file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.Tactics.Simplifier.fst
FStar.Tactics.Simplifier.is_false
val is_false : term -> Tac bool
val is_false : term -> Tac bool
let is_false t = begin match term_as_formula' t with | False_ -> true | _ -> begin match inspect t with | Tv_App l r -> begin match inspect l with | Tv_Abs b t -> begin match term_as_formula' t with | False_ -> true | _ -> false end | _ -> false end | _ -> false end end
{ "file_name": "ulib/FStar.Tactics.Simplifier.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 191, "start_col": 0, "start_line": 176 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Simplifier open FStar.Tactics.V2 open FStar.Reflection.V2.Formula open FStar.Reflection.Const (* A correct-by-construction logical simplifier * * No calling `norm [simpl]`, that's cheating! *) val lem_iff_refl : #a:Type -> Lemma (a <==> a) let lem_iff_refl #a = () val lem_iff_trans : #a:Type -> #b:Type -> #c:Type -> squash (a <==> b) -> squash (b <==> c) -> Lemma (a <==> c) let lem_iff_trans #a #b #c _ _ = () let tiff () : Tac unit = apply_lemma (`lem_iff_refl) let step () : Tac unit = apply_lemma (`lem_iff_trans) val lem_true_and_p : #p:Type -> Lemma ((True /\ p) <==> p) let lem_true_and_p #p = () val lem_p_and_true : #p:Type -> Lemma ((p /\ True) <==> p) let lem_p_and_true #p = () val lem_false_and_p : #p:Type -> Lemma ((False /\ p) <==> False) let lem_false_and_p #p = () val lem_p_and_false : #p:Type -> Lemma ((p /\ False) <==> False) let lem_p_and_false #p = () val lem_true_or_p : #p:Type -> Lemma ((True \/ p) <==> True) let lem_true_or_p #p = () val lem_p_or_true : #p:Type -> Lemma ((p \/ True) <==> True) let lem_p_or_true #p = () val lem_false_or_p : #p:Type -> Lemma ((False \/ p) <==> p) let lem_false_or_p #p = () val lem_p_or_false : #p:Type -> Lemma ((p \/ False) <==> p) let lem_p_or_false #p = () val lem_true_imp_p : #p:Type -> Lemma ((True ==> p) <==> p) let lem_true_imp_p #p = () val lem_p_imp_true : #p:Type -> Lemma ((p ==> True) <==> True) let lem_p_imp_true #p = () val lem_false_imp_p : #p:Type -> Lemma ((False ==> p) <==> True) let lem_false_imp_p #p = () val lem_fa_true : #a:Type -> Lemma ((forall (x:a). True) <==> True) let lem_fa_true #a = () val lem_fa_false : #a:Type -> (x:a) -> Lemma ((forall (x:a). False) <==> False) let lem_fa_false #a x = () val lem_ex_false : #a:Type -> Lemma ((exists (x:a). False) <==> False) let lem_ex_false #a = () val lem_ex_true : #a:Type -> (x:a) -> Lemma ((exists (x:a). True) <==> True) let lem_ex_true #a x = () val lem_neg_false : unit -> Lemma (~False <==> True) let lem_neg_false () = () val lem_neg_true : unit -> Lemma (~True <==> False) let lem_neg_true () = () val lem_true_iff_p : #p:Type -> Lemma ((True <==> p) <==> p) let lem_true_iff_p #p = () val lem_false_iff_p : #p:Type -> Lemma ((False <==> p) <==> ~p) let lem_false_iff_p #p = () val lem_p_iff_true : #p:Type -> Lemma ((p <==> True) <==> p) let lem_p_iff_true #p = () val lem_p_iff_false : #p:Type -> Lemma ((p <==> False) <==> ~p) let lem_p_iff_false #p = () val and_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p /\ q) <==> (p' /\ q')) let and_cong #p #q #p' #q' _ _ = () val or_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p \/ q) <==> (p' \/ q')) let or_cong #p #q #p' #q' _ _ = () val imp_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p ==> q) <==> (p' ==> q')) let imp_cong #p #q #p' #q' _ _ = () val fa_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((forall (x:a). p x) <==> (forall (x:a). q x)) let fa_cong #a #p #q f = assert ((forall (x:a). p x) <==> (forall (x:a). q x)) by ( split(); let do1 () : Tac unit = let _ = l_intros () in let t = quote f in let x = nth_var (-1) in let bb = pose (mk_e_app t [binding_to_term x]) in () in iseq [do1; do1] ) val ex_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((exists (x:a). p x) <==> (exists (x:a). q x)) let ex_cong #a #p #q f = assert ((exists (x:a). p x) <==> (exists (x:a). q x)) by (assume_safe (fun () -> split(); let do1 () : Tac unit = let [ex] = l_intros () in let (b, pf) = elim_exists (binding_to_term ex) in let t = quote f in let bb = pose (mk_e_app t [binding_to_term b]) in () in iseq [do1; do1] )) val neg_cong (#p #q:Type) : squash (p <==> q) -> Lemma (~p <==> ~q) let neg_cong #p #q _ = () val iff_cong (#p #p' #q #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p <==> q) <==> (p' <==> q')) let iff_cong #p #p' #q #q' _ _ = () // Absolutely hideous, do something about normalization val is_true : term -> Tac bool let is_true t = begin match term_as_formula' t with | True_ -> true | _ -> begin match inspect t with | Tv_App l r -> begin match inspect l with | Tv_Abs b t -> begin match term_as_formula' t with | True_ -> true | _ -> false end | _ -> false end | _ -> false end end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Simplifier.fst" }
[ { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.bool
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "Prims.bool", "FStar.Reflection.V2.Formula.formula", "FStar.Stubs.Reflection.V2.Data.argv", "FStar.Tactics.NamedView.binder", "FStar.Reflection.V2.Formula.term_as_formula'", "FStar.Tactics.NamedView.named_term_view", "FStar.Tactics.NamedView.inspect" ]
[]
false
true
false
false
false
let is_false t =
match term_as_formula' t with | False_ -> true | _ -> match inspect t with | Tv_App l r -> (match inspect l with | Tv_Abs b t -> (match term_as_formula' t with | False_ -> true | _ -> false) | _ -> false) | _ -> false
false
FStar.Tactics.Simplifier.fst
FStar.Tactics.Simplifier.simplify
val simplify: Prims.unit -> Tac unit
val simplify: Prims.unit -> Tac unit
let simplify () : Tac unit = apply_lemma (`equiv); simplify_point ()
{ "file_name": "ulib/FStar.Tactics.Simplifier.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 309, "start_col": 0, "start_line": 307 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Simplifier open FStar.Tactics.V2 open FStar.Reflection.V2.Formula open FStar.Reflection.Const (* A correct-by-construction logical simplifier * * No calling `norm [simpl]`, that's cheating! *) val lem_iff_refl : #a:Type -> Lemma (a <==> a) let lem_iff_refl #a = () val lem_iff_trans : #a:Type -> #b:Type -> #c:Type -> squash (a <==> b) -> squash (b <==> c) -> Lemma (a <==> c) let lem_iff_trans #a #b #c _ _ = () let tiff () : Tac unit = apply_lemma (`lem_iff_refl) let step () : Tac unit = apply_lemma (`lem_iff_trans) val lem_true_and_p : #p:Type -> Lemma ((True /\ p) <==> p) let lem_true_and_p #p = () val lem_p_and_true : #p:Type -> Lemma ((p /\ True) <==> p) let lem_p_and_true #p = () val lem_false_and_p : #p:Type -> Lemma ((False /\ p) <==> False) let lem_false_and_p #p = () val lem_p_and_false : #p:Type -> Lemma ((p /\ False) <==> False) let lem_p_and_false #p = () val lem_true_or_p : #p:Type -> Lemma ((True \/ p) <==> True) let lem_true_or_p #p = () val lem_p_or_true : #p:Type -> Lemma ((p \/ True) <==> True) let lem_p_or_true #p = () val lem_false_or_p : #p:Type -> Lemma ((False \/ p) <==> p) let lem_false_or_p #p = () val lem_p_or_false : #p:Type -> Lemma ((p \/ False) <==> p) let lem_p_or_false #p = () val lem_true_imp_p : #p:Type -> Lemma ((True ==> p) <==> p) let lem_true_imp_p #p = () val lem_p_imp_true : #p:Type -> Lemma ((p ==> True) <==> True) let lem_p_imp_true #p = () val lem_false_imp_p : #p:Type -> Lemma ((False ==> p) <==> True) let lem_false_imp_p #p = () val lem_fa_true : #a:Type -> Lemma ((forall (x:a). True) <==> True) let lem_fa_true #a = () val lem_fa_false : #a:Type -> (x:a) -> Lemma ((forall (x:a). False) <==> False) let lem_fa_false #a x = () val lem_ex_false : #a:Type -> Lemma ((exists (x:a). False) <==> False) let lem_ex_false #a = () val lem_ex_true : #a:Type -> (x:a) -> Lemma ((exists (x:a). True) <==> True) let lem_ex_true #a x = () val lem_neg_false : unit -> Lemma (~False <==> True) let lem_neg_false () = () val lem_neg_true : unit -> Lemma (~True <==> False) let lem_neg_true () = () val lem_true_iff_p : #p:Type -> Lemma ((True <==> p) <==> p) let lem_true_iff_p #p = () val lem_false_iff_p : #p:Type -> Lemma ((False <==> p) <==> ~p) let lem_false_iff_p #p = () val lem_p_iff_true : #p:Type -> Lemma ((p <==> True) <==> p) let lem_p_iff_true #p = () val lem_p_iff_false : #p:Type -> Lemma ((p <==> False) <==> ~p) let lem_p_iff_false #p = () val and_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p /\ q) <==> (p' /\ q')) let and_cong #p #q #p' #q' _ _ = () val or_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p \/ q) <==> (p' \/ q')) let or_cong #p #q #p' #q' _ _ = () val imp_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p ==> q) <==> (p' ==> q')) let imp_cong #p #q #p' #q' _ _ = () val fa_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((forall (x:a). p x) <==> (forall (x:a). q x)) let fa_cong #a #p #q f = assert ((forall (x:a). p x) <==> (forall (x:a). q x)) by ( split(); let do1 () : Tac unit = let _ = l_intros () in let t = quote f in let x = nth_var (-1) in let bb = pose (mk_e_app t [binding_to_term x]) in () in iseq [do1; do1] ) val ex_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((exists (x:a). p x) <==> (exists (x:a). q x)) let ex_cong #a #p #q f = assert ((exists (x:a). p x) <==> (exists (x:a). q x)) by (assume_safe (fun () -> split(); let do1 () : Tac unit = let [ex] = l_intros () in let (b, pf) = elim_exists (binding_to_term ex) in let t = quote f in let bb = pose (mk_e_app t [binding_to_term b]) in () in iseq [do1; do1] )) val neg_cong (#p #q:Type) : squash (p <==> q) -> Lemma (~p <==> ~q) let neg_cong #p #q _ = () val iff_cong (#p #p' #q #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p <==> q) <==> (p' <==> q')) let iff_cong #p #p' #q #q' _ _ = () // Absolutely hideous, do something about normalization val is_true : term -> Tac bool let is_true t = begin match term_as_formula' t with | True_ -> true | _ -> begin match inspect t with | Tv_App l r -> begin match inspect l with | Tv_Abs b t -> begin match term_as_formula' t with | True_ -> true | _ -> false end | _ -> false end | _ -> false end end val is_false : term -> Tac bool let is_false t = begin match term_as_formula' t with | False_ -> true | _ -> begin match inspect t with | Tv_App l r -> begin match inspect l with | Tv_Abs b t -> begin match term_as_formula' t with | False_ -> true | _ -> false end | _ -> false end | _ -> false end end val inhabit : unit -> Tac unit let inhabit () = let t = cur_goal () in match inspect t with | Tv_FVar fv -> let qn = inspect_fv fv in if qn = int_lid then exact (`42) else if qn = bool_lid then exact (`true) else if qn = unit_lid then exact (`()) else fail "" | _ -> fail "" val simplify_point : unit -> Tac unit val recurse : unit -> Tac unit let rec simplify_point () = recurse (); norm []; let g = cur_goal () in let f = term_as_formula g in match f with | Iff l r -> begin match term_as_formula' l with | And p q -> if is_true p then apply_lemma (`lem_true_and_p) else if is_true q then apply_lemma (`lem_p_and_true) else if is_false p then apply_lemma (`lem_false_and_p) else if is_false q then apply_lemma (`lem_p_and_false) else tiff () | Or p q -> if is_true p then apply_lemma (`lem_true_or_p) else if is_true q then apply_lemma (`lem_p_or_true) else if is_false p then apply_lemma (`lem_false_or_p) else if is_false q then apply_lemma (`lem_p_or_false) else tiff () | Implies p q -> if is_true p then apply_lemma (`lem_true_imp_p) else if is_true q then apply_lemma (`lem_p_imp_true) else if is_false p then apply_lemma (`lem_false_imp_p) else tiff () | Forall _b _sort p -> if is_true p then apply_lemma (`lem_fa_true) else if is_false p then or_else (fun () -> apply_lemma (`lem_fa_false); inhabit ()) tiff else tiff () | Exists _b _sort p -> if is_false p then apply_lemma (`lem_ex_false) else if is_true p then or_else (fun () -> apply_lemma (`lem_ex_true); inhabit ()) tiff else tiff () | Not p -> if is_true p then apply_lemma (`lem_neg_true) else if is_false p then apply_lemma (`lem_neg_false) else tiff () | Iff p q -> // After applying the lemma, we might still have more simpl to do, // so add an intermediate step. step (); if is_true p then apply_lemma (`lem_true_iff_p) else if is_true q then apply_lemma (`lem_p_iff_true) else if is_false p then apply_lemma (`lem_false_iff_p) else if is_false q then apply_lemma (`lem_p_iff_false) else tiff (); simplify_point () | _ -> tiff () end | _ -> fail "simplify_point: failed precondition: goal should be `g <==> ?u`" and recurse () : Tac unit = step (); norm []; let g = cur_goal () in let f = term_as_formula g in match f with | Iff l r -> begin match term_as_formula' l with | And _ _ -> seq (fun () -> apply_lemma (`and_cong)) simplify_point | Or _ _ -> seq (fun () -> apply_lemma (`or_cong)) simplify_point | Implies _ _ -> seq (fun () -> apply_lemma (`imp_cong)) simplify_point | Forall _ _ _ -> apply_lemma (`fa_cong); let _ = intro () in simplify_point () | Exists _ _ _ -> apply_lemma (`ex_cong); let _ = intro () in simplify_point () | Not _ -> apply_lemma (`neg_cong); simplify_point () | Iff _ _ -> seq (fun () -> apply_lemma (`iff_cong)) simplify_point | _ -> tiff () end | _ -> fail "recurse: failed precondition: goal should be `g <==> ?u`" val equiv : #p:Type -> #q:Type -> squash (p <==> q) -> squash q -> Lemma p let equiv #p #q _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Simplifier.fst" }
[ { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.Simplifier.simplify_point", "FStar.Tactics.V2.Derived.apply_lemma" ]
[]
false
true
false
false
false
let simplify () : Tac unit =
apply_lemma (`equiv); simplify_point ()
false
FStar.Tactics.Simplifier.fst
FStar.Tactics.Simplifier.fa_cong
val fa_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((forall (x:a). p x) <==> (forall (x:a). q x))
val fa_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((forall (x:a). p x) <==> (forall (x:a). q x))
let fa_cong #a #p #q f = assert ((forall (x:a). p x) <==> (forall (x:a). q x)) by ( split(); let do1 () : Tac unit = let _ = l_intros () in let t = quote f in let x = nth_var (-1) in let bb = pose (mk_e_app t [binding_to_term x]) in () in iseq [do1; do1] )
{ "file_name": "ulib/FStar.Tactics.Simplifier.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 132, "start_col": 0, "start_line": 121 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Simplifier open FStar.Tactics.V2 open FStar.Reflection.V2.Formula open FStar.Reflection.Const (* A correct-by-construction logical simplifier * * No calling `norm [simpl]`, that's cheating! *) val lem_iff_refl : #a:Type -> Lemma (a <==> a) let lem_iff_refl #a = () val lem_iff_trans : #a:Type -> #b:Type -> #c:Type -> squash (a <==> b) -> squash (b <==> c) -> Lemma (a <==> c) let lem_iff_trans #a #b #c _ _ = () let tiff () : Tac unit = apply_lemma (`lem_iff_refl) let step () : Tac unit = apply_lemma (`lem_iff_trans) val lem_true_and_p : #p:Type -> Lemma ((True /\ p) <==> p) let lem_true_and_p #p = () val lem_p_and_true : #p:Type -> Lemma ((p /\ True) <==> p) let lem_p_and_true #p = () val lem_false_and_p : #p:Type -> Lemma ((False /\ p) <==> False) let lem_false_and_p #p = () val lem_p_and_false : #p:Type -> Lemma ((p /\ False) <==> False) let lem_p_and_false #p = () val lem_true_or_p : #p:Type -> Lemma ((True \/ p) <==> True) let lem_true_or_p #p = () val lem_p_or_true : #p:Type -> Lemma ((p \/ True) <==> True) let lem_p_or_true #p = () val lem_false_or_p : #p:Type -> Lemma ((False \/ p) <==> p) let lem_false_or_p #p = () val lem_p_or_false : #p:Type -> Lemma ((p \/ False) <==> p) let lem_p_or_false #p = () val lem_true_imp_p : #p:Type -> Lemma ((True ==> p) <==> p) let lem_true_imp_p #p = () val lem_p_imp_true : #p:Type -> Lemma ((p ==> True) <==> True) let lem_p_imp_true #p = () val lem_false_imp_p : #p:Type -> Lemma ((False ==> p) <==> True) let lem_false_imp_p #p = () val lem_fa_true : #a:Type -> Lemma ((forall (x:a). True) <==> True) let lem_fa_true #a = () val lem_fa_false : #a:Type -> (x:a) -> Lemma ((forall (x:a). False) <==> False) let lem_fa_false #a x = () val lem_ex_false : #a:Type -> Lemma ((exists (x:a). False) <==> False) let lem_ex_false #a = () val lem_ex_true : #a:Type -> (x:a) -> Lemma ((exists (x:a). True) <==> True) let lem_ex_true #a x = () val lem_neg_false : unit -> Lemma (~False <==> True) let lem_neg_false () = () val lem_neg_true : unit -> Lemma (~True <==> False) let lem_neg_true () = () val lem_true_iff_p : #p:Type -> Lemma ((True <==> p) <==> p) let lem_true_iff_p #p = () val lem_false_iff_p : #p:Type -> Lemma ((False <==> p) <==> ~p) let lem_false_iff_p #p = () val lem_p_iff_true : #p:Type -> Lemma ((p <==> True) <==> p) let lem_p_iff_true #p = () val lem_p_iff_false : #p:Type -> Lemma ((p <==> False) <==> ~p) let lem_p_iff_false #p = () val and_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p /\ q) <==> (p' /\ q')) let and_cong #p #q #p' #q' _ _ = () val or_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p \/ q) <==> (p' \/ q')) let or_cong #p #q #p' #q' _ _ = () val imp_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p ==> q) <==> (p' ==> q')) let imp_cong #p #q #p' #q' _ _ = () val fa_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Simplifier.fst" }
[ { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (x: a -> Prims.squash (p x <==> q x)) -> FStar.Pervasives.Lemma (ensures (forall (x: a). p x) <==> (forall (x: a). q x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.squash", "Prims.l_iff", "FStar.Tactics.Effect.assert_by_tactic", "Prims.l_Forall", "Prims.unit", "FStar.Tactics.V2.Derived.iseq", "Prims.Cons", "Prims.Nil", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.pose", "FStar.Reflection.V2.Derived.mk_e_app", "FStar.Stubs.Reflection.Types.term", "FStar.Tactics.V2.SyntaxCoercions.binding_to_term", "FStar.Tactics.V2.Derived.nth_var", "Prims.op_Minus", "Prims.list", "FStar.Tactics.V2.Logic.l_intros", "FStar.Tactics.V2.Logic.split" ]
