref arr) h
{ "file_name": "ulib/legacy/FStar.Array.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 87, "end_line": 39, "start_col": 0, "start_line": 39 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Array (** F* standard library mutable arrays module. @summary Mutable arrays *) open FStar.All open FStar.Seq open FStar.Ref #set-options "--max_fuel 0 --initial_fuel 0 --initial_ifuel 0 --max_ifuel 0" val array (a:Type0) : Type0 val as_ref (#a:Type0) (arr:array a) : GTot (ref (seq a)) let sel (#a:Type0) (h:heap) (s:array a) : GTot (seq a) = Heap.sel h (as_ref s) let contains (#a:Type0) (h:heap) (s:array a) : Type0 = Heap.contains h (as_ref s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.Array.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
arr: FStar.Array.array a -> h: FStar.Monotonic.Heap.heap -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Array.array", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.Heap.unused_in", "FStar.Seq.Base.seq", "FStar.Heap.trivial_preorder", "FStar.Array.as_ref" ]
[]
false
false
false
true
true
let unused_in (#a: Type0) (arr: array a) (h: heap) : Type0 =
Heap.unused_in (as_ref arr) h
false
Hacl.Impl.Chacha20Poly1305.fst
Hacl.Impl.Chacha20Poly1305.aead_decrypt_st
val aead_decrypt_st : w: Hacl.Impl.Poly1305.Fields.field_spec -> Type0
let aead_decrypt_st (w:field_spec) = output:buffer uint8 -> input:buffer uint8 -> input_len:size_t { length input = v input_len /\ length output = v input_len } -> data:buffer uint8 -> data_len:size_t { length data = v data_len } -> key:lbuffer uint8 32ul -> nonce:lbuffer uint8 12ul -> tag:lbuffer uint8 16ul -> Stack UInt32.t (requires fun h -> live h key /\ live h nonce /\ live h (data <: lbuffer uint8 data_len) /\ live h input /\ live h output /\ live h tag /\ eq_or_disjoint (input <: lbuffer uint8 input_len) (output <: lbuffer uint8 input_len)) (ensures fun h0 z h1 -> modifies1 output h0 h1 /\ (let plain = Spec.aead_decrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 (input <: lbuffer uint8 input_len)) (as_seq h0 tag) (as_seq h0 (data <: lbuffer uint8 data_len)) in match z with | 0ul -> Some? plain /\ as_seq h1 (output <: lbuffer uint8 input_len) == Some?.v plain // decryption succeeded | 1ul -> None? plain | _ -> false) // decryption failed )
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 198, "start_col": 0, "start_line": 178 }
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize] let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame() unfold noextract let width_chacha20 (s:field_spec) : Hacl.Spec.Chacha20.Vec.lanes = match s with | M32 -> 1 | M128 -> 4 | M256 -> 8 [@ Meta.Attribute.specialize ] assume val chacha20_encrypt: #w:field_spec -> Hacl.Impl.Chacha20.Vec.chacha20_encrypt_st (width_chacha20 w) // Derives the key, and then perform poly1305 val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad))) [@ Meta.Attribute.inline_ ] let derive_key_poly1305_do #w k n aadlen aad mlen m out = push_frame (); // Create a new buffer to derive the key let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; // The derived key should only be the first 32 bytes let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame() inline_for_extraction noextract let aead_encrypt_st (w:field_spec) = output:buffer uint8 -> tag:lbuffer uint8 16ul -> input:buffer uint8 -> input_len:size_t { length input = v input_len /\ length output = v input_len } -> data:buffer uint8 -> data_len:size_t { length data = v data_len } -> key:lbuffer uint8 32ul -> nonce:lbuffer uint8 12ul -> Stack unit (requires fun h -> live h key /\ live h nonce /\ live h data /\ live h input /\ live h output /\ live h tag /\ disjoint key output /\ disjoint nonce output /\ disjoint key tag /\ disjoint nonce tag /\ disjoint output tag /\ eq_or_disjoint (input <: lbuffer uint8 input_len) (output <: lbuffer uint8 input_len) /\ disjoint data output) (ensures fun h0 _ h1 -> modifies2 output tag h0 h1 /\ Seq.append (as_seq h1 (output <: lbuffer uint8 input_len)) (as_seq h1 tag) == Spec.aead_encrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 (input <: lbuffer uint8 input_len)) (as_seq h0 (data <: lbuffer uint8 data_len))) noextract val aead_encrypt: #w:field_spec -> aead_encrypt_st w [@ Meta.Attribute.specialize ] let aead_encrypt #w output tag input input_len data data_len key nonce = chacha20_encrypt #w input_len output input key nonce 1ul; derive_key_poly1305_do #w key nonce data_len data input_len output tag
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
w: Hacl.Impl.Poly1305.Fields.field_spec -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.buffer", "Lib.IntTypes.uint8", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.range", "Lib.IntTypes.U32", "Lib.Buffer.length", "Lib.Buffer.MUT", "Lib.IntTypes.v", "Lib.IntTypes.PUB", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.eq_or_disjoint", "Lib.Buffer.modifies1", "FStar.Pervasives.Native.uu___is_Some", "Lib.ByteSequence.lbytes", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.as_seq", "Prims.eq2", "Lib.Sequence.seq", "Prims.nat", "FStar.Seq.Base.length", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.Pervasives.Native.uu___is_None", "Prims.logical", "FStar.Pervasives.Native.option", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Spec.Chacha20Poly1305.aead_decrypt" ]
[]
false
false
false
true
true
let aead_decrypt_st (w: field_spec) =
output: buffer uint8 -> input: buffer uint8 -> input_len: size_t{length input = v input_len /\ length output = v input_len} -> data: buffer uint8 -> data_len: size_t{length data = v data_len} -> key: lbuffer uint8 32ul -> nonce: lbuffer uint8 12ul -> tag: lbuffer uint8 16ul -> Stack UInt32.t (requires fun h -> live h key /\ live h nonce /\ live h (data <: lbuffer uint8 data_len) /\ live h input /\ live h output /\ live h tag /\ eq_or_disjoint (input <: lbuffer uint8 input_len) (output <: lbuffer uint8 input_len)) (ensures fun h0 z h1 -> modifies1 output h0 h1 /\ (let plain = Spec.aead_decrypt (as_seq h0 key) (as_seq h0 nonce) (as_seq h0 (input <: lbuffer uint8 input_len)) (as_seq h0 tag) (as_seq h0 (data <: lbuffer uint8 data_len)) in match z with | 0ul -> Some? plain /\ as_seq h1 (output <: lbuffer uint8 input_len) == Some?.v plain | 1ul -> None? plain | _ -> false))
false
Even.fst
Even.nat2unary
val nat2unary (n: nat) : Tot unat
val nat2unary (n: nat) : Tot unat
let rec nat2unary (n: nat) : Tot unat = if n = 0 then Z else S (nat2unary (n - 1))
{ "file_name": "examples/tactics/Even.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 82, "end_line": 21, "start_col": 0, "start_line": 21 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Even open FStar.Tactics.V2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Even.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> Even.unat
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Even.Z", "Prims.bool", "Even.S", "Even.nat2unary", "Prims.op_Subtraction", "Even.unat" ]
[ "recursion" ]
false
false
false
true
false
let rec nat2unary (n: nat) : Tot unat =
if n = 0 then Z else S (nat2unary (n - 1))
false
FStar.Array.fsti
FStar.Array.create_post
val create_post: #a: Type0 -> s: seq a -> heap -> array a -> heap -> Type0
val create_post: #a: Type0 -> s: seq a -> heap -> array a -> heap -> Type0
let create_post (#a:Type0) (s:seq a) : heap -> array a -> heap -> Type0 = fun h0 x h1 -> x `unused_in` h0 /\ contains h1 x /\ modifies Set.empty h0 h1 /\ sel h1 x== s
{ "file_name": "ulib/legacy/FStar.Array.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 60, "start_col": 7, "start_line": 54 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Array (** F* standard library mutable arrays module. @summary Mutable arrays *) open FStar.All open FStar.Seq open FStar.Ref #set-options "--max_fuel 0 --initial_fuel 0 --initial_ifuel 0 --max_ifuel 0" val array (a:Type0) : Type0 val as_ref (#a:Type0) (arr:array a) : GTot (ref (seq a)) let sel (#a:Type0) (h:heap) (s:array a) : GTot (seq a) = Heap.sel h (as_ref s) let contains (#a:Type0) (h:heap) (s:array a) : Type0 = Heap.contains h (as_ref s) let unused_in (#a:Type0) (arr:array a) (h:heap) : Type0 = Heap.unused_in (as_ref arr) h let heap_upd (#a:Type0) (h:heap) (r:array a) (v:seq a) : GTot heap = Heap.upd h (as_ref r) v let addr_of (#a:Type0) (arr:array a) : GTot nat = addr_of (as_ref arr) let only (#a:Type0) (arr:array a) : GTot (Set.set nat) = Set.singleton (addr_of arr) val op_At_Bar (#a:Type0) (s1:array a) (s2:array a) : ST (array a) (requires (fun h -> contains h s1 /\ contains h s2)) (ensures (fun h0 s h1 -> contains h0 s1 /\ contains h0 s2 /\ contains h1 s /\ sel h1 s == Seq.append (sel h0 s1) (sel h0 s2) /\ modifies Set.empty h0 h1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.Array.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> _: FStar.Monotonic.Heap.heap -> _: FStar.Array.array a -> _: FStar.Monotonic.Heap.heap -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Monotonic.Heap.heap", "FStar.Array.array", "Prims.l_and", "FStar.Array.unused_in", "FStar.Array.contains", "FStar.Monotonic.Heap.modifies", "FStar.Set.empty", "Prims.nat", "Prims.eq2", "FStar.Array.sel" ]
[]
false
false
false
true
true
let create_post (#a: Type0) (s: seq a) : heap -> array a -> heap -> Type0 =
fun h0 x h1 -> x `unused_in` h0 /\ contains h1 x /\ modifies Set.empty h0 h1 /\ sel h1 x == s
false
FStar.Array.fsti
FStar.Array.only
val only (#a: Type0) (arr: array a) : GTot (Set.set nat)
val only (#a: Type0) (arr: array a) : GTot (Set.set nat)
let only (#a:Type0) (arr:array a) : GTot (Set.set nat) = Set.singleton (addr_of arr)
{ "file_name": "ulib/legacy/FStar.Array.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 84, "end_line": 45, "start_col": 0, "start_line": 45 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Array (** F* standard library mutable arrays module. @summary Mutable arrays *) open FStar.All open FStar.Seq open FStar.Ref #set-options "--max_fuel 0 --initial_fuel 0 --initial_ifuel 0 --max_ifuel 0" val array (a:Type0) : Type0 val as_ref (#a:Type0) (arr:array a) : GTot (ref (seq a)) let sel (#a:Type0) (h:heap) (s:array a) : GTot (seq a) = Heap.sel h (as_ref s) let contains (#a:Type0) (h:heap) (s:array a) : Type0 = Heap.contains h (as_ref s) let unused_in (#a:Type0) (arr:array a) (h:heap) : Type0 = Heap.unused_in (as_ref arr) h let heap_upd (#a:Type0) (h:heap) (r:array a) (v:seq a) : GTot heap = Heap.upd h (as_ref r) v let addr_of (#a:Type0) (arr:array a) : GTot nat = addr_of (as_ref arr)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "FStar.Array.fsti" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.All", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
arr: FStar.Array.array a -> Prims.GTot (FStar.Set.set Prims.nat)
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Array.array", "FStar.Set.singleton", "Prims.nat", "FStar.Array.addr_of", "FStar.Set.set" ]
[]
false
false
false
false
false
let only (#a: Type0) (arr: array a) : GTot (Set.set nat) =
Set.singleton (addr_of arr)
false
Hacl.Spec.K256.Field52.Lemmas4.fst
Hacl.Spec.K256.Field52.Lemmas4.lemma_fmul_simplify
val lemma_fmul_simplify (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (requires ( let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4) /\ d10 = d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48)) (ensures (r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208) % S.prime = (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime)
val lemma_fmul_simplify (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (requires ( let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4) /\ d10 = d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48)) (ensures (r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208) % S.prime = (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime)
let lemma_fmul_simplify r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7; lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8; lemma_fmul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 399, "start_col": 0, "start_line": 385 }
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; } val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 = let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc (==) { // tmp1 * pow2 52 (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; (==) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; (==) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc (==) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; (==) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + d8 % pow2 52 * r + r * (d8 / pow2 52 + sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52; (==) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; } val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r)) let simplify_c3 d4 r sum5 = let k = (d4 / pow2 52 + sum5) % pow2 52 in calc (==) { //simplify c3 ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 d4 48 52 } ((d4 / pow2 48) % pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.euclidean_division_definition (d4 / pow2 48) (pow2 4) } (d4 / pow2 48 - (d4 / pow2 48 / pow2 4) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.division_multiplication_lemma d4 (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } (d4 / pow2 48 - (d4 / pow2 52) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_sub_left k (d4 / pow2 52) (pow2 4) } (d4 / pow2 48 + (k - d4 / pow2 52) * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_add_left (d4 / pow2 48) ((k - d4 / pow2 52) * pow2 4) (r / pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * pow2 4 * (r / pow2 4); (==) { Math.Lemmas.paren_mul_right (k - d4 / pow2 52) (pow2 4) (r / pow2 4); Math.Lemmas.div_exact_r r (pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * r; } val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime) let lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8 = let tmp2 = sum3 + r * (sum8 % pow2 64) in let tmp1 = d4 / pow2 52 + sum5 in let tmp0 = sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r in let d4mod = (d4 % pow2 48) * pow2 208 + (d4 / pow2 48) * 0x1000003D1 in calc (==) { c3 + (d4 % pow2 48) * pow2 208 + (sum1 + r * d8) * pow2 52; (==) { simplify_c3 d4 r sum5; assert_norm (0x1000003D10 / pow2 4 = 0x1000003D1) } d4mod + tmp0 + (sum1 + r * d8) * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * d8) (pow2 52) } d4mod + sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { Math.Lemmas.distributivity_sub_left (tmp1 % pow2 52) (d4 / pow2 52) r } d4mod + sum0 + (tmp1 % pow2 52) * r - d4 / pow2 52 * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { ML.lemma_distr_eucl_mul_add r tmp1 sum6 (pow2 52) } d4mod + sum0 + r * (d4 / pow2 52 + sum5) - d4 / pow2 52 * r + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_right r (d4 / pow2 52) sum5 } d4mod + sum0 + r * sum5 + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } d4mod + sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52; }; calc (==) { //t3 * pow2 156 + d4 * pow2 208; (tmp2 % pow2 52) * pow2 156 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 208; (==) { ML.lemma_distr_pow (tmp2 % pow2 52) (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) 52 156 } (tmp2 % pow2 52 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_distr_eucl_mul_add 1 tmp2 (sum4 + r * pow2 12 * (sum8 / pow2 64)) (pow2 52) } (tmp2 + (sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_swap_mul3 r (pow2 12) (sum8 / pow2 64) } (tmp2 + (sum4 + r * (sum8 / pow2 64) * pow2 12) * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow sum4 (r * (sum8 / pow2 64)) 12 52 } (sum3 + r * (sum8 % pow2 64) + sum4 * pow2 52 + r * (sum8 / pow2 64) * pow2 64) * pow2 156; (==) { ML.lemma_distr_eucl_mul r sum8 (pow2 64) } (sum3 + r * sum8 + sum4 * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow (sum3 + r * sum8) sum4 52 156 } (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208; }; LD.as_nat_mod_prime (sum0 + r * sum5) (sum1 + r * sum6) (sum2 + r * sum7) t3 d4 val lemma_mul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156)) let lemma_mul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let b_sum = b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208 in calc (==) { (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * b_sum; (==) { ML.lemma_distr5 a0 (a1 * pow52) (a2 * pow104) (a3 * pow156) (a4 * pow208) b_sum } a0 * b_sum + a1 * pow52 * b_sum + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52 a0 b0 b1 b2 b3 b4 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * pow52 * b_sum + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a1 b0 b1 b2 b3 b4 52 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * pow104 * b_sum + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a2 b0 b1 b2 b3 b4 104 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * pow156 * b_sum + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a3 b0 b1 b2 b3 b4 156 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * pow208 * b_sum; (==) { ML.lemma_distr5_pow52_mul_pow a4 b0 b1 b2 b3 b4 208 } sum0 + a0 * b1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b0 * pow2 52 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { Math.Lemmas.distributivity_add_left (a0 * b1) (a1 * b0) (pow2 52) } sum0 + sum1 * pow2 52 + a0 * b2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b1 * pow2 104 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b0 * pow2 104 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b2) (a1 * b1) (a2 * b0) 0 0 (pow2 104) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + a0 * b3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b2 * pow2 156 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b1 * pow2 156 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b0 * pow2 156 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b3) (a1 * b2) (a2 * b1) (a3 * b0) 0 (pow2 156) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + a0 * b4 * pow2 208 + a1 * b3 * pow2 208 + a1 * b4 * pow2 260 + a2 * b2 * pow2 208 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b1 * pow2 208 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b0 * pow2 208 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a0 * b4) (a1 * b3) (a2 * b2) (a3 * b1) (a4 * b0) (pow2 208) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + a1 * b4 * pow2 260 + a2 * b3 * pow2 260 + a2 * b4 * pow2 312 + a3 * b2 * pow2 260 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b1 * pow2 260 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a1 * b4) (a2 * b3) (a3 * b2) (a4 * b1) 0 (pow2 260) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + a2 * b4 * pow2 312 + a3 * b3 * pow2 312 + a3 * b4 * pow2 364 + a4 * b2 * pow2 312 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { ML.lemma_distr5 (a2 * b4) (a3 * b3) (a4 * b2) 0 0 (pow2 312) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + sum6 * pow2 312 + a3 * b4 * pow2 364 + a4 * b3 * pow2 364 + a4 * b4 * pow2 416; (==) { Math.Lemmas.distributivity_add_left (a3 * b4) (a4 * b3) (pow2 364) } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + sum5 * pow2 260 + sum6 * pow2 312 + sum7 * pow2 364 + sum8 * pow2 416; (==) { ML.lemma_distr5_pow52_mul_pow 1 sum5 sum6 sum7 sum8 0 260 } sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + pow2 260 * (sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156); } val lemma_fmul_ab (a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let r = 0x1000003D10 in (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime = (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime) let lemma_fmul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 = let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in let a_sum = a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208 in let b_sum = b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208 in let tmp0 = sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 in let tmp1 = sum5 + sum6 * pow2 52 + sum7 * pow2 104 + sum8 * pow2 156 in calc (==) { a_sum * b_sum % S.prime; (==) { lemma_mul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 } (tmp0 + pow2 260 * tmp1) % S.prime; (==) { Math.Lemmas.pow2_plus 256 4; Math.Lemmas.paren_mul_right (pow2 256) (pow2 4) tmp1 } (tmp0 + pow2 256 * (pow2 4 * tmp1)) % S.prime; (==) { LD.lemma_a_plus_b_mul_pow256 tmp0 (pow2 4 * tmp1) } (tmp0 + 0x1000003D1 * (pow2 4 * tmp1)) % S.prime; (==) { Math.Lemmas.paren_mul_right 0x1000003D1 (pow2 4) tmp1; assert_norm (0x1000003D1 * pow2 4 = r) } (tmp0 + r * tmp1) % S.prime; (==) { ML.lemma_distr5_pow52 r sum5 sum6 sum7 sum8 0 } (sum0 + sum1 * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + r * sum5 + r * sum6 * pow2 52 + r * sum7 * pow2 104 + r * sum8 * pow2 156) % S.prime; (==) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + sum2 * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + r * sum7 * pow2 104 + r * sum8 * pow2 156) % S.prime; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + (sum2 + r * sum7) * pow2 104 + sum3 * pow2 156 + sum4 * pow2 208 + r * sum8 * pow2 156) % S.prime; (==) { Math.Lemmas.distributivity_add_left sum3 (r * sum8) (pow2 156) } (sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime; } val lemma_fmul_simplify (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4:nat) : Lemma (requires ( let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4) /\ d10 = d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48)) (ensures (r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208) % S.prime = (a0 + a1 * pow52 + a2 * pow104 + a3 * pow156 + a4 * pow208) * (b0 + b1 * pow52 + b2 * pow104 + b3 * pow156 + b4 * pow208) % S.prime)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r0: Prims.nat -> r1: Prims.nat -> r2: Prims.nat -> r3: Prims.nat -> r4: Prims.nat -> c3: Prims.nat -> c6: Prims.nat -> c9: Prims.nat -> c11: Prims.nat -> d4: Prims.nat -> d8: Prims.nat -> d10: Prims.nat -> d11: Prims.nat -> t3: Prims.nat -> a0: Prims.nat -> a1: Prims.nat -> a2: Prims.nat -> a3: Prims.nat -> a4: Prims.nat -> b0: Prims.nat -> b1: Prims.nat -> b2: Prims.nat -> b3: Prims.nat -> b4: Prims.nat -> FStar.Pervasives.Lemma (requires (let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in d4 = (sum3 + r * (sum8 % Prims.pow2 64)) / Prims.pow2 52 + sum4 + (r * Prims.pow2 12) * (sum8 / Prims.pow2 64) /\ t3 = (sum3 + r * (sum8 % Prims.pow2 64)) % Prims.pow2 52 /\ d8 = (d4 / Prims.pow2 52 + sum5) / Prims.pow2 52 + sum6 /\ c3 = sum0 + (d4 % Prims.pow2 52 / Prims.pow2 48 + ((d4 / Prims.pow2 52 + sum5) % Prims.pow2 52) * Prims.pow2 4) * (r / Prims.pow2 4) /\ d10 = d8 / Prims.pow2 52 + sum7 /\ r0 = c3 % Prims.pow2 52 /\ c6 = c3 / Prims.pow2 52 + sum1 + (d8 % Prims.pow2 52) * r /\ d11 = d10 / Prims.pow2 64 /\ r1 = c6 % Prims.pow2 52 /\ c9 = c6 / Prims.pow2 52 + sum2 + r * (d10 % Prims.pow2 64) /\ r2 = c9 % Prims.pow2 52 /\ c11 = c9 / Prims.pow2 52 + (r * Prims.pow2 12) * d11 + t3 /\ r3 = c11 % Prims.pow2 52 /\ r4 = c11 / Prims.pow2 52 + d4 % Prims.pow2 52 % Prims.pow2 48) ) (ensures (r0 + r1 * Hacl.Spec.K256.Field52.Definitions.pow52 + r2 * Hacl.Spec.K256.Field52.Definitions.pow104 + r3 * Hacl.Spec.K256.Field52.Definitions.pow156 + r4 * Hacl.Spec.K256.Field52.Definitions.pow208) % Spec.K256.PointOps.prime = (a0 + a1 * Hacl.Spec.K256.Field52.Definitions.pow52 + a2 * Hacl.Spec.K256.Field52.Definitions.pow104 + a3 * Hacl.Spec.K256.Field52.Definitions.pow156 + a4 * Hacl.Spec.K256.Field52.Definitions.pow208) * (b0 + b1 * Hacl.Spec.K256.Field52.Definitions.pow52 + b2 * Hacl.Spec.K256.Field52.Definitions.pow104 + b3 * Hacl.Spec.K256.Field52.Definitions.pow156 + b4 * Hacl.Spec.K256.Field52.Definitions.pow208) % Spec.K256.PointOps.prime)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Hacl.Spec.K256.Field52.Lemmas4.lemma_fmul_ab", "Prims.unit", "Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r43210_mod_prime", "Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r43210", "Prims.int", "FStar.Mul.op_Star", "Prims.op_Addition" ]
[]
true
false
true
false
false
let lemma_fmul_simplify r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 =
let r = 0x1000003D10 in let sum0 = a0 * b0 in let sum1 = a0 * b1 + a1 * b0 in let sum2 = a0 * b2 + a1 * b1 + a2 * b0 in let sum3 = a0 * b3 + a1 * b2 + a2 * b1 + a3 * b0 in let sum4 = a0 * b4 + a1 * b3 + a2 * b2 + a3 * b1 + a4 * b0 in let sum5 = a1 * b4 + a2 * b3 + a3 * b2 + a4 * b1 in let sum6 = a2 * b4 + a3 * b3 + a4 * b2 in let sum7 = a3 * b4 + a4 * b3 in let sum8 = a4 * b4 in lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7; lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8; lemma_fmul_ab a0 a1 a2 a3 a4 b0 b1 b2 b3 b4
false
While.fst
While.interpret_binop
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
val interpret_binop : o:binop -> a:int -> b:int -> Tot int
let interpret_binop o a b = match o with | Plus -> a + b | Minus -> a - b | Times -> op_Multiply a b | Max -> if a <= b then b else a
{ "file_name": "examples/rel/While.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 34, "start_col": 0, "start_line": 29 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module While open FStar.Heap open FStar.ST type id = ref int type binop = | Plus | Minus | Times | Max
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.ST.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "While.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
o: While.binop -> a: Prims.int -> b: Prims.int -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "While.binop", "Prims.int", "Prims.op_Addition", "Prims.op_Subtraction", "Prims.op_Multiply", "Prims.op_LessThanOrEqual", "Prims.bool" ]
[]
false
false
false
true
false
let interpret_binop o a b =
match o with | Plus -> a + b | Minus -> a - b | Times -> op_Multiply a b | Max -> if a <= b then b else a
false
While.fst
While.interpret_exp
val interpret_exp : h:heap -> e:exp -> GTot int
val interpret_exp : h:heap -> e:exp -> GTot int
let rec interpret_exp h e = match e with | AInt i -> i | AVar x -> sel h x | AOp o e1 e2 -> let a = interpret_exp h e1 in let b = interpret_exp h e2 in interpret_binop o a b
{ "file_name": "examples/rel/While.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 49, "start_col": 0, "start_line": 42 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module While open FStar.Heap open FStar.ST type id = ref int type binop = | Plus | Minus | Times | Max val interpret_binop : o:binop -> a:int -> b:int -> Tot int let interpret_binop o a b = match o with | Plus -> a + b | Minus -> a - b | Times -> op_Multiply a b | Max -> if a <= b then b else a noeq type exp = | AInt : int -> exp | AVar : id -> exp | AOp : binop -> exp -> exp -> exp
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.ST.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "While.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.Heap.heap -> e: While.exp -> Prims.GTot Prims.int
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.Heap.heap", "While.exp", "Prims.int", "While.id", "FStar.Monotonic.Heap.sel", "FStar.Heap.trivial_preorder", "While.binop", "While.interpret_binop", "While.interpret_exp" ]
[ "recursion" ]
false
false
false
false
false
let rec interpret_exp h e =
match e with | AInt i -> i | AVar x -> sel h x | AOp o e1 e2 -> let a = interpret_exp h e1 in let b = interpret_exp h e2 in interpret_binop o a b
false
While.fst
While.decr_while
val decr_while : heap -> com -> GTot int
val decr_while : heap -> com -> GTot int
let decr_while h c = match c with | While c b v -> let tmp = interpret_exp h v in if tmp < 0 then 0 else tmp | _ -> 0