[]
false
false
true
false
false
let fa_cong #a #p #q f =
FStar.Tactics.Effect.assert_by_tactic ((forall (x: a). p x) <==> (forall (x: a). q x)) (fun _ -> (); (split (); let do1 () : Tac unit = let _ = l_intros () in let t = quote f in let x = nth_var (- 1) in let bb = pose (mk_e_app t [binding_to_term x]) in () in iseq [do1; do1]))
false
FStar.Tactics.Simplifier.fst
FStar.Tactics.Simplifier.inhabit
val inhabit : unit -> Tac unit
val inhabit : unit -> Tac unit
let inhabit () = let t = cur_goal () in match inspect t with | Tv_FVar fv -> let qn = inspect_fv fv in if qn = int_lid then exact (`42) else if qn = bool_lid then exact (`true) else if qn = unit_lid then exact (`()) else fail "" | _ -> fail ""
{ "file_name": "ulib/FStar.Tactics.Simplifier.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 203, "start_col": 0, "start_line": 194 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Simplifier open FStar.Tactics.V2 open FStar.Reflection.V2.Formula open FStar.Reflection.Const (* A correct-by-construction logical simplifier * * No calling `norm [simpl]`, that's cheating! *) val lem_iff_refl : #a:Type -> Lemma (a <==> a) let lem_iff_refl #a = () val lem_iff_trans : #a:Type -> #b:Type -> #c:Type -> squash (a <==> b) -> squash (b <==> c) -> Lemma (a <==> c) let lem_iff_trans #a #b #c _ _ = () let tiff () : Tac unit = apply_lemma (`lem_iff_refl) let step () : Tac unit = apply_lemma (`lem_iff_trans) val lem_true_and_p : #p:Type -> Lemma ((True /\ p) <==> p) let lem_true_and_p #p = () val lem_p_and_true : #p:Type -> Lemma ((p /\ True) <==> p) let lem_p_and_true #p = () val lem_false_and_p : #p:Type -> Lemma ((False /\ p) <==> False) let lem_false_and_p #p = () val lem_p_and_false : #p:Type -> Lemma ((p /\ False) <==> False) let lem_p_and_false #p = () val lem_true_or_p : #p:Type -> Lemma ((True \/ p) <==> True) let lem_true_or_p #p = () val lem_p_or_true : #p:Type -> Lemma ((p \/ True) <==> True) let lem_p_or_true #p = () val lem_false_or_p : #p:Type -> Lemma ((False \/ p) <==> p) let lem_false_or_p #p = () val lem_p_or_false : #p:Type -> Lemma ((p \/ False) <==> p) let lem_p_or_false #p = () val lem_true_imp_p : #p:Type -> Lemma ((True ==> p) <==> p) let lem_true_imp_p #p = () val lem_p_imp_true : #p:Type -> Lemma ((p ==> True) <==> True) let lem_p_imp_true #p = () val lem_false_imp_p : #p:Type -> Lemma ((False ==> p) <==> True) let lem_false_imp_p #p = () val lem_fa_true : #a:Type -> Lemma ((forall (x:a). True) <==> True) let lem_fa_true #a = () val lem_fa_false : #a:Type -> (x:a) -> Lemma ((forall (x:a). False) <==> False) let lem_fa_false #a x = () val lem_ex_false : #a:Type -> Lemma ((exists (x:a). False) <==> False) let lem_ex_false #a = () val lem_ex_true : #a:Type -> (x:a) -> Lemma ((exists (x:a). True) <==> True) let lem_ex_true #a x = () val lem_neg_false : unit -> Lemma (~False <==> True) let lem_neg_false () = () val lem_neg_true : unit -> Lemma (~True <==> False) let lem_neg_true () = () val lem_true_iff_p : #p:Type -> Lemma ((True <==> p) <==> p) let lem_true_iff_p #p = () val lem_false_iff_p : #p:Type -> Lemma ((False <==> p) <==> ~p) let lem_false_iff_p #p = () val lem_p_iff_true : #p:Type -> Lemma ((p <==> True) <==> p) let lem_p_iff_true #p = () val lem_p_iff_false : #p:Type -> Lemma ((p <==> False) <==> ~p) let lem_p_iff_false #p = () val and_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p /\ q) <==> (p' /\ q')) let and_cong #p #q #p' #q' _ _ = () val or_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p \/ q) <==> (p' \/ q')) let or_cong #p #q #p' #q' _ _ = () val imp_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p ==> q) <==> (p' ==> q')) let imp_cong #p #q #p' #q' _ _ = () val fa_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((forall (x:a). p x) <==> (forall (x:a). q x)) let fa_cong #a #p #q f = assert ((forall (x:a). p x) <==> (forall (x:a). q x)) by ( split(); let do1 () : Tac unit = let _ = l_intros () in let t = quote f in let x = nth_var (-1) in let bb = pose (mk_e_app t [binding_to_term x]) in () in iseq [do1; do1] ) val ex_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((exists (x:a). p x) <==> (exists (x:a). q x)) let ex_cong #a #p #q f = assert ((exists (x:a). p x) <==> (exists (x:a). q x)) by (assume_safe (fun () -> split(); let do1 () : Tac unit = let [ex] = l_intros () in let (b, pf) = elim_exists (binding_to_term ex) in let t = quote f in let bb = pose (mk_e_app t [binding_to_term b]) in () in iseq [do1; do1] )) val neg_cong (#p #q:Type) : squash (p <==> q) -> Lemma (~p <==> ~q) let neg_cong #p #q _ = () val iff_cong (#p #p' #q #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p <==> q) <==> (p' <==> q')) let iff_cong #p #p' #q #q' _ _ = () // Absolutely hideous, do something about normalization val is_true : term -> Tac bool let is_true t = begin match term_as_formula' t with | True_ -> true | _ -> begin match inspect t with | Tv_App l r -> begin match inspect l with | Tv_Abs b t -> begin match term_as_formula' t with | True_ -> true | _ -> false end | _ -> false end | _ -> false end end val is_false : term -> Tac bool let is_false t = begin match term_as_formula' t with | False_ -> true | _ -> begin match inspect t with | Tv_App l r -> begin match inspect l with | Tv_Abs b t -> begin match term_as_formula' t with | False_ -> true | _ -> false end | _ -> false end | _ -> false end end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Simplifier.fst" }
[ { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Stubs.Reflection.Types.fv", "Prims.op_Equality", "Prims.list", "Prims.string", "FStar.Reflection.Const.int_lid", "FStar.Tactics.V2.Derived.exact", "Prims.bool", "FStar.Reflection.Const.bool_lid", "FStar.Reflection.Const.unit_lid", "FStar.Tactics.V2.Derived.fail", "FStar.Stubs.Reflection.Types.name", "FStar.Stubs.Reflection.V2.Builtins.inspect_fv", "FStar.Tactics.NamedView.named_term_view", "FStar.Tactics.NamedView.inspect", "FStar.Stubs.Reflection.Types.typ", "FStar.Tactics.V2.Derived.cur_goal" ]
[]
false
true
false
false
false
let inhabit () =
let t = cur_goal () in match inspect t with | Tv_FVar fv -> let qn = inspect_fv fv in if qn = int_lid then exact (`42) else if qn = bool_lid then exact (`true) else if qn = unit_lid then exact (`()) else fail "" | _ -> fail ""
false
FStar.Tactics.Simplifier.fst
FStar.Tactics.Simplifier.ex_cong
val ex_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((exists (x:a). p x) <==> (exists (x:a). q x))
val ex_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((exists (x:a). p x) <==> (exists (x:a). q x))
let ex_cong #a #p #q f = assert ((exists (x:a). p x) <==> (exists (x:a). q x)) by (assume_safe (fun () -> split(); let do1 () : Tac unit = let [ex] = l_intros () in let (b, pf) = elim_exists (binding_to_term ex) in let t = quote f in let bb = pose (mk_e_app t [binding_to_term b]) in () in iseq [do1; do1] ))
{ "file_name": "ulib/FStar.Tactics.Simplifier.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 4, "end_line": 148, "start_col": 0, "start_line": 137 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Simplifier open FStar.Tactics.V2 open FStar.Reflection.V2.Formula open FStar.Reflection.Const (* A correct-by-construction logical simplifier * * No calling `norm [simpl]`, that's cheating! *) val lem_iff_refl : #a:Type -> Lemma (a <==> a) let lem_iff_refl #a = () val lem_iff_trans : #a:Type -> #b:Type -> #c:Type -> squash (a <==> b) -> squash (b <==> c) -> Lemma (a <==> c) let lem_iff_trans #a #b #c _ _ = () let tiff () : Tac unit = apply_lemma (`lem_iff_refl) let step () : Tac unit = apply_lemma (`lem_iff_trans) val lem_true_and_p : #p:Type -> Lemma ((True /\ p) <==> p) let lem_true_and_p #p = () val lem_p_and_true : #p:Type -> Lemma ((p /\ True) <==> p) let lem_p_and_true #p = () val lem_false_and_p : #p:Type -> Lemma ((False /\ p) <==> False) let lem_false_and_p #p = () val lem_p_and_false : #p:Type -> Lemma ((p /\ False) <==> False) let lem_p_and_false #p = () val lem_true_or_p : #p:Type -> Lemma ((True \/ p) <==> True) let lem_true_or_p #p = () val lem_p_or_true : #p:Type -> Lemma ((p \/ True) <==> True) let lem_p_or_true #p = () val lem_false_or_p : #p:Type -> Lemma ((False \/ p) <==> p) let lem_false_or_p #p = () val lem_p_or_false : #p:Type -> Lemma ((p \/ False) <==> p) let lem_p_or_false #p = () val lem_true_imp_p : #p:Type -> Lemma ((True ==> p) <==> p) let lem_true_imp_p #p = () val lem_p_imp_true : #p:Type -> Lemma ((p ==> True) <==> True) let lem_p_imp_true #p = () val lem_false_imp_p : #p:Type -> Lemma ((False ==> p) <==> True) let lem_false_imp_p #p = () val lem_fa_true : #a:Type -> Lemma ((forall (x:a). True) <==> True) let lem_fa_true #a = () val lem_fa_false : #a:Type -> (x:a) -> Lemma ((forall (x:a). False) <==> False) let lem_fa_false #a x = () val lem_ex_false : #a:Type -> Lemma ((exists (x:a). False) <==> False) let lem_ex_false #a = () val lem_ex_true : #a:Type -> (x:a) -> Lemma ((exists (x:a). True) <==> True) let lem_ex_true #a x = () val lem_neg_false : unit -> Lemma (~False <==> True) let lem_neg_false () = () val lem_neg_true : unit -> Lemma (~True <==> False) let lem_neg_true () = () val lem_true_iff_p : #p:Type -> Lemma ((True <==> p) <==> p) let lem_true_iff_p #p = () val lem_false_iff_p : #p:Type -> Lemma ((False <==> p) <==> ~p) let lem_false_iff_p #p = () val lem_p_iff_true : #p:Type -> Lemma ((p <==> True) <==> p) let lem_p_iff_true #p = () val lem_p_iff_false : #p:Type -> Lemma ((p <==> False) <==> ~p) let lem_p_iff_false #p = () val and_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p /\ q) <==> (p' /\ q')) let and_cong #p #q #p' #q' _ _ = () val or_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p \/ q) <==> (p' \/ q')) let or_cong #p #q #p' #q' _ _ = () val imp_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p ==> q) <==> (p' ==> q')) let imp_cong #p #q #p' #q' _ _ = () val fa_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((forall (x:a). p x) <==> (forall (x:a). q x)) let fa_cong #a #p #q f = assert ((forall (x:a). p x) <==> (forall (x:a). q x)) by ( split(); let do1 () : Tac unit = let _ = l_intros () in let t = quote f in let x = nth_var (-1) in let bb = pose (mk_e_app t [binding_to_term x]) in () in iseq [do1; do1] ) val ex_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Simplifier.fst" }
[ { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (x: a -> Prims.squash (p x <==> q x)) -> FStar.Pervasives.Lemma (ensures (exists (x: a). p x) <==> (exists (x: a). q x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.squash", "Prims.l_iff", "FStar.Tactics.Effect.assert_by_tactic", "Prims.l_Exists", "Prims.unit", "FStar.Tactics.Effect.assume_safe", "FStar.Tactics.V2.Derived.iseq", "Prims.Cons", "Prims.Nil", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Derived.pose", "FStar.Reflection.V2.Derived.mk_e_app", "FStar.Stubs.Reflection.Types.term", "FStar.Tactics.V2.SyntaxCoercions.binding_to_term", "FStar.Pervasives.Native.tuple2", "FStar.Tactics.V2.Logic.elim_exists", "Prims.list", "FStar.Tactics.V2.Logic.l_intros", "FStar.Tactics.V2.Logic.split" ]
[]
false
false
true
false
false
let ex_cong #a #p #q f =
FStar.Tactics.Effect.assert_by_tactic ((exists (x: a). p x) <==> (exists (x: a). q x)) (fun _ -> (); (assume_safe (fun () -> split (); let do1 () : Tac unit = let [ex] = l_intros () in let b, pf = elim_exists (binding_to_term ex) in let t = quote f in let bb = pose (mk_e_app t [binding_to_term b]) in () in iseq [do1; do1])))
false
FStar.Tactics.Simplifier.fst
FStar.Tactics.Simplifier.recurse
val recurse : unit -> Tac unit
val recurse : unit -> Tac unit
let rec simplify_point () = recurse (); norm []; let g = cur_goal () in let f = term_as_formula g in match f with | Iff l r -> begin match term_as_formula' l with | And p q -> if is_true p then apply_lemma (`lem_true_and_p) else if is_true q then apply_lemma (`lem_p_and_true) else if is_false p then apply_lemma (`lem_false_and_p) else if is_false q then apply_lemma (`lem_p_and_false) else tiff () | Or p q -> if is_true p then apply_lemma (`lem_true_or_p) else if is_true q then apply_lemma (`lem_p_or_true) else if is_false p then apply_lemma (`lem_false_or_p) else if is_false q then apply_lemma (`lem_p_or_false) else tiff () | Implies p q -> if is_true p then apply_lemma (`lem_true_imp_p) else if is_true q then apply_lemma (`lem_p_imp_true) else if is_false p then apply_lemma (`lem_false_imp_p) else tiff () | Forall _b _sort p -> if is_true p then apply_lemma (`lem_fa_true) else if is_false p then or_else (fun () -> apply_lemma (`lem_fa_false); inhabit ()) tiff else tiff () | Exists _b _sort p -> if is_false p then apply_lemma (`lem_ex_false) else if is_true p then or_else (fun () -> apply_lemma (`lem_ex_true); inhabit ()) tiff else tiff () | Not p -> if is_true p then apply_lemma (`lem_neg_true) else if is_false p then apply_lemma (`lem_neg_false) else tiff () | Iff p q -> // After applying the lemma, we might still have more simpl to do, // so add an intermediate step. step (); if is_true p then apply_lemma (`lem_true_iff_p) else if is_true q then apply_lemma (`lem_p_iff_true) else if is_false p then apply_lemma (`lem_false_iff_p) else if is_false q then apply_lemma (`lem_p_iff_false) else tiff (); simplify_point () | _ -> tiff () end | _ -> fail "simplify_point: failed precondition: goal should be `g <==> ?u`" and recurse () : Tac unit = step (); norm []; let g = cur_goal () in let f = term_as_formula g in match f with | Iff l r -> begin match term_as_formula' l with | And _ _ -> seq (fun () -> apply_lemma (`and_cong)) simplify_point | Or _ _ -> seq (fun () -> apply_lemma (`or_cong)) simplify_point | Implies _ _ -> seq (fun () -> apply_lemma (`imp_cong)) simplify_point | Forall _ _ _ -> apply_lemma (`fa_cong); let _ = intro () in simplify_point () | Exists _ _ _ -> apply_lemma (`ex_cong); let _ = intro () in simplify_point () | Not _ -> apply_lemma (`neg_cong); simplify_point () | Iff _ _ -> seq (fun () -> apply_lemma (`iff_cong)) simplify_point | _ -> tiff () end | _ -> fail "recurse: failed precondition: goal should be `g <==> ?u`"
{ "file_name": "ulib/FStar.Tactics.Simplifier.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 302, "start_col": 0, "start_line": 208 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Simplifier open FStar.Tactics.V2 open FStar.Reflection.V2.Formula open FStar.Reflection.Const (* A correct-by-construction logical simplifier * * No calling `norm [simpl]`, that's cheating! *) val lem_iff_refl : #a:Type -> Lemma (a <==> a) let lem_iff_refl #a = () val lem_iff_trans : #a:Type -> #b:Type -> #c:Type -> squash (a <==> b) -> squash (b <==> c) -> Lemma (a <==> c) let lem_iff_trans #a #b #c _ _ = () let tiff () : Tac unit = apply_lemma (`lem_iff_refl) let step () : Tac unit = apply_lemma (`lem_iff_trans) val lem_true_and_p : #p:Type -> Lemma ((True /\ p) <==> p) let lem_true_and_p #p = () val lem_p_and_true : #p:Type -> Lemma ((p /\ True) <==> p) let lem_p_and_true #p = () val lem_false_and_p : #p:Type -> Lemma ((False /\ p) <==> False) let lem_false_and_p #p = () val lem_p_and_false : #p:Type -> Lemma ((p /\ False) <==> False) let lem_p_and_false #p = () val lem_true_or_p : #p:Type -> Lemma ((True \/ p) <==> True) let lem_true_or_p #p = () val lem_p_or_true : #p:Type -> Lemma ((p \/ True) <==> True) let lem_p_or_true #p = () val lem_false_or_p : #p:Type -> Lemma ((False \/ p) <==> p) let lem_false_or_p #p = () val lem_p_or_false : #p:Type -> Lemma ((p \/ False) <==> p) let lem_p_or_false #p = () val lem_true_imp_p : #p:Type -> Lemma ((True ==> p) <==> p) let lem_true_imp_p #p = () val lem_p_imp_true : #p:Type -> Lemma ((p ==> True) <==> True) let lem_p_imp_true #p = () val lem_false_imp_p : #p:Type -> Lemma ((False ==> p) <==> True) let lem_false_imp_p #p = () val lem_fa_true : #a:Type -> Lemma ((forall (x:a). True) <==> True) let lem_fa_true #a = () val lem_fa_false : #a:Type -> (x:a) -> Lemma ((forall (x:a). False) <==> False) let lem_fa_false #a x = () val lem_ex_false : #a:Type -> Lemma ((exists (x:a). False) <==> False) let lem_ex_false #a = () val lem_ex_true : #a:Type -> (x:a) -> Lemma ((exists (x:a). True) <==> True) let lem_ex_true #a x = () val lem_neg_false : unit -> Lemma (~False <==> True) let lem_neg_false () = () val lem_neg_true : unit -> Lemma (~True <==> False) let lem_neg_true () = () val lem_true_iff_p : #p:Type -> Lemma ((True <==> p) <==> p) let lem_true_iff_p #p = () val lem_false_iff_p : #p:Type -> Lemma ((False <==> p) <==> ~p) let lem_false_iff_p #p = () val lem_p_iff_true : #p:Type -> Lemma ((p <==> True) <==> p) let lem_p_iff_true #p = () val lem_p_iff_false : #p:Type -> Lemma ((p <==> False) <==> ~p) let lem_p_iff_false #p = () val and_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p /\ q) <==> (p' /\ q')) let and_cong #p #q #p' #q' _ _ = () val or_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p \/ q) <==> (p' \/ q')) let or_cong #p #q #p' #q' _ _ = () val imp_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p ==> q) <==> (p' ==> q')) let imp_cong #p #q #p' #q' _ _ = () val fa_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((forall (x:a). p x) <==> (forall (x:a). q x)) let fa_cong #a #p #q f = assert ((forall (x:a). p x) <==> (forall (x:a). q x)) by ( split(); let do1 () : Tac unit = let _ = l_intros () in let t = quote f in let x = nth_var (-1) in let bb = pose (mk_e_app t [binding_to_term x]) in () in iseq [do1; do1] ) val ex_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((exists (x:a). p x) <==> (exists (x:a). q x)) let ex_cong #a #p #q f = assert ((exists (x:a). p x) <==> (exists (x:a). q x)) by (assume_safe (fun () -> split(); let do1 () : Tac unit = let [ex] = l_intros () in let (b, pf) = elim_exists (binding_to_term ex) in let t = quote f in let bb = pose (mk_e_app t [binding_to_term b]) in () in iseq [do1; do1] )) val neg_cong (#p #q:Type) : squash (p <==> q) -> Lemma (~p <==> ~q) let neg_cong #p #q _ = () val iff_cong (#p #p' #q #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p <==> q) <==> (p' <==> q')) let iff_cong #p #p' #q #q' _ _ = () // Absolutely hideous, do something about normalization val is_true : term -> Tac bool let is_true t = begin match term_as_formula' t with | True_ -> true | _ -> begin match inspect t with | Tv_App l r -> begin match inspect l with | Tv_Abs b t -> begin match term_as_formula' t with | True_ -> true | _ -> false end | _ -> false end | _ -> false end end val is_false : term -> Tac bool let is_false t = begin match term_as_formula' t with | False_ -> true | _ -> begin match inspect t with | Tv_App l r -> begin match inspect l with | Tv_Abs b t -> begin match term_as_formula' t with | False_ -> true | _ -> false end | _ -> false end | _ -> false end end val inhabit : unit -> Tac unit let inhabit () = let t = cur_goal () in match inspect t with | Tv_FVar fv -> let qn = inspect_fv fv in if qn = int_lid then exact (`42) else if qn = bool_lid then exact (`true) else if qn = unit_lid then exact (`()) else fail "" | _ -> fail "" val simplify_point : unit -> Tac unit val recurse : unit -> Tac unit