{ "file_name": "examples/rel/While.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 10, "end_line": 73, "start_col": 0, "start_line": 68 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module While open FStar.Heap open FStar.ST type id = ref int type binop = | Plus | Minus | Times | Max val interpret_binop : o:binop -> a:int -> b:int -> Tot int let interpret_binop o a b = match o with | Plus -> a + b | Minus -> a - b | Times -> op_Multiply a b | Max -> if a <= b then b else a noeq type exp = | AInt : int -> exp | AVar : id -> exp | AOp : binop -> exp -> exp -> exp val interpret_exp : h:heap -> e:exp -> GTot int let rec interpret_exp h e = match e with | AInt i -> i | AVar x -> sel h x | AOp o e1 e2 -> let a = interpret_exp h e1 in let b = interpret_exp h e2 in interpret_binop o a b (* CH: This is a termination metric (natural number expression) for showing termination of while. (Why not call it that?) Decreasingness and positivity of this termination metric _dynamically_ checked. *) type variant = exp (* type variant = e:exp{forall h. 0 <= interpret_exp h e} *) (* Commands -- loops are annotated with variants *) noeq type com = | Skip : com | Assign : var:id -> term:exp -> com | Seq : first:com -> second:com -> com | If : cond:exp -> then_branch:com -> else_branch:com -> com | While : cond:exp -> body:com -> variant:variant -> com (* function used for the decreases clause *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.ST.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "While.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.Heap.heap -> c: While.com -> Prims.GTot Prims.int
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.Heap.heap", "While.com", "While.exp", "While.variant", "Prims.op_LessThan", "Prims.bool", "Prims.int", "While.interpret_exp" ]
[]
false
false
false
false
false
let decr_while h c =
match c with | While c b v -> let tmp = interpret_exp h v in if tmp < 0 then 0 else tmp | _ -> 0
false
Hacl.Spec.K256.Field52.Lemmas4.fst
Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r4321
val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156)
val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156)
let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 73, "start_col": 0, "start_line": 53 }
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r1: Prims.nat -> r2: Prims.nat -> r3: Prims.nat -> r4: Prims.nat -> c6: Prims.nat -> c9: Prims.nat -> c11: Prims.nat -> d4: Prims.nat -> d10: Prims.nat -> d11: Prims.nat -> t3: Prims.nat -> r: Prims.nat -> sum2: Prims.nat -> FStar.Pervasives.Lemma (requires d11 = d10 / Prims.pow2 64 /\ r1 = c6 % Prims.pow2 52 /\ c9 = c6 / Prims.pow2 52 + sum2 + r * (d10 % Prims.pow2 64) /\ r2 = c9 % Prims.pow2 52 /\ c11 = c9 / Prims.pow2 52 + (r * Prims.pow2 12) * d11 + t3 /\ r3 = c11 % Prims.pow2 52 /\ r4 = c11 / Prims.pow2 52 + d4 % Prims.pow2 52 % Prims.pow2 48) (ensures ((r4 * Prims.pow2 52 + r3) * Prims.pow2 52 + r2) * Prims.pow2 52 + r1 = c6 + sum2 * Prims.pow2 52 + (r * d10) * Prims.pow2 52 + t3 * Prims.pow2 104 + (d4 % Prims.pow2 48) * Prims.pow2 156)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Division", "Prims.op_Modulus", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r432", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl", "FStar.Math.Lemmas.distributivity_add_left", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow_pow" ]
[]
false
false
true
false
false
let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 =
let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc ( == ) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; ( == ) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + (r * d11) * pow2 64 + tmp1) * pow2 52 + r1; ( == ) { () } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + (r * d11) * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; ( == ) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; ( == ) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; ( == ) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; ( == ) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + (r * d10) * pow2 52 + tmp1 * pow2 52; ( == ) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + (r * d10) * pow2 52 + t3 * pow2 104 + k * pow2 156; }
false
While.fst
While.interpret_exp_st
val interpret_exp_st : e:exp -> ST int (requires (fun _ -> True)) (ensures (fun h r h' -> equal h h' /\ r = interpret_exp h e))
val interpret_exp_st : e:exp -> ST int (requires (fun _ -> True)) (ensures (fun h r h' -> equal h h' /\ r = interpret_exp h e))
let rec interpret_exp_st e = match e with | AInt i -> i | AVar x -> !x | AOp o e1 e2 -> let a = interpret_exp_st e1 in let b = interpret_exp_st e2 in interpret_binop o a b
{ "file_name": "examples/rel/While.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 124, "start_col": 0, "start_line": 117 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module While open FStar.Heap open FStar.ST type id = ref int type binop = | Plus | Minus | Times | Max val interpret_binop : o:binop -> a:int -> b:int -> Tot int let interpret_binop o a b = match o with | Plus -> a + b | Minus -> a - b | Times -> op_Multiply a b | Max -> if a <= b then b else a noeq type exp = | AInt : int -> exp | AVar : id -> exp | AOp : binop -> exp -> exp -> exp val interpret_exp : h:heap -> e:exp -> GTot int let rec interpret_exp h e = match e with | AInt i -> i | AVar x -> sel h x | AOp o e1 e2 -> let a = interpret_exp h e1 in let b = interpret_exp h e2 in interpret_binop o a b (* CH: This is a termination metric (natural number expression) for showing termination of while. (Why not call it that?) Decreasingness and positivity of this termination metric _dynamically_ checked. *) type variant = exp (* type variant = e:exp{forall h. 0 <= interpret_exp h e} *) (* Commands -- loops are annotated with variants *) noeq type com = | Skip : com | Assign : var:id -> term:exp -> com | Seq : first:com -> second:com -> com | If : cond:exp -> then_branch:com -> else_branch:com -> com | While : cond:exp -> body:com -> variant:variant -> com (* function used for the decreases clause *) val decr_while : heap -> com -> GTot int let decr_while h c = match c with | While c b v -> let tmp = interpret_exp h v in if tmp < 0 then 0 else tmp | _ -> 0 (* Returns Some heap if the variant is correct *) (* CH: This is ghost because it uses functions like upd to work on heaps *) val interpret_while : h:heap -> c:com{While? c} -> GTot (option heap) (decreases %[c; decr_while h c; 0]) val interpret_com : h:heap -> c:com -> GTot (option heap) (decreases %[c; decr_while h c; 1]) let rec interpret_while h (While e body v) = if interpret_exp h e = 0 then Some h else match interpret_com h body with | Some h' -> if interpret_exp h' v < interpret_exp h v && interpret_exp h' v >= 0 then interpret_while h' (While e body v) else None | None -> None and interpret_com h c = match c with | Skip -> Some h | Assign x e -> let v = interpret_exp h e in Some (upd h x v) | Seq c1 c2 -> ( match interpret_com h c1 with | Some h' -> interpret_com h' c2 | None -> None) | If e ct cf -> if interpret_exp h e = 0 then interpret_com h cf else interpret_com h ct | While e body v -> interpret_while h c val interpret_exp_st : e:exp -> ST int (requires (fun _ -> True))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.ST.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "While.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: While.exp -> FStar.ST.ST Prims.int
FStar.ST.ST
[]
[]
[ "While.exp", "Prims.int", "While.id", "FStar.ST.op_Bang", "FStar.Heap.trivial_preorder", "While.binop", "While.interpret_binop", "While.interpret_exp_st" ]
[ "recursion" ]
false
true
false
false
false
let rec interpret_exp_st e =
match e with | AInt i -> i | AVar x -> !x | AOp o e1 e2 -> let a = interpret_exp_st e1 in let b = interpret_exp_st e2 in interpret_binop o a b
false
Hacl.Spec.K256.Field52.Lemmas4.fst
Hacl.Spec.K256.Field52.Lemmas4.simplify_c3
val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r))
val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r))
let simplify_c3 d4 r sum5 = let k = (d4 / pow2 52 + sum5) % pow2 52 in calc (==) { //simplify c3 ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 d4 48 52 } ((d4 / pow2 48) % pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.euclidean_division_definition (d4 / pow2 48) (pow2 4) } (d4 / pow2 48 - (d4 / pow2 48 / pow2 4) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.division_multiplication_lemma d4 (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } (d4 / pow2 48 - (d4 / pow2 52) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_sub_left k (d4 / pow2 52) (pow2 4) } (d4 / pow2 48 + (k - d4 / pow2 52) * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_add_left (d4 / pow2 48) ((k - d4 / pow2 52) * pow2 4) (r / pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * pow2 4 * (r / pow2 4); (==) { Math.Lemmas.paren_mul_right (k - d4 / pow2 52) (pow2 4) (r / pow2 4); Math.Lemmas.div_exact_r r (pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * r; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 142, "start_col": 0, "start_line": 125 }
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; } val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 = let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc (==) { // tmp1 * pow2 52 (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; (==) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; (==) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc (==) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; (==) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + d8 % pow2 52 * r + r * (d8 / pow2 52 + sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52; (==) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; } val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r))
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d4: Prims.nat -> r: Prims.nat -> sum5: Prims.nat -> FStar.Pervasives.Lemma (requires r % Prims.pow2 4 = 0) (ensures (let k = (d4 / Prims.pow2 52 + sum5) % Prims.pow2 52 in (d4 % Prims.pow2 52 / Prims.pow2 48 + k * Prims.pow2 4) * (r / Prims.pow2 4) == (d4 / Prims.pow2 48) * (r / Prims.pow2 4) + (k - d4 / Prims.pow2 52) * r))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "FStar.Mul.op_Star", "Prims.op_Addition", "Prims.op_Division", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_modulo_division_lemma_1", "Prims.squash", "FStar.Math.Lemmas.euclidean_division_definition", "FStar.Math.Lemmas.pow2_plus", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.div_exact_r", "FStar.Math.Lemmas.paren_mul_right" ]
[]
false
false
true
false
false
let simplify_c3 d4 r sum5 =
let k = (d4 / pow2 52 + sum5) % pow2 52 in calc ( == ) { ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4); ( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 d4 48 52 } ((d4 / pow2 48) % pow2 4 + k * pow2 4) * (r / pow2 4); ( == ) { Math.Lemmas.euclidean_division_definition (d4 / pow2 48) (pow2 4) } (d4 / pow2 48 - (d4 / pow2 48 / pow2 4) * pow2 4 + k * pow2 4) * (r / pow2 4); ( == ) { (Math.Lemmas.division_multiplication_lemma d4 (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4) } (d4 / pow2 48 - (d4 / pow2 52) * pow2 4 + k * pow2 4) * (r / pow2 4); ( == ) { Math.Lemmas.distributivity_sub_left k (d4 / pow2 52) (pow2 4) } (d4 / pow2 48 + (k - d4 / pow2 52) * pow2 4) * (r / pow2 4); ( == ) { Math.Lemmas.distributivity_add_left (d4 / pow2 48) ((k - d4 / pow2 52) * pow2 4) (r / pow2 4) } (d4 / pow2 48) * (r / pow2 4) + ((k - d4 / pow2 52) * pow2 4) * (r / pow2 4); ( == ) { (Math.Lemmas.paren_mul_right (k - d4 / pow2 52) (pow2 4) (r / pow2 4); Math.Lemmas.div_exact_r r (pow2 4)) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * r; }
false
While.fst
While.interpret_com
val interpret_com : h:heap -> c:com -> GTot (option heap) (decreases %[c; decr_while h c; 1])
val interpret_com : h:heap -> c:com -> GTot (option heap) (decreases %[c; decr_while h c; 1])
let rec interpret_while h (While e body v) = if interpret_exp h e = 0 then Some h else match interpret_com h body with | Some h' -> if interpret_exp h' v < interpret_exp h v && interpret_exp h' v >= 0 then interpret_while h' (While e body v) else None | None -> None and interpret_com h c = match c with | Skip -> Some h | Assign x e -> let v = interpret_exp h e in Some (upd h x v) | Seq c1 c2 -> ( match interpret_com h c1 with | Some h' -> interpret_com h' c2 | None -> None) | If e ct cf -> if interpret_exp h e = 0 then interpret_com h cf else interpret_com h ct | While e body v -> interpret_while h c
{ "file_name": "examples/rel/While.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 112, "start_col": 0, "start_line": 84 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module While open FStar.Heap open FStar.ST type id = ref int type binop = | Plus | Minus | Times | Max val interpret_binop : o:binop -> a:int -> b:int -> Tot int let interpret_binop o a b = match o with | Plus -> a + b | Minus -> a - b | Times -> op_Multiply a b | Max -> if a <= b then b else a noeq type exp = | AInt : int -> exp | AVar : id -> exp | AOp : binop -> exp -> exp -> exp val interpret_exp : h:heap -> e:exp -> GTot int let rec interpret_exp h e = match e with | AInt i -> i | AVar x -> sel h x | AOp o e1 e2 -> let a = interpret_exp h e1 in let b = interpret_exp h e2 in interpret_binop o a b (* CH: This is a termination metric (natural number expression) for showing termination of while. (Why not call it that?) Decreasingness and positivity of this termination metric _dynamically_ checked. *) type variant = exp (* type variant = e:exp{forall h. 0 <= interpret_exp h e} *) (* Commands -- loops are annotated with variants *) noeq type com = | Skip : com | Assign : var:id -> term:exp -> com | Seq : first:com -> second:com -> com | If : cond:exp -> then_branch:com -> else_branch:com -> com | While : cond:exp -> body:com -> variant:variant -> com (* function used for the decreases clause *) val decr_while : heap -> com -> GTot int let decr_while h c = match c with | While c b v -> let tmp = interpret_exp h v in if tmp < 0 then 0 else tmp | _ -> 0 (* Returns Some heap if the variant is correct *) (* CH: This is ghost because it uses functions like upd to work on heaps *) val interpret_while : h:heap -> c:com{While? c} -> GTot (option heap) (decreases %[c; decr_while h c; 0]) val interpret_com : h:heap -> c:com -> GTot (option heap) (decreases %[c; decr_while h c; 1])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.ST.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "While.fst" }
[ { "abbrev": false, "full_module": "FStar.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.Heap.heap -> c: While.com -> Prims.GTot (FStar.Pervasives.Native.option FStar.Monotonic.Heap.heap)
Prims.GTot
[ "sometrivial", "" ]
[ "interpret_while", "interpret_com" ]
[ "FStar.Monotonic.Heap.heap", "While.com", "FStar.Pervasives.Native.Some", "While.id", "While.exp", "FStar.Monotonic.Heap.upd", "Prims.int", "FStar.Heap.trivial_preorder", "While.interpret_exp", "While.interpret_com", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "Prims.op_Equality", "Prims.bool", "While.variant", "While.interpret_while" ]
[ "mutual recursion" ]
false
false
false
false
false
let rec interpret_com h c =
match c with | Skip -> Some h | Assign x e -> let v = interpret_exp h e in Some (upd h x v) | Seq c1 c2 -> (match interpret_com h c1 with | Some h' -> interpret_com h' c2 | None -> None) | If e ct cf -> if interpret_exp h e = 0 then interpret_com h cf else interpret_com h ct | While e body v -> interpret_while h c
false
Hacl.Spec.K256.Field52.Lemmas4.fst
Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r432
val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104)
val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104)
let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 40, "start_col": 0, "start_line": 24 }
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r2: Prims.nat -> r3: Prims.nat -> r4: Prims.nat -> c9: Prims.nat -> c11: Prims.nat -> d4: Prims.nat -> d11: Prims.nat -> t3: Prims.nat -> r: Prims.nat -> FStar.Pervasives.Lemma (requires r2 = c9 % Prims.pow2 52 /\ c11 = c9 / Prims.pow2 52 + (r * Prims.pow2 12) * d11 + t3 /\ r3 = c11 % Prims.pow2 52 /\ r4 = c11 / Prims.pow2 52 + d4 % Prims.pow2 52 % Prims.pow2 48) (ensures (r4 * Prims.pow2 52 + r3) * Prims.pow2 52 + r2 = c9 + (r * d11) * Prims.pow2 64 + t3 * Prims.pow2 52 + (d4 % Prims.pow2 48) * Prims.pow2 104)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Division", "Prims.op_Modulus", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow", "Hacl.Spec.K256.MathLemmas.lemma_swap_mul3" ]
[]
false
false
true
false
false
let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r =
let k = d4 % pow2 48 in calc ( == ) { (r4 * pow2 52 + r3) * pow2 52 + r2; ( == ) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; ( == ) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + (r * pow2 12) * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; ( == ) { ML.lemma_distr_eucl c9 ((r * pow2 12) * d11 + t3 + k * pow2 52) } c9 + ((r * pow2 12) * d11 + t3 + k * pow2 52) * pow2 52; ( == ) { ML.lemma_distr_pow ((r * pow2 12) * d11 + t3) k 52 52 } c9 + ((r * pow2 12) * d11 + t3) * pow2 52 + k * pow2 104; ( == ) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + ((r * d11) * pow2 12 + t3) * pow2 52 + k * pow2 104; ( == ) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + (r * d11) * pow2 64 + t3 * pow2 52 + k * pow2 104; }
false
FStar.BV.fsti
FStar.BV.bv_zero
val bv_zero : FStar.BV.bv_t n
let bv_zero #n = int2bv #n 0
{ "file_name": "ulib/FStar.BV.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 198, "start_col": 0, "start_line": 198 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.BV /// This module defines an abstract type of length-indexed bit /// vectors. The type and its operations are handled primitively in /// F*'s SMT encoding, which maps them to the SMT sort of bit vectors /// and operations on that sort. Note that this encoding only applies /// when the length [n] is a syntactic literal: bit vectors with a /// length referring to some variable, bound or otherwise, are encoded /// as abstract sequences of bits. /// /// Because of this syntactic encoding, it is also often helpful to /// explicitly specify the bit length on all operations -- for example /// constructing a 64-bit vector with [int2bv #64 1]. These explicit /// annotations ensure that the encoding uses the literal length 64, /// rather than inferring some variable as the length. /// /// One way to use this module is in conjunction with /// FStar.Tactics.BV. Its main tactic, [bv_tac], converts bitwise /// operations on unsigned integers to operations on bit vectors and /// back using the [int2bv / bv2int] isomorphism. This can be an /// effective way of discharging such proof obligations for bitwise /// operations on integers using the SMT solver's theory of /// bitvectors. open FStar.UInt // for now just opening this for logand, logxor, etc. but we need a better solution. (** The main type of this module, bit vectors of length [n], with decidable equality *) val bv_t (n: nat) : eqtype (* Experimental: Redefining basic type from UInt to avoid importing UInt Reduces verification time by 50% in small examples // let max_int (n:nat) : Tot int = pow2 n - 1 // let min_int (n:nat) : Tot int = 0 // let fits (x:int) (n:nat) : Tot bool = min_int n <= x && x <= max_int n // let size (x:int) (n:nat) : Tot Type0 = b2t(fits x n) // type uint_t' (n:nat) = x:int{size x n} *) (** Extending a bit vector of length [n] to a larger vector of size [m+n], filling the extra bits with 0 *) val bv_uext (#n #m: pos) (a: bv_t n) : Tot (normalize (bv_t (m + n))) (**** Relating unsigned integers to bitvectors *) (** Mapping a bounded unsigned integer of size [< 2^n], to a n-length bit vector *) val int2bv (#n: pos) (num: uint_t n) : Tot (bv_t n) (** Mapping a bit vector back to a bounded unsigned integer of size [< 2^n] *) val bv2int (#n: pos) (vec: bv_t n) : Tot (uint_t n) val int2bv_lemma_1 (#n: pos) (a b: uint_t n) : Lemma (requires a = b) (ensures (int2bv #n a = int2bv #n b)) val int2bv_lemma_2 (#n: pos) (a b: uint_t n) : Lemma (requires (int2bv a = int2bv b)) (ensures a = b) val inverse_vec_lemma (#n: pos) (vec: bv_t n) : Lemma (requires True) (ensures vec = (int2bv (bv2int vec))) [SMTPat (int2bv (bv2int vec))] val inverse_num_lemma (#n: pos) (num: uint_t n) : Lemma (requires True) (ensures num = bv2int #n (int2bv #n num)) [SMTPat (bv2int #n (int2bv #n num))] (**** Relating lists to bitvectors *) (** Mapping a list of booleans to a bitvector *) val list2bv (#n: pos) (l: list bool {List.length l = n}) : Tot (bv_t n) (** Mapping a bitvector to a list of booleans *) val bv2list: #n: pos -> bv_t n -> Tot (l: list bool {List.length l = n}) val list2bv_bij (#n: pos) (a: list bool {List.length a = n}) : Lemma (requires (True)) (ensures (bv2list (list2bv #n a) = a)) val bv2list_bij (#n: pos) (a: bv_t n) : Lemma (requires (True)) (ensures (list2bv (bv2list #n a) = a)) (**** Bitwise logical operators *) (** Bitwise conjunction *) val bvand (#n: pos) (a b: bv_t n) : Tot (bv_t n) val int2bv_logand: #n: pos -> #x: uint_t n -> #y: uint_t n -> #z: bv_t n -> squash (bvand #n (int2bv #n x) (int2bv #n y) == z) -> Lemma (int2bv #n (logand #n x y) == z) (** Bitwise exclusive or *) val bvxor (#n: pos) (a b: bv_t n) : Tot (bv_t n) val int2bv_logxor: #n: pos -> #x: uint_t n -> #y: uint_t n -> #z: bv_t n -> squash (bvxor #n (int2bv #n x) (int2bv #n y) == z) -> Lemma (int2bv #n (logxor #n x y) == z) (** Bitwise disjunction *) val bvor (#n: pos) (a b: bv_t n) : Tot (bv_t n) val int2bv_logor: #n: pos -> #x: uint_t n -> #y: uint_t n -> #z: bv_t n -> squash (bvor #n (int2bv #n x) (int2bv #n y) == z) -> Lemma (int2bv #n (logor #n x y) == z) (** Bitwise negation *) val bvnot (#n: pos) (a: bv_t n) : Tot (bv_t n) val int2bv_lognot: #n: pos -> #x: uint_t n -> #z: bv_t n -> squash (bvnot #n (int2bv #n x) == z) -> Lemma (int2bv #n (lognot #n x) == z) (** Bitwise shift left: shift by bit-vector. This variant directly corresponds to the SMT-LIB bvshl function. In some cases, it may be more efficient to use this variant rather than the below natural number [bvshl] variant, as the below requires a conversion from unbounded integers. *) val bvshl' (#n: pos) (a: bv_t n) (s: bv_t n) : Tot (bv_t n) (** Bitwise shift left: shift by integer. This variant uses an unbounded natural and exists for compatibility. *) val bvshl (#n: pos) (a: bv_t n) (s: nat) : Tot (bv_t n) val int2bv_shl': #n: pos -> #x: uint_t n -> #y: uint_t n -> #z: bv_t n -> squash (bvshl' #n (int2bv #n x) (int2bv #n y) == z) -> Lemma (int2bv #n (shift_left #n x y) == z) val int2bv_shl: #n: pos -> #x: uint_t n -> #y: uint_t n -> #z: bv_t n -> squash (bvshl #n (int2bv #n x) y == z) -> Lemma (int2bv #n (shift_left #n x y) == z) (** Bitwise shift right: shift by bit-vector. This variant directly corresponds to the SMT-LIB bvshr function. In some cases, it may be more efficient to use this variant rather than the below natural number [bvshr] variant, as the below requires a conversion from unbounded integers. *) val bvshr' (#n: pos) (a: bv_t n) (s: bv_t n) : Tot (bv_t n) (** Bitwise shift right: shift by integer. This variant uses an unbounded natural and exists for compatibility. *) val bvshr (#n: pos) (a: bv_t n) (s: nat) : Tot (bv_t n) val int2bv_shr': #n: pos -> #x: uint_t n -> #y: uint_t n -> #z: bv_t n -> squash (bvshr' #n (int2bv #n x) (int2bv #n y) == z) -> Lemma (int2bv #n (shift_right #n x y) == z) val int2bv_shr: #n: pos -> #x: uint_t n -> #y: uint_t n -> #z: bv_t n -> squash (bvshr #n (int2bv #n x) y == z) -> Lemma (int2bv #n (shift_right #n x y) == z) (**** Arithmetic operations *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked" ], "interface_file": false, "source_file": "FStar.BV.fsti" }
[ { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.BV.bv_t n
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.BV.int2bv", "FStar.BV.bv_t" ]
[]
false
false
false
false
false
let bv_zero #n =
int2bv #n 0
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.xer_ca
val xer_ca (xer:xer_t) : bool
val xer_ca (xer:xer_t) : bool
let xer_ca = Lemmas.xer_ca
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 12, "start_col": 0, "start_line": 12 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = ()
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xer: Vale.PPC64LE.Machine_s.xer_t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Lemmas.xer_ca" ]
[]
false
false
false
true
false
let xer_ca =
Lemmas.xer_ca
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.ins
val ins : Type0
val ins : Type0
let ins = S.ins
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 15, "start_col": 0, "start_line": 15 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Semantics_s.ins" ]
[]
false
false
false
true
true
let ins =
S.ins
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.update_xer_ov
val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t
val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t
let update_xer_ov = Lemmas.update_xer_ov
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 13, "start_col": 0, "start_line": 13 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xer: Vale.PPC64LE.Machine_s.xer_t -> new_xer_ov: Prims.bool -> Vale.PPC64LE.Machine_s.xer_t
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Lemmas.update_xer_ov" ]
[]
false
false
false
true
false
let update_xer_ov =
Lemmas.update_xer_ov
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.update_xer_ca
val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t
val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t
let update_xer_ca = Lemmas.update_xer_ca
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 14, "start_col": 0, "start_line": 14 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xer: Vale.PPC64LE.Machine_s.xer_t -> new_xer_ca: Prims.bool -> Vale.PPC64LE.Machine_s.xer_t
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Lemmas.update_xer_ca" ]
[]
false
false
false
true
false
let update_xer_ca =
Lemmas.update_xer_ca
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.xer_ov
val xer_ov (xer:xer_t) : bool
val xer_ov (xer:xer_t) : bool
let xer_ov = Lemmas.xer_ov
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 11, "start_col": 0, "start_line": 11 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = ()
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xer: Vale.PPC64LE.Machine_s.xer_t -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Lemmas.xer_ov" ]
[]
false
false
false
true
false
let xer_ov =
Lemmas.xer_ov
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_ffalse
val va_ffalse (reason:string) : va_pbool
val va_ffalse (reason:string) : va_pbool
let va_ffalse = Vale.Def.PossiblyMonad.ffalse
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 21, "start_col": 0, "start_line": 21 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
reason: Prims.string -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.PossiblyMonad.ffalse" ]
[]
false
false
false
true
false
let va_ffalse =
Vale.Def.PossiblyMonad.ffalse
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_ttrue
val va_ttrue (_:unit) : va_pbool
val va_ttrue (_:unit) : va_pbool
let va_ttrue () = Vale.Def.PossiblyMonad.ttrue
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 20, "start_col": 0, "start_line": 20 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "Vale.Def.PossiblyMonad.ttrue", "Vale.PPC64LE.Decls.va_pbool" ]
[]
false
false
false
true
false
let va_ttrue () =
Vale.Def.PossiblyMonad.ttrue
false
MerkleTree.New.High.Correct.Path.fst
MerkleTree.New.High.Correct.Path.mt_get_path_step_acc
val mt_get_path_step_acc: #hsz:pos -> j:nat{j > 0} -> chs:hashes #hsz {S.length chs = j} -> crh:hash #hsz -> k:nat{k <= j} -> actd:bool -> GTot (option (hash #hsz))
val mt_get_path_step_acc: #hsz:pos -> j:nat{j > 0} -> chs:hashes #hsz {S.length chs = j} -> crh:hash #hsz -> k:nat{k <= j} -> actd:bool -> GTot (option (hash #hsz))
let mt_get_path_step_acc #hsz j chs crh k actd = if k % 2 = 1 then Some (S.index chs (k - 1)) else (if k = j then None else if k + 1 = j then (if actd then Some crh else None) else Some (S.index chs (k + 1)))