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Simplifier.fst" }
[ { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[ "simplify_point", "recurse" ]
[ "Prims.unit", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.seq", "FStar.Tactics.V2.Derived.apply_lemma", "FStar.Tactics.Simplifier.simplify_point", "FStar.Tactics.NamedView.bv", "FStar.Stubs.Reflection.Types.typ", "FStar.Stubs.Reflection.V2.Data.binding", "FStar.Stubs.Tactics.V2.Builtins.intro", "FStar.Reflection.V2.Formula.formula", "FStar.Tactics.Simplifier.tiff", "FStar.Reflection.V2.Formula.term_as_formula'", "FStar.Tactics.V2.Derived.fail", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Stubs.Tactics.V2.Builtins.norm", "Prims.Nil", "FStar.Pervasives.norm_step", "FStar.Tactics.Simplifier.step" ]
[ "mutual recursion" ]
false
true
false
false
false
let rec recurse () : Tac unit =
step (); norm []; let g = cur_goal () in let f = term_as_formula g in match f with | Iff l r -> (match term_as_formula' l with | And _ _ -> seq (fun () -> apply_lemma (`and_cong)) simplify_point | Or _ _ -> seq (fun () -> apply_lemma (`or_cong)) simplify_point | Implies _ _ -> seq (fun () -> apply_lemma (`imp_cong)) simplify_point | Forall _ _ _ -> apply_lemma (`fa_cong); let _ = intro () in simplify_point () | Exists _ _ _ -> apply_lemma (`ex_cong); let _ = intro () in simplify_point () | Not _ -> apply_lemma (`neg_cong); simplify_point () | Iff _ _ -> seq (fun () -> apply_lemma (`iff_cong)) simplify_point | _ -> tiff ()) | _ -> fail "recurse: failed precondition: goal should be `g <==> ?u`"
false
FStar.Tactics.Simplifier.fst
FStar.Tactics.Simplifier.simplify_point
val simplify_point : unit -> Tac unit
val simplify_point : unit -> Tac unit
let rec simplify_point () = recurse (); norm []; let g = cur_goal () in let f = term_as_formula g in match f with | Iff l r -> begin match term_as_formula' l with | And p q -> if is_true p then apply_lemma (`lem_true_and_p) else if is_true q then apply_lemma (`lem_p_and_true) else if is_false p then apply_lemma (`lem_false_and_p) else if is_false q then apply_lemma (`lem_p_and_false) else tiff () | Or p q -> if is_true p then apply_lemma (`lem_true_or_p) else if is_true q then apply_lemma (`lem_p_or_true) else if is_false p then apply_lemma (`lem_false_or_p) else if is_false q then apply_lemma (`lem_p_or_false) else tiff () | Implies p q -> if is_true p then apply_lemma (`lem_true_imp_p) else if is_true q then apply_lemma (`lem_p_imp_true) else if is_false p then apply_lemma (`lem_false_imp_p) else tiff () | Forall _b _sort p -> if is_true p then apply_lemma (`lem_fa_true) else if is_false p then or_else (fun () -> apply_lemma (`lem_fa_false); inhabit ()) tiff else tiff () | Exists _b _sort p -> if is_false p then apply_lemma (`lem_ex_false) else if is_true p then or_else (fun () -> apply_lemma (`lem_ex_true); inhabit ()) tiff else tiff () | Not p -> if is_true p then apply_lemma (`lem_neg_true) else if is_false p then apply_lemma (`lem_neg_false) else tiff () | Iff p q -> // After applying the lemma, we might still have more simpl to do, // so add an intermediate step. step (); if is_true p then apply_lemma (`lem_true_iff_p) else if is_true q then apply_lemma (`lem_p_iff_true) else if is_false p then apply_lemma (`lem_false_iff_p) else if is_false q then apply_lemma (`lem_p_iff_false) else tiff (); simplify_point () | _ -> tiff () end | _ -> fail "simplify_point: failed precondition: goal should be `g <==> ?u`" and recurse () : Tac unit = step (); norm []; let g = cur_goal () in let f = term_as_formula g in match f with | Iff l r -> begin match term_as_formula' l with | And _ _ -> seq (fun () -> apply_lemma (`and_cong)) simplify_point | Or _ _ -> seq (fun () -> apply_lemma (`or_cong)) simplify_point | Implies _ _ -> seq (fun () -> apply_lemma (`imp_cong)) simplify_point | Forall _ _ _ -> apply_lemma (`fa_cong); let _ = intro () in simplify_point () | Exists _ _ _ -> apply_lemma (`ex_cong); let _ = intro () in simplify_point () | Not _ -> apply_lemma (`neg_cong); simplify_point () | Iff _ _ -> seq (fun () -> apply_lemma (`iff_cong)) simplify_point | _ -> tiff () end | _ -> fail "recurse: failed precondition: goal should be `g <==> ?u`"
{ "file_name": "ulib/FStar.Tactics.Simplifier.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 302, "start_col": 0, "start_line": 208 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Tactics.Simplifier open FStar.Tactics.V2 open FStar.Reflection.V2.Formula open FStar.Reflection.Const (* A correct-by-construction logical simplifier * * No calling `norm [simpl]`, that's cheating! *) val lem_iff_refl : #a:Type -> Lemma (a <==> a) let lem_iff_refl #a = () val lem_iff_trans : #a:Type -> #b:Type -> #c:Type -> squash (a <==> b) -> squash (b <==> c) -> Lemma (a <==> c) let lem_iff_trans #a #b #c _ _ = () let tiff () : Tac unit = apply_lemma (`lem_iff_refl) let step () : Tac unit = apply_lemma (`lem_iff_trans) val lem_true_and_p : #p:Type -> Lemma ((True /\ p) <==> p) let lem_true_and_p #p = () val lem_p_and_true : #p:Type -> Lemma ((p /\ True) <==> p) let lem_p_and_true #p = () val lem_false_and_p : #p:Type -> Lemma ((False /\ p) <==> False) let lem_false_and_p #p = () val lem_p_and_false : #p:Type -> Lemma ((p /\ False) <==> False) let lem_p_and_false #p = () val lem_true_or_p : #p:Type -> Lemma ((True \/ p) <==> True) let lem_true_or_p #p = () val lem_p_or_true : #p:Type -> Lemma ((p \/ True) <==> True) let lem_p_or_true #p = () val lem_false_or_p : #p:Type -> Lemma ((False \/ p) <==> p) let lem_false_or_p #p = () val lem_p_or_false : #p:Type -> Lemma ((p \/ False) <==> p) let lem_p_or_false #p = () val lem_true_imp_p : #p:Type -> Lemma ((True ==> p) <==> p) let lem_true_imp_p #p = () val lem_p_imp_true : #p:Type -> Lemma ((p ==> True) <==> True) let lem_p_imp_true #p = () val lem_false_imp_p : #p:Type -> Lemma ((False ==> p) <==> True) let lem_false_imp_p #p = () val lem_fa_true : #a:Type -> Lemma ((forall (x:a). True) <==> True) let lem_fa_true #a = () val lem_fa_false : #a:Type -> (x:a) -> Lemma ((forall (x:a). False) <==> False) let lem_fa_false #a x = () val lem_ex_false : #a:Type -> Lemma ((exists (x:a). False) <==> False) let lem_ex_false #a = () val lem_ex_true : #a:Type -> (x:a) -> Lemma ((exists (x:a). True) <==> True) let lem_ex_true #a x = () val lem_neg_false : unit -> Lemma (~False <==> True) let lem_neg_false () = () val lem_neg_true : unit -> Lemma (~True <==> False) let lem_neg_true () = () val lem_true_iff_p : #p:Type -> Lemma ((True <==> p) <==> p) let lem_true_iff_p #p = () val lem_false_iff_p : #p:Type -> Lemma ((False <==> p) <==> ~p) let lem_false_iff_p #p = () val lem_p_iff_true : #p:Type -> Lemma ((p <==> True) <==> p) let lem_p_iff_true #p = () val lem_p_iff_false : #p:Type -> Lemma ((p <==> False) <==> ~p) let lem_p_iff_false #p = () val and_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p /\ q) <==> (p' /\ q')) let and_cong #p #q #p' #q' _ _ = () val or_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p \/ q) <==> (p' \/ q')) let or_cong #p #q #p' #q' _ _ = () val imp_cong (#p #q #p' #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p ==> q) <==> (p' ==> q')) let imp_cong #p #q #p' #q' _ _ = () val fa_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((forall (x:a). p x) <==> (forall (x:a). q x)) let fa_cong #a #p #q f = assert ((forall (x:a). p x) <==> (forall (x:a). q x)) by ( split(); let do1 () : Tac unit = let _ = l_intros () in let t = quote f in let x = nth_var (-1) in let bb = pose (mk_e_app t [binding_to_term x]) in () in iseq [do1; do1] ) val ex_cong (#a : Type) (#p #q : a -> Type) : (x:a -> squash (p x <==> q x)) -> Lemma ((exists (x:a). p x) <==> (exists (x:a). q x)) let ex_cong #a #p #q f = assert ((exists (x:a). p x) <==> (exists (x:a). q x)) by (assume_safe (fun () -> split(); let do1 () : Tac unit = let [ex] = l_intros () in let (b, pf) = elim_exists (binding_to_term ex) in let t = quote f in let bb = pose (mk_e_app t [binding_to_term b]) in () in iseq [do1; do1] )) val neg_cong (#p #q:Type) : squash (p <==> q) -> Lemma (~p <==> ~q) let neg_cong #p #q _ = () val iff_cong (#p #p' #q #q' : Type) : squash (p <==> p') -> squash (q <==> q') -> Lemma ((p <==> q) <==> (p' <==> q')) let iff_cong #p #p' #q #q' _ _ = () // Absolutely hideous, do something about normalization val is_true : term -> Tac bool let is_true t = begin match term_as_formula' t with | True_ -> true | _ -> begin match inspect t with | Tv_App l r -> begin match inspect l with | Tv_Abs b t -> begin match term_as_formula' t with | True_ -> true | _ -> false end | _ -> false end | _ -> false end end val is_false : term -> Tac bool let is_false t = begin match term_as_formula' t with | False_ -> true | _ -> begin match inspect t with | Tv_App l r -> begin match inspect l with | Tv_Abs b t -> begin match term_as_formula' t with | False_ -> true | _ -> false end | _ -> false end | _ -> false end end val inhabit : unit -> Tac unit let inhabit () = let t = cur_goal () in match inspect t with | Tv_FVar fv -> let qn = inspect_fv fv in if qn = int_lid then exact (`42) else if qn = bool_lid then exact (`true) else if qn = unit_lid then exact (`()) else fail "" | _ -> fail "" val simplify_point : unit -> Tac unit val recurse : unit -> Tac unit
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Reflection.V2.Formula.fst.checked", "FStar.Reflection.Const.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Tactics.Simplifier.fst" }
[ { "abbrev": false, "full_module": "FStar.Reflection.Const", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2.Formula", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[ "simplify_point", "recurse" ]
[ "Prims.unit", "FStar.Tactics.NamedView.term", "FStar.Tactics.V2.Derived.apply_lemma", "Prims.bool", "FStar.Tactics.Simplifier.tiff", "FStar.Tactics.Simplifier.is_false", "FStar.Tactics.Simplifier.is_true", "FStar.Tactics.NamedView.bv", "FStar.Stubs.Reflection.Types.typ", "FStar.Tactics.V2.Derived.or_else", "FStar.Tactics.Simplifier.inhabit", "FStar.Tactics.Simplifier.simplify_point", "FStar.Tactics.Simplifier.step", "FStar.Reflection.V2.Formula.formula", "FStar.Reflection.V2.Formula.term_as_formula'", "FStar.Tactics.V2.Derived.fail", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Stubs.Tactics.V2.Builtins.norm", "Prims.Nil", "FStar.Pervasives.norm_step", "FStar.Tactics.Simplifier.recurse" ]
[ "mutual recursion" ]
false
true
false
false
false
let rec simplify_point () =
recurse (); norm []; let g = cur_goal () in let f = term_as_formula g in match f with | Iff l r -> (match term_as_formula' l with | And p q -> if is_true p then apply_lemma (`lem_true_and_p) else if is_true q then apply_lemma (`lem_p_and_true) else if is_false p then apply_lemma (`lem_false_and_p) else if is_false q then apply_lemma (`lem_p_and_false) else tiff () | Or p q -> if is_true p then apply_lemma (`lem_true_or_p) else if is_true q then apply_lemma (`lem_p_or_true) else if is_false p then apply_lemma (`lem_false_or_p) else if is_false q then apply_lemma (`lem_p_or_false) else tiff () | Implies p q -> if is_true p then apply_lemma (`lem_true_imp_p) else if is_true q then apply_lemma (`lem_p_imp_true) else if is_false p then apply_lemma (`lem_false_imp_p) else tiff () | Forall _b _sort p -> if is_true p then apply_lemma (`lem_fa_true) else if is_false p then or_else (fun () -> apply_lemma (`lem_fa_false); inhabit ()) tiff else tiff () | Exists _b _sort p -> if is_false p then apply_lemma (`lem_ex_false) else if is_true p then or_else (fun () -> apply_lemma (`lem_ex_true); inhabit ()) tiff else tiff () | Not p -> if is_true p then apply_lemma (`lem_neg_true) else if is_false p then apply_lemma (`lem_neg_false) else tiff () | Iff p q -> step (); if is_true p then apply_lemma (`lem_true_iff_p) else if is_true q then apply_lemma (`lem_p_iff_true) else if is_false p then apply_lemma (`lem_false_iff_p) else if is_false q then apply_lemma (`lem_p_iff_false) else tiff (); simplify_point () | _ -> tiff ()) | _ -> fail "simplify_point: failed precondition: goal should be `g <==> ?u`"
false
Steel.Channel.Simplex.fst
Steel.Channel.Simplex.intro_trace_until_init
val intro_trace_until_init (#p: _) (c: chan_t p) (v: init_chan_val p) : SteelT unit (MRef.pts_to c.trace full_perm (initial_trace p)) (fun _ -> trace_until c.trace v)
val intro_trace_until_init (#p: _) (c: chan_t p) (v: init_chan_val p) : SteelT unit (MRef.pts_to c.trace full_perm (initial_trace p)) (fun _ -> trace_until c.trace v)
let intro_trace_until_init #p (c:chan_t p) (v:init_chan_val p) : SteelT unit (MRef.pts_to c.trace full_perm (initial_trace p)) (fun _ -> trace_until c.trace v) = intro_pure (until (initial_trace p) == step v.chan_prot v.chan_msg); //TODO: Not sure why I need this rewrite rewrite_slprop (MRef.pts_to c.trace full_perm (initial_trace p) `star` pure (until (initial_trace p) == step v.chan_prot v.chan_msg)) (MRef.pts_to c.trace full_perm (initial_trace p) `star` pure (until (initial_trace p) == step v.chan_prot v.chan_msg)) (fun _ -> ()); intro_exists (initial_trace p) (trace_until_prop c.trace v)
{ "file_name": "lib/steel/Steel.Channel.Simplex.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 63, "end_line": 195, "start_col": 0, "start_line": 185 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Channel.Simplex module P = Steel.Channel.Protocol open Steel.SpinLock open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.HigherReference open Steel.FractionalPermission module MRef = Steel.MonotonicHigherReference module H = Steel.HigherReference let sprot = p:prot { more p } noeq type chan_val = { chan_prot : sprot; chan_msg : msg_t chan_prot; chan_ctr : nat } let mref a p = MRef.ref a p let trace_ref (p:prot) = mref (partial_trace_of p) extended_to noeq type chan_t (p:prot) = { send: ref chan_val; recv: ref chan_val; trace: trace_ref p; } let half : perm = half_perm full_perm let step (s:sprot) (x:msg_t s) = step s x let chan_inv_step_p (vrecv vsend:chan_val) : prop = (vsend.chan_prot == step vrecv.chan_prot vrecv.chan_msg /\ vsend.chan_ctr == vrecv.chan_ctr + 1) let chan_inv_step (vrecv vsend:chan_val) : vprop = pure (chan_inv_step_p vrecv vsend) let chan_inv_cond (vsend:chan_val) (vrecv:chan_val) : vprop = if vsend.chan_ctr = vrecv.chan_ctr then pure (vsend == vrecv) else chan_inv_step vrecv vsend let trace_until_prop #p (r:trace_ref p) (vr:chan_val) (tr: partial_trace_of p) : vprop = MRef.pts_to r full_perm tr `star` pure (until tr == step vr.chan_prot vr.chan_msg) let trace_until #p (r:trace_ref p) (vr:chan_val) = h_exists (trace_until_prop r vr) let chan_inv_recv #p (c:chan_t p) (vsend:chan_val) = h_exists (fun (vrecv:chan_val) -> pts_to c.recv half vrecv `star` trace_until c.trace vrecv `star` chan_inv_cond vsend vrecv) let chan_inv #p (c:chan_t p) : vprop = h_exists (fun (vsend:chan_val) -> pts_to c.send half vsend `star` chan_inv_recv c vsend) let intro_chan_inv_cond_eqT (vs vr:chan_val) : Steel unit emp (fun _ -> chan_inv_cond vs vr) (requires fun _ -> vs == vr) (ensures fun _ _ _ -> True) = intro_pure (vs == vs); rewrite_slprop (chan_inv_cond vs vs) (chan_inv_cond vs vr) (fun _ -> ()) let intro_chan_inv_cond_stepT (vs vr:chan_val) : SteelT unit (chan_inv_step vr vs) (fun _ -> chan_inv_cond vs vr) = Steel.Utils.extract_pure (chan_inv_step_p vr vs); rewrite_slprop (chan_inv_step vr vs) (chan_inv_cond vs vr) (fun _ -> ()) let intro_chan_inv_auxT #p (#vs : chan_val) (#vr : chan_val) (c:chan_t p) : SteelT unit (pts_to c.send half vs `star` pts_to c.recv half vr `star` trace_until c.trace vr `star` chan_inv_cond vs vr) (fun _ -> chan_inv c) = intro_exists _ (fun (vr:chan_val) -> pts_to c.recv half vr `star` trace_until c.trace vr `star` chan_inv_cond vs vr); intro_exists _ (fun (vs:chan_val) -> pts_to c.send half vs `star` chan_inv_recv c vs) let intro_chan_inv_stepT #p (c:chan_t p) (vs vr:chan_val) : SteelT unit (pts_to c.send half vs `star` pts_to c.recv half vr `star` trace_until c.trace vr `star` chan_inv_step vr vs) (fun _ -> chan_inv c) = intro_chan_inv_cond_stepT vs vr; intro_chan_inv_auxT c let intro_chan_inv_eqT #p (c:chan_t p) (vs vr:chan_val) : Steel unit (pts_to c.send half vs `star` pts_to c.recv half vr `star` trace_until c.trace vr) (fun _ -> chan_inv c) (requires fun _ -> vs == vr) (ensures fun _ _ _ -> True) = intro_chan_inv_cond_eqT vs vr; intro_chan_inv_auxT c noeq type chan p = { chan_chan : chan_t p; chan_lock : lock (chan_inv chan_chan) } let in_state_prop (p:prot) (vsend:chan_val) : prop = p == step vsend.chan_prot vsend.chan_msg irreducible let next_chan_val (#p:sprot) (x:msg_t p) (vs0:chan_val { in_state_prop p vs0 }) : Tot (vs:chan_val{in_state_prop (step p x) vs /\ chan_inv_step_p vs0 vs}) = { chan_prot = (step vs0.chan_prot vs0.chan_msg); chan_msg = x; chan_ctr = vs0.chan_ctr + 1 } [@@__reduce__] let in_state_slprop (p:prot) (vsend:chan_val) : vprop = pure (in_state_prop p vsend) let in_state (r:ref chan_val) (p:prot) = h_exists (fun (vsend:chan_val) -> pts_to r half vsend `star` in_state_slprop p vsend) let sender #q (c:chan q) (p:prot) = in_state c.chan_chan.send p let receiver #q (c:chan q) (p:prot) = in_state c.chan_chan.recv p let intro_chan_inv #p (c:chan_t p) (v:chan_val) : SteelT unit (pts_to c.send half v `star` pts_to c.recv half v `star` trace_until c.trace v) (fun _ -> chan_inv c) = intro_chan_inv_eqT c v v let chan_val_p (p:prot) = (vs0:chan_val { in_state_prop p vs0 }) let intro_in_state (r:ref chan_val) (p:prot) (v:chan_val_p p) : SteelT unit (pts_to r half v) (fun _ -> in_state r p) = intro_pure (in_state_prop p v); intro_exists v (fun (v:chan_val) -> pts_to r half v `star` in_state_slprop p v) let msg t p = Msg Send unit (fun _ -> p) let init_chan_val (p:prot) = v:chan_val {v.chan_prot == msg unit p} let initial_trace (p:prot) : (q:partial_trace_of p {until q == p}) = { to = p; tr=Waiting p} let intro_trace_until #q (r:trace_ref q) (tr:partial_trace_of q) (v:chan_val) : Steel unit (MRef.pts_to r full_perm tr) (fun _ -> trace_until r v) (requires fun _ -> until tr == step v.chan_prot v.chan_msg) (ensures fun _ _ _ -> True) = intro_pure (until tr == step v.chan_prot v.chan_msg); intro_exists tr (fun (tr:partial_trace_of q) -> MRef.pts_to r full_perm tr `star` pure (until tr == (step v.chan_prot v.chan_msg))); () let chan_t_sr (p:prot) (send recv:ref chan_val) = (c:chan_t p{c.send == send /\ c.recv == recv})