{ "file_name": "src/MerkleTree.New.High.Correct.Path.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 37, "end_line": 62, "start_col": 0, "start_line": 56 }
module MerkleTree.New.High.Correct.Path open EverCrypt open EverCrypt.Helpers open MerkleTree.New.High.Correct.Base // Need to use some facts of `mt_get_root` open MerkleTree.New.High.Correct.Rhs open FStar.Classical open FStar.Ghost open FStar.Seq module List = FStar.List.Tot module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 type uint32_t = U32.t type uint8_t = U8.t module EHS = EverCrypt.Hash module MTS = MerkleTree.Spec open MerkleTree.New.High #reset-options "--z3rlimit 20" /// Correctness of path generation val path_spec: #hsz:pos -> k:nat -> j:nat{k <= j} -> actd:bool -> p:path #hsz {S.length p = mt_path_length k j actd} -> GTot (sp:S.seq (MTS.padded_hash #hsz){S.length sp = log2c j}) (decreases j) let rec path_spec #hsz k j actd p = if j = 0 then S.empty else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then S.cons MTS.HPad (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) p) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) val mt_get_path_step_acc: #hsz:pos -> j:nat{j > 0} -> chs:hashes #hsz {S.length chs = j} -> crh:hash #hsz -> k:nat{k <= j} -> actd:bool ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.Correct.Rhs.fst.checked", "MerkleTree.New.High.Correct.Base.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "EverCrypt.Helpers.fsti.checked", "EverCrypt.Hash.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Path.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "EverCrypt.Hash", "short_module": "EHS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Rhs", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Base", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
j: Prims.nat{j > 0} -> chs: MerkleTree.New.High.hashes{FStar.Seq.Base.length chs = j} -> crh: MerkleTree.New.High.hash -> k: Prims.nat{k <= j} -> actd: Prims.bool -> Prims.GTot (FStar.Pervasives.Native.option MerkleTree.New.High.hash)
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_GreaterThan", "MerkleTree.New.High.hashes", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.op_LessThanOrEqual", "Prims.bool", "Prims.int", "Prims.op_Modulus", "FStar.Pervasives.Native.Some", "FStar.Seq.Base.index", "Prims.op_Subtraction", "Prims.l_or", "FStar.Pervasives.Native.None", "Prims.op_Addition", "FStar.Pervasives.Native.option" ]
[]
false
false
false
false
false
let mt_get_path_step_acc #hsz j chs crh k actd =
if k % 2 = 1 then Some (S.index chs (k - 1)) else (if k = j then None else if k + 1 = j then (if actd then Some crh else None) else Some (S.index chs (k + 1)))
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_pbool_and
val va_pbool_and (x y:va_pbool) : va_pbool
val va_pbool_and (x y:va_pbool) : va_pbool
let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 57, "end_line": 22, "start_col": 0, "start_line": 22 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.PPC64LE.Decls.va_pbool -> y: Vale.PPC64LE.Decls.va_pbool -> Vale.PPC64LE.Decls.va_pbool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_pbool", "Vale.Def.PossiblyMonad.op_Amp_Amp_Dot" ]
[]
false
false
false
true
false
let va_pbool_and x y =
Vale.Def.PossiblyMonad.(( &&. )) x y
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.mul_nat_helper
val mul_nat_helper (x y:nat) : Lemma (x * y >= 0)
val mul_nat_helper (x y:nat) : Lemma (x * y >= 0)
let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 25, "start_col": 0, "start_line": 24 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> y: Prims.nat -> FStar.Pervasives.Lemma (ensures x * y >= 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Math.Lemmas.nat_times_nat_is_nat", "Prims.unit" ]
[]
true
false
true
false
false
let mul_nat_helper x y =
FStar.Math.Lemmas.nat_times_nat_is_nat x y
false
MerkleTree.New.High.Correct.Path.fst
MerkleTree.New.High.Correct.Path.mt_verify_ok
val mt_verify_ok: #hsz:pos -> #f:MTS.hash_fun_t -> k:nat -> j:nat{k < j} -> p:path #hsz {S.length p = 1 + mt_path_length k j false} -> rt:hash #hsz -> Lemma (mt_verify #_ #f k j p rt <==> MTS.mt_verify #_ #f #(log2c j) (path_spec k j false (S.tail p)) k (MTS.HRaw (S.head p)) (MTS.HRaw rt))
val mt_verify_ok: #hsz:pos -> #f:MTS.hash_fun_t -> k:nat -> j:nat{k < j} -> p:path #hsz {S.length p = 1 + mt_path_length k j false} -> rt:hash #hsz -> Lemma (mt_verify #_ #f k j p rt <==> MTS.mt_verify #_ #f #(log2c j) (path_spec k j false (S.tail p)) k (MTS.HRaw (S.head p)) (MTS.HRaw rt))
let mt_verify_ok #_ #f k j p rt = mt_verify_ok_ #_ #f k j p 1 (S.head p) false
{ "file_name": "src/MerkleTree.New.High.Correct.Path.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 46, "end_line": 405, "start_col": 0, "start_line": 404 }
module MerkleTree.New.High.Correct.Path open EverCrypt open EverCrypt.Helpers open MerkleTree.New.High.Correct.Base // Need to use some facts of `mt_get_root` open MerkleTree.New.High.Correct.Rhs open FStar.Classical open FStar.Ghost open FStar.Seq module List = FStar.List.Tot module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 type uint32_t = U32.t type uint8_t = U8.t module EHS = EverCrypt.Hash module MTS = MerkleTree.Spec open MerkleTree.New.High #reset-options "--z3rlimit 20" /// Correctness of path generation val path_spec: #hsz:pos -> k:nat -> j:nat{k <= j} -> actd:bool -> p:path #hsz {S.length p = mt_path_length k j actd} -> GTot (sp:S.seq (MTS.padded_hash #hsz){S.length sp = log2c j}) (decreases j) let rec path_spec #hsz k j actd p = if j = 0 then S.empty else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then S.cons MTS.HPad (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) p) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) val mt_get_path_step_acc: #hsz:pos -> j:nat{j > 0} -> chs:hashes #hsz {S.length chs = j} -> crh:hash #hsz -> k:nat{k <= j} -> actd:bool -> GTot (option (hash #hsz)) let mt_get_path_step_acc #hsz j chs crh k actd = if k % 2 = 1 then Some (S.index chs (k - 1)) else (if k = j then None else if k + 1 = j then (if actd then Some crh else None) else Some (S.index chs (k + 1))) val mt_get_path_acc: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> rhs:hashes #hsz {S.length rhs = log2c j} -> k:nat{k <= j} -> actd:bool -> GTot (np:path #hsz {S.length np = mt_path_length k j actd}) (decreases j) let rec mt_get_path_acc #_ #f j fhs rhs k actd = if j = 0 then S.empty else (let sp = mt_get_path_step_acc #_ j (S.head fhs) (S.head rhs) k actd in let rp = mt_get_path_acc #_ #f (j / 2) (S.tail fhs) (S.tail rhs) (k / 2) (actd || j % 2 = 1) in if Some? sp then (S.cons (Some?.v sp) rp) else rp) val mt_get_path_step_acc_consistent: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> actd:bool -> Lemma (requires (j <> 0)) (ensures (log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); (match mt_get_path_step_acc j (S.index (merge_hs #_ #f olds hs) lv) (S.index rhs lv) k actd with | Some v -> S.equal (mt_make_path_step lv hs rhs i j k S.empty actd) (S.cons v S.empty) | None -> S.equal (mt_make_path_step lv hs rhs i j k S.empty actd) S.empty))) let mt_get_path_step_acc_consistent #_ #_ lv i j olds hs rhs k actd = () private val seq_cons_append: #a:Type -> hd:a -> tl:S.seq a -> Lemma (S.equal (S.append (S.cons hd S.empty) tl) (S.cons hd tl)) private let seq_cons_append #a hd tl = () val mt_get_path_acc_consistent: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> actd:bool -> Lemma (requires True) (ensures (log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); S.equal (mt_get_path_acc #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) (S.slice rhs lv (lv + log2c j)) k actd) (mt_get_path_ #_ lv hs rhs i j k S.empty actd))) (decreases j) #push-options "--z3rlimit 1000 --max_fuel 1 --max_ifuel 0" let rec mt_get_path_acc_consistent #hsz #f lv i j olds hs rhs k actd = log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); if j = 0 then () else begin let nactd = if j % 2 = 0 then actd else true in let nactd_ = actd || j % 2 = 1 in assert (nactd == nactd_); let pa = mt_get_path_acc #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) (S.slice rhs lv (lv + log2c j)) k actd in let p = mt_get_path_ lv hs rhs i j k S.empty actd in log2c_div j; log2c_bound (j / 2) (32 - (lv + 1)); assert (mt_hashes_lth_inv (lv + 1) (j / 2) (merge_hs #_ #f olds hs)); assert (mt_hashes_lth_inv_log #hsz (j / 2) (S.slice (merge_hs #_ #f olds hs) (lv + 1) (lv + 1 + log2c (j / 2)))); let npsa = mt_get_path_step_acc j (S.index (merge_hs #_ #f olds hs) lv) (S.index rhs lv) k actd in let npa = mt_get_path_acc #_ #f (j / 2) (S.slice (merge_hs #_ #f olds hs) (lv + 1) (lv + 1 + log2c (j / 2))) (S.slice rhs (lv + 1) (lv + 1 + log2c (j / 2))) (k / 2) nactd_ in let nps = mt_make_path_step lv hs rhs i j k S.empty actd in let np = mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) nps nactd in let npe = mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) S.empty nactd in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) nps nactd; assert (S.equal p np); assert (S.equal np (S.append nps npe)); assert (S.equal p (S.append nps npe)); assert (S.equal pa (if Some? npsa then S.cons (Some?.v npsa) npa else npa)); mt_get_path_acc_consistent #_ #f (lv + 1) (i / 2) (j / 2) olds hs rhs (k / 2) nactd; assert (S.equal npa npe); mt_get_path_step_acc_consistent #_ #f lv i j olds hs rhs k actd; if Some? npsa then begin assert (S.equal nps (S.cons (Some?.v npsa) S.empty)); assert (S.equal p (S.append (S.cons (Some?.v npsa) S.empty) npa)); assert (S.equal pa (S.cons (Some?.v npsa) npa)); seq_cons_append (Some?.v npsa) npa; assert (S.equal pa p) end else begin assert (S.equal nps S.empty); S.append_empty_l npe; assert (S.equal p npe); assert (S.equal pa npa); assert (S.equal pa p) end end #pop-options val mt_get_path_acc_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> rhs:hashes #hsz {S.length rhs = log2c j} -> k:nat{k <= j} -> acc:hash -> actd:bool -> Lemma (requires (j > 0 /\ mt_hashes_lth_inv_log #hsz j fhs /\ mt_hashes_inv_log #_ #f j fhs /\ mt_rhs_inv #_ #f j (hash_seq_spec_full #_ #f (S.head fhs) acc actd) rhs actd)) (ensures (S.equal (path_spec k j actd (mt_get_path_acc #_ #f j fhs rhs k actd)) (MTS.mt_get_path #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.head fhs) acc actd) k))) (decreases j) #push-options "--z3rlimit 120 --max_fuel 1" let rec mt_get_path_acc_inv_ok #_ #f j fhs rhs k acc actd = // Below dummy `let` is necessary to provide guidance to the SMT solver. let _ = mt_get_path_step_acc j (S.head fhs) (S.head rhs) k actd in let smt = hash_seq_spec_full #_ #f (S.head fhs) acc actd in let nacc = (if j % 2 = 0 then acc else if actd then f (S.last (S.head fhs)) acc else S.last (S.head fhs)) in let nactd = actd || j % 2 = 1 in if j = 1 then (if k = 0 then () else ()) else begin mt_hashes_lth_inv_log_next #_ #f j fhs; hash_seq_spec_full_next #_ #f j (S.head fhs) (S.head (S.tail fhs)) acc actd nacc nactd; mt_get_path_acc_inv_ok #_ #f (j / 2) (S.tail fhs) (S.tail rhs) (k / 2) nacc nactd; if k % 2 = 0 then begin if k = j || (k + 1 = j && not actd) then assert (S.index smt (k + 1) == MTS.HPad) else if k + 1 = j then assert (S.index smt (k + 1) == MTS.HRaw (S.head rhs)) else hash_seq_spec_full_index_raw #_ #f (S.head fhs) acc actd (k + 1) end else begin hash_seq_spec_full_index_raw #_ #f (S.head fhs) acc actd (k - 1) end end #pop-options #push-options "--max_fuel 1 --initial_fuel 1 --max_ifuel 0 --z3rlimit 60" val mt_get_path_inv_ok_: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv < 32} -> i:nat -> j:nat{j > 0 /\ i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> p:path #hsz -> acc:hash -> actd:bool -> Lemma (requires (log2c_div j; log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; (mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) /\ (let t1 = hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd in let t2 = S.slice rhs lv (lv + log2c j) in mt_rhs_inv #_ #f j t1 t2 actd)))) (ensures (S.equal (path_spec k j actd (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd))) (MTS.mt_get_path #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd) k))) let mt_get_path_inv_ok_ #_ #f lv i j olds hs rhs k p acc actd = log2c_div j; log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); mt_hashes_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); mt_get_path_acc_consistent #_ #f lv i j olds hs rhs k actd; mt_get_path_slice lv hs rhs i j k p actd; mt_get_path_acc_inv_ok #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) (S.slice rhs lv (lv + log2c j)) k acc actd #pop-options val mt_get_path_inv_ok: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> idx:nat{MT?.i mt <= idx && idx < MT?.j mt} -> drt:hash -> Lemma (requires (MT?.j mt > 0 /\ mt_inv mt olds)) (ensures (let j, p, rt = mt_get_path mt idx drt in j == MT?.j mt /\ mt_root_inv #_ #(MT?.hash_fun mt) (mt_base mt olds) hash_init false rt /\ S.head p == S.index (mt_base mt olds) idx /\ (assert (S.length (S.tail p) == mt_path_length idx (MT?.j mt) false); S.equal (path_spec idx (MT?.j mt) false (S.tail p)) (MTS.mt_get_path #_ #(MT?.hash_fun mt) #(log2c j) (mt_spec mt olds) idx)))) #push-options "--z3rlimit 40" let mt_get_path_inv_ok #hsz mt olds idx drt = let j, p, rt = mt_get_path mt idx drt in mt_get_root_inv_ok mt drt olds; assert (j == MT?.j mt); assert (mt_root_inv #_ #(MT?.hash_fun mt) (mt_base mt olds) hash_init false rt); let ofs = offset_of (MT?.i mt) in let umt, _ = mt_get_root mt drt in let ip = path_insert S.empty (S.index (mt_base mt olds) idx) in mt_get_path_unchanged 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx ip false; assert (S.head ip == S.head (S.slice p 0 (S.length ip))); assert (S.head ip == S.head p); assert (S.head p == S.index (mt_base mt olds) idx); assert (S.length (S.tail p) == mt_path_length idx (MT?.j mt) false); mt_get_path_inv_ok_ #_ #(MT?.hash_fun mt) 0 (MT?.i umt) (MT?.j umt) olds (MT?.hs umt) (MT?.rhs umt) idx ip hash_init false #pop-options val mt_verify_ok_: #hsz:pos -> #f:MTS.hash_fun_t -> k:nat -> j:nat{k <= j} -> p:path -> ppos:nat -> acc:hash #hsz -> actd:bool -> Lemma (requires (ppos + mt_path_length k j actd <= S.length p)) (ensures (MTS.HRaw (mt_verify_ #_ #f k j p ppos acc actd) == MTS.mt_verify_ #_ #f #(log2c j) (path_spec k j actd (S.slice p ppos (ppos + mt_path_length k j actd))) k (MTS.HRaw acc))) (decreases j) #push-options "--z3rlimit 40 --max_fuel 1" let rec mt_verify_ok_ #hsz #f k j p ppos acc actd = if j = 0 then () else begin log2c_div j; let vi = mt_verify_ #_ #f k j p ppos acc actd in let plen = mt_path_length k j actd in let vs = MTS.mt_verify_ #_ #f #(log2c j) (path_spec k j actd (S.slice p ppos (ppos + plen))) k (MTS.HRaw acc) in let nactd = actd || (j % 2 = 1) in let nplen = mt_path_length (k / 2) (j / 2) nactd in if k % 2 = 0 then begin if j = k || (j = k + 1 && not actd) then begin assert (vi == mt_verify_ #_ #f (k / 2) (j / 2) p ppos acc nactd); assert (plen == nplen); assert (S.equal (path_spec k j actd (S.slice p ppos (ppos + plen))) (S.cons MTS.HPad (path_spec (k / 2) (j / 2) nactd (S.slice p ppos (ppos + plen))))); assert (vs == MTS.mt_verify_ #_ #f #(log2c (j / 2)) (path_spec (k / 2) (j / 2) nactd (S.slice p ppos (ppos + plen))) (k / 2) (MTS.HRaw acc)); mt_verify_ok_ #_ #f (k / 2) (j / 2) p ppos acc nactd end else begin let nacc = f acc (S.index p ppos) in assert (vi == mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd); assert (plen == nplen + 1); assert (S.equal (S.tail (S.slice p ppos (ppos + plen))) (S.slice p (ppos + 1) (ppos + 1 + nplen))); assert (S.equal (path_spec k j actd (S.slice p ppos (ppos + plen))) (S.cons (MTS.HRaw (S.index p ppos)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))))); assert (vs == MTS.mt_verify_ #_ #f #(log2c (j / 2)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))) (k / 2) (MTS.HRaw nacc)); mt_verify_ok_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd end end else begin let nacc = f (S.index p ppos) acc in assert (vi == mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd); assert (plen == 1 + nplen); assert (S.equal (S.tail (S.slice p ppos (ppos + plen))) (S.slice p (ppos + 1) (ppos + 1 + nplen))); assert (S.equal (path_spec k j actd (S.slice p ppos (ppos + plen))) (S.cons (MTS.HRaw (S.index p ppos)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))))); assert (vs == MTS.mt_verify_ #_ #f #(log2c (j / 2)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))) (k / 2) (MTS.HRaw nacc)); mt_verify_ok_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd end end #pop-options val mt_verify_ok: #hsz:pos -> #f:MTS.hash_fun_t -> k:nat -> j:nat{k < j} -> p:path #hsz {S.length p = 1 + mt_path_length k j false} -> rt:hash #hsz -> Lemma (mt_verify #_ #f k j p rt <==> MTS.mt_verify #_ #f #(log2c j)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.Correct.Rhs.fst.checked", "MerkleTree.New.High.Correct.Base.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "EverCrypt.Helpers.fsti.checked", "EverCrypt.Hash.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Path.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "EverCrypt.Hash", "short_module": "EHS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Rhs", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Base", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Prims.nat -> j: Prims.nat{k < j} -> p: MerkleTree.New.High.path {FStar.Seq.Base.length p = 1 + MerkleTree.New.High.mt_path_length k j false} -> rt: MerkleTree.New.High.hash -> FStar.Pervasives.Lemma (ensures MerkleTree.New.High.mt_verify k j p rt <==> MerkleTree.Spec.mt_verify (MerkleTree.New.High.Correct.Path.path_spec k j false (FStar.Seq.Properties.tail p)) k (MerkleTree.Spec.HRaw (FStar.Seq.Properties.head p)) (MerkleTree.Spec.HRaw rt))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "MerkleTree.New.High.path", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.op_Addition", "MerkleTree.New.High.mt_path_length", "MerkleTree.New.High.Correct.Path.mt_verify_ok_", "FStar.Seq.Properties.head", "Prims.unit" ]
[]
true
false
true
false
false
let mt_verify_ok #_ #f k j p rt =
mt_verify_ok_ #_ #f k j p 1 (S.head p) false
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_fuel_default
val va_fuel_default : unit -> va_fuel
val va_fuel_default : unit -> va_fuel
let va_fuel_default () = 0
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 27, "start_col": 0, "start_line": 27 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Vale.PPC64LE.Decls.va_fuel
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "Vale.PPC64LE.Decls.va_fuel" ]
[]
false
false
false
true
false
let va_fuel_default () =
0
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_cmp_eq
val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp
val va_cmp_eq (o1:cmp_opr) (o2:cmp_opr) : ocmp
let va_cmp_eq o1 o2 = S.OEq o1 o2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 52, "start_col": 0, "start_line": 52 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
o1: Vale.PPC64LE.Machine_s.cmp_opr -> o2: Vale.PPC64LE.Machine_s.cmp_opr -> Vale.PPC64LE.Decls.ocmp
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.cmp_opr", "Vale.PPC64LE.Semantics_s.OEq", "Vale.PPC64LE.Decls.ocmp" ]
[]
false
false
false
true
false
let va_cmp_eq o1 o2 =
S.OEq o1 o2
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_cmp_ne
val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp
val va_cmp_ne (o1:cmp_opr) (o2:cmp_opr) : ocmp
let va_cmp_ne o1 o2 = S.ONe o1 o2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 53, "start_col": 0, "start_line": 53 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
o1: Vale.PPC64LE.Machine_s.cmp_opr -> o2: Vale.PPC64LE.Machine_s.cmp_opr -> Vale.PPC64LE.Decls.ocmp
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.cmp_opr", "Vale.PPC64LE.Semantics_s.ONe", "Vale.PPC64LE.Decls.ocmp" ]
[]
false
false
false
true
false
let va_cmp_ne o1 o2 =
S.ONe o1 o2
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_cmp_ge
val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp
val va_cmp_ge (o1:cmp_opr) (o2:cmp_opr) : ocmp
let va_cmp_ge o1 o2 = S.OGe o1 o2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 55, "start_col": 0, "start_line": 55 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
o1: Vale.PPC64LE.Machine_s.cmp_opr -> o2: Vale.PPC64LE.Machine_s.cmp_opr -> Vale.PPC64LE.Decls.ocmp
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.cmp_opr", "Vale.PPC64LE.Semantics_s.OGe", "Vale.PPC64LE.Decls.ocmp" ]
[]
false
false
false
true
false
let va_cmp_ge o1 o2 =
S.OGe o1 o2
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_cmp_le
val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp
val va_cmp_le (o1:cmp_opr) (o2:cmp_opr) : ocmp
let va_cmp_le o1 o2 = S.OLe o1 o2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 54, "start_col": 0, "start_line": 54 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
o1: Vale.PPC64LE.Machine_s.cmp_opr -> o2: Vale.PPC64LE.Machine_s.cmp_opr -> Vale.PPC64LE.Decls.ocmp
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.cmp_opr", "Vale.PPC64LE.Semantics_s.OLe", "Vale.PPC64LE.Decls.ocmp" ]
[]
false
false
false
true
false
let va_cmp_le o1 o2 =
S.OLe o1 o2
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_cmp_gt
val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp
val va_cmp_gt (o1:cmp_opr) (o2:cmp_opr) : ocmp
let va_cmp_gt o1 o2 = S.OGt o1 o2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 57, "start_col": 0, "start_line": 57 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
o1: Vale.PPC64LE.Machine_s.cmp_opr -> o2: Vale.PPC64LE.Machine_s.cmp_opr -> Vale.PPC64LE.Decls.ocmp
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.cmp_opr", "Vale.PPC64LE.Semantics_s.OGt", "Vale.PPC64LE.Decls.ocmp" ]
[]
false
false
false
true
false
let va_cmp_gt o1 o2 =
S.OGt o1 o2
false
Hacl.Impl.Chacha20Poly1305.fst
Hacl.Impl.Chacha20Poly1305.poly1305_do
val poly1305_do: #w:field_spec -> poly1305_do_core_st w
val poly1305_do: #w:field_spec -> poly1305_do_core_st w
let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame()
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 103, "start_col": 0, "start_line": 97 }
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Chacha20Poly1305.poly1305_do_core_st w
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Poly1305.poly1305_finish", "Hacl.Impl.Chacha20Poly1305.poly1305_do_", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.u8", "Hacl.Spec.Poly1305.Field32xN.uint64xN", "Lib.IntTypes.add", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Poly1305.Fields.limb", "Lib.IntTypes.op_Plus_Bang", "Hacl.Impl.Poly1305.Fields.nlimb", "Hacl.Impl.Poly1305.Fields.precomplen", "Hacl.Impl.Poly1305.Fields.limb_zero", "FStar.HyperStack.ST.push_frame" ]
[]
false
false
false
false
false
let poly1305_do #w k aadlen aad mlen m out =
push_frame (); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame ()
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.eval_code
val eval_code (c:va_code) (s0:va_state) (f0:va_fuel) (sN:va_state) : prop0
val eval_code (c:va_code) (s0:va_state) (f0:va_fuel) (sN:va_state) : prop0
let eval_code = Lemmas.eval_code
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 59, "start_col": 0, "start_line": 59 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> f0: Vale.PPC64LE.Decls.va_fuel -> sN: Vale.PPC64LE.Decls.va_state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Lemmas.eval_code" ]
[]
false
false
false
true
false
let eval_code =
Lemmas.eval_code
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.eval_while_inv
val eval_while_inv (c:va_code) (s0:va_state) (fW:va_fuel) (sW:va_state) : prop0
val eval_while_inv (c:va_code) (s0:va_state) (fW:va_fuel) (sW:va_state) : prop0
let eval_while_inv = Lemmas.eval_while_inv
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 60, "start_col": 0, "start_line": 60 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> fW: Vale.PPC64LE.Decls.va_fuel -> sW: Vale.PPC64LE.Decls.va_state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Lemmas.eval_while_inv" ]
[]
false
false
false
true
false
let eval_while_inv =
Lemmas.eval_while_inv
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.eval_cmp_cr0
val eval_cmp_cr0 : s:va_state -> c:ocmp -> cr0_t
val eval_cmp_cr0 : s:va_state -> c:ocmp -> cr0_t
let eval_cmp_cr0 = S.eval_cmp_cr0
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 66, "start_col": 0, "start_line": 66 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> c: Vale.PPC64LE.Decls.ocmp -> Vale.PPC64LE.Machine_s.cr0_t
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Semantics_s.eval_cmp_cr0" ]
[]
false
false
false
true
false
let eval_cmp_cr0 =
S.eval_cmp_cr0
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.valid_ocmp
val valid_ocmp : c:ocmp -> s:va_state -> GTot bool
val valid_ocmp : c:ocmp -> s:va_state -> GTot bool
let valid_ocmp = Lemmas.valid_ocmp
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 65, "start_col": 0, "start_line": 65 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = ()
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Decls.ocmp -> s: Vale.PPC64LE.Decls.va_state -> Prims.GTot Prims.bool
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Lemmas.valid_ocmp" ]
[]
false
false
false
false
false
let valid_ocmp =
Lemmas.valid_ocmp
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_cmp_lt
val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp
val va_cmp_lt (o1:cmp_opr) (o2:cmp_opr) : ocmp
let va_cmp_lt o1 o2 = S.OLt o1 o2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 56, "start_col": 0, "start_line": 56 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
o1: Vale.PPC64LE.Machine_s.cmp_opr -> o2: Vale.PPC64LE.Machine_s.cmp_opr -> Vale.PPC64LE.Decls.ocmp
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.cmp_opr", "Vale.PPC64LE.Semantics_s.OLt", "Vale.PPC64LE.Decls.ocmp" ]
[]
false
false
false
true
false
let va_cmp_lt o1 o2 =
S.OLt o1 o2
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.eval_ocmp
val eval_ocmp : s:va_state -> c:ocmp -> GTot bool
val eval_ocmp : s:va_state -> c:ocmp -> GTot bool
let eval_ocmp = Lemmas.eval_ocmp
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 64, "start_col": 0, "start_line": 64 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = ()
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> c: Vale.PPC64LE.Decls.ocmp -> Prims.GTot Prims.bool
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Lemmas.eval_ocmp" ]
[]
false
false
false
false
false
let eval_ocmp =
Lemmas.eval_ocmp
false
MerkleTree.New.High.Correct.Path.fst
MerkleTree.New.High.Correct.Path.mt_get_path_acc
val mt_get_path_acc: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> rhs:hashes #hsz {S.length rhs = log2c j} -> k:nat{k <= j} -> actd:bool -> GTot (np:path #hsz {S.length np = mt_path_length k j actd}) (decreases j)
val mt_get_path_acc: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> rhs:hashes #hsz {S.length rhs = log2c j} -> k:nat{k <= j} -> actd:bool -> GTot (np:path #hsz {S.length np = mt_path_length k j actd}) (decreases j)
let rec mt_get_path_acc #_ #f j fhs rhs k actd = if j = 0 then S.empty else (let sp = mt_get_path_step_acc #_ j (S.head fhs) (S.head rhs) k actd in let rp = mt_get_path_acc #_ #f (j / 2) (S.tail fhs) (S.tail rhs) (k / 2) (actd || j % 2 = 1) in if Some? sp then (S.cons (Some?.v sp) rp) else rp)
{ "file_name": "src/MerkleTree.New.High.Correct.Path.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 12, "end_line": 81, "start_col": 0, "start_line": 73 }