{ "checked_file": "/", "dependencies": [ "Steel.Utils.fst.checked", "Steel.SpinLock.fsti.checked", "Steel.MonotonicHigherReference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "Steel.Channel.Protocol.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.Channel.Simplex.fst" }
[ { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.MonotonicHigherReference", "short_module": "MRef" }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.HigherReference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.SpinLock", "short_module": null }, { "abbrev": true, "full_module": "Steel.Channel.Protocol", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Channel.Protocol", "short_module": null }, { "abbrev": false, "full_module": "Steel.Channel", "short_module": null }, { "abbrev": false, "full_module": "Steel.Channel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Steel.Channel.Simplex.chan_t p -> v: Steel.Channel.Simplex.init_chan_val p -> Steel.Effect.SteelT Prims.unit
Steel.Effect.SteelT
[]
[]
[ "Steel.Channel.Simplex.prot", "Steel.Channel.Simplex.chan_t", "Steel.Channel.Simplex.init_chan_val", "Steel.Effect.Atomic.intro_exists", "Steel.Channel.Protocol.partial_trace_of", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Channel.Simplex.initial_trace", "Steel.Channel.Simplex.trace_until_prop", "Steel.Channel.Simplex.__proj__Mkchan_t__item__trace", "Prims.unit", "Steel.Effect.Atomic.rewrite_slprop", "Steel.Effect.Common.star", "Steel.MonotonicHigherReference.pts_to", "Steel.Channel.Protocol.extended_to", "Steel.FractionalPermission.full_perm", "Steel.Effect.Common.pure", "Prims.eq2", "Steel.Channel.Protocol.protocol", "Steel.Channel.Protocol.until", "Steel.Channel.Simplex.step", "Steel.Channel.Simplex.__proj__Mkchan_val__item__chan_prot", "Steel.Channel.Simplex.__proj__Mkchan_val__item__chan_msg", "Steel.Memory.mem", "Steel.Effect.Atomic.intro_pure", "Steel.Channel.Simplex.trace_until", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let intro_trace_until_init #p (c: chan_t p) (v: init_chan_val p) : SteelT unit (MRef.pts_to c.trace full_perm (initial_trace p)) (fun _ -> trace_until c.trace v) =
intro_pure (until (initial_trace p) == step v.chan_prot v.chan_msg); rewrite_slprop ((MRef.pts_to c.trace full_perm (initial_trace p)) `star` (pure (until (initial_trace p) == step v.chan_prot v.chan_msg))) ((MRef.pts_to c.trace full_perm (initial_trace p)) `star` (pure (until (initial_trace p) == step v.chan_prot v.chan_msg))) (fun _ -> ()); intro_exists (initial_trace p) (trace_until_prop c.trace v)
false
Lens.fst
Lens.op_String_Access
val ( .[] ) (x: 'a) (l: lens 'a 'b) : 'b
val ( .[] ) (x: 'a) (l: lens 'a 'b) : 'b
let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 53, "start_col": 0, "start_line": 53 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: 'a -> l: Lens.lens 'a 'b -> 'b
Prims.Tot
[ "total" ]
[]
[ "Lens.lens", "Lens.op_Bar_Dot" ]
[]
false
false
false
true
false
let ( .[] ) (x: 'a) (l: lens 'a 'b) : 'b =
x |. l
false
Lens.fst
Lens.op_String_Assignment
val ( .[]<- ) (x: 'a) (l: lens 'a 'b) (v: 'b) : 'a
val ( .[]<- ) (x: 'a) (l: lens 'a 'b) (v: 'b) : 'a
let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 50, "start_col": 0, "start_line": 50 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: 'a -> l: Lens.lens 'a 'b -> v: 'b -> 'a
Prims.Tot
[ "total" ]
[]
[ "Lens.lens", "Lens.op_Bar_Colon_Equals" ]
[]
false
false
false
true
false
let ( .[]<- ) (x: 'a) (l: lens 'a 'b) (v: 'b) : 'a =
(x |:= l) v
false
Lens.fst
Lens.x
val x:lens point int
val x:lens point int
let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 68, "start_col": 0, "start_line": 65 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lens.lens Lens.point Prims.int
Prims.Tot
[ "total" ]
[]
[ "Lens.Mklens", "Lens.point", "Prims.int", "Lens.__proj__Mkpoint__item__x", "Lens.Mkpoint", "Lens.__proj__Mkpoint__item__y", "Lens.__proj__Mkpoint__item__z" ]
[]
false
false
false
true
false
let x:lens point int =
{ get = (fun p -> p.x); put = (fun x' p -> { p with x = x' }) }
false
OWGCounter.ST.fst
OWGCounter.ST.incr_main
val incr_main (#v: G.erased int) (r: R.ref int) : STT unit (R.pts_to r full_perm v) (fun _ -> R.pts_to r full_perm (v + 2))
val incr_main (#v: G.erased int) (r: R.ref int) : STT unit (R.pts_to r full_perm v) (fun _ -> R.pts_to r full_perm (v + 2))
let incr_main (#v:G.erased int) (r:R.ref int) : STT unit (R.pts_to r full_perm v) (fun _ -> R.pts_to r full_perm (v+2)) = // // Allocate the ghost state and share // let r1 = GR.alloc 0 in let r2 = GR.alloc v in GR.share r1; rewrite (GR.pts_to r1 (P.half_perm full_perm) 0 `star` GR.pts_to r1 (P.half_perm full_perm) 0) (GR.pts_to r1 half_perm (fst (0, v)) `star` GR.pts_to r1 half_perm 0); GR.share r2; rewrite (GR.pts_to r2 (P.half_perm full_perm) v `star` GR.pts_to r2 (P.half_perm full_perm) v) (GR.pts_to r2 half_perm (snd (0, G.reveal v)) `star` GR.pts_to r2 half_perm v); // // Set up the lock invariant // rewrite (R.pts_to r full_perm v) (R.pts_to r full_perm (fst (0, v) + snd (0, G.reveal v))); intro_exists (0, G.reveal v) (lock_inv_predicate r r1 r2); // // Create the lock // let l = new_lock (lock_inv r r1 r2) in // // Now run the two threads in parallel // Note the r1 and r2 are switched in the two calls // let _ = par (incr r r1 r2 true l 0) (incr r r2 r1 false l v) in // // Now we need to gather ghost state and establish the theorem // We also free the ghost state // Steel.ST.SpinLock.acquire l; let w = elim_exists () in GR.gather #_ #_ #_ #_ #_ #(G.hide (fst w)) r1; GR.gather #_ #_ #_ #_ #_ #(G.hide (snd w)) r2; GR.free r1; GR.free r2; rewrite (R.pts_to r full_perm (fst w+snd w)) (R.pts_to r full_perm (v+2))
{ "file_name": "share/steel/examples/steel/OWGCounter.ST.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 40, "end_line": 271, "start_col": 0, "start_line": 213 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: Aseem Rastogi *) module OWGCounter.ST open Steel.Memory open Steel.ST.Effect.Atomic open Steel.ST.Effect open Steel.ST.SpinLock open Steel.ST.Util module G = FStar.Ghost module R = Steel.ST.Reference module GR = Steel.ST.GhostReference (* * An implementation of the parallel counter presented by Owicki and Gries * "Verifying properties of parallel programs: An axiomatic approach.", CACM'76 * * In this example, the main thread forks two worker thread that both * increment a shared counter. The goal of the example is to show that * after both the worker threads are done, the value of the counter is * its original value + 2. * * See http://pm.inf.ethz.ch/publications/getpdf.php for an implementation * of the OWG counters in the Chalice framework. * * The main idea is that the worker threads maintain ghost state * that stores their respective contributions to the counter * And the invariant between the counter and their contributions is * protected by a lock *) #set-options "--ide_id_info_off" let half_perm = half_perm full_perm /// r1 and r2 are the ghost references for the two worker threads /// /// The counter's value is the sum of values of r1 and r2 /// /// The lock contains full permission to the counter, /// and half permission each for r1 and r2 /// /// Rest of the half permissions for r1 and r2 are given to the /// two worker threads [@@ __reduce__] let lock_inv_predicate (r:R.ref int) (r1 r2:GR.ref int) : int & int -> vprop = fun w -> GR.pts_to r1 half_perm (fst w) `star` GR.pts_to r2 half_perm (snd w) `star` R.pts_to r full_perm (fst w + snd w) [@@ __reduce__] let lock_inv (r:R.ref int) (r1 r2:GR.ref int) : vprop = exists_ (lock_inv_predicate r r1 r2) /// For the auxiliary functions, we maintain r1 and r2 as /// (if b then r1 else r2) and (if b then r2 else r1), /// where b is a ghost boolean /// /// This allows us to write a single function that both threads /// can invoke by switching r1 and r2 as r_mine and r_other inline_for_extraction noextract let acquire (r:R.ref int) (r_mine r_other:GR.ref int) (b:G.erased bool) (l:lock (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine))) : STT unit emp (fun _ -> lock_inv r r_mine r_other) = acquire l; if b returns STGhostT unit Set.empty _ (fun _ -> lock_inv r r_mine r_other) then begin rewrite (lock_inv _ _ _) (lock_inv r r_mine r_other) end else begin rewrite (lock_inv _ _ _) (lock_inv r r_other r_mine); let w = elim_exists () in rewrite (GR.pts_to r_other _ _ `star` GR.pts_to r_mine _ _ `star` R.pts_to _ _ _) (GR.pts_to r_other half_perm (snd (snd w, fst w)) `star` GR.pts_to r_mine half_perm (fst (snd w, fst w)) `star` R.pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w))); intro_exists (snd w, fst w) (lock_inv_predicate r r_mine r_other) end inline_for_extraction noextract let release (r:R.ref int) (r_mine r_other:GR.ref int) (b:G.erased bool) (l:lock (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine))) : STT unit (lock_inv r r_mine r_other) (fun _ -> emp) = if b then begin rewrite (lock_inv r r_mine r_other) (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine)) end else begin let w = elim_exists () in rewrite (GR.pts_to r_mine half_perm (fst w) `star` GR.pts_to r_other half_perm (snd w) `star` R.pts_to r full_perm (fst w + snd w)) (GR.pts_to r_mine half_perm (snd (snd w, fst w)) `star` GR.pts_to r_other half_perm (fst (snd w, fst w)) `star` R.pts_to r full_perm (fst (snd w, fst w) + snd (snd w, fst w))); intro_exists (snd w, fst w) (lock_inv_predicate r r_other r_mine); rewrite (lock_inv r r_other r_mine) (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine)) end; release l module P = Steel.FractionalPermission /// The incr function that each thread invokes in parallel /// /// It acquires the lock and increments the counter /// as well as the ghost reference /// /// Finally releasing the lock after establishing the lock invariant let incr (r:R.ref int) (r_mine r_other:GR.ref int) (b:G.erased bool) (l:lock (lock_inv r (if b then r_mine else r_other) (if b then r_other else r_mine))) (n:G.erased int) () : STT unit (GR.pts_to r_mine half_perm n) (fun _ -> GR.pts_to r_mine half_perm (n+1)) = acquire r r_mine r_other b l; let w = elim_exists () in // // The lock has full permission to r, // so we can just increment it // let v = R.read r in R.write r (v+1); rewrite (R.pts_to r full_perm (v+1)) (R.pts_to r full_perm ((fst w+1) + snd w)); // // The permission to the ghost reference is split // between the lock and the thread, so we need to gather // before we can increment // GR.gather #_ #_ #_ #_ #n #(G.hide (fst w)) r_mine; rewrite (GR.pts_to r_mine (sum_perm half_perm half_perm) n) (GR.pts_to r_mine full_perm n); GR.write r_mine (n+1); // // Now we share back the ghost ref, // and restore the lock invariant // GR.share r_mine; rewrite (GR.pts_to r_mine (P.half_perm full_perm) (n+1)) (GR.pts_to r_mine half_perm (fst w+1)); intro_exists (fst w+1, snd w) (lock_inv_predicate r r_mine r_other); release r r_mine r_other b l; rewrite (GR.pts_to r_mine (P.half_perm full_perm) (n+1)) (GR.pts_to r_mine half_perm (n+1)) /// The main function that creates the two worker threads, and /// runs them in parallel
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.SpinLock.fsti.checked", "Steel.ST.Reference.fsti.checked", "Steel.ST.GhostReference.fsti.checked", "Steel.ST.Effect.Atomic.fsti.checked", "Steel.ST.Effect.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "OWGCounter.ST.fst" }
[ { "abbrev": true, "full_module": "Steel.FractionalPermission", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.GhostReference", "short_module": "GR" }, { "abbrev": true, "full_module": "Steel.ST.Reference", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.SpinLock", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "OWGCounter", "short_module": null }, { "abbrev": false, "full_module": "OWGCounter", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.ST.Reference.ref Prims.int -> Steel.ST.Effect.STT Prims.unit
Steel.ST.Effect.STT
[]
[]
[ "FStar.Ghost.erased", "Prims.int", "Steel.ST.Reference.ref", "Steel.ST.Util.rewrite", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.ST.Reference.pts_to", "Steel.FractionalPermission.full_perm", "Prims.op_Addition", "FStar.Pervasives.Native.fst", "FStar.Ghost.reveal", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.snd", "Prims.unit", "Steel.ST.GhostReference.free", "Steel.ST.GhostReference.gather", "OWGCounter.ST.half_perm", "Steel.ST.Util.elim_exists", "Steel.Effect.Common.VStar", "Steel.ST.GhostReference.pts_to", "Steel.Effect.Common.vprop", "Steel.ST.SpinLock.acquire", "OWGCounter.ST.lock_inv", "Steel.ST.Util.par", "OWGCounter.ST.incr", "Prims.bool", "Steel.ST.SpinLock.lock", "Steel.ST.SpinLock.new_lock", "Steel.ST.Util.intro_exists", "FStar.Pervasives.Native.Mktuple2", "OWGCounter.ST.lock_inv_predicate", "Steel.Effect.Common.star", "Steel.FractionalPermission.half_perm", "Steel.ST.GhostReference.share", "Steel.ST.GhostReference.ref", "Steel.ST.GhostReference.alloc" ]
[]
false
true
false
false
false
let incr_main (#v: G.erased int) (r: R.ref int) : STT unit (R.pts_to r full_perm v) (fun _ -> R.pts_to r full_perm (v + 2)) =
let r1 = GR.alloc 0 in let r2 = GR.alloc v in GR.share r1; rewrite ((GR.pts_to r1 (P.half_perm full_perm) 0) `star` (GR.pts_to r1 (P.half_perm full_perm) 0)) ((GR.pts_to r1 half_perm (fst (0, v))) `star` (GR.pts_to r1 half_perm 0)); GR.share r2; rewrite ((GR.pts_to r2 (P.half_perm full_perm) v) `star` (GR.pts_to r2 (P.half_perm full_perm) v)) ((GR.pts_to r2 half_perm (snd (0, G.reveal v))) `star` (GR.pts_to r2 half_perm v)); rewrite (R.pts_to r full_perm v) (R.pts_to r full_perm (fst (0, v) + snd (0, G.reveal v))); intro_exists (0, G.reveal v) (lock_inv_predicate r r1 r2); let l = new_lock (lock_inv r r1 r2) in let _ = par (incr r r1 r2 true l 0) (incr r r2 r1 false l v) in Steel.ST.SpinLock.acquire l; let w = elim_exists () in GR.gather #_ #_ #_ #_ #_ #(G.hide (fst w)) r1; GR.gather #_ #_ #_ #_ #_ #(G.hide (snd w)) r2; GR.free r1; GR.free r2; rewrite (R.pts_to r full_perm (fst w + snd w)) (R.pts_to r full_perm (v + 2))
false
Lens.fst
Lens.y
val y:lens point int
val y:lens point int
let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 73, "start_col": 0, "start_line": 70 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lens.lens Lens.point Prims.int
Prims.Tot
[ "total" ]
[]
[ "Lens.Mklens", "Lens.point", "Prims.int", "Lens.__proj__Mkpoint__item__y", "Lens.Mkpoint", "Lens.__proj__Mkpoint__item__x", "Lens.__proj__Mkpoint__item__z" ]
[]
false
false
false
true
false
let y:lens point int =
{ get = (fun p -> p.y); put = (fun y' p -> { p with y = y' }) }
false
Lens.fst
Lens.center
val center:lens circle point
val center:lens circle point
let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 90, "start_col": 0, "start_line": 87 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lens.lens Lens.circle Lens.point
Prims.Tot
[ "total" ]
[]
[ "Lens.Mklens", "Lens.circle", "Lens.point", "Lens.__proj__Mkcircle__item__center", "Lens.Mkcircle", "Lens.__proj__Mkcircle__item__radius" ]
[]
false
false
false
true
false
let center:lens circle point =
{ get = (fun c -> c.center); put = (fun n c -> { c with center = n }) }
false
Lens.fst
Lens.z
val z:lens point int
val z:lens point int
let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 78, "start_col": 0, "start_line": 75 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lens.lens Lens.point Prims.int
Prims.Tot
[ "total" ]
[]
[ "Lens.Mklens", "Lens.point", "Prims.int", "Lens.__proj__Mkpoint__item__z", "Lens.Mkpoint", "Lens.__proj__Mkpoint__item__x", "Lens.__proj__Mkpoint__item__y" ]
[]
false
false
false
true
false
let z:lens point int =
{ get = (fun p -> p.z); put = (fun z' p -> { p with z = z' }) }
false
Lens.fst
Lens.getY''
val getY'' : c: Lens.circle -> Prims.int
let getY'' (c:circle) = c.center.y
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 105, "start_col": 0, "start_line": 105 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ...