module MerkleTree.New.High.Correct.Path open EverCrypt open EverCrypt.Helpers open MerkleTree.New.High.Correct.Base // Need to use some facts of `mt_get_root` open MerkleTree.New.High.Correct.Rhs open FStar.Classical open FStar.Ghost open FStar.Seq module List = FStar.List.Tot module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 type uint32_t = U32.t type uint8_t = U8.t module EHS = EverCrypt.Hash module MTS = MerkleTree.Spec open MerkleTree.New.High #reset-options "--z3rlimit 20" /// Correctness of path generation val path_spec: #hsz:pos -> k:nat -> j:nat{k <= j} -> actd:bool -> p:path #hsz {S.length p = mt_path_length k j actd} -> GTot (sp:S.seq (MTS.padded_hash #hsz){S.length sp = log2c j}) (decreases j) let rec path_spec #hsz k j actd p = if j = 0 then S.empty else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then S.cons MTS.HPad (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) p) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) val mt_get_path_step_acc: #hsz:pos -> j:nat{j > 0} -> chs:hashes #hsz {S.length chs = j} -> crh:hash #hsz -> k:nat{k <= j} -> actd:bool -> GTot (option (hash #hsz)) let mt_get_path_step_acc #hsz j chs crh k actd = if k % 2 = 1 then Some (S.index chs (k - 1)) else (if k = j then None else if k + 1 = j then (if actd then Some crh else None) else Some (S.index chs (k + 1))) val mt_get_path_acc: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> rhs:hashes #hsz {S.length rhs = log2c j} -> k:nat{k <= j} -> actd:bool -> GTot (np:path #hsz {S.length np = mt_path_length k j actd})
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.Correct.Rhs.fst.checked", "MerkleTree.New.High.Correct.Base.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "EverCrypt.Helpers.fsti.checked", "EverCrypt.Hash.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Path.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "EverCrypt.Hash", "short_module": "EHS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Rhs", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Base", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
j: Prims.nat -> fhs: MerkleTree.New.High.hashess { FStar.Seq.Base.length fhs = MerkleTree.New.High.Correct.Base.log2c j /\ MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log j fhs } -> rhs: MerkleTree.New.High.hashes {FStar.Seq.Base.length rhs = MerkleTree.New.High.Correct.Base.log2c j} -> k: Prims.nat{k <= j} -> actd: Prims.bool -> Prims.GTot (np: MerkleTree.New.High.path {FStar.Seq.Base.length np = MerkleTree.New.High.mt_path_length k j actd})
Prims.GTot
[ "sometrivial", "" ]
[]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "MerkleTree.New.High.hashess", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.log2c", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log", "MerkleTree.New.High.hash", "Prims.op_LessThanOrEqual", "Prims.bool", "Prims.int", "FStar.Seq.Base.empty", "FStar.Pervasives.Native.uu___is_Some", "FStar.Seq.Base.cons", "FStar.Pervasives.Native.__proj__Some__item__v", "MerkleTree.New.High.path", "MerkleTree.New.High.mt_path_length", "Prims.op_Division", "Prims.op_BarBar", "Prims.op_Modulus", "MerkleTree.New.High.Correct.Path.mt_get_path_acc", "FStar.Seq.Properties.tail", "FStar.Pervasives.Native.option", "MerkleTree.New.High.Correct.Path.mt_get_path_step_acc", "FStar.Seq.Properties.head" ]
[ "recursion" ]
false
false
false
false
false
let rec mt_get_path_acc #_ #f j fhs rhs k actd =
if j = 0 then S.empty else (let sp = mt_get_path_step_acc #_ j (S.head fhs) (S.head rhs) k actd in let rp = mt_get_path_acc #_ #f (j / 2) (S.tail fhs) (S.tail rhs) (k / 2) (actd || j % 2 = 1) in if Some? sp then (S.cons (Some?.v sp) rp) else rp)
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_eval_ins
val va_eval_ins : c: Vale.PPC64LE.Lemmas.code -> s0: Vale.PPC64LE.State.state -> Prims.Pure (Vale.PPC64LE.State.state * Vale.PPC64LE.Lemmas.fuel)
let va_eval_ins = Lemmas.eval_ins
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 68, "start_col": 7, "start_line": 68 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Lemmas.code -> s0: Vale.PPC64LE.State.state -> Prims.Pure (Vale.PPC64LE.State.state * Vale.PPC64LE.Lemmas.fuel)
Prims.Pure
[]
[]
[ "Vale.PPC64LE.Lemmas.eval_ins" ]
[]
false
false
false
false
false
let va_eval_ins =
Lemmas.eval_ins
false
MerkleTree.New.High.Correct.Path.fst
MerkleTree.New.High.Correct.Path.path_spec
val path_spec: #hsz:pos -> k:nat -> j:nat{k <= j} -> actd:bool -> p:path #hsz {S.length p = mt_path_length k j actd} -> GTot (sp:S.seq (MTS.padded_hash #hsz){S.length sp = log2c j}) (decreases j)
val path_spec: #hsz:pos -> k:nat -> j:nat{k <= j} -> actd:bool -> p:path #hsz {S.length p = mt_path_length k j actd} -> GTot (sp:S.seq (MTS.padded_hash #hsz){S.length sp = log2c j}) (decreases j)
let rec path_spec #hsz k j actd p = if j = 0 then S.empty else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then S.cons MTS.HPad (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) p) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p)))
{ "file_name": "src/MerkleTree.New.High.Correct.Path.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 75, "end_line": 46, "start_col": 0, "start_line": 38 }
module MerkleTree.New.High.Correct.Path open EverCrypt open EverCrypt.Helpers open MerkleTree.New.High.Correct.Base // Need to use some facts of `mt_get_root` open MerkleTree.New.High.Correct.Rhs open FStar.Classical open FStar.Ghost open FStar.Seq module List = FStar.List.Tot module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 type uint32_t = U32.t type uint8_t = U8.t module EHS = EverCrypt.Hash module MTS = MerkleTree.Spec open MerkleTree.New.High #reset-options "--z3rlimit 20" /// Correctness of path generation val path_spec: #hsz:pos -> k:nat -> j:nat{k <= j} -> actd:bool -> p:path #hsz {S.length p = mt_path_length k j actd} -> GTot (sp:S.seq (MTS.padded_hash #hsz){S.length sp = log2c j})
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.Correct.Rhs.fst.checked", "MerkleTree.New.High.Correct.Base.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "EverCrypt.Helpers.fsti.checked", "EverCrypt.Hash.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Path.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "EverCrypt.Hash", "short_module": "EHS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Rhs", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Base", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Prims.nat -> j: Prims.nat{k <= j} -> actd: Prims.bool -> p: MerkleTree.New.High.path {FStar.Seq.Base.length p = MerkleTree.New.High.mt_path_length k j actd} -> Prims.GTot (sp: FStar.Seq.Base.seq MerkleTree.Spec.padded_hash {FStar.Seq.Base.length sp = MerkleTree.New.High.Correct.Base.log2c j})
Prims.GTot
[ "sometrivial", "" ]
[]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.bool", "MerkleTree.New.High.path", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "MerkleTree.New.High.mt_path_length", "Prims.int", "FStar.Seq.Base.empty", "MerkleTree.Spec.padded_hash", "Prims.op_Modulus", "Prims.op_BarBar", "Prims.op_AmpAmp", "Prims.op_Addition", "Prims.op_Negation", "FStar.Seq.Base.cons", "MerkleTree.Spec.HPad", "MerkleTree.New.High.Correct.Path.path_spec", "Prims.op_Division", "MerkleTree.Spec.HRaw", "FStar.Seq.Properties.head", "FStar.Seq.Properties.tail", "FStar.Seq.Base.seq", "MerkleTree.New.High.Correct.Base.log2c" ]
[ "recursion" ]
false
false
false
false
false
let rec path_spec #hsz k j actd p =
if j = 0 then S.empty else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then S.cons MTS.HPad (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) p) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p)) )
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_compute_merge_total
val va_compute_merge_total (f0:va_fuel) (fM:va_fuel) : va_fuel
val va_compute_merge_total (f0:va_fuel) (fM:va_fuel) : va_fuel
let va_compute_merge_total = Lemmas.compute_merge_total
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 55, "end_line": 84, "start_col": 0, "start_line": 84 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = ()
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f0: Vale.PPC64LE.Decls.va_fuel -> fM: Vale.PPC64LE.Decls.va_fuel -> Vale.PPC64LE.Decls.va_fuel
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Lemmas.compute_merge_total" ]
[]
false
false
false
true
false
let va_compute_merge_total =
Lemmas.compute_merge_total
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.print_proc
val print_proc : (name:string) -> (code:va_code) -> (label:int) -> (p:printer) -> FStar.All.ML int
val print_proc : (name:string) -> (code:va_code) -> (label:int) -> (p:printer) -> FStar.All.ML int
let print_proc = P.print_proc
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 98, "start_col": 0, "start_line": 98 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total let va_lemma_while_total = Lemmas.lemma_while_total let va_lemma_whileTrue_total = Lemmas.lemma_whileTrue_total let va_lemma_whileFalse_total = Lemmas.lemma_whileFalse_total let va_lemma_whileMerge_total = Lemmas.lemma_whileMerge_total let printer = P.printer let print_string = FStar.IO.print_string
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
name: Prims.string -> code: Vale.PPC64LE.Decls.va_code -> label: Prims.int -> p: Vale.PPC64LE.Decls.printer -> FStar.All.ML Prims.int
FStar.All.ML
[ "ml" ]
[]
[ "Vale.PPC64LE.Print_s.print_proc" ]
[]
false
true
false
false
false
let print_proc =
P.print_proc
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.printer
val printer : Type0
val printer : Type0
let printer = P.printer
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 95, "start_col": 0, "start_line": 95 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total let va_lemma_while_total = Lemmas.lemma_while_total let va_lemma_whileTrue_total = Lemmas.lemma_whileTrue_total let va_lemma_whileFalse_total = Lemmas.lemma_whileFalse_total let va_lemma_whileMerge_total = Lemmas.lemma_whileMerge_total
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Print_s.printer" ]
[]
false
false
false
true
true
let printer =
P.printer
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.print_string
val print_string : string -> FStar.All.ML unit
val print_string : string -> FStar.All.ML unit
let print_string = FStar.IO.print_string
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 40, "end_line": 96, "start_col": 0, "start_line": 96 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total let va_lemma_while_total = Lemmas.lemma_while_total let va_lemma_whileTrue_total = Lemmas.lemma_whileTrue_total let va_lemma_whileFalse_total = Lemmas.lemma_whileFalse_total let va_lemma_whileMerge_total = Lemmas.lemma_whileMerge_total
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.string -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "FStar.IO.print_string" ]
[]
false
true
false
false
false
let print_string =
FStar.IO.print_string
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.print_header
val print_header : printer -> FStar.All.ML unit
val print_header : printer -> FStar.All.ML unit
let print_header = P.print_header
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 97, "start_col": 0, "start_line": 97 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total let va_lemma_while_total = Lemmas.lemma_while_total let va_lemma_whileTrue_total = Lemmas.lemma_whileTrue_total let va_lemma_whileFalse_total = Lemmas.lemma_whileFalse_total let va_lemma_whileMerge_total = Lemmas.lemma_whileMerge_total let printer = P.printer
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Vale.PPC64LE.Decls.printer -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Vale.PPC64LE.Print_s.print_header" ]
[]
false
true
false
false
false
let print_header =
P.print_header
false
Hacl.Impl.Chacha20Poly1305.fst
Hacl.Impl.Chacha20Poly1305.derive_key_poly1305_do
val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad)))
val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad)))
let derive_key_poly1305_do #w k n aadlen aad mlen m out = push_frame (); // Create a new buffer to derive the key let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; // The derived key should only be the first 32 bytes let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame()
{ "file_name": "code/chacha20poly1305/Hacl.Impl.Chacha20Poly1305.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 13, "end_line": 142, "start_col": 0, "start_line": 134 }
module Hacl.Impl.Chacha20Poly1305 open FStar.HyperStack.All open FStar.HyperStack open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Impl.Chacha20Poly1305.PolyCore open Hacl.Impl.Poly1305.Fields module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Spec = Spec.Chacha20Poly1305 module SpecPoly = Spec.Poly1305 module Poly = Hacl.Impl.Poly1305 #reset-options "--z3rlimit 150 --max_fuel 0 --max_ifuel 1 --record_options" val poly1305_do_: #w:field_spec -> k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> ctx:Poly.poly1305_ctx w -> block:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h ctx /\ live h block /\ disjoint ctx k /\ disjoint ctx aad /\ disjoint ctx m /\ disjoint ctx block /\ disjoint block k /\ disjoint block aad /\ disjoint block m) (ensures fun h0 _ h1 -> modifies (loc ctx |+| loc block) h0 h1 /\ (let acc, r = SpecPoly.poly1305_init (as_seq h0 k) in let acc = if (length aad <> 0) then Spec.poly1305_padded r (as_seq h0 aad) acc else acc in let acc = if (length m <> 0) then Spec.poly1305_padded r (as_seq h0 m) acc else acc in let block_s = LSeq.concat (BSeq.uint_to_bytes_le #U64 (u64 (length aad))) (BSeq.uint_to_bytes_le #U64 (u64 (length m))) in let acc = SpecPoly.poly1305_update1 r 16 block_s acc in Poly.as_get_acc h1 ctx == acc /\ as_seq h1 block == block_s /\ Poly.state_inv_t h1 ctx)) [@Meta.Attribute.inline_] let poly1305_do_ #w k aadlen aad mlen m ctx block = Poly.poly1305_init ctx k; if (aadlen <> 0ul) then ( poly1305_padded ctx aadlen aad) else (); if (mlen <> 0ul) then ( poly1305_padded ctx mlen m) else (); let h0 = ST.get () in update_sub_f h0 block 0ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (fun _ -> uint_to_bytes_le (sub block 0ul 8ul) (to_u64 aadlen)); let h1 = ST.get () in //assert (LSeq.sub (as_seq h1 block) 0 8 == BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); Poly.reveal_ctx_inv ctx h0 h1; update_sub_f h1 block 8ul 8ul (fun h -> BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (fun _ -> uint_to_bytes_le (sub block 8ul 8ul) (to_u64 mlen)); let h2 = ST.get () in //assert (LSeq.sub (as_seq h2 block) 8 8 == BSeq.uint_to_bytes_le #U64 (to_u64 mlen)); LSeq.eq_intro (LSeq.sub (as_seq h2 block) 0 8) (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)); LSeq.lemma_concat2 8 (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) 8 (BSeq.uint_to_bytes_le #U64 (to_u64 mlen)) (as_seq h2 block); //assert (as_seq h2 block == LSeq.concat (BSeq.uint_to_bytes_le #U64 (to_u64 aadlen)) (BSeq.uint_to_bytes_le #U64 (to_u64 mlen))); Poly.reveal_ctx_inv ctx h1 h2; Poly.poly1305_update1 ctx block // Implements the actual poly1305_do operation inline_for_extraction noextract let poly1305_do_core_st (w:field_spec) = k:lbuffer uint8 32ul // key -> aadlen:size_t -> aad:lbuffer uint8 aadlen // authenticated additional data -> mlen:size_t -> m:lbuffer uint8 mlen // plaintext -> out:lbuffer uint8 16ul -> // output: tag Stack unit (requires fun h -> live h k /\ live h aad /\ live h m /\ live h out /\ disjoint k out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_seq h1 out == Spec.poly1305_do (as_seq h0 k) (as_seq h0 m) (as_seq h0 aad)) noextract val poly1305_do: #w:field_spec -> poly1305_do_core_st w [@Meta.Attribute.specialize] let poly1305_do #w k aadlen aad mlen m out = push_frame(); let ctx = create (nlimb w +! precomplen w) (limb_zero w) in let block = create 16ul (u8 0) in poly1305_do_ #w k aadlen aad mlen m ctx block; Poly.poly1305_finish out k ctx; pop_frame() unfold noextract let width_chacha20 (s:field_spec) : Hacl.Spec.Chacha20.Vec.lanes = match s with | M32 -> 1 | M128 -> 4 | M256 -> 8 [@ Meta.Attribute.specialize ] assume val chacha20_encrypt: #w:field_spec -> Hacl.Impl.Chacha20.Vec.chacha20_encrypt_st (width_chacha20 w) // Derives the key, and then perform poly1305 val derive_key_poly1305_do: #w:field_spec -> k:lbuffer uint8 32ul -> n:lbuffer uint8 12ul -> aadlen:size_t -> aad:lbuffer uint8 aadlen -> mlen:size_t -> m:lbuffer uint8 mlen -> out:lbuffer uint8 16ul -> Stack unit (requires fun h -> live h k /\ live h n /\ live h aad /\ live h m /\ live h out) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ (let key:LSeq.lseq uint8 64 = Spec.Chacha20.chacha20_encrypt_bytes (as_seq h0 k) (as_seq h0 n) 0 (LSeq.create 64 (u8 0)) in as_seq h1 out == Spec.poly1305_do (LSeq.sub key 0 32) (as_seq h0 m) (as_seq h0 aad)))
{ "checked_file": "/", "dependencies": [ "Spec.Poly1305.fst.checked", "Spec.Chacha20Poly1305.fst.checked", "Spec.Chacha20.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Chacha20.Vec.fst.checked", "Hacl.Impl.Poly1305.Fields.fst.checked", "Hacl.Impl.Poly1305.fsti.checked", "Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked", "Hacl.Impl.Chacha20.Vec.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Chacha20Poly1305.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Poly1305", "short_module": "Poly" }, { "abbrev": true, "full_module": "Spec.Poly1305", "short_module": "SpecPoly" }, { "abbrev": true, "full_module": "Spec.Chacha20Poly1305", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Poly1305.Fields", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Chacha20Poly1305.PolyCore", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul -> n: Lib.Buffer.lbuffer Lib.IntTypes.uint8 12ul -> aadlen: Lib.IntTypes.size_t -> aad: Lib.Buffer.lbuffer Lib.IntTypes.uint8 aadlen -> mlen: Lib.IntTypes.size_t -> m: Lib.Buffer.lbuffer Lib.IntTypes.uint8 mlen -> out: Lib.Buffer.lbuffer Lib.IntTypes.uint8 16ul -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Poly1305.Fields.field_spec", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.size_t", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Chacha20Poly1305.poly1305_do", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Hacl.Impl.Chacha20Poly1305.chacha20_encrypt", "Lib.Buffer.create", "Lib.IntTypes.u8", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let derive_key_poly1305_do #w k n aadlen aad mlen m out =
push_frame (); let tmp = create 64ul (u8 0) in chacha20_encrypt #w 64ul tmp tmp k n 0ul; let key = sub tmp 0ul 32ul in poly1305_do #w key aadlen aad mlen m out; pop_frame ()
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.print_footer
val print_footer : printer -> FStar.All.ML unit
val print_footer : printer -> FStar.All.ML unit
let print_footer = P.print_footer
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 99, "start_col": 0, "start_line": 99 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total let va_lemma_while_total = Lemmas.lemma_while_total let va_lemma_whileTrue_total = Lemmas.lemma_whileTrue_total let va_lemma_whileFalse_total = Lemmas.lemma_whileFalse_total let va_lemma_whileMerge_total = Lemmas.lemma_whileMerge_total let printer = P.printer let print_string = FStar.IO.print_string let print_header = P.print_header
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Vale.PPC64LE.Decls.printer -> FStar.All.ML Prims.unit
FStar.All.ML
[ "ml" ]
[]
[ "Vale.PPC64LE.Print_s.print_footer" ]
[]
false
true
false
false
false
let print_footer =
P.print_footer
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.gcc
val gcc : printer
val gcc : printer
let gcc = P.gcc
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 100, "start_col": 0, "start_line": 100 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total let va_lemma_while_total = Lemmas.lemma_while_total let va_lemma_whileTrue_total = Lemmas.lemma_whileTrue_total let va_lemma_whileFalse_total = Lemmas.lemma_whileFalse_total let va_lemma_whileMerge_total = Lemmas.lemma_whileMerge_total let printer = P.printer let print_string = FStar.IO.print_string let print_header = P.print_header let print_proc = P.print_proc
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Vale.PPC64LE.Decls.printer
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Print_s.gcc" ]
[]
false
false
false
true
false
let gcc =
P.gcc
false
MerkleTree.New.High.Correct.Path.fst
MerkleTree.New.High.Correct.Path.mt_verify_ok_
val mt_verify_ok_: #hsz:pos -> #f:MTS.hash_fun_t -> k:nat -> j:nat{k <= j} -> p:path -> ppos:nat -> acc:hash #hsz -> actd:bool -> Lemma (requires (ppos + mt_path_length k j actd <= S.length p)) (ensures (MTS.HRaw (mt_verify_ #_ #f k j p ppos acc actd) == MTS.mt_verify_ #_ #f #(log2c j) (path_spec k j actd (S.slice p ppos (ppos + mt_path_length k j actd))) k (MTS.HRaw acc))) (decreases j)
val mt_verify_ok_: #hsz:pos -> #f:MTS.hash_fun_t -> k:nat -> j:nat{k <= j} -> p:path -> ppos:nat -> acc:hash #hsz -> actd:bool -> Lemma (requires (ppos + mt_path_length k j actd <= S.length p)) (ensures (MTS.HRaw (mt_verify_ #_ #f k j p ppos acc actd) == MTS.mt_verify_ #_ #f #(log2c j) (path_spec k j actd (S.slice p ppos (ppos + mt_path_length k j actd))) k (MTS.HRaw acc))) (decreases j)
let rec mt_verify_ok_ #hsz #f k j p ppos acc actd = if j = 0 then () else begin log2c_div j; let vi = mt_verify_ #_ #f k j p ppos acc actd in let plen = mt_path_length k j actd in let vs = MTS.mt_verify_ #_ #f #(log2c j) (path_spec k j actd (S.slice p ppos (ppos + plen))) k (MTS.HRaw acc) in let nactd = actd || (j % 2 = 1) in let nplen = mt_path_length (k / 2) (j / 2) nactd in if k % 2 = 0 then begin if j = k || (j = k + 1 && not actd) then begin assert (vi == mt_verify_ #_ #f (k / 2) (j / 2) p ppos acc nactd); assert (plen == nplen); assert (S.equal (path_spec k j actd (S.slice p ppos (ppos + plen))) (S.cons MTS.HPad (path_spec (k / 2) (j / 2) nactd (S.slice p ppos (ppos + plen))))); assert (vs == MTS.mt_verify_ #_ #f #(log2c (j / 2)) (path_spec (k / 2) (j / 2) nactd (S.slice p ppos (ppos + plen))) (k / 2) (MTS.HRaw acc)); mt_verify_ok_ #_ #f (k / 2) (j / 2) p ppos acc nactd end else begin let nacc = f acc (S.index p ppos) in assert (vi == mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd); assert (plen == nplen + 1); assert (S.equal (S.tail (S.slice p ppos (ppos + plen))) (S.slice p (ppos + 1) (ppos + 1 + nplen))); assert (S.equal (path_spec k j actd (S.slice p ppos (ppos + plen))) (S.cons (MTS.HRaw (S.index p ppos)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))))); assert (vs == MTS.mt_verify_ #_ #f #(log2c (j / 2)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))) (k / 2) (MTS.HRaw nacc)); mt_verify_ok_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd end end else begin let nacc = f (S.index p ppos) acc in assert (vi == mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd); assert (plen == 1 + nplen); assert (S.equal (S.tail (S.slice p ppos (ppos + plen))) (S.slice p (ppos + 1) (ppos + 1 + nplen))); assert (S.equal (path_spec k j actd (S.slice p ppos (ppos + plen))) (S.cons (MTS.HRaw (S.index p ppos)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))))); assert (vs == MTS.mt_verify_ #_ #f #(log2c (j / 2)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))) (k / 2) (MTS.HRaw nacc)); mt_verify_ok_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd end end
{ "file_name": "src/MerkleTree.New.High.Correct.Path.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 5, "end_line": 392, "start_col": 0, "start_line": 329 }
module MerkleTree.New.High.Correct.Path open EverCrypt open EverCrypt.Helpers open MerkleTree.New.High.Correct.Base // Need to use some facts of `mt_get_root` open MerkleTree.New.High.Correct.Rhs open FStar.Classical open FStar.Ghost open FStar.Seq module List = FStar.List.Tot module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 type uint32_t = U32.t type uint8_t = U8.t module EHS = EverCrypt.Hash module MTS = MerkleTree.Spec open MerkleTree.New.High #reset-options "--z3rlimit 20" /// Correctness of path generation val path_spec: #hsz:pos -> k:nat -> j:nat{k <= j} -> actd:bool -> p:path #hsz {S.length p = mt_path_length k j actd} -> GTot (sp:S.seq (MTS.padded_hash #hsz){S.length sp = log2c j}) (decreases j) let rec path_spec #hsz k j actd p = if j = 0 then S.empty else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then S.cons MTS.HPad (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) p) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) val mt_get_path_step_acc: #hsz:pos -> j:nat{j > 0} -> chs:hashes #hsz {S.length chs = j} -> crh:hash #hsz -> k:nat{k <= j} -> actd:bool -> GTot (option (hash #hsz)) let mt_get_path_step_acc #hsz j chs crh k actd = if k % 2 = 1 then Some (S.index chs (k - 1)) else (if k = j then None else if k + 1 = j then (if actd then Some crh else None) else Some (S.index chs (k + 1))) val mt_get_path_acc: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> rhs:hashes #hsz {S.length rhs = log2c j} -> k:nat{k <= j} -> actd:bool -> GTot (np:path #hsz {S.length np = mt_path_length k j actd}) (decreases j) let rec mt_get_path_acc #_ #f j fhs rhs k actd = if j = 0 then S.empty else (let sp = mt_get_path_step_acc #_ j (S.head fhs) (S.head rhs) k actd in let rp = mt_get_path_acc #_ #f (j / 2) (S.tail fhs) (S.tail rhs) (k / 2) (actd || j % 2 = 1) in if Some? sp then (S.cons (Some?.v sp) rp) else rp) val mt_get_path_step_acc_consistent: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> actd:bool -> Lemma (requires (j <> 0)) (ensures (log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); (match mt_get_path_step_acc j (S.index (merge_hs #_ #f olds hs) lv) (S.index rhs lv) k actd with | Some v -> S.equal (mt_make_path_step lv hs rhs i j k S.empty actd) (S.cons v S.empty) | None -> S.equal (mt_make_path_step lv hs rhs i j k S.empty actd) S.empty))) let mt_get_path_step_acc_consistent #_ #_ lv i j olds hs rhs k actd = () private val seq_cons_append: #a:Type -> hd:a -> tl:S.seq a -> Lemma (S.equal (S.append (S.cons hd S.empty) tl) (S.cons hd tl)) private let seq_cons_append #a hd tl = () val mt_get_path_acc_consistent: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> actd:bool -> Lemma (requires True) (ensures (log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); S.equal (mt_get_path_acc #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) (S.slice rhs lv (lv + log2c j)) k actd) (mt_get_path_ #_ lv hs rhs i j k S.empty actd))) (decreases j) #push-options "--z3rlimit 1000 --max_fuel 1 --max_ifuel 0" let rec mt_get_path_acc_consistent #hsz #f lv i j olds hs rhs k actd = log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); if j = 0 then () else begin let nactd = if j % 2 = 0 then actd else true in let nactd_ = actd || j % 2 = 1 in assert (nactd == nactd_); let pa = mt_get_path_acc #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) (S.slice rhs lv (lv + log2c j)) k actd in let p = mt_get_path_ lv hs rhs i j k S.empty actd in log2c_div j; log2c_bound (j / 2) (32 - (lv + 1)); assert (mt_hashes_lth_inv (lv + 1) (j / 2) (merge_hs #_ #f olds hs)); assert (mt_hashes_lth_inv_log #hsz (j / 2) (S.slice (merge_hs #_ #f olds hs) (lv + 1) (lv + 1 + log2c (j / 2)))); let npsa = mt_get_path_step_acc j (S.index (merge_hs #_ #f olds hs) lv) (S.index rhs lv) k actd in let npa = mt_get_path_acc #_ #f (j / 2) (S.slice (merge_hs #_ #f olds hs) (lv + 1) (lv + 1 + log2c (j / 2))) (S.slice rhs (lv + 1) (lv + 1 + log2c (j / 2))) (k / 2) nactd_ in let nps = mt_make_path_step lv hs rhs i j k S.empty actd in let np = mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) nps nactd in let npe = mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) S.empty nactd in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) nps nactd; assert (S.equal p np); assert (S.equal np (S.append nps npe)); assert (S.equal p (S.append nps npe)); assert (S.equal pa (if Some? npsa then S.cons (Some?.v npsa) npa else npa)); mt_get_path_acc_consistent #_ #f (lv + 1) (i / 2) (j / 2) olds hs rhs (k / 2) nactd; assert (S.equal npa npe); mt_get_path_step_acc_consistent #_ #f lv i j olds hs rhs k actd; if Some? npsa then begin assert (S.equal nps (S.cons (Some?.v npsa) S.empty)); assert (S.equal p (S.append (S.cons (Some?.v npsa) S.empty) npa)); assert (S.equal pa (S.cons (Some?.v