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Lens.circle -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Lens.circle", "Lens.__proj__Mkpoint__item__y", "Lens.__proj__Mkcircle__item__center", "Prims.int" ]
[]
false
false
false
true
false
let getY'' (c: circle) =
c.center.y
false
Lens.fst
Lens.getY
val getY : c: Lens.circle -> Prims.int
let getY (c:circle) = c |. center |. y
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 97, "start_col": 0, "start_line": 97 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Lens.circle -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Lens.circle", "Lens.op_Bar_Dot", "Lens.point", "Prims.int", "Lens.center", "Lens.y" ]
[]
false
false
false
true
false
let getY (c: circle) =
c |. center |. y
false
Lens.fst
Lens.radius
val radius:lens circle nat
val radius:lens circle nat
let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 94, "start_col": 0, "start_line": 91 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n})
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lens.lens Lens.circle Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Lens.Mklens", "Lens.circle", "Prims.nat", "Lens.__proj__Mkcircle__item__radius", "Lens.Mkcircle", "Lens.__proj__Mkcircle__item__center" ]
[]
false
false
false
true
false
let radius:lens circle nat =
{ get = (fun c -> c.radius); put = (fun n c -> { c with radius = n }) }
false
Lens.fst
Lens.getY'
val getY' : c: Lens.circle -> Prims.int
let getY' (c:circle) = c.[center |.. y]
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 100, "start_col": 0, "start_line": 100 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Lens.circle -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Lens.circle", "Lens.op_String_Access", "Prims.int", "Lens.op_Bar_Dot_Dot", "Lens.point", "Lens.center", "Lens.y" ]
[]
false
false
false
true
false
let getY' (c: circle) =
c.[ center |.. y ]
false
Lens.fst
Lens.setY
val setY : c: Lens.circle -> new_y: Prims.int -> Lens.circle
let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 109, "start_col": 0, "start_line": 108 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Lens.circle -> new_y: Prims.int -> Lens.circle
Prims.Tot
[ "total" ]
[]
[ "Lens.circle", "Prims.int", "Lens.op_String_Assignment", "Lens.op_Bar_Dot_Dot", "Lens.point", "Lens.center", "Lens.y" ]
[]
false
false
false
true
false
let setY (c: circle) (new_y: int) =
c.[ center |.. y ] <- new_y
false
Lens.fst
Lens.tedious_setY
val tedious_setY : c: Lens.circle -> new_y: Prims.int -> Lens.circle
let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}}
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 112, "start_col": 0, "start_line": 111 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Lens.circle -> new_y: Prims.int -> Lens.circle
Prims.Tot
[ "total" ]
[]
[ "Lens.circle", "Prims.int", "Lens.Mkcircle", "Lens.Mkpoint", "Lens.__proj__Mkpoint__item__x", "Lens.__proj__Mkpoint__item__z", "Lens.point", "Lens.__proj__Mkcircle__item__center", "Lens.__proj__Mkcircle__item__radius" ]
[]
false
false
false
true
false
let tedious_setY (c: circle) (new_y: int) =
{ c with center = { c.center with y = new_y } }
false
Lens.fst
Lens.moveUp
val moveUp : c: Lens.circle -> offset_y: Prims.int -> Lens.circle
let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 116, "start_col": 0, "start_line": 115 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Lens.circle -> offset_y: Prims.int -> Lens.circle
Prims.Tot
[ "total" ]
[]
[ "Lens.circle", "Prims.int", "Lens.op_String_Assignment", "Lens.op_Bar_Dot_Dot", "Lens.point", "Lens.center", "Lens.y", "Prims.op_Addition", "Lens.op_String_Access" ]
[]
false
false
false
true
false
let moveUp (c: circle) (offset_y: int) =
c.[ center |.. y ] <- c.[ center |.. y ] + offset_y
false
Lens.fst
Lens.green
val green:lens rgb nat
val green:lens rgb nat
let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 134, "start_col": 0, "start_line": 131 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z})
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lens.lens Lens.rgb Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Lens.Mklens", "Lens.rgb", "Prims.nat", "Lens.__proj__Mkrgb__item__green", "Lens.Mkrgb", "Lens.__proj__Mkrgb__item__red", "Lens.__proj__Mkrgb__item__blue" ]
[]
false
false
false
true
false
let green:lens rgb nat =
{ get = (fun p -> p.green); put = (fun z p -> { p with green = z }) }
false
Lens.fst
Lens.red
val red:lens rgb nat
val red:lens rgb nat
let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 130, "start_col": 0, "start_line": 127 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lens.lens Lens.rgb Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Lens.Mklens", "Lens.rgb", "Prims.nat", "Lens.__proj__Mkrgb__item__red", "Lens.Mkrgb", "Lens.__proj__Mkrgb__item__green", "Lens.__proj__Mkrgb__item__blue" ]
[]
false
false
false
true
false
let red:lens rgb nat =
{ get = (fun p -> p.red); put = (fun z p -> { p with red = z }) }
false
Lens.fst
Lens.blue
val blue:lens rgb nat
val blue:lens rgb nat
let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 138, "start_col": 0, "start_line": 135 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z})
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lens.lens Lens.rgb Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Lens.Mklens", "Lens.rgb", "Prims.nat", "Lens.__proj__Mkrgb__item__blue", "Lens.Mkrgb", "Lens.__proj__Mkrgb__item__red", "Lens.__proj__Mkrgb__item__green" ]
[]
false
false
false
true
false
let blue:lens rgb nat =
{ get = (fun p -> p.blue); put = (fun z p -> { p with blue = z }) }
false
Lens.fst
Lens.color
val color (#a: Type) : lens (colored a) rgb
val color (#a: Type) : lens (colored a) rgb
let color (#a:Type) : lens (colored a) rgb = { get = (fun p -> p.color); put = (fun z p -> {p with color=z}) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 149, "start_col": 0, "start_line": 146 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) } let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) } /// And a `colored a` is a `color` and an `a` type colored (a:Type) = { color:rgb; payload:a }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lens.lens (Lens.colored a) Lens.rgb
Prims.Tot
[ "total" ]
[]
[ "Lens.Mklens", "Lens.colored", "Lens.rgb", "Lens.__proj__Mkcolored__item__color", "Lens.Mkcolored", "Lens.__proj__Mkcolored__item__payload", "Lens.lens" ]
[]
false
false
false
true
false
let color (#a: Type) : lens (colored a) rgb =
{ get = (fun p -> p.color); put = (fun z p -> { p with color = z }) }
false
Lens.fst
Lens.payload
val payload (#a: Type) : lens (colored a) a
val payload (#a: Type) : lens (colored a) a
let payload (#a:Type) : lens (colored a) a = { get = (fun p -> p.payload); put = (fun z p -> {p with payload=z}) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 153, "start_col": 0, "start_line": 150 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) } let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) } /// And a `colored a` is a `color` and an `a` type colored (a:Type) = { color:rgb; payload:a } /// Boilerplate let color (#a:Type) : lens (colored a) rgb = { get = (fun p -> p.color); put = (fun z p -> {p with color=z})
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lens.lens (Lens.colored a) a
Prims.Tot
[ "total" ]
[]
[ "Lens.Mklens", "Lens.colored", "Lens.__proj__Mkcolored__item__payload", "Lens.Mkcolored", "Lens.__proj__Mkcolored__item__color", "Lens.lens" ]
[]
false
false
false
true
false
let payload (#a: Type) : lens (colored a) a =
{ get = (fun p -> p.payload); put = (fun z p -> { p with payload = z }) }
false
Lens.fst
Lens.moveUp'
val moveUp' : c: Lens.colored Lens.circle -> offset_y: Prims.int -> Lens.colored Lens.circle
let moveUp' (c:colored circle) (offset_y: int) = c.[payload |.. center |.. y] <- c.[payload |.. center |.. y] + offset_y
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 75, "end_line": 157, "start_col": 0, "start_line": 156 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) } let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) } /// And a `colored a` is a `color` and an `a` type colored (a:Type) = { color:rgb; payload:a } /// Boilerplate let color (#a:Type) : lens (colored a) rgb = { get = (fun p -> p.color); put = (fun z p -> {p with color=z}) } let payload (#a:Type) : lens (colored a) a = { get = (fun p -> p.payload); put = (fun z p -> {p with payload=z}) }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Lens.colored Lens.circle -> offset_y: Prims.int -> Lens.colored Lens.circle
Prims.Tot
[ "total" ]
[]
[ "Lens.colored", "Lens.circle", "Prims.int", "Lens.op_String_Assignment", "Lens.op_Bar_Dot_Dot", "Lens.point", "Lens.payload", "Lens.center", "Lens.y", "Prims.op_Addition", "Lens.op_String_Access" ]
[]
false
false
false
true
false
let moveUp' (c: colored circle) (offset_y: int) =
c.[ payload |.. center |.. y ] <- c.[ payload |.. center |.. y ] + offset_y
false
Lens.fst
Lens.makeGreen
val makeGreen : c: Lens.colored Lens.circle -> Lens.colored Lens.circle
let makeGreen (c:colored circle) = c.[color |.. (red || green || blue )] <- (0, 1), 0
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 168, "start_col": 0, "start_line": 167 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) } let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) } /// And a `colored a` is a `color` and an `a` type colored (a:Type) = { color:rgb; payload:a } /// Boilerplate let color (#a:Type) : lens (colored a) rgb = { get = (fun p -> p.color); put = (fun z p -> {p with color=z}) } let payload (#a:Type) : lens (colored a) a = { get = (fun p -> p.payload); put = (fun z p -> {p with payload=z}) } /// And you can build longer lenses to reach into an object quite easily let moveUp' (c:colored circle) (offset_y: int) = c.[payload |.. center |.. y] <- c.[payload |.. center |.. y] + offset_y /// You can also build other kinds of lens combinator /// For example, focusing on two different parts of an object at once let ( || ) (l1:lens 'a 'b) (l2:lens 'a 'c) : lens 'a ('b * 'c) = { get = (fun a -> l1.get a, l2.get a); put = (fun (b, c) a -> l2.put c (l1.put b a)) }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: Lens.colored Lens.circle -> Lens.colored Lens.circle
Prims.Tot
[ "total" ]
[]
[ "Lens.colored", "Lens.circle", "Lens.op_String_Assignment", "FStar.Pervasives.Native.tuple2", "Prims.nat", "Lens.op_Bar_Dot_Dot", "Lens.rgb", "Lens.color", "Lens.op_Bar_Bar", "Lens.red", "Lens.green", "Lens.blue", "FStar.Pervasives.Native.Mktuple2" ]
[]
false
false
false
true
false
let makeGreen (c: colored circle) =
c.[ color |.. (red || green || blue) ] <- (0, 1), 0
false
Lens.fst
Lens.op_Array_Assignment
val op_Array_Assignment : x: FStar.ST.ref a -> m: Lens.lens a b -> y: b -> FStar.ST.STATE Prims.unit
let op_Array_Assignment #a #b (x:ref a) (m:lens a b) (y:b) = let _ = (x |::= (st m)) y in ()
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 232, "start_col": 0, "start_line": 231 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) } let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) } /// And a `colored a` is a `color` and an `a` type colored (a:Type) = { color:rgb; payload:a } /// Boilerplate let color (#a:Type) : lens (colored a) rgb = { get = (fun p -> p.color); put = (fun z p -> {p with color=z}) } let payload (#a:Type) : lens (colored a) a = { get = (fun p -> p.payload); put = (fun z p -> {p with payload=z}) } /// And you can build longer lenses to reach into an object quite easily let moveUp' (c:colored circle) (offset_y: int) = c.[payload |.. center |.. y] <- c.[payload |.. center |.. y] + offset_y /// You can also build other kinds of lens combinator /// For example, focusing on two different parts of an object at once let ( || ) (l1:lens 'a 'b) (l2:lens 'a 'c) : lens 'a ('b * 'c) = { get = (fun a -> l1.get a, l2.get a); put = (fun (b, c) a -> l2.put c (l1.put b a)) } /// And now you can use these to update multiple components at once let makeGreen (c:colored circle) = c.[color |.. (red || green || blue )] <- (0, 1), 0 //////////////////////////////////////////////////////////////////////////////// /// Now for some stateful stuff /// – This is not quite as nice an compositional as before /// Would be curious to have your thoughts on how it could be generalized /// (My first naive attempt: See StatefulLens for how to do it better) //////////////////////////////////////////////////////////////////////////////// open FStar.Heap open FStar.Ref /// An `stlens #a #b l` goes via a `ref a` to access the `b`component /// that is focused by `l` noeq type stlens (#a:Type) (#b:Type) (l:lens a b) = { // Getting a `b` from an `r:ref a` requires dereferencing it // and then reaching into the result with `l` st_get: r:ref a -> ST b (requires (fun h -> True)) (ensures (fun h0 b h1 -> h0==h1 /\ b == ((sel h1 r)|. l))); // Setting a `b` component inside a `r:ref a` modifies only `r` // and updates the contents of `r` using `l` st_put: y:b -> r:ref a -> ST (ref a) (requires (fun h -> True)) (ensures (fun h0 s h1 -> r == s /\ modifies (Set.singleton (addr_of r)) h0 h1 /\ (sel h1 r == ((sel h0 r).[l] <- y)))) } /// You can turn a regular lens into a stateful lens let st #a #b (l:lens a b) : stlens l = { st_get = (fun (r:ref a) -> (!r).[l]); st_put = (fun (x:b) (r:ref a) -> r := (!r.[l] <- x); r) } /// And we can compose a stateful lens with a pure lens on the right let ( |:.. ) #a #b #c (#l:lens a b) (sl:stlens l) (m:lens b c) : stlens (l |.. m) = { st_get = (fun (r:ref a) -> (sl.st_get r).[m]); st_put = (fun (x:c) (r:ref a) -> sl.st_put ((sl.st_get r).[m] <- x) r) } /// Limitations: /// But, you can't compose an stlens with another stlens /// – Because the spec of st_get and st_put is inherently rigged to /// work with a single reference /// Nor can you compose a pure lens with an stlens on the left /// - Because stlens's always start with a ref /// We can define access and mutation operators for stlenses let ( |:. ) #a #b (#l:lens a b) (x:ref a) (s:stlens l) = s.st_get x let ( |::= ) #a #b (#l:lens a b) (x:ref a) (s:stlens l) (y:b) = s.st_put y x /// Although, as before the access/assignment operators probably work better /// x.(m) <- v: promotes m to a stateful lens and then updates x's m /// component with v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.ST.ref a -> m: Lens.lens a b -> y: b -> FStar.ST.STATE Prims.unit
FStar.ST.STATE
[ "trivial_postcondition" ]
[]
[ "FStar.ST.ref", "Lens.lens", "Prims.unit", "Lens.op_Bar_Colon_Colon_Equals", "Lens.st" ]
[]
false
true
false
false
false
let ( .()<- ) #a #b (x: ref a) (m: lens a b) (y: b) =
let _ = (x |::= (st m)) y in ()
false
Lens.fst
Lens.op_Array_Access
val op_Array_Access : x: FStar.ST.ref a -> m: Lens.lens a b -> FStar.ST.ST b
let op_Array_Access #a #b (x:ref a) (m:lens a b) = x |:. (st m)
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 17, "end_line": 236, "start_col": 0, "start_line": 235 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) } let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) } /// And a `colored a` is a `color` and an `a` type colored (a:Type) = { color:rgb; payload:a } /// Boilerplate let color (#a:Type) : lens (colored a) rgb = { get = (fun p -> p.color); put = (fun z p -> {p with color=z}) } let payload (#a:Type) : lens (colored a) a = { get = (fun p -> p.payload); put = (fun z p -> {p with payload=z}) } /// And you can build longer lenses to reach into an object quite easily let moveUp' (c:colored circle) (offset_y: int) = c.[payload |.. center |.. y] <- c.[payload |.. center |.. y] + offset_y /// You can also build other kinds of lens combinator /// For example, focusing on two different parts of an object at once let ( || ) (l1:lens 'a 'b) (l2:lens 'a 'c) : lens 'a ('b * 'c) = { get = (fun a -> l1.get a, l2.get a); put = (fun (b, c) a -> l2.put c (l1.put b a)) } /// And now you can use these to update multiple components at once let makeGreen (c:colored circle) = c.[color |.. (red || green || blue )] <- (0, 1), 0 //////////////////////////////////////////////////////////////////////////////// /// Now for some stateful stuff /// – This is not quite as nice an compositional as before /// Would be curious to have your thoughts on how it could be generalized /// (My first naive attempt: See StatefulLens for how to do it better) //////////////////////////////////////////////////////////////////////////////// open FStar.Heap open FStar.Ref /// An `stlens #a #b l` goes via a `ref a` to access the `b`component /// that is focused by `l` noeq type stlens (#a:Type) (#b:Type) (l:lens a b) = { // Getting a `b` from an `r:ref a` requires dereferencing it // and then reaching into the result with `l` st_get: r:ref a -> ST b (requires (fun h -> True)) (ensures (fun h0 b h1 -> h0==h1 /\ b == ((sel h1 r)|. l))); // Setting a `b` component inside a `r:ref a` modifies only `r` // and updates the contents of `r` using `l` st_put: y:b -> r:ref a -> ST (ref a) (requires (fun h -> True)) (ensures (fun h0 s h1 -> r == s /\ modifies (Set.singleton (addr_of r)) h0 h1 /\ (sel h1 r == ((sel h0 r).[l] <- y)))) } /// You can turn a regular lens into a stateful lens let st #a #b (l:lens a b) : stlens l = { st_get = (fun (r:ref a) -> (!r).[l]); st_put = (fun (x:b) (r:ref a) -> r := (!r.[l] <- x); r) } /// And we can compose a stateful lens with a pure lens on the right let ( |:.. ) #a #b #c (#l:lens a b) (sl:stlens l) (m:lens b c) : stlens (l |.. m) = { st_get = (fun (r:ref a) -> (sl.st_get r).[m]); st_put = (fun (x:c) (r:ref a) -> sl.st_put ((sl.st_get r).[m] <- x) r) } /// Limitations: /// But, you can't compose an stlens with another stlens /// – Because the spec of st_get and st_put is inherently rigged to /// work with a single reference /// Nor can you compose a pure lens with an stlens on the left /// - Because stlens's always start with a ref /// We can define access and mutation operators for stlenses let ( |:. ) #a #b (#l:lens a b) (x:ref a) (s:stlens l) = s.st_get x let ( |::= ) #a #b (#l:lens a b) (x:ref a) (s:stlens l) (y:b) = s.st_put y x /// Although, as before the access/assignment operators probably work better /// x.(m) <- v: promotes m to a stateful lens and then updates x's m /// component with v /// -- Making them return unit since that works better with sequencing `;` let op_Array_Assignment #a #b (x:ref a) (m:lens a b) (y:b) = let _ = (x |::= (st m)) y in ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.ST.ref a -> m: Lens.lens a b -> FStar.ST.ST b
FStar.ST.ST
[]
[]
[ "FStar.ST.ref", "Lens.lens", "Lens.op_Bar_Colon_Dot", "Lens.st" ]
[]
false
true
false
false
false
let ( .() ) #a #b (x: ref a) (m: lens a b) =
x |:. (st m)
false
Lens.fst
Lens.mutate
val mutate : c: FStar.ST.ref (Lens.colored Lens.circle) -> FStar.ST.STATE Prims.unit
let mutate (c:ref (colored circle)) = c.(color |.. (red || green || blue)) <- (0, 1), 2
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 240, "start_col": 0, "start_line": 239 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) } let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) } /// And a `colored a` is a `color` and an `a` type colored (a:Type) = { color:rgb; payload:a } /// Boilerplate let color (#a:Type) : lens (colored a) rgb = { get = (fun p -> p.color); put = (fun z p -> {p with color=z}) } let payload (#a:Type) : lens (colored a) a = { get = (fun p -> p.payload); put = (fun z p -> {p with payload=z}) } /// And you can build longer lenses to reach into an object quite easily let moveUp' (c:colored circle) (offset_y: int) = c.[payload |.. center |.. y] <- c.[payload |.. center |.. y] + offset_y /// You can also build other kinds of lens combinator /// For example, focusing on two different parts of an object at once let ( || ) (l1:lens 'a 'b) (l2:lens 'a 'c) : lens 'a ('b * 'c) = { get = (fun a -> l1.get a, l2.get a); put = (fun (b, c) a -> l2.put c (l1.put b a)) } /// And now you can use these to update multiple components at once let makeGreen (c:colored circle) = c.[color |.. (red || green || blue )] <- (0, 1), 0 //////////////////////////////////////////////////////////////////////////////// /// Now for some stateful stuff /// – This is not quite as nice an compositional as before /// Would be curious to have your thoughts on how it could be generalized /// (My first naive attempt: See StatefulLens for how to do it better) //////////////////////////////////////////////////////////////////////////////// open FStar.Heap open FStar.Ref /// An `stlens #a #b l` goes via a `ref a` to access the `b`component /// that is focused by `l` noeq type stlens (#a:Type) (#b:Type) (l:lens a b) = { // Getting a `b` from an `r:ref a` requires dereferencing it // and then reaching into the result with `l` st_get: r:ref a -> ST b (requires (fun h -> True)) (ensures (fun h0 b h1 -> h0==h1 /\ b == ((sel h1 r)|. l))); // Setting a `b` component inside a `r:ref a` modifies only `r` // and updates the contents of `r` using `l` st_put: y:b -> r:ref a -> ST (ref a) (requires (fun h -> True)) (ensures (fun h0 s h1 -> r == s /\ modifies (Set.singleton (addr_of r)) h0 h1 /\ (sel h1 r == ((sel h0 r).[l] <- y)))) } /// You can turn a regular lens into a stateful lens let st #a #b (l:lens a b) : stlens l = { st_get = (fun (r:ref a) -> (!r).[l]); st_put = (fun (x:b) (r:ref a) -> r := (!r.[l] <- x); r) } /// And we can compose a stateful lens with a pure lens on the right let ( |:.. ) #a #b #c (#l:lens a b) (sl:stlens l) (m:lens b c) : stlens (l |.. m) = { st_get = (fun (r:ref a) -> (sl.st_get r).[m]); st_put = (fun (x:c) (r:ref a) -> sl.st_put ((sl.st_get r).[m] <- x) r) } /// Limitations: /// But, you can't compose an stlens with another stlens /// – Because the spec of st_get and st_put is inherently rigged to /// work with a single reference /// Nor can you compose a pure lens with an stlens on the left /// - Because stlens's always start with a ref /// We can define access and mutation operators for stlenses let ( |:. ) #a #b (#l:lens a b) (x:ref a) (s:stlens l) = s.st_get x let ( |::= ) #a #b (#l:lens a b) (x:ref a) (s:stlens l) (y:b) = s.st_put y x /// Although, as before the access/assignment operators probably work better /// x.(m) <- v: promotes m to a stateful lens and then updates x's m /// component with v /// -- Making them return unit since that works better with sequencing `;` let op_Array_Assignment #a #b (x:ref a) (m:lens a b) (y:b) = let _ = (x |::= (st m)) y in () /// x.(m): promotes m to a stateful lens and access x's m component let op_Array_Access #a #b (x:ref a) (m:lens a b) = x |:. (st m)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.ST.ref (Lens.colored Lens.circle) -> FStar.ST.STATE Prims.unit
FStar.ST.STATE
[ "trivial_postcondition" ]
[]
[ "FStar.ST.ref", "Lens.colored", "Lens.circle", "Lens.op_Array_Assignment", "FStar.Pervasives.Native.tuple2", "Prims.nat", "Lens.op_Bar_Dot_Dot", "Lens.rgb", "Lens.color", "Lens.op_Bar_Bar", "Lens.red", "Lens.green", "Lens.blue", "FStar.Pervasives.Native.Mktuple2", "Prims.unit" ]
[]
false
true
false
false
false
let mutate (c: ref (colored circle)) =
c.(color |.. (red || green || blue)) <- (0, 1), 2
false
FStar.ErasedLogic.fst
FStar.ErasedLogic.gex_proj1
val gex_proj1 : #a:Type -> #p:(a->Type) -> (ex a p) -> GTot a
val gex_proj1 : #a:Type -> #p:(a->Type) -> (ex a p) -> GTot a
let gex_proj1 #a #p e = (reveal (ex_proj1 e))
{ "file_name": "ulib/legacy/FStar.ErasedLogic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 44, "start_col": 0, "start_line": 44 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.ErasedLogic (*F* 's exists should be thought of Coq's sigT. It is totally unerased *) (*Coq has 2 more versions, with increasing degree of erasure*) (* https://coq.inria.fr/library/Coq.Init.Specif.html#sigT *) open FStar.Ghost (*you can get the witness x, that the proof part is erased*) (*https://coq.inria.fr/library/Coq.Init.Specif.html#sig*) type sig_ (a:Type) (p: a->Type) = exists (x:a). (erased (p x)) (*you get nothing. Of course, in ghost contexts, or to build other erased date, you get everything*) (* https://coq.inria.fr/library/Coq.Init.Logic.html#ex *) type ex (a:Type) (p:a->Type) = erased (exists (x:a). (p x)) (*how to use the above:*) (*assuming that existentials in F* are constructive. If so, the following 2 assumes must be definable*) assume val exists_proj1 : #a:Type -> #p:(a->Type) -> (exists x.p x) -> GTot a assume val mkexists : #a:Type -> #p:(a->Type) -> x:a -> (p x) -> Tot (exists x.p x) val ex_proj1 : #a:Type -> #p:(a->Type) -> ex a p -> Tot (erased a) let ex_proj1 #a #p e = (elift1 (exists_proj1 #a #p)) e
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "FStar.ErasedLogic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: FStar.ErasedLogic.ex a p -> Prims.GTot a
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.ErasedLogic.ex", "FStar.Ghost.reveal", "FStar.ErasedLogic.ex_proj1" ]
[]
false
false
false
false
false
let gex_proj1 #a #p e =
(reveal (ex_proj1 e))
false
Lens.fst
Lens.mutate3
val mutate3 : c: FStar.ST.ref (Lens.colored (FStar.ST.ref (Lens.colored (FStar.ST.ref Lens.circle)))) -> FStar.ST.STATE Prims.unit
let mutate3 (c:ref (colored (ref (colored (ref circle))))) = ((c.(payload)).(payload)).(center |.. x) <- 17
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 254, "start_col": 0, "start_line": 253 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) } let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) } /// And a `colored a` is a `color` and an `a` type colored (a:Type) = { color:rgb; payload:a } /// Boilerplate let color (#a:Type) : lens (colored a) rgb = { get = (fun p -> p.color); put = (fun z p -> {p with color=z}) } let payload (#a:Type) : lens (colored a) a = { get = (fun p -> p.payload); put = (fun z p -> {p with payload=z}) } /// And you can build longer lenses to reach into an object quite easily let moveUp' (c:colored circle) (offset_y: int) = c.[payload |.. center |.. y] <- c.[payload |.. center |.. y] + offset_y /// You can also build other kinds of lens combinator /// For example, focusing on two different parts of an object at once let ( || ) (l1:lens 'a 'b) (l2:lens 'a 'c) : lens 'a ('b * 'c) = { get = (fun a -> l1.get a, l2.get a); put = (fun (b, c) a -> l2.put c (l1.put b a)) } /// And now you can use these to update multiple components at once let makeGreen (c:colored circle) = c.[color |.. (red || green || blue )] <- (0, 1), 0 //////////////////////////////////////////////////////////////////////////////// /// Now for some stateful stuff /// – This is not quite as nice an compositional as before /// Would be curious to have your thoughts on how it could be generalized /// (My first naive attempt: See StatefulLens for how to do it better) //////////////////////////////////////////////////////////////////////////////// open FStar.Heap open FStar.Ref /// An `stlens #a #b l` goes via a `ref a` to access the `b`component /// that is focused by `l` noeq type stlens (#a:Type) (#b:Type) (l:lens a b) = { // Getting a `b` from an `r:ref a` requires dereferencing it // and then reaching into the result with `l` st_get: r:ref a -> ST b (requires (fun h -> True)) (ensures (fun h0 b h1 -> h0==h1 /\ b == ((sel h1 r)|. l))); // Setting a `b` component inside a `r:ref a` modifies only `r` // and updates the contents of `r` using `l` st_put: y:b -> r:ref a -> ST (ref a) (requires (fun h -> True)) (ensures (fun h0 s h1 -> r == s /\ modifies (Set.singleton (addr_of r)) h0 h1 /\ (sel h1 r == ((sel h0 r).[l] <- y)))) } /// You can turn a regular lens into a stateful lens let st #a #b (l:lens a b) : stlens l = { st_get = (fun (r:ref a) -> (!r).[l]); st_put = (fun (x:b) (r:ref a) -> r := (!r.[l] <- x); r) } /// And we can compose a stateful lens with a pure lens on the right let ( |:.. ) #a #b #c (#l:lens a b) (sl:stlens l) (m:lens b c) : stlens (l |.. m) = { st_get = (fun (r:ref a) -> (sl.st_get r).[m]); st_put = (fun (x:c) (r:ref a) -> sl.st_put ((sl.st_get r).[m] <- x) r) } /// Limitations: /// But, you can't compose an stlens with another stlens /// – Because the spec of st_get and st_put is inherently rigged to /// work with a single reference /// Nor can you compose a pure lens with an stlens on the left /// - Because stlens's always start with a ref /// We can define access and mutation operators for stlenses let ( |:. ) #a #b (#l:lens a b) (x:ref a) (s:stlens l) = s.st_get x let ( |::= ) #a #b (#l:lens a b) (x:ref a) (s:stlens l) (y:b) = s.st_put y x /// Although, as before the access/assignment operators probably work better /// x.(m) <- v: promotes m to a stateful lens and then updates x's m /// component with v /// -- Making them return unit since that works better with sequencing `;` let op_Array_Assignment #a #b (x:ref a) (m:lens a b) (y:b) = let _ = (x |::= (st m)) y in () /// x.(m): promotes m to a stateful lens and access x's m component let op_Array_Access #a #b (x:ref a) (m:lens a b) = x |:. (st m) /// You can write stuff like this to go past a ref and then update let mutate (c:ref (colored circle)) = c.(color |.. (red || green || blue)) <- (0, 1), 2 /// But, as you nest refs further, you're forces to break up the updates /// piecewise, since stlenses don't compose let mutate2 (c:ref (colored (ref circle))) = c.(color |.. (red || green || blue)) <- (0, 1), 2; (c.(payload)).(center |.. x) <- 17 //i.e., you can't write c.(payload |.. center |.. x) <- 17 //Also, sadly, you seem to need parantheses on the first access //i.e., c.(payload).(center |.. x) <- 17 parses as // c.(payload.(center |.. x)) <- 17
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.ST.ref (Lens.colored (FStar.ST.ref (Lens.colored (FStar.ST.ref Lens.circle)))) -> FStar.ST.STATE Prims.unit
FStar.ST.STATE
[ "trivial_postcondition" ]
[]
[ "FStar.ST.ref", "Lens.colored", "Lens.circle", "Lens.op_Array_Assignment", "Prims.int", "Lens.op_Bar_Dot_Dot", "Lens.point", "Lens.center", "Lens.x", "Prims.unit", "Lens.op_Array_Access", "Lens.payload" ]
[]
false
true
false
false
false
let mutate3 (c: ref (colored (ref (colored (ref circle))))) =
((c.(payload)).(payload)).(center |.. x) <- 17
false
Lens.fst
Lens.mutate2
val mutate2 : c: FStar.ST.ref (Lens.colored (FStar.ST.ref Lens.circle)) -> FStar.ST.STATE Prims.unit
let mutate2 (c:ref (colored (ref circle))) = c.(color |.. (red || green || blue)) <- (0, 1), 2; (c.(payload)).(center |.. x) <- 17
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 246, "start_col": 0, "start_line": 244 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) } let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) } /// And a `colored a` is a `color` and an `a` type colored (a:Type) = { color:rgb; payload:a } /// Boilerplate let color (#a:Type) : lens (colored a) rgb = { get = (fun p -> p.color); put = (fun z p -> {p with color=z}) } let payload (#a:Type) : lens (colored a) a = { get = (fun p -> p.payload); put = (fun z p -> {p with payload=z}) } /// And you can build longer lenses to reach into an object quite easily let moveUp' (c:colored circle) (offset_y: int) = c.[payload |.. center |.. y] <- c.[payload |.. center |.. y] + offset_y /// You can also build other kinds of lens combinator /// For example, focusing on two different parts of an object at once let ( || ) (l1:lens 'a 'b) (l2:lens 'a 'c) : lens 'a ('b * 'c) = { get = (fun a -> l1.get a, l2.get a); put = (fun (b, c) a -> l2.put c (l1.put b a)) } /// And now you can use these to update multiple components at once let makeGreen (c:colored circle) = c.[color |.. (red || green || blue )] <- (0, 1), 0 //////////////////////////////////////////////////////////////////////////////// /// Now for some stateful stuff /// – This is not quite as nice an compositional as before /// Would be curious to have your thoughts on how it could be generalized /// (My first naive attempt: See StatefulLens for how to do it better) //////////////////////////////////////////////////////////////////////////////// open FStar.Heap open FStar.Ref /// An `stlens #a #b l` goes via a `ref a` to access the `b`component /// that is focused by `l` noeq type stlens (#a:Type) (#b:Type) (l:lens a b) = { // Getting a `b` from an `r:ref a` requires dereferencing it // and then reaching into the result with `l` st_get: r:ref a -> ST b (requires (fun h -> True)) (ensures (fun h0 b h1 -> h0==h1 /\ b == ((sel h1 r)|. l))); // Setting a `b` component inside a `r:ref a` modifies only `r` // and updates the contents of `r` using `l` st_put: y:b -> r:ref a -> ST (ref a) (requires (fun h -> True)) (ensures (fun h0 s h1 -> r == s /\ modifies (Set.singleton (addr_of r)) h0 h1 /\ (sel h1 r == ((sel h0 r).[l] <- y)))) } /// You can turn a regular lens into a stateful lens let st #a #b (l:lens a b) : stlens l = { st_get = (fun (r:ref a) -> (!r).[l]); st_put = (fun (x:b) (r:ref a) -> r := (!r.[l] <- x); r) } /// And we can compose a stateful lens with a pure lens on the right let ( |:.. ) #a #b #c (#l:lens a b) (sl:stlens l) (m:lens b c) : stlens (l |.. m) = { st_get = (fun (r:ref a) -> (sl.st_get r).[m]); st_put = (fun (x:c) (r:ref a) -> sl.st_put ((sl.st_get r).[m] <- x) r) } /// Limitations: /// But, you can't compose an stlens with another stlens /// – Because the spec of st_get and st_put is inherently rigged to /// work with a single reference /// Nor can you compose a pure lens with an stlens on the left /// - Because stlens's always start with a ref /// We can define access and mutation operators for stlenses let ( |:. ) #a #b (#l:lens a b) (x:ref a) (s:stlens l) = s.st_get x let ( |::= ) #a #b (#l:lens a b) (x:ref a) (s:stlens l) (y:b) = s.st_put y x /// Although, as before the access/assignment operators probably work better /// x.(m) <- v: promotes m to a stateful lens and then updates x's m /// component with v /// -- Making them return unit since that works better with sequencing `;` let op_Array_Assignment #a #b (x:ref a) (m:lens a b) (y:b) = let _ = (x |::= (st m)) y in () /// x.(m): promotes m to a stateful lens and access x's m component let op_Array_Access #a #b (x:ref a) (m:lens a b) = x |:. (st m) /// You can write stuff like this to go past a ref and then update let mutate (c:ref (colored circle)) = c.(color |.. (red || green || blue)) <- (0, 1), 2 /// But, as you nest refs further, you're forces to break up the updates
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
c: FStar.ST.ref (Lens.colored (FStar.ST.ref Lens.circle)) -> FStar.ST.STATE Prims.unit
FStar.ST.STATE
[ "trivial_postcondition" ]
[]
[ "FStar.ST.ref", "Lens.colored", "Lens.circle", "Lens.op_Array_Assignment", "Prims.int", "Lens.op_Bar_Dot_Dot", "Lens.point", "Lens.center", "Lens.x", "Prims.unit", "Lens.op_Array_Access", "Lens.payload", "FStar.Pervasives.Native.tuple2", "Prims.nat", "Lens.rgb", "Lens.color", "Lens.op_Bar_Bar", "Lens.red", "Lens.green", "Lens.blue", "FStar.Pervasives.Native.Mktuple2" ]
[]
false
true
false
false
false
let mutate2 (c: ref (colored (ref circle))) =
c.(color |.. (red || green || blue)) <- (0, 1), 2; (c.(payload)).(center |.. x) <- 17
false
FStar.ErasedLogic.fst
FStar.ErasedLogic.ex_proj1
val ex_proj1 : #a:Type -> #p:(a->Type) -> ex a p -> Tot (erased a)
val ex_proj1 : #a:Type -> #p:(a->Type) -> ex a p -> Tot (erased a)
let ex_proj1 #a #p e = (elift1 (exists_proj1 #a #p)) e
{ "file_name": "ulib/legacy/FStar.ErasedLogic.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 40, "start_col": 0, "start_line": 40 }
(* Copyright 2008-2014 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.ErasedLogic (*F* 's exists should be thought of Coq's sigT. It is totally unerased *) (*Coq has 2 more versions, with increasing degree of erasure*) (* https://coq.inria.fr/library/Coq.Init.Specif.html#sigT *) open FStar.Ghost (*you can get the witness x, that the proof part is erased*) (*https://coq.inria.fr/library/Coq.Init.Specif.html#sig*) type sig_ (a:Type) (p: a->Type) = exists (x:a). (erased (p x)) (*you get nothing. Of course, in ghost contexts, or to build other erased date, you get everything*) (* https://coq.inria.fr/library/Coq.Init.Logic.html#ex *) type ex (a:Type) (p:a->Type) = erased (exists (x:a). (p x)) (*how to use the above:*) (*assuming that existentials in F* are constructive. If so, the following 2 assumes must be definable*) assume val exists_proj1 : #a:Type -> #p:(a->Type) -> (exists x.p x) -> GTot a assume val mkexists : #a:Type -> #p:(a->Type) -> x:a -> (p x) -> Tot (exists x.p x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "FStar.ErasedLogic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: FStar.ErasedLogic.ex a p -> FStar.Ghost.erased a
Prims.Tot
[ "total" ]
[]
[ "FStar.ErasedLogic.ex", "FStar.Ghost.elift1", "Prims.l_Exists", "FStar.ErasedLogic.exists_proj1", "FStar.Ghost.erased" ]
[]
false
false
false
false
false
let ex_proj1 #a #p e =
(elift1 (exists_proj1 #a #p)) e
false
EverParse3d.Actions.Base.fst
EverParse3d.Actions.Base.validate_dep_pair_with_refinement'
val validate_dep_pair_with_refinement' (name1: string) (#nz1: _) (#k1: parser_kind nz1 _) (#t1: _) (#p1: parser k1 t1) (#inv1 #disj1 #l1: _) (v1: validate_with_action_t p1 inv1 disj1 l1 true) (r1: leaf_reader p1) (f: (t1 -> bool)) (#nz2 #wk2: _) (#k2: parser_kind nz2 wk2) (#t2: (refine _ f -> Type)) (#p2: (x: refine _ f -> parser k2 (t2 x))) (#inv2 #disj2 #l2 #ar2: _) (v2: (x: refine _ f -> validate_with_action_t (p2 x) inv2 disj2 l2 ar2)) : Tot (validate_with_action_t ((p1 `LPC.parse_filter` f) `(parse_dep_pair #nz1)` p2) (conj_inv inv1 inv2) (conj_disjointness disj1 disj2) (l1 `eloc_union` l2) false)
val validate_dep_pair_with_refinement' (name1: string) (#nz1: _) (#k1: parser_kind nz1 _) (#t1: _) (#p1: parser k1 t1) (#inv1 #disj1 #l1: _) (v1: validate_with_action_t p1 inv1 disj1 l1 true) (r1: leaf_reader p1) (f: (t1 -> bool)) (#nz2 #wk2: _) (#k2: parser_kind nz2 wk2) (#t2: (refine _ f -> Type)) (#p2: (x: refine _ f -> parser k2 (t2 x))) (#inv2 #disj2 #l2 #ar2: _) (v2: (x: refine _ f -> validate_with_action_t (p2 x) inv2 disj2 l2 ar2)) : Tot (validate_with_action_t ((p1 `LPC.parse_filter` f) `(parse_dep_pair #nz1)` p2) (conj_inv inv1 inv2) (conj_disjointness disj1 disj2) (l1 `eloc_union` l2) false)
let validate_dep_pair_with_refinement' (name1: string) #nz1 (#k1:parser_kind nz1 _) #t1 (#p1:parser k1 t1) #inv1 #disj1 #l1 (v1:validate_with_action_t p1 inv1 disj1 l1 true) (r1: leaf_reader p1) (f: t1 -> bool) #nz2 #wk2 (#k2:parser_kind nz2 wk2) (#t2:refine _ f -> Type) (#p2:(x:refine _ f -> parser k2 (t2 x))) #inv2 #disj2 #l2 #ar2 (v2:(x:refine _ f -> validate_with_action_t (p2 x) inv2 disj2 l2 ar2)) : Tot (validate_with_action_t ((p1 `LPC.parse_filter` f) `(parse_dep_pair #nz1)` p2) (conj_inv inv1 inv2) (conj_disjointness disj1 disj2) (l1 `eloc_union` l2) false) = fun ctxt error_handler_fn input input_length startPosition -> let h0 = HST.get () in LPC.parse_dtuple2_eq' #_ #_ (p1 `LPC.parse_filter` f) #_ #t2 p2 (I.get_remaining input h0); LPC.parse_filter_eq p1 f (I.get_remaining input h0); [@(rename_let ("positionAfter" ^ name1))] let res = v1 ctxt error_handler_fn input input_length startPosition in let h1 = HST.get() in modifies_address_liveness_insensitive_unused_in h0 h1; if LPE.is_error res then begin res end else begin [@(rename_let ("" ^ name1))] let field_value = r1 input startPosition in [@(rename_let (name1 ^ "ConstraintIsOk"))] let ok = f field_value in [@(rename_let ("positionAfter" ^ name1))] let res1 = LPE.check_constraint_ok ok res in if LPE.is_error res1 then res1 else let h2 = HST.get() in // assert (B.modifies B.loc_none h1 h2); // assert (inv1' input.LPL.base h2); modifies_address_liveness_insensitive_unused_in h1 h2; // assert (loc_not_unused_in h2 `loc_includes` l1'); // assert (valid_pos (p1 `(LPC.parse_filter #k1 #t1)` f) h0 input (uint64_to_uint32 pos) (uint64_to_uint32 res)); let h15 = HST.get () in let _ = modifies_address_liveness_insensitive_unused_in h0 h15 in validate_drop (v2 field_value) ctxt error_handler_fn input input_length res1 end