npsa) npa)); seq_cons_append (Some?.v npsa) npa; assert (S.equal pa p) end else begin assert (S.equal nps S.empty); S.append_empty_l npe; assert (S.equal p npe); assert (S.equal pa npa); assert (S.equal pa p) end end #pop-options val mt_get_path_acc_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> rhs:hashes #hsz {S.length rhs = log2c j} -> k:nat{k <= j} -> acc:hash -> actd:bool -> Lemma (requires (j > 0 /\ mt_hashes_lth_inv_log #hsz j fhs /\ mt_hashes_inv_log #_ #f j fhs /\ mt_rhs_inv #_ #f j (hash_seq_spec_full #_ #f (S.head fhs) acc actd) rhs actd)) (ensures (S.equal (path_spec k j actd (mt_get_path_acc #_ #f j fhs rhs k actd)) (MTS.mt_get_path #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.head fhs) acc actd) k))) (decreases j) #push-options "--z3rlimit 120 --max_fuel 1" let rec mt_get_path_acc_inv_ok #_ #f j fhs rhs k acc actd = // Below dummy `let` is necessary to provide guidance to the SMT solver. let _ = mt_get_path_step_acc j (S.head fhs) (S.head rhs) k actd in let smt = hash_seq_spec_full #_ #f (S.head fhs) acc actd in let nacc = (if j % 2 = 0 then acc else if actd then f (S.last (S.head fhs)) acc else S.last (S.head fhs)) in let nactd = actd || j % 2 = 1 in if j = 1 then (if k = 0 then () else ()) else begin mt_hashes_lth_inv_log_next #_ #f j fhs; hash_seq_spec_full_next #_ #f j (S.head fhs) (S.head (S.tail fhs)) acc actd nacc nactd; mt_get_path_acc_inv_ok #_ #f (j / 2) (S.tail fhs) (S.tail rhs) (k / 2) nacc nactd; if k % 2 = 0 then begin if k = j || (k + 1 = j && not actd) then assert (S.index smt (k + 1) == MTS.HPad) else if k + 1 = j then assert (S.index smt (k + 1) == MTS.HRaw (S.head rhs)) else hash_seq_spec_full_index_raw #_ #f (S.head fhs) acc actd (k + 1) end else begin hash_seq_spec_full_index_raw #_ #f (S.head fhs) acc actd (k - 1) end end #pop-options #push-options "--max_fuel 1 --initial_fuel 1 --max_ifuel 0 --z3rlimit 60" val mt_get_path_inv_ok_: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv < 32} -> i:nat -> j:nat{j > 0 /\ i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> p:path #hsz -> acc:hash -> actd:bool -> Lemma (requires (log2c_div j; log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; (mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) /\ (let t1 = hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd in let t2 = S.slice rhs lv (lv + log2c j) in mt_rhs_inv #_ #f j t1 t2 actd)))) (ensures (S.equal (path_spec k j actd (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd))) (MTS.mt_get_path #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd) k))) let mt_get_path_inv_ok_ #_ #f lv i j olds hs rhs k p acc actd = log2c_div j; log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); mt_hashes_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); mt_get_path_acc_consistent #_ #f lv i j olds hs rhs k actd; mt_get_path_slice lv hs rhs i j k p actd; mt_get_path_acc_inv_ok #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) (S.slice rhs lv (lv + log2c j)) k acc actd #pop-options val mt_get_path_inv_ok: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz 0 (MT?.i mt) olds} -> idx:nat{MT?.i mt <= idx && idx < MT?.j mt} -> drt:hash -> Lemma (requires (MT?.j mt > 0 /\ mt_inv mt olds)) (ensures (let j, p, rt = mt_get_path mt idx drt in j == MT?.j mt /\ mt_root_inv #_ #(MT?.hash_fun mt) (mt_base mt olds) hash_init false rt /\ S.head p == S.index (mt_base mt olds) idx /\ (assert (S.length (S.tail p) == mt_path_length idx (MT?.j mt) false); S.equal (path_spec idx (MT?.j mt) false (S.tail p)) (MTS.mt_get_path #_ #(MT?.hash_fun mt) #(log2c j) (mt_spec mt olds) idx)))) #push-options "--z3rlimit 40" let mt_get_path_inv_ok #hsz mt olds idx drt = let j, p, rt = mt_get_path mt idx drt in mt_get_root_inv_ok mt drt olds; assert (j == MT?.j mt); assert (mt_root_inv #_ #(MT?.hash_fun mt) (mt_base mt olds) hash_init false rt); let ofs = offset_of (MT?.i mt) in let umt, _ = mt_get_root mt drt in let ip = path_insert S.empty (S.index (mt_base mt olds) idx) in mt_get_path_unchanged 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx ip false; assert (S.head ip == S.head (S.slice p 0 (S.length ip))); assert (S.head ip == S.head p); assert (S.head p == S.index (mt_base mt olds) idx); assert (S.length (S.tail p) == mt_path_length idx (MT?.j mt) false); mt_get_path_inv_ok_ #_ #(MT?.hash_fun mt) 0 (MT?.i umt) (MT?.j umt) olds (MT?.hs umt) (MT?.rhs umt) idx ip hash_init false #pop-options val mt_verify_ok_: #hsz:pos -> #f:MTS.hash_fun_t -> k:nat -> j:nat{k <= j} -> p:path -> ppos:nat -> acc:hash #hsz -> actd:bool -> Lemma (requires (ppos + mt_path_length k j actd <= S.length p)) (ensures (MTS.HRaw (mt_verify_ #_ #f k j p ppos acc actd) == MTS.mt_verify_ #_ #f #(log2c j) (path_spec k j actd (S.slice p ppos (ppos + mt_path_length k j actd))) k (MTS.HRaw acc))) (decreases j)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.Correct.Rhs.fst.checked", "MerkleTree.New.High.Correct.Base.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "EverCrypt.Helpers.fsti.checked", "EverCrypt.Hash.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Path.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "EverCrypt.Hash", "short_module": "EHS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Rhs", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Base", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 40, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Prims.nat -> j: Prims.nat{k <= j} -> p: MerkleTree.New.High.path -> ppos: Prims.nat -> acc: MerkleTree.New.High.hash -> actd: Prims.bool -> FStar.Pervasives.Lemma (requires ppos + MerkleTree.New.High.mt_path_length k j actd <= FStar.Seq.Base.length p) (ensures MerkleTree.Spec.HRaw (MerkleTree.New.High.mt_verify_ k j p ppos acc actd) == MerkleTree.Spec.mt_verify_ (MerkleTree.New.High.Correct.Path.path_spec k j actd (FStar.Seq.Base.slice p ppos (ppos + MerkleTree.New.High.mt_path_length k j actd))) k (MerkleTree.Spec.HRaw acc)) (decreases j)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.path", "MerkleTree.New.High.hash", "Prims.bool", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_BarBar", "Prims.op_AmpAmp", "Prims.op_Addition", "Prims.op_Negation", "MerkleTree.New.High.Correct.Path.mt_verify_ok_", "Prims.op_Division", "Prims.unit", "Prims._assert", "Prims.eq2", "MerkleTree.Spec.padded_hash", "MerkleTree.Spec.mt_verify_", "MerkleTree.New.High.Correct.Base.log2c", "MerkleTree.New.High.Correct.Path.path_spec", "FStar.Seq.Base.slice", "MerkleTree.Spec.HRaw", "FStar.Seq.Base.equal", "FStar.Seq.Base.cons", "MerkleTree.Spec.HPad", "MerkleTree.New.High.mt_verify_", "FStar.Seq.Base.index", "FStar.Seq.Properties.tail", "MerkleTree.Spec.hash", "MerkleTree.New.High.mt_path_length", "MerkleTree.New.High.Correct.Base.log2c_div" ]
[ "recursion" ]
false
false
true
false
false
let rec mt_verify_ok_ #hsz #f k j p ppos acc actd =
if j = 0 then () else (log2c_div j; let vi = mt_verify_ #_ #f k j p ppos acc actd in let plen = mt_path_length k j actd in let vs = MTS.mt_verify_ #_ #f #(log2c j) (path_spec k j actd (S.slice p ppos (ppos + plen))) k (MTS.HRaw acc) in let nactd = actd || (j % 2 = 1) in let nplen = mt_path_length (k / 2) (j / 2) nactd in if k % 2 = 0 then if j = k || (j = k + 1 && not actd) then (assert (vi == mt_verify_ #_ #f (k / 2) (j / 2) p ppos acc nactd); assert (plen == nplen); assert (S.equal (path_spec k j actd (S.slice p ppos (ppos + plen))) (S.cons MTS.HPad (path_spec (k / 2) (j / 2) nactd (S.slice p ppos (ppos + plen))))); assert (vs == MTS.mt_verify_ #_ #f #(log2c (j / 2)) (path_spec (k / 2) (j / 2) nactd (S.slice p ppos (ppos + plen))) (k / 2) (MTS.HRaw acc)); mt_verify_ok_ #_ #f (k / 2) (j / 2) p ppos acc nactd) else let nacc = f acc (S.index p ppos) in assert (vi == mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd); assert (plen == nplen + 1); assert (S.equal (S.tail (S.slice p ppos (ppos + plen))) (S.slice p (ppos + 1) (ppos + 1 + nplen))); assert (S.equal (path_spec k j actd (S.slice p ppos (ppos + plen))) (S.cons (MTS.HRaw (S.index p ppos)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))))); assert (vs == MTS.mt_verify_ #_ #f #(log2c (j / 2)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))) (k / 2) (MTS.HRaw nacc)); mt_verify_ok_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd else let nacc = f (S.index p ppos) acc in assert (vi == mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd); assert (plen == 1 + nplen); assert (S.equal (S.tail (S.slice p ppos (ppos + plen))) (S.slice p (ppos + 1) (ppos + 1 + nplen))); assert (S.equal (path_spec k j actd (S.slice p ppos (ppos + plen))) (S.cons (MTS.HRaw (S.index p ppos)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))))); assert (vs == MTS.mt_verify_ #_ #f #(log2c (j / 2)) (path_spec (k / 2) (j / 2) nactd (S.slice p (ppos + 1) (ppos + 1 + nplen))) (k / 2) (MTS.HRaw nacc)); mt_verify_ok_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd)
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_lemma_merge_total
val va_lemma_merge_total (b0:va_codes) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires Cons? b0 /\ eval_code (Cons?.hd b0) s0 f0 sM /\ eval_code (va_Block (Cons?.tl b0)) sM fM sN ) (ensures (fun fN -> fN == va_compute_merge_total f0 fM /\ eval_code (va_Block b0) s0 fN sN ))
val va_lemma_merge_total (b0:va_codes) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires Cons? b0 /\ eval_code (Cons?.hd b0) s0 f0 sM /\ eval_code (va_Block (Cons?.tl b0)) sM fM sN ) (ensures (fun fN -> fN == va_compute_merge_total f0 fM /\ eval_code (va_Block b0) s0 fN sN ))
let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 121, "end_line": 85, "start_col": 0, "start_line": 85 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = ()
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b0: Vale.PPC64LE.Decls.va_codes -> s0: Vale.PPC64LE.Decls.va_state -> f0: Vale.PPC64LE.Decls.va_fuel -> sM: Vale.PPC64LE.Decls.va_state -> fM: Vale.PPC64LE.Decls.va_fuel -> sN: Vale.PPC64LE.Decls.va_state -> Prims.Ghost Vale.PPC64LE.Decls.va_fuel
Prims.Ghost
[]
[]
[ "Vale.PPC64LE.Decls.va_codes", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_fuel", "Vale.PPC64LE.Lemmas.compute_merge_total", "Prims.unit", "Vale.PPC64LE.Lemmas.lemma_merge_total" ]
[]
false
false
false
false
false
let va_lemma_merge_total b0 s0 f0 sM fM sN =
Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_lemma_ifElse_total
val va_lemma_ifElse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) : Ghost (bool & va_state & va_state & va_fuel) (requires True) (ensures (fun (cond, sM, sN, f0) -> cond == eval_ocmp s0 ifb /\ sM == ({s0 with cr0 = eval_cmp_cr0 s0 ifb}) ))
val va_lemma_ifElse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) : Ghost (bool & va_state & va_state & va_fuel) (requires True) (ensures (fun (cond, sM, sN, f0) -> cond == eval_ocmp s0 ifb /\ sM == ({s0 with cr0 = eval_cmp_cr0 s0 ifb}) ))
let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 87, "start_col": 0, "start_line": 87 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ifb: Vale.PPC64LE.Decls.ocmp -> ct: Vale.PPC64LE.Decls.va_code -> cf: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> Prims.Ghost (((Prims.bool * Vale.PPC64LE.Decls.va_state) * Vale.PPC64LE.Decls.va_state) * Vale.PPC64LE.Decls.va_fuel)
Prims.Ghost
[]
[]
[ "Vale.PPC64LE.Lemmas.lemma_ifElse_total" ]
[]
false
false
false
false
false
let va_lemma_ifElse_total =
Lemmas.lemma_ifElse_total
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_lemma_empty_total
val va_lemma_empty_total (s0:va_state) (bN:va_codes) : Ghost (va_state & va_fuel) (requires True) (ensures (fun (sM, fM) -> s0 == sM /\ eval_code (va_Block []) s0 fM sM ))
val va_lemma_empty_total (s0:va_state) (bN:va_codes) : Ghost (va_state & va_fuel) (requires True) (ensures (fun (sM, fM) -> s0 == sM /\ eval_code (va_Block []) s0 fM sM ))
let va_lemma_empty_total = Lemmas.lemma_empty_total
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 51, "end_line": 86, "start_col": 0, "start_line": 86 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: Vale.PPC64LE.Decls.va_state -> bN: Vale.PPC64LE.Decls.va_codes -> Prims.Ghost (Vale.PPC64LE.Decls.va_state * Vale.PPC64LE.Decls.va_fuel)
Prims.Ghost
[]
[]
[ "Vale.PPC64LE.Lemmas.lemma_empty_total" ]
[]
false
false
false
false
false
let va_lemma_empty_total =
Lemmas.lemma_empty_total
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_lemma_whileTrue_total
val va_lemma_whileTrue_total (b:ocmp) (c:va_code) (s0:va_state) (sW:va_state) (fW:va_fuel) : Ghost (va_state & va_fuel) (requires valid_ocmp b sW /\ eval_ocmp sW b) (ensures fun (s1, f1) -> s1 == {sW with cr0 = eval_cmp_cr0 sW b} /\ f1 == fW)
val va_lemma_whileTrue_total (b:ocmp) (c:va_code) (s0:va_state) (sW:va_state) (fW:va_fuel) : Ghost (va_state & va_fuel) (requires valid_ocmp b sW /\ eval_ocmp sW b) (ensures fun (s1, f1) -> s1 == {sW with cr0 = eval_cmp_cr0 sW b} /\ f1 == fW)
let va_lemma_whileTrue_total = Lemmas.lemma_whileTrue_total
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 59, "end_line": 91, "start_col": 0, "start_line": 91 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Decls.ocmp -> c: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> sW: Vale.PPC64LE.Decls.va_state -> fW: Vale.PPC64LE.Decls.va_fuel -> Prims.Ghost (Vale.PPC64LE.Decls.va_state * Vale.PPC64LE.Decls.va_fuel)
Prims.Ghost
[]
[]
[ "Vale.PPC64LE.Lemmas.lemma_whileTrue_total" ]
[]
false
false
false
false
false
let va_lemma_whileTrue_total =
Lemmas.lemma_whileTrue_total
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_lemma_ifElseTrue_total
val va_lemma_ifElseTrue_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ eval_ocmp s0 ifb /\ eval_code ct ({s0 with cr0 = eval_cmp_cr0 s0 ifb}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
val va_lemma_ifElseTrue_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ eval_ocmp s0 ifb /\ eval_code ct ({s0 with cr0 = eval_cmp_cr0 s0 ifb}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 61, "end_line": 88, "start_col": 0, "start_line": 88 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ifb: Vale.PPC64LE.Decls.ocmp -> ct: Vale.PPC64LE.Decls.va_code -> cf: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> f0: Vale.PPC64LE.Decls.va_fuel -> sM: Vale.PPC64LE.Decls.va_state -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Decls.valid_ocmp ifb s0 /\ Vale.PPC64LE.Decls.eval_ocmp s0 ifb /\ Vale.PPC64LE.Decls.eval_code ct (Vale.PPC64LE.Machine_s.Mkstate (Mkstate?.ok s0) (Mkstate?.regs s0) (Mkstate?.vecs s0) (Vale.PPC64LE.Decls.eval_cmp_cr0 s0 ifb) (Mkstate?.xer s0) (Mkstate?.ms_heap s0) (Mkstate?.ms_stack s0) (Mkstate?.ms_stackTaint s0)) f0 sM) (ensures Vale.PPC64LE.Decls.eval_code (Vale.PPC64LE.Machine_s.IfElse ifb ct cf) s0 f0 sM)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.PPC64LE.Lemmas.lemma_ifElseTrue_total" ]
[]
true
false
true
false
false
let va_lemma_ifElseTrue_total =
Lemmas.lemma_ifElseTrue_total
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_lemma_while_total
val va_lemma_while_total (b:ocmp) (c:va_code) (s0:va_state) : Ghost (va_state & va_fuel) (requires True) (ensures fun (s1, f1) -> s1 == s0 /\ eval_while_inv (While b c) s1 f1 s1 )
val va_lemma_while_total (b:ocmp) (c:va_code) (s0:va_state) : Ghost (va_state & va_fuel) (requires True) (ensures fun (s1, f1) -> s1 == s0 /\ eval_while_inv (While b c) s1 f1 s1 )
let va_lemma_while_total = Lemmas.lemma_while_total
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 51, "end_line": 90, "start_col": 0, "start_line": 90 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Decls.ocmp -> c: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> Prims.Ghost (Vale.PPC64LE.Decls.va_state * Vale.PPC64LE.Decls.va_fuel)
Prims.Ghost
[]
[]
[ "Vale.PPC64LE.Lemmas.lemma_while_total" ]
[]
false
false
false
false
false
let va_lemma_while_total =
Lemmas.lemma_while_total
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_lemma_ifElseFalse_total
val va_lemma_ifElseFalse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ not (eval_ocmp s0 ifb) /\ eval_code cf ({s0 with cr0 = eval_cmp_cr0 s0 ifb}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
val va_lemma_ifElseFalse_total (ifb:ocmp) (ct:va_code) (cf:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) : Lemma (requires valid_ocmp ifb s0 /\ not (eval_ocmp s0 ifb) /\ eval_code cf ({s0 with cr0 = eval_cmp_cr0 s0 ifb}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 89, "start_col": 0, "start_line": 89 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ifb: Vale.PPC64LE.Decls.ocmp -> ct: Vale.PPC64LE.Decls.va_code -> cf: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> f0: Vale.PPC64LE.Decls.va_fuel -> sM: Vale.PPC64LE.Decls.va_state -> FStar.Pervasives.Lemma (requires Vale.PPC64LE.Decls.valid_ocmp ifb s0 /\ Prims.op_Negation (Vale.PPC64LE.Decls.eval_ocmp s0 ifb) /\ Vale.PPC64LE.Decls.eval_code cf (Vale.PPC64LE.Machine_s.Mkstate (Mkstate?.ok s0) (Mkstate?.regs s0) (Mkstate?.vecs s0) (Vale.PPC64LE.Decls.eval_cmp_cr0 s0 ifb) (Mkstate?.xer s0) (Mkstate?.ms_heap s0) (Mkstate?.ms_stack s0) (Mkstate?.ms_stackTaint s0)) f0 sM) (ensures Vale.PPC64LE.Decls.eval_code (Vale.PPC64LE.Machine_s.IfElse ifb ct cf) s0 f0 sM)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.PPC64LE.Lemmas.lemma_ifElseFalse_total" ]
[]
true
false
true
false
false
let va_lemma_ifElseFalse_total =
Lemmas.lemma_ifElseFalse_total
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_lemma_whileFalse_total
val va_lemma_whileFalse_total (b:ocmp) (c:va_code) (s0:va_state) (sW:va_state) (fW:va_fuel) : Ghost (va_state & va_fuel) (requires valid_ocmp b sW /\ not (eval_ocmp sW b) /\ eval_while_inv (While b c) s0 fW sW ) (ensures fun (s1, f1) -> s1 == {sW with cr0 = eval_cmp_cr0 sW b} /\ eval_code (While b c) s0 f1 s1 )
val va_lemma_whileFalse_total (b:ocmp) (c:va_code) (s0:va_state) (sW:va_state) (fW:va_fuel) : Ghost (va_state & va_fuel) (requires valid_ocmp b sW /\ not (eval_ocmp sW b) /\ eval_while_inv (While b c) s0 fW sW ) (ensures fun (s1, f1) -> s1 == {sW with cr0 = eval_cmp_cr0 sW b} /\ eval_code (While b c) s0 f1 s1 )
let va_lemma_whileFalse_total = Lemmas.lemma_whileFalse_total
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 61, "end_line": 92, "start_col": 0, "start_line": 92 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total let va_lemma_while_total = Lemmas.lemma_while_total
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Decls.ocmp -> c: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> sW: Vale.PPC64LE.Decls.va_state -> fW: Vale.PPC64LE.Decls.va_fuel -> Prims.Ghost (Vale.PPC64LE.Decls.va_state * Vale.PPC64LE.Decls.va_fuel)
Prims.Ghost
[]
[]
[ "Vale.PPC64LE.Lemmas.lemma_whileFalse_total" ]
[]
false
false
false
false
false
let va_lemma_whileFalse_total =
Lemmas.lemma_whileFalse_total
false
Vale.PPC64LE.Decls.fst
Vale.PPC64LE.Decls.va_lemma_whileMerge_total
val va_lemma_whileMerge_total (c:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires While? c /\ ( let cond = While?.whileCond c in sN.ok /\ valid_ocmp cond sM /\ eval_ocmp sM cond /\ eval_while_inv c s0 f0 sM /\ eval_code (While?.whileBody c) ({sM with cr0 = eval_cmp_cr0 sM cond}) fM sN )) (ensures (fun fN -> eval_while_inv c s0 fN sN ))
val va_lemma_whileMerge_total (c:va_code) (s0:va_state) (f0:va_fuel) (sM:va_state) (fM:va_fuel) (sN:va_state) : Ghost va_fuel (requires While? c /\ ( let cond = While?.whileCond c in sN.ok /\ valid_ocmp cond sM /\ eval_ocmp sM cond /\ eval_while_inv c s0 f0 sM /\ eval_code (While?.whileBody c) ({sM with cr0 = eval_cmp_cr0 sM cond}) fM sN )) (ensures (fun fN -> eval_while_inv c s0 fN sN ))
let va_lemma_whileMerge_total = Lemmas.lemma_whileMerge_total
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 61, "end_line": 93, "start_col": 0, "start_line": 93 }
module Vale.PPC64LE.Decls open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.PPC64LE.StateLemmas module S = Vale.PPC64LE.Semantics_s module P = Vale.PPC64LE.Print_s friend Vale.PPC64LE.Memory let same_heap_types = () let xer_ov = Lemmas.xer_ov let xer_ca = Lemmas.xer_ca let update_xer_ov = Lemmas.update_xer_ov let update_xer_ca = Lemmas.update_xer_ca let ins = S.ins type ocmp = S.ocmp type va_fuel = nat type va_pbool = Vale.Def.PossiblyMonad.pbool let va_ttrue () = Vale.Def.PossiblyMonad.ttrue let va_ffalse = Vale.Def.PossiblyMonad.ffalse let va_pbool_and x y = Vale.Def.PossiblyMonad.((&&.)) x y let mul_nat_helper x y = FStar.Math.Lemmas.nat_times_nat_is_nat x y let va_fuel_default () = 0 let lemma_opr_Mem64 (id:heaplet_id) (s:va_state) (address:reg_opr) (offset:int) (b:M.buffer64) (index:int) (t:taint) : Lemma (requires ( let h = Map16.sel s.ms_heap.vf_heaplets id in M.mem_inv (coerce s.ms_heap) /\ valid_src_addr h b index /\ M.valid_layout_buffer b (s.ms_heap.vf_layout) h false /\ M.valid_taint_buf64 b h (full_heap_taint s.ms_heap) t /\ eval_reg address s + offset == M.buffer_addr b h + 8 * index )) (ensures ( let h = Map16.sel s.ms_heap.vf_heaplets id in valid_mem_addr (va_opr_code_Mem64 id address offset t) s /\ M.load_mem64 (M.buffer_addr b h + 8 * index) (s.ms_heap.vf_heap) == M.buffer_read b index h )) = Vale.PPC64LE.Memory_Sems.low_lemma_load_mem64_full b index s.ms_heap t id; let h = M.get_vale_heap s.ms_heap in let t = va_opr_code_Mem64 id address offset t in M.lemma_valid_mem64 b index h; let (m, t) = t in assert (valid_buf_maddr64 (eval_maddr m s) h s.ms_heap.vf_layout b index t); M.lemma_load_mem64 b index h let va_cmp_eq o1 o2 = S.OEq o1 o2 let va_cmp_ne o1 o2 = S.ONe o1 o2 let va_cmp_le o1 o2 = S.OLe o1 o2 let va_cmp_ge o1 o2 = S.OGe o1 o2 let va_cmp_lt o1 o2 = S.OLt o1 o2 let va_cmp_gt o1 o2 = S.OGt o1 o2 let eval_code = Lemmas.eval_code let eval_while_inv = Lemmas.eval_while_inv let va_ins_lemma c0 s0 = () let eval_ocmp = Lemmas.eval_ocmp let valid_ocmp = Lemmas.valid_ocmp let eval_cmp_cr0 = S.eval_cmp_cr0 unfold let va_eval_ins = Lemmas.eval_ins let lemma_cmp_eq s o1 o2 = () let lemma_cmp_ne s o1 o2 = () let lemma_cmp_le s o1 o2 = () let lemma_cmp_ge s o1 o2 = () let lemma_cmp_lt s o1 o2 = () let lemma_cmp_gt s o1 o2 = () let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let va_compute_merge_total = Lemmas.compute_merge_total let va_lemma_merge_total b0 s0 f0 sM fM sN = Lemmas.lemma_merge_total b0 s0 f0 sM fM sN; Lemmas.compute_merge_total f0 fM let va_lemma_empty_total = Lemmas.lemma_empty_total let va_lemma_ifElse_total = Lemmas.lemma_ifElse_total let va_lemma_ifElseTrue_total = Lemmas.lemma_ifElseTrue_total let va_lemma_ifElseFalse_total = Lemmas.lemma_ifElseFalse_total let va_lemma_while_total = Lemmas.lemma_while_total let va_lemma_whileTrue_total = Lemmas.lemma_whileTrue_total
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.StateLemmas.fsti.checked", "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Print_s.fst.checked", "Vale.PPC64LE.Memory_Sems.fsti.checked", "Vale.PPC64LE.Memory.fst.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.PPC64LE.Lemmas.fsti.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IO.fst.checked" ], "interface_file": true, "source_file": "Vale.PPC64LE.Decls.fst" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Vale.PPC64LE.Decls.va_code -> s0: Vale.PPC64LE.Decls.va_state -> f0: Vale.PPC64LE.Decls.va_fuel -> sM: Vale.PPC64LE.Decls.va_state -> fM: Vale.PPC64LE.Decls.va_fuel -> sN: Vale.PPC64LE.Decls.va_state -> Prims.Ghost Vale.PPC64LE.Decls.va_fuel
Prims.Ghost
[]
[]
[ "Vale.PPC64LE.Lemmas.lemma_whileMerge_total" ]
[]
false
false
false
false
false
let va_lemma_whileMerge_total =
Lemmas.lemma_whileMerge_total
false
Hacl.Spec.K256.Field52.Lemmas4.fst
Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r43210
val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208)
val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208)
let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 = let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc (==) { // tmp1 * pow2 52 (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; (==) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; (==) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc (==) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; (==) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + d8 % pow2 52 * r + r * (d8 / pow2 52 + sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52; (==) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; }
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 116, "start_col": 0, "start_line": 88 }
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; } val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r0: Prims.nat -> r1: Prims.nat -> r2: Prims.nat -> r3: Prims.nat -> r4: Prims.nat -> c3: Prims.nat -> c6: Prims.nat -> c9: Prims.nat -> c11: Prims.nat -> d4: Prims.nat -> d8: Prims.nat -> d10: Prims.nat -> d11: Prims.nat -> t3: Prims.nat -> r: Prims.nat -> sum1: Prims.nat -> sum2: Prims.nat -> sum7: Prims.nat -> FStar.Pervasives.Lemma (requires d10 == d8 / Prims.pow2 52 + sum7 /\ r0 = c3 % Prims.pow2 52 /\ c6 = c3 / Prims.pow2 52 + sum1 + (d8 % Prims.pow2 52) * r /\ d11 = d10 / Prims.pow2 64 /\ r1 = c6 % Prims.pow2 52 /\ c9 = c6 / Prims.pow2 52 + sum2 + r * (d10 % Prims.pow2 64) /\ r2 = c9 % Prims.pow2 52 /\ c11 = c9 / Prims.pow2 52 + (r * Prims.pow2 12) * d11 + t3 /\ r3 = c11 % Prims.pow2 52 /\ r4 = c11 / Prims.pow2 52 + d4 % Prims.pow2 52 % Prims.pow2 48) (ensures r0 + r1 * Hacl.Spec.K256.Field52.Definitions.pow52 + r2 * Hacl.Spec.K256.Field52.Definitions.pow104 + r3 * Hacl.Spec.K256.Field52.Definitions.pow156 + r4 * Hacl.Spec.K256.Field52.Definitions.pow208 = c3 + (sum1 + r * d8) * Prims.pow2 52 + (sum2 + r * sum7) * Prims.pow2 104 + t3 * Prims.pow2 156 + (d4 % Prims.pow2 48) * Prims.pow2 208)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Definitions.pow52", "Hacl.Spec.K256.Field52.Definitions.pow104", "Hacl.Spec.K256.Field52.Definitions.pow156", "Hacl.Spec.K256.Field52.Definitions.pow208", "Prims.pow2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Division", "Prims.op_Modulus", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_as_nat_horner", "Prims.squash", "Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r4321", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul_add", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow", "FStar.Math.Lemmas.distributivity_add_left", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow_pow" ]
[]
false
false
true
false
false
let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 =
let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc ( == ) { (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; ( == ) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; ( == ) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc ( == ) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; ( == ) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; ( == ) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + (d8 % pow2 52) * r + (r * (d8 / pow2 52 + sum7)) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; ( == ) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + (r * sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; ( == ) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + (r * sum7) * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + (r * sum7) * pow2 52 + tmp1) * pow2 52; ( == ) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + (r * sum7) * pow2 104; ( == ) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + (r * sum7) * pow2 104; ( == ) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; }
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.linv_ctx
val linv_ctx (a: LSeq.lseq uint64 0) : Type0
val linv_ctx (a: LSeq.lseq uint64 0) : Type0
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 26, "start_col": 0, "start_line": 26 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Prims.l_True" ]
[]
false
false
false
false
true
let linv_ctx (a: LSeq.lseq uint64 0) : Type0 =
True
false