{ "file_name": "src/3d/prelude/EverParse3d.Actions.Base.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 11, "end_line": 680, "start_col": 0, "start_line": 636 }
module EverParse3d.Actions.Base friend EverParse3d.Kinds friend EverParse3d.Prelude open FStar.HyperStack.ST open LowStar.Buffer open LowStar.BufferOps module B = LowStar.Buffer module I = EverParse3d.InputStream.Base module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module CP = EverParse3d.CopyBuffer module AppCtxt = EverParse3d.AppCtxt module LPE = EverParse3d.ErrorCode open FStar.Tactics.Typeclasses open FStar.FunctionalExtensionality module B = LowStar.Buffer module U8 = FStar.UInt8 module P = EverParse3d.Prelude module F = FStar.FunctionalExtensionality let hinv = HS.mem ^-> prop let liveness_inv = i:hinv { forall l h0 h1. {:pattern (i h1); (modifies l h0 h1)} i h0 /\ modifies l h0 h1 /\ address_liveness_insensitive_locs `loc_includes` l ==> i h1 } let mem_inv = liveness_inv let slice_inv = mem_inv let inv_implies (inv0 inv1:slice_inv) = forall h. inv0 h ==> inv1 h let true_inv : slice_inv = F.on HS.mem #prop (fun _ -> True) let conj_inv (i0 i1:slice_inv) : slice_inv = F.on HS.mem #prop (fun h -> i0 h /\ i1 h) let eloc = (l: FStar.Ghost.erased B.loc { B.address_liveness_insensitive_locs `B.loc_includes` l }) let eloc_union (l1 l2:eloc) : Tot eloc = B.loc_union l1 l2 let eloc_none : eloc = B.loc_none let eloc_includes (l1 l2:eloc) = B.loc_includes l1 l2 /\ True let eloc_disjoint (l1 l2:eloc) = B.loc_disjoint l1 l2 /\ True let inv_implies_refl inv = () let inv_implies_true inv0 = () let inv_implies_conj inv0 inv1 inv2 h01 h02 = () let conj_inv_true_left_unit i = FStar.PredicateExtensionality.predicateExtensionality _ (conj_inv true_inv i) i let conj_inv_true_right_unit i = FStar.PredicateExtensionality.predicateExtensionality _ (conj_inv i true_inv) i let eloc_includes_none l = () let eloc_includes_union l0 l1 l2 h01 h02 = () let eloc_includes_refl l = () let eloc_union_none_left_unit l = () let eloc_union_none_right_unit l = () let disjointness_pre = prop let disjointness_trivial = True let disjoint l1 l2 = eloc_disjoint l1 l2 let conj_disjointness p1 p2 = p1 /\ p2 let imp_disjointness p1 p2 = p1 ==> p2 let disjoint_none_r l = FStar.PropositionalExtensionality.apply (disjoint l eloc_none) (disjointness_trivial) let disjoint_none_l l = FStar.PropositionalExtensionality.apply (disjoint eloc_none l) (disjointness_trivial) let conj_disjointness_trivial_left_unit (d:disjointness_pre) = FStar.PropositionalExtensionality.apply (disjointness_trivial `conj_disjointness` d) d let conj_disjointness_trivial_right_unit (d:disjointness_pre) = FStar.PropositionalExtensionality.apply (d `conj_disjointness` disjointness_trivial) d let imp_disjointness_refl (d:disjointness_pre) = () let index_equations () = introduce forall d. _ with conj_inv_true_left_unit d; introduce forall d. _ with conj_inv_true_right_unit d; introduce forall l. _ with eloc_union_none_right_unit l; introduce forall l. _ with eloc_union_none_left_unit l; introduce forall l. _ with disjoint_none_r l; introduce forall l. _ with disjoint_none_l l; introduce forall d. _ with conj_disjointness_trivial_left_unit d; introduce forall d. _ with conj_disjointness_trivial_right_unit d; introduce forall d. _ with imp_disjointness_refl d; introduce forall i. _ with inv_implies_refl i; introduce forall i. _ with inv_implies_true i; introduce forall i0 i1 i2. (i0 `inv_implies` i1 /\ i0 `inv_implies` i2) ==> (i0 `inv_implies` (i1 `conj_inv` i2)) with introduce _ ==> _ with _ . inv_implies_conj i0 i1 i2 () (); introduce forall l. _ with eloc_includes_none l; introduce forall l0 l1 l2. (l0 `eloc_includes` l1 /\ l0 `eloc_includes` l2) ==> (l0 `eloc_includes` (l1 `eloc_union` l2)) with introduce _ ==> _ with _ . eloc_includes_union l0 l1 l2 () (); introduce forall l. _ with eloc_includes_refl l let bpointer a = B.pointer a let ptr_loc #a (x:B.pointer a) : Tot eloc = B.loc_buffer x let ptr_inv #a (x:B.pointer a) : slice_inv = F.on HS.mem #prop (fun h -> B.live h x /\ True) let app_ctxt = AppCtxt.app_ctxt let app_loc (x:AppCtxt.app_ctxt) (l:eloc) : eloc = AppCtxt.properties x; AppCtxt.loc_of x `loc_union` l inline_for_extraction noextract let input_buffer_t = EverParse3d.InputStream.All.t inline_for_extraction let error_handler = typename:string -> fieldname:string -> error_reason:string -> error_code:U64.t -> ctxt: app_ctxt -> sl: input_buffer_t -> pos: LPE.pos_t -> Stack unit (requires fun h -> I.live sl h /\ true_inv h /\ B.live h ctxt /\ loc_not_unused_in h `loc_includes` app_loc ctxt eloc_none /\ address_liveness_insensitive_locs `loc_includes` app_loc ctxt eloc_none /\ app_loc ctxt eloc_none `loc_disjoint` I.footprint sl /\ U64.v pos <= Seq.length (I.get_read sl h) ) (ensures fun h0 _ h1 -> let sl = Ghost.reveal sl in modifies (app_loc ctxt eloc_none) h0 h1 /\ B.live h1 ctxt /\ true_inv h1) let action inv disj l on_success a = (# [EverParse3d.Util.solve_from_ctx ()] I.extra_t #input_buffer_t) -> ctxt: app_ctxt -> error_handler_fn : error_handler -> sl: input_buffer_t -> len: I.tlen sl -> pos: LPE.pos_t -> posf: LPE.pos_t -> Stack a (requires fun h -> I.live sl h /\ disj /\ inv h /\ B.live h ctxt /\ loc_not_unused_in h `loc_includes` app_loc ctxt l /\ address_liveness_insensitive_locs `loc_includes` app_loc ctxt l /\ app_loc ctxt l `loc_disjoint` I.footprint sl /\ U64.v pos <= U64.v posf /\ U64.v posf == Seq.length (I.get_read sl h) ) (ensures fun h0 _ h1 -> let sl = Ghost.reveal sl in modifies (app_loc ctxt l) h0 h1 /\ B.live h1 ctxt /\ inv h1) module LP = LowParse.Spec.Base module LPL = LowParse.Low.Base unfold let valid_consumed (#input_buffer_t: Type0) (# [tcresolve ()] inst : I.input_stream_inst input_buffer_t) (#k: LP.parser_kind) (#t: Type) (p: LP.parser k t) (h: HS.mem) (h': HS.mem) (sl: input_buffer_t) : Tot prop = I.live sl h /\ I.live sl h' /\ begin let s = I.get_remaining sl h in begin match LP.parse p s with | None -> False | Some (_, len) -> I.get_remaining sl h' `Seq.equal` Seq.slice s len (Seq.length s) end end unfold let valid_length (#input_buffer_t: Type0) (# [tcresolve ()] inst : I.input_stream_inst input_buffer_t) (#k: LP.parser_kind) (#t: Type) (p: LP.parser k t) (h: HS.mem) (sl: input_buffer_t) (len: int) : Tot prop = I.live sl h /\ begin let s = I.get_remaining sl h in begin match LP.parse p s with | None -> False | Some (_, len') -> len == len' end end let valid (#input_buffer_t: Type0) (# [tcresolve ()] inst : I.input_stream_inst input_buffer_t) (#k: LP.parser_kind) (#t: Type) (p: LP.parser k t) (h: HS.mem) (sl: input_buffer_t) : Tot prop = I.live sl h /\ Some? (LP.parse p (I.get_remaining sl h)) inline_for_extraction noextract let validate_with_action_t' (#k:LP.parser_kind) (#t:Type) (p:LP.parser k t) (inv:slice_inv) (disj:disjointness_pre) (l:eloc) (allow_reading:bool) : Type = (# [EverParse3d.Util.solve_from_ctx ()] I.extra_t #input_buffer_t) -> (ctxt: app_ctxt) -> (error_handler_fn : error_handler) -> (sl: input_buffer_t) -> (len: I.tlen sl) -> (pos: LPE.pos_t) -> Stack U64.t (requires fun h -> I.live sl h /\ disj /\ inv h /\ B.live h ctxt /\ loc_not_unused_in h `loc_includes` app_loc ctxt l /\ address_liveness_insensitive_locs `loc_includes` app_loc ctxt l /\ U64.v pos == Seq.length (I.get_read sl h) /\ app_loc ctxt l `loc_disjoint` I.footprint sl ) (ensures fun h res h' -> I.live sl h' /\ modifies (app_loc ctxt l `loc_union` I.perm_footprint sl) h h' /\ inv h' /\ B.live h' ctxt /\ (((~ allow_reading) \/ LPE.is_error res) ==> U64.v (LPE.get_validator_error_pos res) == Seq.length (I.get_read sl h')) /\ begin let s = I.get_remaining sl h in if LPE.is_success res then begin if allow_reading then U64.v res >= U64.v pos /\ valid_length p h sl (U64.v res - U64.v pos) /\ I.get_remaining sl h' == s else valid_consumed p h h' sl end else let s' = I.get_remaining sl h' in (LPE.get_validator_error_kind res <> LPE.get_validator_error_kind LPE.validator_error_action_failed ==> None? (LP.parse p s)) /\ Seq.length s' <= Seq.length s /\ s' `Seq.equal` Seq.slice s (Seq.length s - Seq.length s') (Seq.length s) end ) let validate_with_action_t p inv disj l allow_reading = validate_with_action_t' p inv disj l allow_reading let validate_eta v = fun ctxt error_handler_fn sl pos -> v ctxt error_handler_fn sl pos let act_with_comment s res a = fun ctxt err sl len pos posf -> LPL.comment s; a ctxt err sl len pos posf let leaf_reader #nz #k (#t: Type) (p: parser k t) : Tot Type = (# [EverParse3d.Util.solve_from_ctx ()] _extra_t : I.extra_t #input_buffer_t ) -> (sl: input_buffer_t) -> (pos: LPE.pos_t) -> Stack t (requires (fun h -> valid p h sl /\ U64.v pos == Seq.length (I.get_read sl h) )) (ensures (fun h res h' -> let s = I.get_remaining sl h in I.live sl h' /\ modifies (I.perm_footprint sl) h h' /\ begin match LP.parse p s with | None -> False | Some (y, len) -> res == y /\ I.get_remaining sl h' == Seq.slice s len (Seq.length s) end )) #push-options "--z3rlimit 32" inline_for_extraction noextract let validate_with_success_action' (name: string) #nz #wk (#k1:parser_kind nz wk) #t1 (#p1:parser k1 t1) (#inv1:_) (#disj1:_) (#l1:eloc) (v1:validate_with_action_t p1 inv1 disj1 l1 false) (#inv2:_) (#disj2:_) (#l2:eloc) #b (a:action inv2 disj2 l2 b bool) : validate_with_action_t p1 (conj_inv inv1 inv2) (conj_disjointness disj1 disj2) (l1 `eloc_union` l2) false = fun ctxt error_handler_fn input input_length start_position -> [@inline_let] let pos0 = start_position in let h0 = HST.get () in [@(rename_let ("positionAfter" ^ name))] let pos1 = v1 ctxt error_handler_fn input input_length pos0 in let h1 = HST.get () in modifies_address_liveness_insensitive_unused_in h0 h1; if LPE.is_success pos1 then [@(rename_let ("action_success_" ^ name))] let b = a ctxt error_handler_fn input input_length pos0 pos1 in let h2 = HST.get () in modifies_address_liveness_insensitive_unused_in h1 h2; if not b then LPE.set_validator_error_pos LPE.validator_error_action_failed pos1 else pos1 else pos1 inline_for_extraction noextract let validate_drop_true (#k:LP.parser_kind) (#t:Type) (#p:LP.parser k t) (#inv:slice_inv) (#disj:disjointness_pre) (#l:eloc) (v: validate_with_action_t' p inv disj l true) : Tot (validate_with_action_t' p inv disj l false) = fun ctxt error_handler_fn input input_length start_position -> [@inline_let] let pos = start_position in let res = v ctxt error_handler_fn input input_length pos in I.skip_if_success input pos res; res inline_for_extraction noextract let validate_drop (#k:LP.parser_kind) (#t:Type) (#p:LP.parser k t) (#inv:slice_inv) (#disj:disjointness_pre) (#l:eloc) #allow_reading (v: validate_with_action_t' p inv disj l allow_reading) : Tot (validate_with_action_t' p inv disj l false) = if allow_reading then validate_drop_true v else v let validate_with_success_action name v1 a = validate_with_success_action' name (validate_drop v1) a inline_for_extraction noextract let validate_with_error_handler (typename:string) (fieldname:string) #nz #wk (#k1:parser_kind nz wk) #t1 (#p1:parser k1 t1) (#inv1 #disj1:_) (#l1:eloc) (#ar:_) (v1:validate_with_action_t p1 inv1 disj1 l1 ar) : validate_with_action_t p1 inv1 disj1 l1 ar = fun ctxt error_handler_fn input input_length start_position -> [@inline_let] let pos0 = start_position in let h0 = HST.get () in [@(rename_let ("positionAfter" ^ typename))] let pos1 = v1 ctxt error_handler_fn input input_length pos0 in let h1 = HST.get () in modifies_address_liveness_insensitive_unused_in h0 h1; if LPE.is_success pos1 then pos1 else ( error_handler_fn typename fieldname (LPE.error_reason_of_result pos1) (LPE.get_validator_error_kind pos1) ctxt input pos0; pos1 ) inline_for_extraction noextract let validate_ret : validate_with_action_t (parse_ret ()) true_inv disjointness_trivial eloc_none true = fun ctxt error_handler_fn input input_length start_position -> start_position #push-options "--z3rlimit 32" module LPC = LowParse.Spec.Combinators inline_for_extraction noextract let validate_pair (name1: string) #nz1 (#k1:parser_kind nz1 WeakKindStrongPrefix) #t1 (#p1:parser k1 t1) (#inv1 #disj1:_) (#l1:eloc) (#ar1:_) (v1:validate_with_action_t p1 inv1 disj1 l1 ar1) #nz2 #wk2 (#k2:parser_kind nz2 wk2) #t2 (#p2:parser k2 t2) (#inv2 #disj2:_) (#l2:eloc) (#ar2:_) (v2:validate_with_action_t p2 inv2 disj2 l2 ar2) = fun ctxt error_handler_fn input input_length start_position -> [@inline_let] let pos = start_position in let h = HST.get () in LPC.nondep_then_eq p1 p2 (I.get_remaining input h); [@(rename_let ("positionAfter" ^ name1))] let pos1 = validate_drop v1 ctxt error_handler_fn input input_length pos in let h1 = HST.get () in modifies_address_liveness_insensitive_unused_in h h1; if LPE.is_error pos1 then pos1 else validate_drop v2 ctxt error_handler_fn input input_length pos1 inline_for_extraction noextract let validate_dep_pair (name1: string) #nz1 (#k1:parser_kind nz1 _) #t1 (#p1:parser k1 t1) #inv1 #disj1 #l1 (v1:validate_with_action_t p1 inv1 disj1 l1 true) (r1: leaf_reader p1) #nz2 #wk2 (#k2:parser_kind nz2 wk2) (#t2:t1 -> Type) (#p2:(x:t1 -> parser k2 (t2 x))) #inv2 #disj2 #l2 #ar2 (v2:(x:t1 -> validate_with_action_t (p2 x) inv2 disj2 l2 ar2)) = fun ctxt error_handler_fn input input_length start_position -> [@inline_let] let pos = start_position in let h = HST.get () in LPC.parse_dtuple2_eq p1 p2 (I.get_remaining input h); [@(rename_let ("positionAfter" ^ name1))] let pos1 = v1 ctxt error_handler_fn input input_length pos in let h1 = HST.get() in if LPE.is_error pos1 then begin pos1 end else [@(rename_let ("" ^ name1))] let x = r1 input pos in let h15 = HST.get () in let _ = modifies_address_liveness_insensitive_unused_in h h15 in validate_drop (v2 x) ctxt error_handler_fn input input_length pos1 #pop-options #push-options "--z3rlimit 64" #restart-solver inline_for_extraction noextract let validate_dep_pair_with_refinement_and_action' (name1: string) (#nz1: _) (#k1:parser_kind nz1 _) (#t1: _) (#p1:parser k1 t1) (#inv1 #disj1 #l1: _) (v1:validate_with_action_t p1 inv1 disj1 l1 true) (r1: leaf_reader p1) (f: t1 -> bool) (#inv1' #disj1' #l1' #b: _) (a:t1 -> action inv1' disj1' l1' b bool) (#nz2 #wk2: _) (#k2:parser_kind nz2 wk2) (#t2:refine _ f -> Type) (#p2:(x:refine _ f) -> parser k2 (t2 x)) (#inv2 #disj2 #l2 #ar2: _) (v2:(x:refine _ f -> validate_with_action_t (p2 x) inv2 disj2 l2 ar2)) : validate_with_action_t ((p1 `LPC.parse_filter` f) `(parse_dep_pair #nz1)` p2) (conj_inv inv1 (conj_inv inv1' inv2)) (conj_disjointness disj1 (conj_disjointness disj1' disj2)) (l1 `eloc_union` (l1' `eloc_union` l2)) false = fun ctxt error_handler_fn input input_length startPosition -> let h0 = HST.get () in LPC.parse_dtuple2_eq' #_ #_ (p1 `LPC.parse_filter` f) #_ #t2 p2 (I.get_remaining input h0); LPC.parse_filter_eq p1 f (I.get_remaining input h0); [@(rename_let ("positionAfter" ^ name1))] let res = v1 ctxt error_handler_fn input input_length startPosition in let h1 = HST.get() in modifies_address_liveness_insensitive_unused_in h0 h1; if LPE.is_error res then begin res end else begin assert (I.get_remaining input h1 == I.get_remaining input h0); [@(rename_let ("" ^ name1))] let field_value = r1 input startPosition in [@(rename_let (name1 ^ "ConstraintIsOk"))] let ok = f field_value in [@(rename_let ("positionAfter" ^ name1))] let res1 = LPE.check_constraint_ok ok res in let h2 = HST.get() in if LPE.is_error res1 then res1 else begin modifies_address_liveness_insensitive_unused_in h1 h2; if not (a field_value ctxt error_handler_fn input input_length startPosition res1) then LPE.set_validator_error_pos LPE.validator_error_action_failed res1 //action failed else begin let h15 = HST.get () in let _ = modifies_address_liveness_insensitive_unused_in h0 h15 in validate_drop (v2 field_value) ctxt error_handler_fn input input_length res1 end end end inline_for_extraction noextract let validate_dep_pair_with_refinement_and_action_total_zero_parser' (name1: string) (#nz1: _) (#k1:parser_kind nz1 WeakKindStrongPrefix) (#t1: _) (#p1:parser k1 t1) (r1: leaf_reader p1) (inv1 disj1 l1: _) (f: t1 -> bool) (#inv1' #disj1' #l1' #b: _) (a:t1 -> action inv1' disj1' l1' b bool) (#nz2 #wk2: _) (#k2:parser_kind nz2 wk2) (#t2:refine _ f -> Type) (#p2:(x:refine _ f -> parser k2 (t2 x))) (#inv2 #disj2 #l2 #ar2: _) (v2:(x:refine _ f -> validate_with_action_t (p2 x) inv2 disj2 l2 ar2)) : Pure (validate_with_action_t ((p1 `LPC.parse_filter` f) `(parse_dep_pair #nz1)` p2) (conj_inv inv1 (conj_inv inv1' inv2)) (conj_disjointness disj1 (conj_disjointness disj1' disj2)) (l1 `eloc_union` (l1' `eloc_union` l2)) false) (requires ( let open LP in k1.parser_kind_high == Some 0 /\ k1.parser_kind_metadata == Some ParserKindMetadataTotal )) (ensures (fun _ -> True)) = fun ctxt error_handler_fn input input_length startPosition -> let h0 = HST.get () in LPC.parse_dtuple2_eq' #_ #_ (p1 `LPC.parse_filter` f) #_ #t2 p2 (I.get_remaining input h0); LPC.parse_filter_eq p1 f (I.get_remaining input h0); [@inline_let] let _ = LP.parser_kind_prop_equiv k1 p1 in begin LowStar.Comment.comment ("Validating field " ^ name1); [@(rename_let ("" ^ name1))] let field_value = r1 input startPosition in [@(rename_let (name1 ^ "ConstraintIsOk"))] let ok = f field_value in [@(rename_let ("positionAfter" ^ name1))] let res1 = LPE.check_constraint_ok ok startPosition in if LPE.is_error res1 then res1 else let h2 = HST.get() in modifies_address_liveness_insensitive_unused_in h0 h2; if not (a field_value ctxt error_handler_fn input input_length startPosition res1) then LPE.set_validator_error_pos LPE.validator_error_action_failed startPosition //action failed else begin let h15 = HST.get () in let _ = modifies_address_liveness_insensitive_unused_in h0 h15 in validate_drop (v2 field_value) ctxt error_handler_fn input input_length res1 end end inline_for_extraction noextract let validate_dep_pair_with_refinement_and_action (p1_is_constant_size_without_actions: bool) (name1: string) #nz1 (#k1:parser_kind nz1 _) #t1 (#p1:parser k1 t1) #inv1 #disj1 #l1 (v1:validate_with_action_t p1 inv1 disj1 l1 true) (r1: leaf_reader p1) (f: t1 -> bool) #inv1' #disj1' #l1' #b (a:t1 -> action inv1' disj1' l1' b bool) #nz2 #wk2 (#k2:parser_kind nz2 wk2) (#t2:refine _ f -> Type) (#p2:(x:refine _ f -> parser k2 (t2 x))) #inv2 #disj2 #l2 #ar2 (v2:(x:refine _ f -> validate_with_action_t (p2 x) inv2 disj2 l2 ar2)) = if p1_is_constant_size_without_actions `LP.bool_and` (k1.LP.parser_kind_high = Some 0) `LP.bool_and` (k1.LP.parser_kind_metadata = Some LP.ParserKindMetadataTotal) then validate_dep_pair_with_refinement_and_action_total_zero_parser' name1 r1 inv1 disj1 l1 f a v2 else validate_dep_pair_with_refinement_and_action' name1 v1 r1 f a v2 inline_for_extraction noextract let validate_dep_pair_with_action #nz1 (#k1:parser_kind nz1 _) #t1 (#p1:parser k1 t1) #inv1 #disj1 #l1 (v1:validate_with_action_t p1 inv1 disj1 l1 true) (r1: leaf_reader p1) #inv1' #disj1' #l1' #b (a:t1 -> action inv1' disj1' l1' b bool) #nz2 #wk2 (#k2:parser_kind nz2 wk2) (#t2:t1 -> Type) (#p2:(x:t1 -> parser k2 (t2 x))) #inv2 #disj2 #l2 #ar2 (v2:(x:t1 -> validate_with_action_t (p2 x) inv2 disj2 l2 ar2)) = fun ctxt error_handler_fn input input_length startPosition -> let h0 = HST.get () in LPC.parse_dtuple2_eq' #_ #_ p1 #_ #t2 p2 (I.get_remaining input h0); let res = v1 ctxt error_handler_fn input input_length startPosition in let h1 = HST.get() in modifies_address_liveness_insensitive_unused_in h0 h1; if LPE.is_error res then begin res end else begin let field_value = r1 input startPosition in let h2 = HST.get() in modifies_address_liveness_insensitive_unused_in h1 h2; let action_result = a field_value ctxt error_handler_fn input input_length startPosition res in let h3 = HST.get () in modifies_address_liveness_insensitive_unused_in h2 h3; if not action_result then LPE.set_validator_error_pos LPE.validator_error_action_failed res //action failed else validate_drop (v2 field_value) ctxt error_handler_fn input input_length res end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Comment.fsti.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Spec.List.fsti.checked", "LowParse.Spec.FLData.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Low.ListUpTo.fst.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.FLData.fst.checked", "LowParse.Low.BoundedInt.fsti.checked", "LowParse.Low.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Seq.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.PredicateExtensionality.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "EverParse3d.Util.fst.checked", "EverParse3d.Prelude.fst.checked", "EverParse3d.Kinds.fst.checked", "EverParse3d.InputStream.Base.fst.checked", "EverParse3d.InputStream.All.fsti.checked", "EverParse3d.ErrorCode.fst.checked", "EverParse3d.CopyBuffer.fsti.checked", "EverParse3d.AppCtxt.fsti.checked", "C.Loops.fst.checked" ], "interface_file": true, "source_file": "EverParse3d.Actions.Base.fst" }