Hacl.Spec.K256.Field52.Lemmas4.fst
Hacl.Spec.K256.Field52.Lemmas4.lemma_nat_r43210_mod_prime
val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime)
val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime)
let lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8 = let tmp2 = sum3 + r * (sum8 % pow2 64) in let tmp1 = d4 / pow2 52 + sum5 in let tmp0 = sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r in let d4mod = (d4 % pow2 48) * pow2 208 + (d4 / pow2 48) * 0x1000003D1 in calc (==) { c3 + (d4 % pow2 48) * pow2 208 + (sum1 + r * d8) * pow2 52; (==) { simplify_c3 d4 r sum5; assert_norm (0x1000003D10 / pow2 4 = 0x1000003D1) } d4mod + tmp0 + (sum1 + r * d8) * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * d8) (pow2 52) } d4mod + sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { Math.Lemmas.distributivity_sub_left (tmp1 % pow2 52) (d4 / pow2 52) r } d4mod + sum0 + (tmp1 % pow2 52) * r - d4 / pow2 52 * r + sum1 * pow2 52 + r * (tmp1 / pow2 52 + sum6) * pow2 52; (==) { ML.lemma_distr_eucl_mul_add r tmp1 sum6 (pow2 52) } d4mod + sum0 + r * (d4 / pow2 52 + sum5) - d4 / pow2 52 * r + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_right r (d4 / pow2 52) sum5 } d4mod + sum0 + r * sum5 + sum1 * pow2 52 + r * sum6 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } d4mod + sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52; }; calc (==) { //t3 * pow2 156 + d4 * pow2 208; (tmp2 % pow2 52) * pow2 156 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 208; (==) { ML.lemma_distr_pow (tmp2 % pow2 52) (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) 52 156 } (tmp2 % pow2 52 + (tmp2 / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_distr_eucl_mul_add 1 tmp2 (sum4 + r * pow2 12 * (sum8 / pow2 64)) (pow2 52) } (tmp2 + (sum4 + r * pow2 12 * (sum8 / pow2 64)) * pow2 52) * pow2 156; (==) { ML.lemma_swap_mul3 r (pow2 12) (sum8 / pow2 64) } (tmp2 + (sum4 + r * (sum8 / pow2 64) * pow2 12) * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow sum4 (r * (sum8 / pow2 64)) 12 52 } (sum3 + r * (sum8 % pow2 64) + sum4 * pow2 52 + r * (sum8 / pow2 64) * pow2 64) * pow2 156; (==) { ML.lemma_distr_eucl_mul r sum8 (pow2 64) } (sum3 + r * sum8 + sum4 * pow2 52) * pow2 156; (==) { ML.lemma_distr_pow (sum3 + r * sum8) sum4 52 156 } (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208; }; LD.as_nat_mod_prime (sum0 + r * sum5) (sum1 + r * sum6) (sum2 + r * sum7) t3 d4
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas4.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 81, "end_line": 196, "start_col": 0, "start_line": 158 }
module Hacl.Spec.K256.Field52.Lemmas4 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module ML = Hacl.Spec.K256.MathLemmas module LD = Hacl.Spec.K256.Field52.Definitions.Lemmas #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" val lemma_nat_r432 (r2 r3 r4 c9 c11 d4 d11 t3 r:nat) : Lemma (requires r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures (r4 * pow2 52 + r3) * pow2 52 + r2 = c9 + r * d11 * pow2 64 + t3 * pow2 52 + (d4 % pow2 48) * pow2 104) let lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r = let k = d4 % pow2 48 in calc (==) { (r4 * pow2 52 + r3) * pow2 52 + r2; (==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 d4 48 52 } ((c11 / pow2 52 + k) * pow2 52 + c11 % pow2 52) * pow2 52 + r2; (==) { ML.lemma_distr_eucl c11 k } (c9 / pow2 52 + r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52 + c9 % pow2 52; (==) { ML.lemma_distr_eucl c9 (r * pow2 12 * d11 + t3 + k * pow2 52) } c9 + (r * pow2 12 * d11 + t3 + k * pow2 52) * pow2 52; (==) { ML.lemma_distr_pow (r * pow2 12 * d11 + t3) k 52 52 } c9 + (r * pow2 12 * d11 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_swap_mul3 r (pow2 12) d11 } c9 + (r * d11 * pow2 12 + t3) * pow2 52 + k * pow2 104; (==) { ML.lemma_distr_pow t3 (r * d11) 12 52 } c9 + r * d11 * pow2 64 + t3 * pow2 52 + k * pow2 104; } val lemma_nat_r4321 (r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2:nat) : Lemma (requires d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1 = c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + (d4 % pow2 48) * pow2 156) let lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 = let k = d4 % pow2 48 in let tmp1 = t3 * pow2 52 + k * pow2 104 in calc (==) { ((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1; (==) { lemma_nat_r432 r2 r3 r4 c9 c11 d4 d11 t3 r } (c9 + r * d11 * pow2 64 + tmp1) * pow2 52 + r1; (==) { } (c6 / pow2 52 + sum2 + r * (d10 % pow2 64) + r * d11 * pow2 64 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl_mul r d10 (pow2 64) } (c6 / pow2 52 + sum2 + r * d10 + tmp1) * pow2 52 + c6 % pow2 52; (==) { ML.lemma_distr_eucl c6 (sum2 + r * d10 + tmp1) } c6 + (sum2 + r * d10 + tmp1) * pow2 52; (==) { Math.Lemmas.distributivity_add_left (sum2 + r * d10) tmp1 (pow2 52) } c6 + (sum2 + r * d10) * pow2 52 + tmp1 * pow2 52; (==) { Math.Lemmas.distributivity_add_left sum2 (r * d10) (pow2 52) } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + tmp1 * pow2 52; (==) { ML.lemma_distr_pow_pow t3 52 k 104 52 } c6 + sum2 * pow2 52 + r * d10 * pow2 52 + t3 * pow2 104 + k * pow2 156; } val lemma_nat_r43210 (r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7:nat) : Lemma (requires d10 == d8 / pow2 52 + sum7 /\ r0 = c3 % pow2 52 /\ c6 = c3 / pow2 52 + sum1 + d8 % pow2 52 * r /\ d11 = d10 / pow2 64 /\ r1 = c6 % pow2 52 /\ c9 = c6 / pow2 52 + sum2 + r * (d10 % pow2 64) /\ r2 = c9 % pow2 52 /\ c11 = c9 / pow2 52 + r * pow2 12 * d11 + t3 /\ r3 = c11 % pow2 52 /\ r4 = c11 / pow2 52 + (d4 % pow2 52) % pow2 48) (ensures r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208 = c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) let lemma_nat_r43210 r0 r1 r2 r3 r4 c3 c6 c9 c11 d4 d8 d10 d11 t3 r sum1 sum2 sum7 = let k = d4 % pow2 48 in let tmp1 = sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156 in calc (==) { // tmp1 * pow2 52 (sum2 * pow2 52 + t3 * pow2 104 + k * pow2 156) * pow2 52; (==) { ML.lemma_distr_pow (sum2 * pow2 52 + t3 * pow2 104) k 156 52 } (sum2 * pow2 52 + t3 * pow2 104) * pow2 52 + k * pow2 208; (==) { ML.lemma_distr_pow_pow sum2 52 t3 104 52 } sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208; }; calc (==) { r0 + r1 * pow52 + r2 * pow104 + r3 * pow156 + r4 * pow208; (==) { ML.lemma_as_nat_horner r0 r1 r2 r3 r4 } (((r4 * pow2 52 + r3) * pow2 52 + r2) * pow2 52 + r1) * pow2 52 + r0; (==) { lemma_nat_r4321 r1 r2 r3 r4 c6 c9 c11 d4 d10 d11 t3 r sum2 } (c3 / pow2 52 + sum1 + d8 % pow2 52 * r + r * (d8 / pow2 52 + sum7) * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl_mul_add r d8 sum7 (pow2 52) } (c3 / pow2 52 + sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52 + c3 % pow2 52; (==) { ML.lemma_distr_eucl c3 (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) } c3 + (sum1 + r * d8 + r * sum7 * pow2 52 + tmp1) * pow2 52; (==) { ML.lemma_distr_pow (sum1 + r * d8 + tmp1) (r * sum7) 52 52 } c3 + (sum1 + r * d8 + tmp1) * pow2 52 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left (sum1 + r * d8) tmp1 (pow2 52) } c3 + (sum1 + r * d8) * pow2 52 + sum2 * pow2 104 + t3 * pow2 156 + k * pow2 208 + r * sum7 * pow2 104; (==) { Math.Lemmas.distributivity_add_left sum2 (r * sum7) (pow2 104) } c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + k * pow2 208; } val simplify_c3 (d4 r sum5:nat) : Lemma (requires r % pow2 4 = 0) (ensures (let k = (d4 / pow2 52 + sum5) % pow2 52 in ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4) == (d4 / pow2 48) * (r / pow2 4) + (k - (d4 / pow2 52)) * r)) let simplify_c3 d4 r sum5 = let k = (d4 / pow2 52 + sum5) % pow2 52 in calc (==) { //simplify c3 ((d4 % pow2 52) / pow2 48 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.pow2_modulo_division_lemma_1 d4 48 52 } ((d4 / pow2 48) % pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.euclidean_division_definition (d4 / pow2 48) (pow2 4) } (d4 / pow2 48 - (d4 / pow2 48 / pow2 4) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.division_multiplication_lemma d4 (pow2 48) (pow2 4); Math.Lemmas.pow2_plus 48 4 } (d4 / pow2 48 - (d4 / pow2 52) * pow2 4 + k * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_sub_left k (d4 / pow2 52) (pow2 4) } (d4 / pow2 48 + (k - d4 / pow2 52) * pow2 4) * (r / pow2 4); (==) { Math.Lemmas.distributivity_add_left (d4 / pow2 48) ((k - d4 / pow2 52) * pow2 4) (r / pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * pow2 4 * (r / pow2 4); (==) { Math.Lemmas.paren_mul_right (k - d4 / pow2 52) (pow2 4) (r / pow2 4); Math.Lemmas.div_exact_r r (pow2 4) } (d4 / pow2 48) * (r / pow2 4) + (k - d4 / pow2 52) * r; } val lemma_nat_r43210_mod_prime (c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8: nat) : Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % pow2 64)) / pow2 52 + sum4 + r * pow2 12 * (sum8 / pow2 64) /\ t3 = (sum3 + r * (sum8 % pow2 64)) % pow2 52 /\ d8 = (d4 / pow2 52 + sum5) / pow2 52 + sum6 /\ c3 = sum0 + ((d4 % pow2 52) / pow2 48 + ((d4 / pow2 52 + sum5) % pow2 52) * pow2 4) * (r / pow2 4)) (ensures (c3 + (sum1 + r * d8) * pow2 52 + (sum2 + r * sum7) * pow2 104 + t3 * pow2 156 + (d4 % pow2 48) * pow2 208) % S.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * pow2 52 + (sum2 + r * sum7) * pow2 104 + (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208) % S.prime)
{ "checked_file": "/", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.MathLemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.Lemmas.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas4.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Definitions.Lemmas", "short_module": "LD" }, { "abbrev": true, "full_module": "Hacl.Spec.K256.MathLemmas", "short_module": "ML" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c3: Prims.nat -> d4: Prims.nat -> d8: Prims.nat -> t3: Prims.nat -> r: Prims.nat -> sum0: Prims.nat -> sum1: Prims.nat -> sum2: Prims.nat -> sum3: Prims.nat -> sum4: Prims.nat -> sum5: Prims.nat -> sum6: Prims.nat -> sum7: Prims.nat -> sum8: Prims.nat -> FStar.Pervasives.Lemma (requires r = 0x1000003D10 /\ d4 = (sum3 + r * (sum8 % Prims.pow2 64)) / Prims.pow2 52 + sum4 + (r * Prims.pow2 12) * (sum8 / Prims.pow2 64) /\ t3 = (sum3 + r * (sum8 % Prims.pow2 64)) % Prims.pow2 52 /\ d8 = (d4 / Prims.pow2 52 + sum5) / Prims.pow2 52 + sum6 /\ c3 = sum0 + (d4 % Prims.pow2 52 / Prims.pow2 48 + ((d4 / Prims.pow2 52 + sum5) % Prims.pow2 52) * Prims.pow2 4) * (r / Prims.pow2 4)) (ensures (c3 + (sum1 + r * d8) * Prims.pow2 52 + (sum2 + r * sum7) * Prims.pow2 104 + t3 * Prims.pow2 156 + (d4 % Prims.pow2 48) * Prims.pow2 208) % Spec.K256.PointOps.prime == (sum0 + sum5 * r + (sum1 + sum6 * r) * Prims.pow2 52 + (sum2 + r * sum7) * Prims.pow2 104 + (sum3 + r * sum8) * Prims.pow2 156 + sum4 * Prims.pow2 208) % Spec.K256.PointOps.prime)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Hacl.Spec.K256.Field52.Definitions.Lemmas.as_nat_mod_prime", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Division", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.K256.MathLemmas.lemma_distr_pow", "Prims.squash", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul_add", "Hacl.Spec.K256.MathLemmas.lemma_swap_mul3", "Hacl.Spec.K256.MathLemmas.lemma_distr_eucl_mul", "Prims.op_Subtraction", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Hacl.Spec.K256.Field52.Lemmas4.simplify_c3", "FStar.Math.Lemmas.distributivity_add_left", "FStar.Math.Lemmas.distributivity_sub_left", "FStar.Math.Lemmas.distributivity_add_right" ]
[]
false
false
true
false
false
let lemma_nat_r43210_mod_prime c3 d4 d8 t3 r sum0 sum1 sum2 sum3 sum4 sum5 sum6 sum7 sum8 =
let tmp2 = sum3 + r * (sum8 % pow2 64) in let tmp1 = d4 / pow2 52 + sum5 in let tmp0 = sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r in let d4mod = (d4 % pow2 48) * pow2 208 + (d4 / pow2 48) * 0x1000003D1 in calc ( == ) { c3 + (d4 % pow2 48) * pow2 208 + (sum1 + r * d8) * pow2 52; ( == ) { (simplify_c3 d4 r sum5; assert_norm (0x1000003D10 / pow2 4 = 0x1000003D1)) } d4mod + tmp0 + (sum1 + r * d8) * pow2 52; ( == ) { Math.Lemmas.distributivity_add_left sum1 (r * d8) (pow2 52) } d4mod + sum0 + (tmp1 % pow2 52 - d4 / pow2 52) * r + sum1 * pow2 52 + (r * (tmp1 / pow2 52 + sum6)) * pow2 52; ( == ) { Math.Lemmas.distributivity_sub_left (tmp1 % pow2 52) (d4 / pow2 52) r } d4mod + sum0 + (tmp1 % pow2 52) * r - (d4 / pow2 52) * r + sum1 * pow2 52 + (r * (tmp1 / pow2 52 + sum6)) * pow2 52; ( == ) { ML.lemma_distr_eucl_mul_add r tmp1 sum6 (pow2 52) } d4mod + sum0 + r * (d4 / pow2 52 + sum5) - (d4 / pow2 52) * r + sum1 * pow2 52 + (r * sum6) * pow2 52; ( == ) { Math.Lemmas.distributivity_add_right r (d4 / pow2 52) sum5 } d4mod + sum0 + r * sum5 + sum1 * pow2 52 + (r * sum6) * pow2 52; ( == ) { Math.Lemmas.distributivity_add_left sum1 (r * sum6) (pow2 52) } d4mod + sum0 + r * sum5 + (sum1 + r * sum6) * pow2 52; }; calc ( == ) { (tmp2 % pow2 52) * pow2 156 + (tmp2 / pow2 52 + sum4 + (r * pow2 12) * (sum8 / pow2 64)) * pow2 208; ( == ) { ML.lemma_distr_pow (tmp2 % pow2 52) (tmp2 / pow2 52 + sum4 + (r * pow2 12) * (sum8 / pow2 64)) 52 156 } (tmp2 % pow2 52 + (tmp2 / pow2 52 + sum4 + (r * pow2 12) * (sum8 / pow2 64)) * pow2 52) * pow2 156; ( == ) { ML.lemma_distr_eucl_mul_add 1 tmp2 (sum4 + (r * pow2 12) * (sum8 / pow2 64)) (pow2 52) } (tmp2 + (sum4 + (r * pow2 12) * (sum8 / pow2 64)) * pow2 52) * pow2 156; ( == ) { ML.lemma_swap_mul3 r (pow2 12) (sum8 / pow2 64) } (tmp2 + (sum4 + (r * (sum8 / pow2 64)) * pow2 12) * pow2 52) * pow2 156; ( == ) { ML.lemma_distr_pow sum4 (r * (sum8 / pow2 64)) 12 52 } (sum3 + r * (sum8 % pow2 64) + sum4 * pow2 52 + (r * (sum8 / pow2 64)) * pow2 64) * pow2 156; ( == ) { ML.lemma_distr_eucl_mul r sum8 (pow2 64) } (sum3 + r * sum8 + sum4 * pow2 52) * pow2 156; ( == ) { ML.lemma_distr_pow (sum3 + r * sum8) sum4 52 156 } (sum3 + r * sum8) * pow2 156 + sum4 * pow2 208; }; LD.as_nat_mod_prime (sum0 + r * sum5) (sum1 + r * sum6) (sum2 + r * sum7) t3 d4
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.one_mod
val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid
val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid
let one_mod ctx one = make_qone one
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 48, "start_col": 0, "start_line": 48 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.Definitions.lone_st Lib.IntTypes.U64 4ul 0ul Hacl.Impl.P256.Qinv.mk_to_p256_order_comm_monoid
Prims.Tot
[ "total" ]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.__uint_to_t", "Hacl.Impl.P256.Scalar.make_qone", "Prims.unit" ]
[]
false
false
false
false
false
let one_mod ctx one =
make_qone one
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.mk_to_p256_order_comm_monoid
val mk_to_p256_order_comm_monoid:BE.to_comm_monoid U64 4ul 0ul
val mk_to_p256_order_comm_monoid:BE.to_comm_monoid U64 4ul 0ul
let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; }
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 1, "end_line": 44, "start_col": 0, "start_line": 38 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a)
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.Definitions.to_comm_monoid Lib.IntTypes.U64 (4ul <: FStar.UInt32.t) (0ul <: FStar.UInt32.t)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Exponentiation.Definitions.Mkto_comm_monoid", "Lib.IntTypes.U64", "FStar.UInt32.uint_to_t", "Spec.P256.PointOps.qelem", "Hacl.Spec.P256.Qinv.nat_mod_comm_monoid", "Hacl.Impl.P256.Qinv.linv_ctx", "Hacl.Impl.P256.Qinv.linv", "Hacl.Impl.P256.Qinv.refl" ]
[]
false
false
false
false
false
let mk_to_p256_order_comm_monoid:BE.to_comm_monoid U64 4ul 0ul =
{ BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl }
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.linv
val linv (a: LSeq.lseq uint64 4) : Type0
val linv (a: LSeq.lseq uint64 4) : Type0
let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 30, "start_col": 0, "start_line": 29 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 4 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Prims.b2t", "Prims.op_LessThan", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.U64", "Spec.P256.PointOps.order" ]
[]
false
false
false
false
true
let linv (a: LSeq.lseq uint64 4) : Type0 =
BD.bn_v a < S.order
false
MerkleTree.New.High.Correct.Path.fst
MerkleTree.New.High.Correct.Path.mt_get_path_inv_ok_
val mt_get_path_inv_ok_: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv < 32} -> i:nat -> j:nat{j > 0 /\ i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> p:path #hsz -> acc:hash -> actd:bool -> Lemma (requires (log2c_div j; log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; (mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) /\ (let t1 = hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd in let t2 = S.slice rhs lv (lv + log2c j) in mt_rhs_inv #_ #f j t1 t2 actd)))) (ensures (S.equal (path_spec k j actd (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd))) (MTS.mt_get_path #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd) k)))
val mt_get_path_inv_ok_: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv < 32} -> i:nat -> j:nat{j > 0 /\ i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> p:path #hsz -> acc:hash -> actd:bool -> Lemma (requires (log2c_div j; log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; (mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) /\ (let t1 = hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd in let t2 = S.slice rhs lv (lv + log2c j) in mt_rhs_inv #_ #f j t1 t2 actd)))) (ensures (S.equal (path_spec k j actd (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd))) (MTS.mt_get_path #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd) k)))
let mt_get_path_inv_ok_ #_ #f lv i j olds hs rhs k p acc actd = log2c_div j; log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); mt_hashes_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); mt_get_path_acc_consistent #_ #f lv i j olds hs rhs k actd; mt_get_path_slice lv hs rhs i j k p actd; mt_get_path_acc_inv_ok #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) (S.slice rhs lv (lv + log2c j)) k acc actd
{ "file_name": "src/MerkleTree.New.High.Correct.Path.fst", "git_rev": "7d7bdc20f2033171e279c176b26e84f9069d23c6", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
{ "end_col": 14, "end_line": 275, "start_col": 0, "start_line": 264 }
module MerkleTree.New.High.Correct.Path open EverCrypt open EverCrypt.Helpers open MerkleTree.New.High.Correct.Base // Need to use some facts of `mt_get_root` open MerkleTree.New.High.Correct.Rhs open FStar.Classical open FStar.Ghost open FStar.Seq module List = FStar.List.Tot module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 type uint32_t = U32.t type uint8_t = U8.t module EHS = EverCrypt.Hash module MTS = MerkleTree.Spec open MerkleTree.New.High #reset-options "--z3rlimit 20" /// Correctness of path generation val path_spec: #hsz:pos -> k:nat -> j:nat{k <= j} -> actd:bool -> p:path #hsz {S.length p = mt_path_length k j actd} -> GTot (sp:S.seq (MTS.padded_hash #hsz){S.length sp = log2c j}) (decreases j) let rec path_spec #hsz k j actd p = if j = 0 then S.empty else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then S.cons MTS.HPad (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) p) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) else S.cons (MTS.HRaw #hsz (S.head p)) (path_spec (k / 2) (j / 2) (actd || (j % 2 = 1)) (S.tail p))) val mt_get_path_step_acc: #hsz:pos -> j:nat{j > 0} -> chs:hashes #hsz {S.length chs = j} -> crh:hash #hsz -> k:nat{k <= j} -> actd:bool -> GTot (option (hash #hsz)) let mt_get_path_step_acc #hsz j chs crh k actd = if k % 2 = 1 then Some (S.index chs (k - 1)) else (if k = j then None else if k + 1 = j then (if actd then Some crh else None) else Some (S.index chs (k + 1))) val mt_get_path_acc: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j /\ mt_hashes_lth_inv_log #hsz j fhs} -> rhs:hashes #hsz {S.length rhs = log2c j} -> k:nat{k <= j} -> actd:bool -> GTot (np:path #hsz {S.length np = mt_path_length k j actd}) (decreases j) let rec mt_get_path_acc #_ #f j fhs rhs k actd = if j = 0 then S.empty else (let sp = mt_get_path_step_acc #_ j (S.head fhs) (S.head rhs) k actd in let rp = mt_get_path_acc #_ #f (j / 2) (S.tail fhs) (S.tail rhs) (k / 2) (actd || j % 2 = 1) in if Some? sp then (S.cons (Some?.v sp) rp) else rp) val mt_get_path_step_acc_consistent: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> actd:bool -> Lemma (requires (j <> 0)) (ensures (log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); (match mt_get_path_step_acc j (S.index (merge_hs #_ #f olds hs) lv) (S.index rhs lv) k actd with | Some v -> S.equal (mt_make_path_step lv hs rhs i j k S.empty actd) (S.cons v S.empty) | None -> S.equal (mt_make_path_step lv hs rhs i j k S.empty actd) S.empty))) let mt_get_path_step_acc_consistent #_ #_ lv i j olds hs rhs k actd = () private val seq_cons_append: #a:Type -> hd:a -> tl:S.seq a -> Lemma (S.equal (S.append (S.cons hd S.empty) tl) (S.cons hd tl)) private let seq_cons_append #a hd tl = () val mt_get_path_acc_consistent: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv <= 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> actd:bool -> Lemma (requires True) (ensures (log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); S.equal (mt_get_path_acc #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) (S.slice rhs lv (lv + log2c j)) k actd) (mt_get_path_ #_ lv hs rhs i j k S.empty actd))) (decreases j) #push-options "--z3rlimit 1000 --max_fuel 1 --max_ifuel 0" let rec mt_get_path_acc_consistent #hsz #f lv i j olds hs rhs k actd = log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); if j = 0 then () else begin let nactd = if j % 2 = 0 then actd else true in let nactd_ = actd || j % 2 = 1 in assert (nactd == nactd_); let pa = mt_get_path_acc #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) (S.slice rhs lv (lv + log2c j)) k actd in let p = mt_get_path_ lv hs rhs i j k S.empty actd in log2c_div j; log2c_bound (j / 2) (32 - (lv + 1)); assert (mt_hashes_lth_inv (lv + 1) (j / 2) (merge_hs #_ #f olds hs)); assert (mt_hashes_lth_inv_log #hsz (j / 2) (S.slice (merge_hs #_ #f olds hs) (lv + 1) (lv + 1 + log2c (j / 2)))); let npsa = mt_get_path_step_acc j (S.index (merge_hs #_ #f olds hs) lv) (S.index rhs lv) k actd in let npa = mt_get_path_acc #_ #f (j / 2) (S.slice (merge_hs #_ #f olds hs) (lv + 1) (lv + 1 + log2c (j / 2))) (S.slice rhs (lv + 1) (lv + 1 + log2c (j / 2))) (k / 2) nactd_ in let nps = mt_make_path_step lv hs rhs i j k S.empty actd in let np = mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) nps nactd in let npe = mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) S.empty nactd in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) nps nactd; assert (S.equal p np); assert (S.equal np (S.append nps npe)); assert (S.equal p (S.append nps npe)); assert (S.equal pa (if Some? npsa then S.cons (Some?.v npsa) npa else npa)); mt_get_path_acc_consistent #_ #f (lv + 1) (i / 2) (j / 2) olds hs rhs (k / 2) nactd; assert (S.equal npa npe); mt_get_path_step_acc_consistent #_ #f lv i j olds hs rhs k actd; if Some? npsa then begin assert (S.equal nps (S.cons (Some?.v npsa) S.empty)); assert (S.equal p (S.append (S.cons (Some?.v npsa) S.empty) npa)); assert (S.equal pa (S.cons (Some?.v npsa) npa)); seq_cons_append (Some?.v npsa) npa; assert (S.equal pa p) end else begin assert (S.equal nps S.empty); S.append_empty_l npe; assert (S.equal p npe); assert (S.equal pa npa); assert (S.equal pa p) end end #pop-options val mt_get_path_acc_inv_ok: #hsz:pos -> #f:MTS.hash_fun_t -> j:nat -> fhs:hashess #hsz {S.length fhs = log2c j} -> rhs:hashes #hsz {S.length rhs = log2c j} -> k:nat{k <= j} -> acc:hash -> actd:bool -> Lemma (requires (j > 0 /\ mt_hashes_lth_inv_log #hsz j fhs /\ mt_hashes_inv_log #_ #f j fhs /\ mt_rhs_inv #_ #f j (hash_seq_spec_full #_ #f (S.head fhs) acc actd) rhs actd)) (ensures (S.equal (path_spec k j actd (mt_get_path_acc #_ #f j fhs rhs k actd)) (MTS.mt_get_path #_ #f #(log2c j) (hash_seq_spec_full #_ #f (S.head fhs) acc actd) k))) (decreases j) #push-options "--z3rlimit 120 --max_fuel 1" let rec mt_get_path_acc_inv_ok #_ #f j fhs rhs k acc actd = // Below dummy `let` is necessary to provide guidance to the SMT solver. let _ = mt_get_path_step_acc j (S.head fhs) (S.head rhs) k actd in let smt = hash_seq_spec_full #_ #f (S.head fhs) acc actd in let nacc = (if j % 2 = 0 then acc else if actd then f (S.last (S.head fhs)) acc else S.last (S.head fhs)) in let nactd = actd || j % 2 = 1 in if j = 1 then (if k = 0 then () else ()) else begin mt_hashes_lth_inv_log_next #_ #f j fhs; hash_seq_spec_full_next #_ #f j (S.head fhs) (S.head (S.tail fhs)) acc actd nacc nactd; mt_get_path_acc_inv_ok #_ #f (j / 2) (S.tail fhs) (S.tail rhs) (k / 2) nacc nactd; if k % 2 = 0 then begin if k = j || (k + 1 = j && not actd) then assert (S.index smt (k + 1) == MTS.HPad) else if k + 1 = j then assert (S.index smt (k + 1) == MTS.HRaw (S.head rhs)) else hash_seq_spec_full_index_raw #_ #f (S.head fhs) acc actd (k + 1) end else begin hash_seq_spec_full_index_raw #_ #f (S.head fhs) acc actd (k - 1) end end #pop-options #push-options "--max_fuel 1 --initial_fuel 1 --max_ifuel 0 --z3rlimit 60" val mt_get_path_inv_ok_: #hsz:pos -> #f:MTS.hash_fun_t -> lv:nat{lv < 32} -> i:nat -> j:nat{j > 0 /\ i <= j /\ j < pow2 (32 - lv)} -> olds:hashess #hsz {S.length olds = 32 /\ mt_olds_inv #hsz lv i olds} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> rhs:hashes #hsz {S.length rhs = 32} -> k:nat{i <= k && k <= j} -> p:path #hsz -> acc:hash -> actd:bool -> Lemma (requires (log2c_div j; log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; (mt_hashes_inv #_ #f lv j (merge_hs #_ #f olds hs) /\ (let t1 = hash_seq_spec_full #_ #f (S.index (merge_hs #_ #f olds hs) lv) acc actd in let t2 = S.slice rhs lv (lv + log2c j) in mt_rhs_inv #_ #f j t1 t2 actd)))) (ensures (S.equal (path_spec k j actd (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd))) (MTS.mt_get_path #_ #f #(log2c j) (hash_seq_spec_full #_ #f
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MerkleTree.Spec.fst.checked", "MerkleTree.New.High.Correct.Rhs.fst.checked", "MerkleTree.New.High.Correct.Base.fst.checked", "MerkleTree.New.High.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "EverCrypt.Helpers.fsti.checked", "EverCrypt.Hash.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.Correct.Path.fst" }
[ { "abbrev": false, "full_module": "MerkleTree.New.High", "short_module": null }, { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "EverCrypt.Hash", "short_module": "EHS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "List" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Rhs", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct.Base", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt.Helpers", "short_module": null }, { "abbrev": false, "full_module": "EverCrypt", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New.High.Correct", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 60, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
lv: Prims.nat{lv < 32} -> i: Prims.nat -> j: Prims.nat{j > 0 /\ i <= j /\ j < Prims.pow2 (32 - lv)} -> olds: MerkleTree.New.High.hashess {FStar.Seq.Base.length olds = 32 /\ MerkleTree.New.High.Correct.Base.mt_olds_inv lv i olds} -> hs: MerkleTree.New.High.hashess {FStar.Seq.Base.length hs = 32 /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> rhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length rhs = 32} -> k: Prims.nat{i <= k && k <= j} -> p: MerkleTree.New.High.path -> acc: MerkleTree.New.High.hash -> actd: Prims.bool -> FStar.Pervasives.Lemma (requires (MerkleTree.New.High.Correct.Base.log2c_div j; MerkleTree.New.High.Correct.Base.log2c_bound j (32 - lv); MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok lv i j olds hs; MerkleTree.New.High.Correct.Base.mt_hashes_inv lv j (MerkleTree.New.High.Correct.Base.merge_hs olds hs) /\ (let t1 = MerkleTree.New.High.Correct.Base.hash_seq_spec_full (FStar.Seq.Base.index (MerkleTree.New.High.Correct.Base.merge_hs olds hs) lv) acc actd in let t2 = FStar.Seq.Base.slice rhs lv (lv + MerkleTree.New.High.Correct.Base.log2c j) in MerkleTree.New.High.Correct.Base.mt_rhs_inv j t1 t2 actd))) (ensures FStar.Seq.Base.equal (MerkleTree.New.High.Correct.Path.path_spec k j actd (FStar.Seq.Base.slice (MerkleTree.New.High.mt_get_path_ lv hs rhs i j k p actd) (FStar.Seq.Base.length p) (FStar.Seq.Base.length p + MerkleTree.New.High.mt_path_length k j actd))) (MerkleTree.Spec.mt_get_path (MerkleTree.New.High.Correct.Base.hash_seq_spec_full (FStar.Seq.Base.index (MerkleTree.New.High.Correct.Base.merge_hs olds hs) lv) acc actd) k))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_and", "Prims.op_GreaterThan", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.Correct.Base.mt_olds_inv", "MerkleTree.New.High.hs_wf_elts", "MerkleTree.New.High.hash", "Prims.op_AmpAmp", "MerkleTree.New.High.path", "Prims.bool", "MerkleTree.New.High.Correct.Path.mt_get_path_acc_inv_ok", "FStar.Seq.Base.slice", "MerkleTree.New.High.Correct.Base.merge_hs", "Prims.op_Addition", "MerkleTree.New.High.Correct.Base.log2c", "Prims.unit", "MerkleTree.New.High.mt_get_path_slice", "MerkleTree.New.High.Correct.Path.mt_get_path_acc_consistent", "MerkleTree.New.High.Correct.Base.mt_hashes_inv_log_converted_", "MerkleTree.New.High.Correct.Base.mt_hashes_lth_inv_log_converted_", "MerkleTree.New.High.Correct.Base.mt_olds_hs_lth_inv_ok", "MerkleTree.New.High.Correct.Base.log2c_bound", "MerkleTree.New.High.Correct.Base.log2c_div" ]
[]
true
false
true
false
false
let mt_get_path_inv_ok_ #_ #f lv i j olds hs rhs k p acc actd =
log2c_div j; log2c_bound j (32 - lv); mt_olds_hs_lth_inv_ok #_ #f lv i j olds hs; mt_hashes_lth_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); mt_hashes_inv_log_converted_ #_ #f lv j (merge_hs #_ #f olds hs); mt_get_path_acc_consistent #_ #f lv i j olds hs rhs k actd; mt_get_path_slice lv hs rhs i j k p actd; mt_get_path_acc_inv_ok #_ #f j (S.slice (merge_hs #_ #f olds hs) lv (lv + log2c j)) (S.slice rhs lv (lv + log2c j)) k acc actd
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.sqr_mod
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_p256_order_comm_monoid
val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_p256_order_comm_monoid
let sqr_mod ctx x xx = qsqr xx x
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 58, "start_col": 0, "start_line": 58 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid let one_mod ctx one = make_qone one inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.Definitions.lsqr_st Lib.IntTypes.U64 4ul 0ul Hacl.Impl.P256.Qinv.mk_to_p256_order_comm_monoid
Prims.Tot
[ "total" ]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.__uint_to_t", "Hacl.Impl.P256.Scalar.qsqr", "Prims.unit" ]
[]
false
false
false
false
false
let sqr_mod ctx x xx =
qsqr xx x
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.qsquare_times_in_place
val qsquare_times_in_place (out:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ as_nat h out < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 out) (v b))
val qsquare_times_in_place (out:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ as_nat h out < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 out) (v b))
let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_p256_order_concrete_ops (null uint64) out b
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 81, "start_col": 0, "start_line": 78 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid let one_mod ctx one = make_qone one inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_p256_order_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_p256_order_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_p256_order_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } inline_for_extraction noextract val qsquare_times_in_place (out:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ as_nat h out < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 out) (v b))
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.Impl.P256.Bignum.felem -> b: Lib.IntTypes.size_t -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.P256.Bignum.felem", "Lib.IntTypes.size_t", "Hacl.Impl.Exponentiation.lexp_pow2_in_place", "Lib.IntTypes.U64", "FStar.UInt32.__uint_to_t", "Hacl.Impl.P256.Qinv.mk_p256_order_concrete_ops", "Lib.Buffer.null", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "Prims.unit", "Spec.Exponentiation.exp_pow2_lemma", "Spec.P256.PointOps.qelem", "Hacl.Spec.P256.Qinv.mk_nat_mod_concrete_ops", "Hacl.Impl.P256.Scalar.qmont_as_nat", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let qsquare_times_in_place out b =
let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_p256_order_concrete_ops (null uint64) out b
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.mul_mod
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid
val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid
let mul_mod ctx x y xy = qmul xy x y
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 53, "start_col": 0, "start_line": 53 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid let one_mod ctx one = make_qone one inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.Definitions.lmul_st Lib.IntTypes.U64 4ul 0ul Hacl.Impl.P256.Qinv.mk_to_p256_order_comm_monoid
Prims.Tot
[ "total" ]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.__uint_to_t", "Hacl.Impl.P256.Scalar.qmul", "Prims.unit" ]
[]
false
false
false
false
false
let mul_mod ctx x y xy =
qmul xy x y
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.mk_p256_order_concrete_ops
val mk_p256_order_concrete_ops:BE.concrete_ops U64 4ul 0ul
val mk_p256_order_concrete_ops:BE.concrete_ops U64 4ul 0ul
let mk_p256_order_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_p256_order_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; }
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 1, "end_line": 67, "start_col": 0, "start_line": 62 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid let one_mod ctx one = make_qone one inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_p256_order_comm_monoid let sqr_mod ctx x xx = qsqr xx x
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.Definitions.concrete_ops Lib.IntTypes.U64 (4ul <: FStar.UInt32.t) (0ul <: FStar.UInt32.t)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Exponentiation.Definitions.Mkconcrete_ops", "Lib.IntTypes.U64", "FStar.UInt32.uint_to_t", "FStar.Ghost.hide", "Hacl.Impl.Exponentiation.Definitions.to_comm_monoid", "Hacl.Impl.P256.Qinv.mk_to_p256_order_comm_monoid", "Hacl.Impl.P256.Qinv.one_mod", "Hacl.Impl.P256.Qinv.mul_mod", "Hacl.Impl.P256.Qinv.sqr_mod" ]
[]
false
false
false
false
false
let mk_p256_order_concrete_ops:BE.concrete_ops U64 4ul 0ul =
{ BE.to = mk_to_p256_order_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod }
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.refl
val refl (a: LSeq.lseq uint64 4 {linv a}) : GTot S.qelem
val refl (a: LSeq.lseq uint64 4 {linv a}) : GTot S.qelem
let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a)
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 34, "start_col": 0, "start_line": 33 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 4 {Hacl.Impl.P256.Qinv.linv a} -> Prims.GTot Spec.P256.PointOps.qelem
Prims.GTot
[ "sometrivial" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Hacl.Impl.P256.Qinv.linv", "Hacl.Spec.P256.Montgomery.from_qmont", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.U64", "Spec.P256.PointOps.qelem" ]
[]
false
false
false
false
false
let refl (a: LSeq.lseq uint64 4 {linv a}) : GTot S.qelem =
SM.from_qmont (BD.bn_v a)
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.qsquare_times
val qsquare_times (out a:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 a) (v b))
val qsquare_times (out a:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 a) (v b))
let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_p256_order_concrete_ops (null uint64) a b out
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 71, "end_line": 96, "start_col": 0, "start_line": 93 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid let one_mod ctx one = make_qone one inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_p256_order_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_p256_order_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_p256_order_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } inline_for_extraction noextract val qsquare_times_in_place (out:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ as_nat h out < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 out) (v b)) let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_p256_order_concrete_ops (null uint64) out b inline_for_extraction noextract val qsquare_times (out a:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 a) (v b))
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.Impl.P256.Bignum.felem -> a: Hacl.Impl.P256.Bignum.felem -> b: Lib.IntTypes.size_t -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.P256.Bignum.felem", "Lib.IntTypes.size_t", "Hacl.Impl.Exponentiation.lexp_pow2", "Lib.IntTypes.U64", "FStar.UInt32.__uint_to_t", "Hacl.Impl.P256.Qinv.mk_p256_order_concrete_ops", "Lib.Buffer.null", "Lib.Buffer.MUT", "Lib.IntTypes.uint64", "Prims.unit", "Spec.Exponentiation.exp_pow2_lemma", "Spec.P256.PointOps.qelem", "Hacl.Spec.P256.Qinv.mk_nat_mod_concrete_ops", "Hacl.Impl.P256.Scalar.qmont_as_nat", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let qsquare_times out a b =
let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_p256_order_concrete_ops (null uint64) a b out
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.qinv_x153_x177
val qinv_x153_x177 (x153 x_101 x_111 x_101111:felem) : Stack unit (requires fun h -> live h x153 /\ live h x_101 /\ live h x_111 /\ live h x_101111 /\ disjoint x153 x_101 /\ disjoint x153 x_111 /\ disjoint x153 x_101111 /\ as_nat h x153 < S.order /\ as_nat h x_101 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x153) h0 h1 /\ as_nat h1 x153 < S.order /\ qmont_as_nat h1 x153 = SI.qinv_x153_x177 (qmont_as_nat h0 x153) (qmont_as_nat h0 x_101) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_101111))
val qinv_x153_x177 (x153 x_101 x_111 x_101111:felem) : Stack unit (requires fun h -> live h x153 /\ live h x_101 /\ live h x_111 /\ live h x_101111 /\ disjoint x153 x_101 /\ disjoint x153 x_111 /\ disjoint x153 x_101111 /\ as_nat h x153 < S.order /\ as_nat h x_101 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x153) h0 h1 /\ as_nat h1 x153 < S.order /\ qmont_as_nat h1 x153 = SI.qinv_x153_x177 (qmont_as_nat h0 x153) (qmont_as_nat h0 x_101) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_101111))
let qinv_x153_x177 x153 x_101 x_111 x_101111 = let h0 = ST.get () in qsquare_times_in_place x153 4ul; qmul x153 x153 x_101; let h1 = ST.get () in assert (qmont_as_nat h1 x153 == // x157 S.qmul (SI.qsquare_times (qmont_as_nat h0 x153) 4) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 3ul; qmul x153 x153 x_101; let h2 = ST.get () in assert (qmont_as_nat h2 x153 == // x160 S.qmul (SI.qsquare_times (qmont_as_nat h1 x153) 3) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 3ul; qmul x153 x153 x_101; let h3 = ST.get () in assert (qmont_as_nat h3 x153 == // x163 S.qmul (SI.qsquare_times (qmont_as_nat h2 x153) 3) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 5ul; qmul x153 x153 x_111; let h4 = ST.get () in assert (qmont_as_nat h4 x153 == // x168 S.qmul (SI.qsquare_times (qmont_as_nat h3 x153) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x153 9ul; qmul x153 x153 x_101111; let h5 = ST.get () in assert (qmont_as_nat h5 x153 == // x177 S.qmul (SI.qsquare_times (qmont_as_nat h4 x153) 9) (qmont_as_nat h0 x_101111))
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 82, "end_line": 237, "start_col": 0, "start_line": 207 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid let one_mod ctx one = make_qone one inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_p256_order_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_p256_order_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_p256_order_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } inline_for_extraction noextract val qsquare_times_in_place (out:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ as_nat h out < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 out) (v b)) let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_p256_order_concrete_ops (null uint64) out b inline_for_extraction noextract val qsquare_times (out a:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 a) (v b)) let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_p256_order_concrete_ops (null uint64) a b out // x6 can be modified // x_11 cannot be modified inline_for_extraction noextract val qinv_x8_x128 (x128 x6 x_11:felem) : Stack unit (requires fun h -> live h x128 /\ live h x6 /\ live h x_11 /\ disjoint x128 x6 /\ disjoint x128 x_11 /\ disjoint x6 x_11 /\ as_nat h x6 < S.order /\ as_nat h x_11 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128 |+| loc x6) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x8_x128 (qmont_as_nat h0 x6) (qmont_as_nat h0 x_11)) let qinv_x8_x128 x128 x6 x_11 = let h0 = ST.get () in qsquare_times_in_place x6 2ul; qmul x6 x6 x_11; let h1 = ST.get () in assert (qmont_as_nat h1 x6 == // x8 S.qmul (SI.qsquare_times (qmont_as_nat h0 x6) 2) (qmont_as_nat h0 x_11)); qsquare_times x128 x6 8ul; qmul x128 x128 x6; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == // x16 S.qmul (SI.qsquare_times (qmont_as_nat h1 x6) 8) (qmont_as_nat h1 x6)); qsquare_times x6 x128 16ul; qmul x6 x6 x128; let h3 = ST.get () in assert (qmont_as_nat h3 x6 == // x32 S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 16) (qmont_as_nat h2 x128)); qsquare_times x128 x6 64ul; qmul x128 x128 x6; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == // x96 S.qmul (SI.qsquare_times (qmont_as_nat h3 x6) 64) (qmont_as_nat h3 x6)); qsquare_times_in_place x128 32ul; qmul x128 x128 x6; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == // x128 S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 32) (qmont_as_nat h3 x6)) // x128 can be modified inline_for_extraction noextract val qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111:felem) : Stack unit (requires fun h -> live h x128 /\ live h x_11 /\ live h x_111 /\ live h x_1111 /\ live h x_10101 /\ live h x_101111 /\ disjoint x128 x_11 /\ disjoint x128 x_111 /\ disjoint x128 x_1111 /\ disjoint x128 x_10101 /\ disjoint x128 x_101111 /\ as_nat h x128 < S.order /\ as_nat h x_11 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h x_10101 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x134_x153 (qmont_as_nat h0 x128) (qmont_as_nat h0 x_11) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_1111) (qmont_as_nat h0 x_10101) (qmont_as_nat h0 x_101111)) let qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 = let h0 = ST.get () in qsquare_times_in_place x128 6ul; qmul x128 x128 x_101111; let h1 = ST.get () in assert (qmont_as_nat h1 x128 == // x134 S.qmul (SI.qsquare_times (qmont_as_nat h0 x128) 6) (qmont_as_nat h0 x_101111)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_111; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == // x139 S.qmul (SI.qsquare_times (qmont_as_nat h1 x128) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x128 4ul; qmul x128 x128 x_11; let h3 = ST.get () in assert (qmont_as_nat h3 x128 == // x143 S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 4) (qmont_as_nat h0 x_11)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_1111; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == // x148 S.qmul (SI.qsquare_times (qmont_as_nat h3 x128) 5) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_10101; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == // x153 S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 5) (qmont_as_nat h0 x_10101)) // x153 can be modified inline_for_extraction noextract val qinv_x153_x177 (x153 x_101 x_111 x_101111:felem) : Stack unit (requires fun h -> live h x153 /\ live h x_101 /\ live h x_111 /\ live h x_101111 /\ disjoint x153 x_101 /\ disjoint x153 x_111 /\ disjoint x153 x_101111 /\ as_nat h x153 < S.order /\ as_nat h x_101 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x153) h0 h1 /\ as_nat h1 x153 < S.order /\ qmont_as_nat h1 x153 = SI.qinv_x153_x177 (qmont_as_nat h0 x153) (qmont_as_nat h0 x_101) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_101111))
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x153: Hacl.Impl.P256.Bignum.felem -> x_101: Hacl.Impl.P256.Bignum.felem -> x_111: Hacl.Impl.P256.Bignum.felem -> x_101111: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.P256.Bignum.felem", "Prims._assert", "Prims.eq2", "Spec.P256.PointOps.qelem", "Hacl.Impl.P256.Scalar.qmont_as_nat", "Spec.P256.PointOps.qmul", "Hacl.Spec.P256.Qinv.qsquare_times", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.P256.Scalar.qmul", "Hacl.Impl.P256.Qinv.qsquare_times_in_place", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let qinv_x153_x177 x153 x_101 x_111 x_101111 =
let h0 = ST.get () in qsquare_times_in_place x153 4ul; qmul x153 x153 x_101; let h1 = ST.get () in assert (qmont_as_nat h1 x153 == S.qmul (SI.qsquare_times (qmont_as_nat h0 x153) 4) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 3ul; qmul x153 x153 x_101; let h2 = ST.get () in assert (qmont_as_nat h2 x153 == S.qmul (SI.qsquare_times (qmont_as_nat h1 x153) 3) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 3ul; qmul x153 x153 x_101; let h3 = ST.get () in assert (qmont_as_nat h3 x153 == S.qmul (SI.qsquare_times (qmont_as_nat h2 x153) 3) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 5ul; qmul x153 x153 x_111; let h4 = ST.get () in assert (qmont_as_nat h4 x153 == S.qmul (SI.qsquare_times (qmont_as_nat h3 x153) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x153 9ul; qmul x153 x153 x_101111; let h5 = ST.get () in assert (qmont_as_nat h5 x153 == S.qmul (SI.qsquare_times (qmont_as_nat h4 x153) 9) (qmont_as_nat h0 x_101111))
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.qinv_x8_x128
val qinv_x8_x128 (x128 x6 x_11:felem) : Stack unit (requires fun h -> live h x128 /\ live h x6 /\ live h x_11 /\ disjoint x128 x6 /\ disjoint x128 x_11 /\ disjoint x6 x_11 /\ as_nat h x6 < S.order /\ as_nat h x_11 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128 |+| loc x6) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x8_x128 (qmont_as_nat h0 x6) (qmont_as_nat h0 x_11))
val qinv_x8_x128 (x128 x6 x_11:felem) : Stack unit (requires fun h -> live h x128 /\ live h x6 /\ live h x_11 /\ disjoint x128 x6 /\ disjoint x128 x_11 /\ disjoint x6 x_11 /\ as_nat h x6 < S.order /\ as_nat h x_11 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128 |+| loc x6) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x8_x128 (qmont_as_nat h0 x6) (qmont_as_nat h0 x_11))
let qinv_x8_x128 x128 x6 x_11 = let h0 = ST.get () in qsquare_times_in_place x6 2ul; qmul x6 x6 x_11; let h1 = ST.get () in assert (qmont_as_nat h1 x6 == // x8 S.qmul (SI.qsquare_times (qmont_as_nat h0 x6) 2) (qmont_as_nat h0 x_11)); qsquare_times x128 x6 8ul; qmul x128 x128 x6; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == // x16 S.qmul (SI.qsquare_times (qmont_as_nat h1 x6) 8) (qmont_as_nat h1 x6)); qsquare_times x6 x128 16ul; qmul x6 x6 x128; let h3 = ST.get () in assert (qmont_as_nat h3 x6 == // x32 S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 16) (qmont_as_nat h2 x128)); qsquare_times x128 x6 64ul; qmul x128 x128 x6; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == // x96 S.qmul (SI.qsquare_times (qmont_as_nat h3 x6) 64) (qmont_as_nat h3 x6)); qsquare_times_in_place x128 32ul; qmul x128 x128 x6; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == // x128 S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 32) (qmont_as_nat h3 x6))
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 141, "start_col": 0, "start_line": 111 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid let one_mod ctx one = make_qone one inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_p256_order_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_p256_order_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_p256_order_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } inline_for_extraction noextract val qsquare_times_in_place (out:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ as_nat h out < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 out) (v b)) let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_p256_order_concrete_ops (null uint64) out b inline_for_extraction noextract val qsquare_times (out a:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 a) (v b)) let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_p256_order_concrete_ops (null uint64) a b out // x6 can be modified // x_11 cannot be modified inline_for_extraction noextract val qinv_x8_x128 (x128 x6 x_11:felem) : Stack unit (requires fun h -> live h x128 /\ live h x6 /\ live h x_11 /\ disjoint x128 x6 /\ disjoint x128 x_11 /\ disjoint x6 x_11 /\ as_nat h x6 < S.order /\ as_nat h x_11 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128 |+| loc x6) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x8_x128 (qmont_as_nat h0 x6) (qmont_as_nat h0 x_11))
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x128: Hacl.Impl.P256.Bignum.felem -> x6: Hacl.Impl.P256.Bignum.felem -> x_11: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.P256.Bignum.felem", "Prims._assert", "Prims.eq2", "Spec.P256.PointOps.qelem", "Hacl.Impl.P256.Scalar.qmont_as_nat", "Spec.P256.PointOps.qmul", "Hacl.Spec.P256.Qinv.qsquare_times", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.P256.Scalar.qmul", "Hacl.Impl.P256.Qinv.qsquare_times_in_place", "FStar.UInt32.__uint_to_t", "Hacl.Impl.P256.Qinv.qsquare_times" ]
[]
false
true
false
false
false
let qinv_x8_x128 x128 x6 x_11 =
let h0 = ST.get () in qsquare_times_in_place x6 2ul; qmul x6 x6 x_11; let h1 = ST.get () in assert (qmont_as_nat h1 x6 == S.qmul (SI.qsquare_times (qmont_as_nat h0 x6) 2) (qmont_as_nat h0 x_11)); qsquare_times x128 x6 8ul; qmul x128 x128 x6; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == S.qmul (SI.qsquare_times (qmont_as_nat h1 x6) 8) (qmont_as_nat h1 x6)); qsquare_times x6 x128 16ul; qmul x6 x6 x128; let h3 = ST.get () in assert (qmont_as_nat h3 x6 == S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 16) (qmont_as_nat h2 x128)); qsquare_times x128 x6 64ul; qmul x128 x128 x6; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == S.qmul (SI.qsquare_times (qmont_as_nat h3 x6) 64) (qmont_as_nat h3 x6)); qsquare_times_in_place x128 32ul; qmul x128 x128 x6; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 32) (qmont_as_nat h3 x6))
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.qinv_x134_x153
val qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111:felem) : Stack unit (requires fun h -> live h x128 /\ live h x_11 /\ live h x_111 /\ live h x_1111 /\ live h x_10101 /\ live h x_101111 /\ disjoint x128 x_11 /\ disjoint x128 x_111 /\ disjoint x128 x_1111 /\ disjoint x128 x_10101 /\ disjoint x128 x_101111 /\ as_nat h x128 < S.order /\ as_nat h x_11 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h x_10101 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x134_x153 (qmont_as_nat h0 x128) (qmont_as_nat h0 x_11) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_1111) (qmont_as_nat h0 x_10101) (qmont_as_nat h0 x_101111))
val qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111:felem) : Stack unit (requires fun h -> live h x128 /\ live h x_11 /\ live h x_111 /\ live h x_1111 /\ live h x_10101 /\ live h x_101111 /\ disjoint x128 x_11 /\ disjoint x128 x_111 /\ disjoint x128 x_1111 /\ disjoint x128 x_10101 /\ disjoint x128 x_101111 /\ as_nat h x128 < S.order /\ as_nat h x_11 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h x_10101 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x134_x153 (qmont_as_nat h0 x128) (qmont_as_nat h0 x_11) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_1111) (qmont_as_nat h0 x_10101) (qmont_as_nat h0 x_101111))
let qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 = let h0 = ST.get () in qsquare_times_in_place x128 6ul; qmul x128 x128 x_101111; let h1 = ST.get () in assert (qmont_as_nat h1 x128 == // x134 S.qmul (SI.qsquare_times (qmont_as_nat h0 x128) 6) (qmont_as_nat h0 x_101111)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_111; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == // x139 S.qmul (SI.qsquare_times (qmont_as_nat h1 x128) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x128 4ul; qmul x128 x128 x_11; let h3 = ST.get () in assert (qmont_as_nat h3 x128 == // x143 S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 4) (qmont_as_nat h0 x_11)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_1111; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == // x148 S.qmul (SI.qsquare_times (qmont_as_nat h3 x128) 5) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_10101; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == // x153 S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 5) (qmont_as_nat h0 x_10101))
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 81, "end_line": 191, "start_col": 0, "start_line": 161 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid let one_mod ctx one = make_qone one inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_p256_order_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_p256_order_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_p256_order_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } inline_for_extraction noextract val qsquare_times_in_place (out:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ as_nat h out < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 out) (v b)) let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_p256_order_concrete_ops (null uint64) out b inline_for_extraction noextract val qsquare_times (out a:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 a) (v b)) let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_p256_order_concrete_ops (null uint64) a b out // x6 can be modified // x_11 cannot be modified inline_for_extraction noextract val qinv_x8_x128 (x128 x6 x_11:felem) : Stack unit (requires fun h -> live h x128 /\ live h x6 /\ live h x_11 /\ disjoint x128 x6 /\ disjoint x128 x_11 /\ disjoint x6 x_11 /\ as_nat h x6 < S.order /\ as_nat h x_11 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128 |+| loc x6) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x8_x128 (qmont_as_nat h0 x6) (qmont_as_nat h0 x_11)) let qinv_x8_x128 x128 x6 x_11 = let h0 = ST.get () in qsquare_times_in_place x6 2ul; qmul x6 x6 x_11; let h1 = ST.get () in assert (qmont_as_nat h1 x6 == // x8 S.qmul (SI.qsquare_times (qmont_as_nat h0 x6) 2) (qmont_as_nat h0 x_11)); qsquare_times x128 x6 8ul; qmul x128 x128 x6; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == // x16 S.qmul (SI.qsquare_times (qmont_as_nat h1 x6) 8) (qmont_as_nat h1 x6)); qsquare_times x6 x128 16ul; qmul x6 x6 x128; let h3 = ST.get () in assert (qmont_as_nat h3 x6 == // x32 S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 16) (qmont_as_nat h2 x128)); qsquare_times x128 x6 64ul; qmul x128 x128 x6; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == // x96 S.qmul (SI.qsquare_times (qmont_as_nat h3 x6) 64) (qmont_as_nat h3 x6)); qsquare_times_in_place x128 32ul; qmul x128 x128 x6; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == // x128 S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 32) (qmont_as_nat h3 x6)) // x128 can be modified inline_for_extraction noextract val qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111:felem) : Stack unit (requires fun h -> live h x128 /\ live h x_11 /\ live h x_111 /\ live h x_1111 /\ live h x_10101 /\ live h x_101111 /\ disjoint x128 x_11 /\ disjoint x128 x_111 /\ disjoint x128 x_1111 /\ disjoint x128 x_10101 /\ disjoint x128 x_101111 /\ as_nat h x128 < S.order /\ as_nat h x_11 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h x_10101 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x134_x153 (qmont_as_nat h0 x128) (qmont_as_nat h0 x_11) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_1111) (qmont_as_nat h0 x_10101) (qmont_as_nat h0 x_101111))
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x128: Hacl.Impl.P256.Bignum.felem -> x_11: Hacl.Impl.P256.Bignum.felem -> x_111: Hacl.Impl.P256.Bignum.felem -> x_1111: Hacl.Impl.P256.Bignum.felem -> x_10101: Hacl.Impl.P256.Bignum.felem -> x_101111: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.P256.Bignum.felem", "Prims._assert", "Prims.eq2", "Spec.P256.PointOps.qelem", "Hacl.Impl.P256.Scalar.qmont_as_nat", "Spec.P256.PointOps.qmul", "Hacl.Spec.P256.Qinv.qsquare_times", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.P256.Scalar.qmul", "Hacl.Impl.P256.Qinv.qsquare_times_in_place", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 =
let h0 = ST.get () in qsquare_times_in_place x128 6ul; qmul x128 x128 x_101111; let h1 = ST.get () in assert (qmont_as_nat h1 x128 == S.qmul (SI.qsquare_times (qmont_as_nat h0 x128) 6) (qmont_as_nat h0 x_101111)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_111; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == S.qmul (SI.qsquare_times (qmont_as_nat h1 x128) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x128 4ul; qmul x128 x128 x_11; let h3 = ST.get () in assert (qmont_as_nat h3 x128 == S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 4) (qmont_as_nat h0 x_11)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_1111; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == S.qmul (SI.qsquare_times (qmont_as_nat h3 x128) 5) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_10101; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 5) (qmont_as_nat h0 x_10101))
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.qinv_x240_x256
val qinv_x240_x256 (x240 x_1111 x_10101 a:felem) : Stack unit (requires fun h -> live h x240 /\ live h x_1111 /\ live h x_10101 /\ live h a /\ disjoint x240 x_1111 /\ disjoint x240 x_10101 /\ disjoint x240 a /\ as_nat h x240 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h x_10101 < S.order /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc x240) h0 h1 /\ as_nat h1 x240 < S.order /\ qmont_as_nat h1 x240 = SI.qinv_x240_x256 (qmont_as_nat h0 a) (qmont_as_nat h0 x240) (qmont_as_nat h0 x_1111) (qmont_as_nat h0 x_10101))
val qinv_x240_x256 (x240 x_1111 x_10101 a:felem) : Stack unit (requires fun h -> live h x240 /\ live h x_1111 /\ live h x_10101 /\ live h a /\ disjoint x240 x_1111 /\ disjoint x240 x_10101 /\ disjoint x240 a /\ as_nat h x240 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h x_10101 < S.order /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc x240) h0 h1 /\ as_nat h1 x240 < S.order /\ qmont_as_nat h1 x240 = SI.qinv_x240_x256 (qmont_as_nat h0 a) (qmont_as_nat h0 x240) (qmont_as_nat h0 x_1111) (qmont_as_nat h0 x_10101))
let qinv_x240_x256 x240 x_1111 x_10101 a = let h0 = ST.get () in qsquare_times_in_place x240 3ul; qmul x240 x240 a; let h1 = ST.get () in assert (qmont_as_nat h1 x240 == // x243 S.qmul (SI.qsquare_times (qmont_as_nat h0 x240) 3) (qmont_as_nat h0 a)); qsquare_times_in_place x240 7ul; qmul x240 x240 x_10101; let h2 = ST.get () in assert (qmont_as_nat h2 x240 == // x250 S.qmul (SI.qsquare_times (qmont_as_nat h1 x240) 7) (qmont_as_nat h0 x_10101)); qsquare_times_in_place x240 6ul; qmul x240 x240 x_1111; let h3 = ST.get () in assert (qmont_as_nat h3 x240 == // x256 S.qmul (SI.qsquare_times (qmont_as_nat h2 x240) 6) (qmont_as_nat h0 x_1111))
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 379, "start_col": 0, "start_line": 361 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid let one_mod ctx one = make_qone one inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_p256_order_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_p256_order_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_p256_order_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } inline_for_extraction noextract val qsquare_times_in_place (out:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ as_nat h out < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 out) (v b)) let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_p256_order_concrete_ops (null uint64) out b inline_for_extraction noextract val qsquare_times (out a:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 a) (v b)) let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_p256_order_concrete_ops (null uint64) a b out // x6 can be modified // x_11 cannot be modified inline_for_extraction noextract val qinv_x8_x128 (x128 x6 x_11:felem) : Stack unit (requires fun h -> live h x128 /\ live h x6 /\ live h x_11 /\ disjoint x128 x6 /\ disjoint x128 x_11 /\ disjoint x6 x_11 /\ as_nat h x6 < S.order /\ as_nat h x_11 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128 |+| loc x6) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x8_x128 (qmont_as_nat h0 x6) (qmont_as_nat h0 x_11)) let qinv_x8_x128 x128 x6 x_11 = let h0 = ST.get () in qsquare_times_in_place x6 2ul; qmul x6 x6 x_11; let h1 = ST.get () in assert (qmont_as_nat h1 x6 == // x8 S.qmul (SI.qsquare_times (qmont_as_nat h0 x6) 2) (qmont_as_nat h0 x_11)); qsquare_times x128 x6 8ul; qmul x128 x128 x6; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == // x16 S.qmul (SI.qsquare_times (qmont_as_nat h1 x6) 8) (qmont_as_nat h1 x6)); qsquare_times x6 x128 16ul; qmul x6 x6 x128; let h3 = ST.get () in assert (qmont_as_nat h3 x6 == // x32 S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 16) (qmont_as_nat h2 x128)); qsquare_times x128 x6 64ul; qmul x128 x128 x6; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == // x96 S.qmul (SI.qsquare_times (qmont_as_nat h3 x6) 64) (qmont_as_nat h3 x6)); qsquare_times_in_place x128 32ul; qmul x128 x128 x6; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == // x128 S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 32) (qmont_as_nat h3 x6)) // x128 can be modified inline_for_extraction noextract val qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111:felem) : Stack unit (requires fun h -> live h x128 /\ live h x_11 /\ live h x_111 /\ live h x_1111 /\ live h x_10101 /\ live h x_101111 /\ disjoint x128 x_11 /\ disjoint x128 x_111 /\ disjoint x128 x_1111 /\ disjoint x128 x_10101 /\ disjoint x128 x_101111 /\ as_nat h x128 < S.order /\ as_nat h x_11 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h x_10101 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x134_x153 (qmont_as_nat h0 x128) (qmont_as_nat h0 x_11) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_1111) (qmont_as_nat h0 x_10101) (qmont_as_nat h0 x_101111)) let qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 = let h0 = ST.get () in qsquare_times_in_place x128 6ul; qmul x128 x128 x_101111; let h1 = ST.get () in assert (qmont_as_nat h1 x128 == // x134 S.qmul (SI.qsquare_times (qmont_as_nat h0 x128) 6) (qmont_as_nat h0 x_101111)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_111; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == // x139 S.qmul (SI.qsquare_times (qmont_as_nat h1 x128) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x128 4ul; qmul x128 x128 x_11; let h3 = ST.get () in assert (qmont_as_nat h3 x128 == // x143 S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 4) (qmont_as_nat h0 x_11)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_1111; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == // x148 S.qmul (SI.qsquare_times (qmont_as_nat h3 x128) 5) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_10101; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == // x153 S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 5) (qmont_as_nat h0 x_10101)) // x153 can be modified inline_for_extraction noextract val qinv_x153_x177 (x153 x_101 x_111 x_101111:felem) : Stack unit (requires fun h -> live h x153 /\ live h x_101 /\ live h x_111 /\ live h x_101111 /\ disjoint x153 x_101 /\ disjoint x153 x_111 /\ disjoint x153 x_101111 /\ as_nat h x153 < S.order /\ as_nat h x_101 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x153) h0 h1 /\ as_nat h1 x153 < S.order /\ qmont_as_nat h1 x153 = SI.qinv_x153_x177 (qmont_as_nat h0 x153) (qmont_as_nat h0 x_101) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_101111)) let qinv_x153_x177 x153 x_101 x_111 x_101111 = let h0 = ST.get () in qsquare_times_in_place x153 4ul; qmul x153 x153 x_101; let h1 = ST.get () in assert (qmont_as_nat h1 x153 == // x157 S.qmul (SI.qsquare_times (qmont_as_nat h0 x153) 4) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 3ul; qmul x153 x153 x_101; let h2 = ST.get () in assert (qmont_as_nat h2 x153 == // x160 S.qmul (SI.qsquare_times (qmont_as_nat h1 x153) 3) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 3ul; qmul x153 x153 x_101; let h3 = ST.get () in assert (qmont_as_nat h3 x153 == // x163 S.qmul (SI.qsquare_times (qmont_as_nat h2 x153) 3) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 5ul; qmul x153 x153 x_111; let h4 = ST.get () in assert (qmont_as_nat h4 x153 == // x168 S.qmul (SI.qsquare_times (qmont_as_nat h3 x153) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x153 9ul; qmul x153 x153 x_101111; let h5 = ST.get () in assert (qmont_as_nat h5 x153 == // x177 S.qmul (SI.qsquare_times (qmont_as_nat h4 x153) 9) (qmont_as_nat h0 x_101111)) // x153 can be modified inline_for_extraction noextract val qinv_x177_x210 (x177 x_111 x_1111 a:felem) : Stack unit (requires fun h -> live h x177 /\ live h x_111 /\ live h x_1111 /\ live h a /\ disjoint x177 x_111 /\ disjoint x177 x_1111 /\ disjoint x177 a /\ as_nat h x177 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc x177) h0 h1 /\ as_nat h1 x177 < S.order /\ qmont_as_nat h1 x177 = SI.qinv_x177_x210 (qmont_as_nat h0 a) (qmont_as_nat h0 x177) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_1111)) let qinv_x177_x210 x177 x_111 x_1111 a = let h0 = ST.get () in qsquare_times_in_place x177 6ul; qmul x177 x177 x_1111; let h1 = ST.get () in assert (qmont_as_nat h1 x177 == // x183 S.qmul (SI.qsquare_times (qmont_as_nat h0 x177) 6) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x177 2ul; qmul x177 x177 a; let h2 = ST.get () in assert (qmont_as_nat h2 x177 == // x185 S.qmul (SI.qsquare_times (qmont_as_nat h1 x177) 2) (qmont_as_nat h0 a)); qsquare_times_in_place x177 5ul; qmul x177 x177 a; let h3 = ST.get () in assert (qmont_as_nat h3 x177 == // x190 S.qmul (SI.qsquare_times (qmont_as_nat h2 x177) 5) (qmont_as_nat h0 a)); qsquare_times_in_place x177 6ul; qmul x177 x177 x_1111; let h4 = ST.get () in assert (qmont_as_nat h4 x177 == // x196 S.qmul (SI.qsquare_times (qmont_as_nat h3 x177) 6) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x177 5ul; qmul x177 x177 x_111; let h5 = ST.get () in assert (qmont_as_nat h5 x177 == // x201 S.qmul (SI.qsquare_times (qmont_as_nat h4 x177) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x177 4ul; qmul x177 x177 x_111; let h6 = ST.get () in assert (qmont_as_nat h6 x177 == // x205 S.qmul (SI.qsquare_times (qmont_as_nat h5 x177) 4) (qmont_as_nat h0 x_111)); qsquare_times_in_place x177 5ul; qmul x177 x177 x_111; let h7 = ST.get () in assert (qmont_as_nat h7 x177 == // x210 S.qmul (SI.qsquare_times (qmont_as_nat h6 x177) 5) (qmont_as_nat h0 x_111)) inline_for_extraction noextract val qinv_x210_x240 (x210 x_11 x_101 x_101111:felem) : Stack unit (requires fun h -> live h x210 /\ live h x_11 /\ live h x_101 /\ live h x_101111 /\ disjoint x210 x_11 /\ disjoint x210 x_101 /\ disjoint x210 x_101111 /\ as_nat h x210 < S.order /\ as_nat h x_11 < S.order /\ as_nat h x_101 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x210) h0 h1 /\ as_nat h1 x210 < S.order /\ qmont_as_nat h1 x210 = SI.qinv_x210_x240 (qmont_as_nat h0 x210) (qmont_as_nat h0 x_11) (qmont_as_nat h0 x_101) (qmont_as_nat h0 x_101111)) let qinv_x210_x240 x210 x_11 x_101 x_101111 = let h0 = ST.get () in qsquare_times_in_place x210 5ul; qmul x210 x210 x_101; let h1 = ST.get () in assert (qmont_as_nat h1 x210 == // x215 S.qmul (SI.qsquare_times (qmont_as_nat h0 x210) 5) (qmont_as_nat h0 x_101)); qsquare_times_in_place x210 3ul; qmul x210 x210 x_11; let h2 = ST.get () in assert (qmont_as_nat h2 x210 == // x218 S.qmul (SI.qsquare_times (qmont_as_nat h1 x210) 3) (qmont_as_nat h0 x_11)); qsquare_times_in_place x210 10ul; qmul x210 x210 x_101111; let h3 = ST.get () in assert (qmont_as_nat h3 x210 == // x228 S.qmul (SI.qsquare_times (qmont_as_nat h2 x210) 10) (qmont_as_nat h0 x_101111)); qsquare_times_in_place x210 2ul; qmul x210 x210 x_11; let h4 = ST.get () in assert (qmont_as_nat h4 x210 == // x230 S.qmul (SI.qsquare_times (qmont_as_nat h3 x210) 2) (qmont_as_nat h0 x_11)); qsquare_times_in_place x210 5ul; qmul x210 x210 x_11; let h5 = ST.get () in assert (qmont_as_nat h5 x210 == // x235 S.qmul (SI.qsquare_times (qmont_as_nat h4 x210) 5) (qmont_as_nat h0 x_11)); qsquare_times_in_place x210 5ul; qmul x210 x210 x_11; let h6 = ST.get () in assert (qmont_as_nat h6 x210 == // x240 S.qmul (SI.qsquare_times (qmont_as_nat h5 x210) 5) (qmont_as_nat h0 x_11)) inline_for_extraction noextract val qinv_x240_x256 (x240 x_1111 x_10101 a:felem) : Stack unit (requires fun h -> live h x240 /\ live h x_1111 /\ live h x_10101 /\ live h a /\ disjoint x240 x_1111 /\ disjoint x240 x_10101 /\ disjoint x240 a /\ as_nat h x240 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h x_10101 < S.order /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc x240) h0 h1 /\ as_nat h1 x240 < S.order /\ qmont_as_nat h1 x240 = SI.qinv_x240_x256 (qmont_as_nat h0 a) (qmont_as_nat h0 x240) (qmont_as_nat h0 x_1111) (qmont_as_nat h0 x_10101))
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x240: Hacl.Impl.P256.Bignum.felem -> x_1111: Hacl.Impl.P256.Bignum.felem -> x_10101: Hacl.Impl.P256.Bignum.felem -> a: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.P256.Bignum.felem", "Prims._assert", "Prims.eq2", "Spec.P256.PointOps.qelem", "Hacl.Impl.P256.Scalar.qmont_as_nat", "Spec.P256.PointOps.qmul", "Hacl.Spec.P256.Qinv.qsquare_times", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.P256.Scalar.qmul", "Hacl.Impl.P256.Qinv.qsquare_times_in_place", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let qinv_x240_x256 x240 x_1111 x_10101 a =
let h0 = ST.get () in qsquare_times_in_place x240 3ul; qmul x240 x240 a; let h1 = ST.get () in assert (qmont_as_nat h1 x240 == S.qmul (SI.qsquare_times (qmont_as_nat h0 x240) 3) (qmont_as_nat h0 a)); qsquare_times_in_place x240 7ul; qmul x240 x240 x_10101; let h2 = ST.get () in assert (qmont_as_nat h2 x240 == S.qmul (SI.qsquare_times (qmont_as_nat h1 x240) 7) (qmont_as_nat h0 x_10101)); qsquare_times_in_place x240 6ul; qmul x240 x240 x_1111; let h3 = ST.get () in assert (qmont_as_nat h3 x240 == S.qmul (SI.qsquare_times (qmont_as_nat h2 x240) 6) (qmont_as_nat h0 x_1111))
false
Hacl.Impl.P256.Qinv.fst
Hacl.Impl.P256.Qinv.qinv_x177_x210
val qinv_x177_x210 (x177 x_111 x_1111 a:felem) : Stack unit (requires fun h -> live h x177 /\ live h x_111 /\ live h x_1111 /\ live h a /\ disjoint x177 x_111 /\ disjoint x177 x_1111 /\ disjoint x177 a /\ as_nat h x177 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc x177) h0 h1 /\ as_nat h1 x177 < S.order /\ qmont_as_nat h1 x177 = SI.qinv_x177_x210 (qmont_as_nat h0 a) (qmont_as_nat h0 x177) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_1111))
val qinv_x177_x210 (x177 x_111 x_1111 a:felem) : Stack unit (requires fun h -> live h x177 /\ live h x_111 /\ live h x_1111 /\ live h a /\ disjoint x177 x_111 /\ disjoint x177 x_1111 /\ disjoint x177 a /\ as_nat h x177 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc x177) h0 h1 /\ as_nat h1 x177 < S.order /\ qmont_as_nat h1 x177 = SI.qinv_x177_x210 (qmont_as_nat h0 a) (qmont_as_nat h0 x177) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_1111))
let qinv_x177_x210 x177 x_111 x_1111 a = let h0 = ST.get () in qsquare_times_in_place x177 6ul; qmul x177 x177 x_1111; let h1 = ST.get () in assert (qmont_as_nat h1 x177 == // x183 S.qmul (SI.qsquare_times (qmont_as_nat h0 x177) 6) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x177 2ul; qmul x177 x177 a; let h2 = ST.get () in assert (qmont_as_nat h2 x177 == // x185 S.qmul (SI.qsquare_times (qmont_as_nat h1 x177) 2) (qmont_as_nat h0 a)); qsquare_times_in_place x177 5ul; qmul x177 x177 a; let h3 = ST.get () in assert (qmont_as_nat h3 x177 == // x190 S.qmul (SI.qsquare_times (qmont_as_nat h2 x177) 5) (qmont_as_nat h0 a)); qsquare_times_in_place x177 6ul; qmul x177 x177 x_1111; let h4 = ST.get () in assert (qmont_as_nat h4 x177 == // x196 S.qmul (SI.qsquare_times (qmont_as_nat h3 x177) 6) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x177 5ul; qmul x177 x177 x_111; let h5 = ST.get () in assert (qmont_as_nat h5 x177 == // x201 S.qmul (SI.qsquare_times (qmont_as_nat h4 x177) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x177 4ul; qmul x177 x177 x_111; let h6 = ST.get () in assert (qmont_as_nat h6 x177 == // x205 S.qmul (SI.qsquare_times (qmont_as_nat h5 x177) 4) (qmont_as_nat h0 x_111)); qsquare_times_in_place x177 5ul; qmul x177 x177 x_111; let h7 = ST.get () in assert (qmont_as_nat h7 x177 == // x210 S.qmul (SI.qsquare_times (qmont_as_nat h6 x177) 5) (qmont_as_nat h0 x_111))
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Qinv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 79, "end_line": 295, "start_col": 0, "start_line": 253 }
module Hacl.Impl.P256.Qinv open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum open Hacl.Impl.P256.Scalar module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module BD = Hacl.Spec.Bignum.Definitions module LSeq = Lib.Sequence module S = Spec.P256 module SI = Hacl.Spec.P256.Qinv module SM = Hacl.Spec.P256.Montgomery #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True unfold let linv (a:LSeq.lseq uint64 4) : Type0 = BD.bn_v a < S.order unfold let refl (a:LSeq.lseq uint64 4{linv a}) : GTot S.qelem = SM.from_qmont (BD.bn_v a) inline_for_extraction noextract let mk_to_p256_order_comm_monoid : BE.to_comm_monoid U64 4ul 0ul = { BE.a_spec = S.qelem; BE.comm_monoid = SI.nat_mod_comm_monoid; BE.linv_ctx = linv_ctx; BE.linv = linv; BE.refl = refl; } inline_for_extraction noextract val one_mod : BE.lone_st U64 4ul 0ul mk_to_p256_order_comm_monoid let one_mod ctx one = make_qone one inline_for_extraction noextract val mul_mod : BE.lmul_st U64 4ul 0ul mk_to_p256_order_comm_monoid let mul_mod ctx x y xy = qmul xy x y inline_for_extraction noextract val sqr_mod : BE.lsqr_st U64 4ul 0ul mk_to_p256_order_comm_monoid let sqr_mod ctx x xx = qsqr xx x inline_for_extraction noextract let mk_p256_order_concrete_ops : BE.concrete_ops U64 4ul 0ul = { BE.to = mk_to_p256_order_comm_monoid; BE.lone = one_mod; BE.lmul = mul_mod; BE.lsqr = sqr_mod; } inline_for_extraction noextract val qsquare_times_in_place (out:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ as_nat h out < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 out) (v b)) let qsquare_times_in_place out b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 out) (v b); BE.lexp_pow2_in_place 4ul 0ul mk_p256_order_concrete_ops (null uint64) out b inline_for_extraction noextract val qsquare_times (out a:felem) (b:size_t) : Stack unit (requires fun h -> live h out /\ live h a /\ disjoint out a /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ as_nat h1 out < S.order /\ qmont_as_nat h1 out == SI.qsquare_times (qmont_as_nat h0 a) (v b)) let qsquare_times out a b = let h0 = ST.get () in SE.exp_pow2_lemma SI.mk_nat_mod_concrete_ops (qmont_as_nat h0 a) (v b); BE.lexp_pow2 4ul 0ul mk_p256_order_concrete_ops (null uint64) a b out // x6 can be modified // x_11 cannot be modified inline_for_extraction noextract val qinv_x8_x128 (x128 x6 x_11:felem) : Stack unit (requires fun h -> live h x128 /\ live h x6 /\ live h x_11 /\ disjoint x128 x6 /\ disjoint x128 x_11 /\ disjoint x6 x_11 /\ as_nat h x6 < S.order /\ as_nat h x_11 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128 |+| loc x6) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x8_x128 (qmont_as_nat h0 x6) (qmont_as_nat h0 x_11)) let qinv_x8_x128 x128 x6 x_11 = let h0 = ST.get () in qsquare_times_in_place x6 2ul; qmul x6 x6 x_11; let h1 = ST.get () in assert (qmont_as_nat h1 x6 == // x8 S.qmul (SI.qsquare_times (qmont_as_nat h0 x6) 2) (qmont_as_nat h0 x_11)); qsquare_times x128 x6 8ul; qmul x128 x128 x6; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == // x16 S.qmul (SI.qsquare_times (qmont_as_nat h1 x6) 8) (qmont_as_nat h1 x6)); qsquare_times x6 x128 16ul; qmul x6 x6 x128; let h3 = ST.get () in assert (qmont_as_nat h3 x6 == // x32 S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 16) (qmont_as_nat h2 x128)); qsquare_times x128 x6 64ul; qmul x128 x128 x6; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == // x96 S.qmul (SI.qsquare_times (qmont_as_nat h3 x6) 64) (qmont_as_nat h3 x6)); qsquare_times_in_place x128 32ul; qmul x128 x128 x6; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == // x128 S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 32) (qmont_as_nat h3 x6)) // x128 can be modified inline_for_extraction noextract val qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111:felem) : Stack unit (requires fun h -> live h x128 /\ live h x_11 /\ live h x_111 /\ live h x_1111 /\ live h x_10101 /\ live h x_101111 /\ disjoint x128 x_11 /\ disjoint x128 x_111 /\ disjoint x128 x_1111 /\ disjoint x128 x_10101 /\ disjoint x128 x_101111 /\ as_nat h x128 < S.order /\ as_nat h x_11 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h x_10101 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x128) h0 h1 /\ as_nat h1 x128 < S.order /\ qmont_as_nat h1 x128 = SI.qinv_x134_x153 (qmont_as_nat h0 x128) (qmont_as_nat h0 x_11) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_1111) (qmont_as_nat h0 x_10101) (qmont_as_nat h0 x_101111)) let qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 = let h0 = ST.get () in qsquare_times_in_place x128 6ul; qmul x128 x128 x_101111; let h1 = ST.get () in assert (qmont_as_nat h1 x128 == // x134 S.qmul (SI.qsquare_times (qmont_as_nat h0 x128) 6) (qmont_as_nat h0 x_101111)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_111; let h2 = ST.get () in assert (qmont_as_nat h2 x128 == // x139 S.qmul (SI.qsquare_times (qmont_as_nat h1 x128) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x128 4ul; qmul x128 x128 x_11; let h3 = ST.get () in assert (qmont_as_nat h3 x128 == // x143 S.qmul (SI.qsquare_times (qmont_as_nat h2 x128) 4) (qmont_as_nat h0 x_11)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_1111; let h4 = ST.get () in assert (qmont_as_nat h4 x128 == // x148 S.qmul (SI.qsquare_times (qmont_as_nat h3 x128) 5) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x128 5ul; qmul x128 x128 x_10101; let h5 = ST.get () in assert (qmont_as_nat h5 x128 == // x153 S.qmul (SI.qsquare_times (qmont_as_nat h4 x128) 5) (qmont_as_nat h0 x_10101)) // x153 can be modified inline_for_extraction noextract val qinv_x153_x177 (x153 x_101 x_111 x_101111:felem) : Stack unit (requires fun h -> live h x153 /\ live h x_101 /\ live h x_111 /\ live h x_101111 /\ disjoint x153 x_101 /\ disjoint x153 x_111 /\ disjoint x153 x_101111 /\ as_nat h x153 < S.order /\ as_nat h x_101 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_101111 < S.order) (ensures fun h0 _ h1 -> modifies (loc x153) h0 h1 /\ as_nat h1 x153 < S.order /\ qmont_as_nat h1 x153 = SI.qinv_x153_x177 (qmont_as_nat h0 x153) (qmont_as_nat h0 x_101) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_101111)) let qinv_x153_x177 x153 x_101 x_111 x_101111 = let h0 = ST.get () in qsquare_times_in_place x153 4ul; qmul x153 x153 x_101; let h1 = ST.get () in assert (qmont_as_nat h1 x153 == // x157 S.qmul (SI.qsquare_times (qmont_as_nat h0 x153) 4) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 3ul; qmul x153 x153 x_101; let h2 = ST.get () in assert (qmont_as_nat h2 x153 == // x160 S.qmul (SI.qsquare_times (qmont_as_nat h1 x153) 3) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 3ul; qmul x153 x153 x_101; let h3 = ST.get () in assert (qmont_as_nat h3 x153 == // x163 S.qmul (SI.qsquare_times (qmont_as_nat h2 x153) 3) (qmont_as_nat h0 x_101)); qsquare_times_in_place x153 5ul; qmul x153 x153 x_111; let h4 = ST.get () in assert (qmont_as_nat h4 x153 == // x168 S.qmul (SI.qsquare_times (qmont_as_nat h3 x153) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x153 9ul; qmul x153 x153 x_101111; let h5 = ST.get () in assert (qmont_as_nat h5 x153 == // x177 S.qmul (SI.qsquare_times (qmont_as_nat h4 x153) 9) (qmont_as_nat h0 x_101111)) // x153 can be modified inline_for_extraction noextract val qinv_x177_x210 (x177 x_111 x_1111 a:felem) : Stack unit (requires fun h -> live h x177 /\ live h x_111 /\ live h x_1111 /\ live h a /\ disjoint x177 x_111 /\ disjoint x177 x_1111 /\ disjoint x177 a /\ as_nat h x177 < S.order /\ as_nat h x_111 < S.order /\ as_nat h x_1111 < S.order /\ as_nat h a < S.order) (ensures fun h0 _ h1 -> modifies (loc x177) h0 h1 /\ as_nat h1 x177 < S.order /\ qmont_as_nat h1 x177 = SI.qinv_x177_x210 (qmont_as_nat h0 a) (qmont_as_nat h0 x177) (qmont_as_nat h0 x_111) (qmont_as_nat h0 x_1111))
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Qinv.fst.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Impl.P256.Scalar.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.P256.Qinv.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Qinv", "short_module": "SI" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Scalar", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x177: Hacl.Impl.P256.Bignum.felem -> x_111: Hacl.Impl.P256.Bignum.felem -> x_1111: Hacl.Impl.P256.Bignum.felem -> a: Hacl.Impl.P256.Bignum.felem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.P256.Bignum.felem", "Prims._assert", "Prims.eq2", "Spec.P256.PointOps.qelem", "Hacl.Impl.P256.Scalar.qmont_as_nat", "Spec.P256.PointOps.qmul", "Hacl.Spec.P256.Qinv.qsquare_times", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.P256.Scalar.qmul", "Hacl.Impl.P256.Qinv.qsquare_times_in_place", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let qinv_x177_x210 x177 x_111 x_1111 a =
let h0 = ST.get () in qsquare_times_in_place x177 6ul; qmul x177 x177 x_1111; let h1 = ST.get () in assert (qmont_as_nat h1 x177 == S.qmul (SI.qsquare_times (qmont_as_nat h0 x177) 6) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x177 2ul; qmul x177 x177 a; let h2 = ST.get () in assert (qmont_as_nat h2 x177 == S.qmul (SI.qsquare_times (qmont_as_nat h1 x177) 2) (qmont_as_nat h0 a)); qsquare_times_in_place x177 5ul; qmul x177 x177 a; let h3 = ST.get () in assert (qmont_as_nat h3 x177 == S.qmul (SI.qsquare_times (qmont_as_nat h2 x177) 5) (qmont_as_nat h0 a)); qsquare_times_in_place x177 6ul; qmul x177 x177 x_1111; let h4 = ST.get () in assert (qmont_as_nat h4 x177 == S.qmul (SI.qsquare_times (qmont_as_nat h3 x177) 6) (qmont_as_nat h0 x_1111)); qsquare_times_in_place x177 5ul; qmul x177 x177 x_111; let h5 = ST.get () in assert (qmont_as_nat h5 x177 == S.qmul (SI.qsquare_times (qmont_as_nat h4 x177) 5) (qmont_as_nat h0 x_111)); qsquare_times_in_place x177 4ul; qmul x177 x177 x_111; let h6 = ST.get () in assert (qmont_as_nat h6 x177 == S.qmul (SI.qsquare_times (qmont_as_nat h5 x177) 4) (qmont_as_nat h0 x_111)); qsquare_times_in_place x177 5ul; qmul x177 x177 x_111; let h7 = ST.get () in assert (qmont_as_nat h7 x177 == S.qmul (SI.qsquare_times (qmont_as_nat h6 x177) 5) (qmont_as_nat h0 x_111))
false