[ { "abbrev": true, "full_module": "LowParse.Spec.Combinators", "short_module": "LPC" }, { "abbrev": true, "full_module": "LowParse.Low.Base", "short_module": "LPL" }, { "abbrev": true, "full_module": "LowParse.Spec.Base", "short_module": "LP" }, { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": true, "full_module": "EverParse3d.Prelude", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": true, "full_module": "EverParse3d.ErrorCode", "short_module": "LPE" }, { "abbrev": true, "full_module": "EverParse3d.AppCtxt", "short_module": "AppCtxt" }, { "abbrev": true, "full_module": "EverParse3d.CopyBuffer", "short_module": "CP" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "EverParse3d.InputStream.Base", "short_module": "I" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "EverParse3d.CopyBuffer", "short_module": "CP" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "EverParse3d.Prelude", "short_module": null }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "Cast" }, { "abbrev": false, "full_module": "EverParse3d.Actions", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d.Actions", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
name1: Prims.string -> v1: EverParse3d.Actions.Base.validate_with_action_t p1 inv1 disj1 l1 true -> r1: EverParse3d.Actions.Base.leaf_reader p1 -> f: (_: t1 -> Prims.bool) -> v2: (x: EverParse3d.Prelude.refine t1 f -> EverParse3d.Actions.Base.validate_with_action_t (p2 x) inv2 disj2 l2 ar2) -> EverParse3d.Actions.Base.validate_with_action_t (EverParse3d.Prelude.parse_dep_pair (LowParse.Spec.Combinators.parse_filter p1 f) p2) (EverParse3d.Actions.Base.conj_inv inv1 inv2) (EverParse3d.Actions.Base.conj_disjointness disj1 disj2) (EverParse3d.Actions.Base.eloc_union l1 l2) false
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Prims.bool", "EverParse3d.Kinds.parser_kind", "EverParse3d.Kinds.WeakKindStrongPrefix", "EverParse3d.Prelude.parser", "EverParse3d.Actions.Base.slice_inv", "EverParse3d.Actions.Base.disjointness_pre", "EverParse3d.Actions.Base.eloc", "EverParse3d.Actions.Base.validate_with_action_t", "EverParse3d.Actions.Base.leaf_reader", "EverParse3d.Kinds.weak_kind", "EverParse3d.Prelude.refine", "EverParse3d.InputStream.Base.extra_t", "EverParse3d.Actions.Base.input_buffer_t", "EverParse3d.InputStream.All.inst", "EverParse3d.Actions.Base.app_ctxt", "EverParse3d.Actions.Base.error_handler", "EverParse3d.InputStream.Base.tlen", "EverParse3d.ErrorCode.pos_t", "EverParse3d.ErrorCode.is_error", "FStar.UInt64.t", "EverParse3d.Actions.Base.validate_drop", "Prims.unit", "LowStar.Monotonic.Buffer.modifies_address_liveness_insensitive_unused_in", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "EverParse3d.ErrorCode.check_constraint_ok", "LowParse.Spec.Combinators.parse_filter_eq", "EverParse3d.InputStream.Base.get_remaining", "LowParse.Spec.Combinators.parse_dtuple2_eq'", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.Combinators.parse_filter", "Prims.op_BarBar", "EverParse3d.Kinds.and_then_kind", "Prims.dtuple2", "EverParse3d.Prelude.parse_dep_pair", "EverParse3d.Actions.Base.conj_inv", "EverParse3d.Actions.Base.conj_disjointness", "EverParse3d.Actions.Base.eloc_union" ]
[]
false
false
false
false
false
let validate_dep_pair_with_refinement' (name1: string) #nz1 (#k1: parser_kind nz1 _) #t1 (#p1: parser k1 t1) #inv1 #disj1 #l1 (v1: validate_with_action_t p1 inv1 disj1 l1 true) (r1: leaf_reader p1) (f: (t1 -> bool)) #nz2 #wk2 (#k2: parser_kind nz2 wk2) (#t2: (refine _ f -> Type)) (#p2: (x: refine _ f -> parser k2 (t2 x))) #inv2 #disj2 #l2 #ar2 (v2: (x: refine _ f -> validate_with_action_t (p2 x) inv2 disj2 l2 ar2)) : Tot (validate_with_action_t ((p1 `LPC.parse_filter` f) `(parse_dep_pair #nz1)` p2) (conj_inv inv1 inv2) (conj_disjointness disj1 disj2) (l1 `eloc_union` l2) false) =
fun ctxt error_handler_fn input input_length startPosition -> let h0 = HST.get () in LPC.parse_dtuple2_eq' #_ #_ (p1 `LPC.parse_filter` f) #_ #t2 p2 (I.get_remaining input h0); LPC.parse_filter_eq p1 f (I.get_remaining input h0); [@@ (rename_let ("positionAfter" ^ name1)) ]let res = v1 ctxt error_handler_fn input input_length startPosition in let h1 = HST.get () in modifies_address_liveness_insensitive_unused_in h0 h1; if LPE.is_error res then res else [@@ (rename_let ("" ^ name1)) ]let field_value = r1 input startPosition in [@@ (rename_let (name1 ^ "ConstraintIsOk")) ]let ok = f field_value in [@@ (rename_let ("positionAfter" ^ name1)) ]let res1 = LPE.check_constraint_ok ok res in if LPE.is_error res1 then res1 else let h2 = HST.get () in modifies_address_liveness_insensitive_unused_in h1 h2; let h15 = HST.get () in let _ = modifies_address_liveness_insensitive_unused_in h0 h15 in validate_drop (v2 field_value) ctxt error_handler_fn input input_length res1
false
BinarySearchTree0.fst
BinarySearchTree0.search
val search : int -> tree -> bool
val search : int -> tree -> bool
let rec search x t = match t with | Leaf -> false | Node n t1 t2 -> if x = n then true else if x < n then search x t1 else search x t2
{ "file_name": "examples/data_structures/BinarySearchTree0.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 28, "start_col": 0, "start_line": 23 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module BinarySearchTree0 type tree = | Leaf : tree | Node : int -> tree -> tree -> tree
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "BinarySearchTree0.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.int -> t: BinarySearchTree0.tree -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "BinarySearchTree0.tree", "Prims.op_Equality", "Prims.bool", "Prims.op_LessThan", "BinarySearchTree0.search" ]
[ "recursion" ]
false
false
false
true
false
let rec search x t =
match t with | Leaf -> false | Node n t1 t2 -> if x = n then true else if x < n then search x t1 else search x t2
false
Lens.fst
Lens.st
val st (#a #b: _) (l: lens a b) : stlens l
val st (#a #b: _) (l: lens a b) : stlens l
let st #a #b (l:lens a b) : stlens l = { st_get = (fun (r:ref a) -> (!r).[l]); st_put = (fun (x:b) (r:ref a) -> r := (!r.[l] <- x); r) }
{ "file_name": "examples/data_structures/Lens.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 1, "end_line": 206, "start_col": 0, "start_line": 203 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) /// A small experiment with lenses, including stateful lenses toward /// the end. /// /// Part of what I'm experimenting with is how to shoehorn this into /// the existing notational support in F*. module Lens let ignore (x:'a) : unit = () /// A `lens a b` focuses on the `b` component of `a` /// It provides a `get` to access the component /// And a `set` to update and `a` by updating its `b` component noeq type lens (a:Type) (b:Type) = { get: a -> b; put: b -> a -> a } /// `x |. l` : projects using the lens `l` from `x` let ( |. ) (x:'a) (l:lens 'a 'b) : 'b = l.get x /// `(x |:= l) v` : updates the `l`-focused component of `x` with `v` /// – The additional parentheses on the left are necesssary here let ( |:= ) (x:'a) (l:lens 'a 'b) : 'b -> 'a = fun b -> l.put b x /// `l |.. m`: composes lenses, building an "access path" that extends /// the focus of `l` with `m` let ( |.. ) (m:lens 'a 'b) (l:lens 'b 'c) : lens 'a 'c = { get = (fun x -> l.get (m.get x)); put = (fun (x:'c) (y:'a) -> m.put (l.put x (m.get y)) y) } (* Using these operators provides slightly better notation *) /// `x.[l] <- v`: updates the l-focused component of x with v let op_String_Assignment (x:'a) (l:lens 'a 'b) (v:'b) : 'a = (x |:= l) v /// `x.[l]`: accesses the l-focused component let op_String_Access (x:'a) (l:lens 'a 'b) : 'b = x |. l (** Now for some pure examples **) /// A simple 3d point defined as a record type point = { x:int; y:int; z:int } /// Followed by bit of boilerplate (which would be nice to metaprogram) /// to define lenses for each of its components let x : lens point int = { get = (fun p -> p.x); put = (fun x' p -> {p with x=x'}) } let y : lens point int = { get = (fun p -> p.y); put = (fun y' p -> {p with y=y'}) } let z : lens point int = { get = (fun p -> p.z); put = (fun z' p -> {p with z=z'}) } /// A circle is a point and a radius type circle = { center: point; radius: nat } /// Again, a bit of boiler plate for lenses on its fields let center : lens circle point = { get = (fun c -> c.center); put = (fun n c -> {c with center = n}) } let radius : lens circle nat= { get = (fun c -> c.radius); put = (fun n c -> {c with radius = n}) } (** Now some clients that use the lenses **) let getY (c:circle) = c |. center |. y /// Or, using the accessor notation let getY' (c:circle) = c.[center |.. y] /// Or, of course, using the built-in notation /// ... /// So,this doesn't look like much progress so far : ) let getY'' (c:circle) = c.center.y /// But, updating a nested record is somewhat easier now let setY (c:circle) (new_y: int) = c.[center |.. y] <- new_y /// As opposed to: let tedious_setY (c:circle) (new_y: int) = {c with center = {c.center with y = new_y}} /// You can mix accessors and mutators let moveUp (c:circle) (offset_y: int) = c.[center |.. y] <- c.[center |.. y] + offset_y (** Now lets add more layers of objects **) /// Here's an RGB color type rgb = { red:nat; green:nat; blue:nat; } /// Boilerplate let red : lens rgb nat = { get = (fun p -> p.red); put = (fun z p -> {p with red=z}) } let green : lens rgb nat = { get = (fun p -> p.green); put = (fun z p -> {p with green=z}) } let blue : lens rgb nat = { get = (fun p -> p.blue); put = (fun z p -> {p with blue=z}) } /// And a `colored a` is a `color` and an `a` type colored (a:Type) = { color:rgb; payload:a } /// Boilerplate let color (#a:Type) : lens (colored a) rgb = { get = (fun p -> p.color); put = (fun z p -> {p with color=z}) } let payload (#a:Type) : lens (colored a) a = { get = (fun p -> p.payload); put = (fun z p -> {p with payload=z}) } /// And you can build longer lenses to reach into an object quite easily let moveUp' (c:colored circle) (offset_y: int) = c.[payload |.. center |.. y] <- c.[payload |.. center |.. y] + offset_y /// You can also build other kinds of lens combinator /// For example, focusing on two different parts of an object at once let ( || ) (l1:lens 'a 'b) (l2:lens 'a 'c) : lens 'a ('b * 'c) = { get = (fun a -> l1.get a, l2.get a); put = (fun (b, c) a -> l2.put c (l1.put b a)) } /// And now you can use these to update multiple components at once let makeGreen (c:colored circle) = c.[color |.. (red || green || blue )] <- (0, 1), 0 //////////////////////////////////////////////////////////////////////////////// /// Now for some stateful stuff /// – This is not quite as nice an compositional as before /// Would be curious to have your thoughts on how it could be generalized /// (My first naive attempt: See StatefulLens for how to do it better) //////////////////////////////////////////////////////////////////////////////// open FStar.Heap open FStar.Ref /// An `stlens #a #b l` goes via a `ref a` to access the `b`component /// that is focused by `l` noeq type stlens (#a:Type) (#b:Type) (l:lens a b) = { // Getting a `b` from an `r:ref a` requires dereferencing it // and then reaching into the result with `l` st_get: r:ref a -> ST b (requires (fun h -> True)) (ensures (fun h0 b h1 -> h0==h1 /\ b == ((sel h1 r)|. l))); // Setting a `b` component inside a `r:ref a` modifies only `r` // and updates the contents of `r` using `l` st_put: y:b -> r:ref a -> ST (ref a) (requires (fun h -> True)) (ensures (fun h0 s h1 -> r == s /\ modifies (Set.singleton (addr_of r)) h0 h1 /\ (sel h1 r == ((sel h0 r).[l] <- y)))) }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Ref.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "Lens.fst" }
[ { "abbrev": false, "full_module": "FStar.Ref", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Lens.lens a b -> Lens.stlens l
Prims.Tot
[ "total" ]
[]
[ "Lens.lens", "Lens.Mkstlens", "FStar.ST.ref", "Lens.op_String_Access", "FStar.Ref.op_Bang", "Prims.unit", "FStar.Ref.op_Colon_Equals", "Lens.op_String_Assignment", "Lens.stlens" ]
[]
false
false
false
false
false
let st #a #b (l: lens a b) : stlens l =
{ st_get = (fun (r: ref a) -> (!r).[ l ]); st_put = (fun (x: b) (r: ref a) -> r := (!r.[ l ] <- x); r) }
false
BinarySearchTree0.fst
BinarySearchTree0.insert
val insert : int -> tree -> tree
val insert : int -> tree -> tree
let rec insert x t = match t with | Leaf -> Node x Leaf Leaf | Node n t1 t2 -> if x = n then t else if x < n then Node n (insert x t1) t2 else Node n t1 (insert x t2)
{ "file_name": "examples/data_structures/BinarySearchTree0.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 36, "start_col": 0, "start_line": 31 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module BinarySearchTree0 type tree = | Leaf : tree | Node : int -> tree -> tree -> tree val search : int -> tree -> bool let rec search x t = match t with | Leaf -> false | Node n t1 t2 -> if x = n then true else if x < n then search x t1 else search x t2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "BinarySearchTree0.fst" }
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.int -> t: BinarySearchTree0.tree -> BinarySearchTree0.tree
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "BinarySearchTree0.tree", "BinarySearchTree0.Node", "BinarySearchTree0.Leaf", "Prims.op_Equality", "Prims.bool", "Prims.op_LessThan", "BinarySearchTree0.insert" ]
[ "recursion" ]
false
false
false
true
false
let rec insert x t =
match t with | Leaf -> Node x Leaf Leaf | Node n t1 t2 -> if x = n then t else if x < n then Node n (insert x t1) t2 else Node n t1 (insert x t2)
false
Hacl.Hash.MD5.fst
Hacl.Hash.MD5.update_last
val update_last: update_last_st (|MD5, ()|)
val update_last: update_last_st (|MD5, ()|)
let update_last: update_last_st (|MD5, ()|) = Hacl.Hash.MD.mk_update_last MD5 update_multi pad
{ "file_name": "code/hash/Hacl.Hash.MD5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 14, "start_col": 0, "start_line": 13 }
module Hacl.Hash.MD5 open Hacl.Hash.Definitions open Spec.Hash.Definitions include Hacl.Hash.Core.MD5 friend Hacl.Hash.MD let update_multi: update_multi_st (|MD5, ()|) = Hacl.Hash.MD.mk_update_multi MD5 update
{ "checked_file": "/", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Hacl.Hash.MD.fst.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Core.MD5.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Hash.MD5.fst" }
[ { "abbrev": false, "full_module": "Hacl.Hash.Core.MD5", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Hash.Definitions.update_last_st (| Spec.Hash.Definitions.MD5, () |)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Hash.MD.mk_update_last", "Spec.Hash.Definitions.MD5", "Hacl.Hash.MD5.update_multi", "Hacl.Hash.Core.MD5.pad", "Hacl.Hash.Definitions.update_last_st", "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec" ]
[]
false
false
false
false
false
let update_last:update_last_st (| MD5, () |) =
Hacl.Hash.MD.mk_update_last MD5 update_multi pad
false
Hacl.Hash.MD5.fst
Hacl.Hash.MD5.update_multi
val update_multi: update_multi_st (|MD5, ()|)
val update_multi: update_multi_st (|MD5, ()|)
let update_multi: update_multi_st (|MD5, ()|) = Hacl.Hash.MD.mk_update_multi MD5 update
{ "file_name": "code/hash/Hacl.Hash.MD5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 11, "start_col": 0, "start_line": 10 }
module Hacl.Hash.MD5 open Hacl.Hash.Definitions open Spec.Hash.Definitions include Hacl.Hash.Core.MD5 friend Hacl.Hash.MD
{ "checked_file": "/", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Hacl.Hash.MD.fst.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Core.MD5.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Hash.MD5.fst" }
[ { "abbrev": false, "full_module": "Hacl.Hash.Core.MD5", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Hash.Definitions.update_multi_st (| Spec.Hash.Definitions.MD5, () |)
Prims.Tot
[ "total" ]
[]
[ "Hacl.Hash.MD.mk_update_multi", "Spec.Hash.Definitions.MD5", "Hacl.Hash.Core.MD5.update", "Hacl.Hash.Definitions.update_multi_st", "Prims.Mkdtuple2", "Spec.Hash.Definitions.hash_alg", "Hacl.Hash.Definitions.m_spec" ]
[]
false
false
false
false
false
let update_multi:update_multi_st (| MD5, () |) =
Hacl.Hash.MD.mk_update_multi MD5 update
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.eval_round
val eval_round : state: Vale.Def.Types_s.quad32 -> round_key: Vale.Def.Types_s.quad32 -> Vale.Def.Types_s.quad32
let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 37, "start_col": 0, "start_line": 32 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s}
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
state: Vale.Def.Types_s.quad32 -> round_key: Vale.Def.Types_s.quad32 -> Vale.Def.Types_s.quad32
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.quad32_xor", "Vale.AES.AES_BE_s.mix_columns", "Vale.AES.AES_BE_s.shift_rows", "Vale.AES.AES_common_s.sub_bytes" ]
[]
false
false
false
true
false
let eval_round (state round_key: quad32) =
let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.eval_rounds
val eval_rounds : _: Vale.Def.Types_s.quad32 -> _: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> _: n: Prims.nat{n < FStar.Seq.Base.length _} -> Vale.Def.Types_s.quad32
let eval_rounds = opaque_make eval_rounds_def
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 64, "end_line": 44, "start_col": 19, "start_line": 44 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Vale.Def.Types_s.quad32 -> _: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> _: n: Prims.nat{n < FStar.Seq.Base.length _} -> Vale.Def.Types_s.quad32
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Opaque_s.opaque_make", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Vale.AES.AES_BE_s.eval_rounds_def" ]
[]
false
false
false
false
false
let eval_rounds =
opaque_make eval_rounds_def
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.is_aes_key_word
val is_aes_key_word (alg: algorithm) (s: seq nat32) : prop0
val is_aes_key_word (alg: algorithm) (s: seq nat32) : prop0
let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 29, "start_col": 0, "start_line": 29 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon)
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> s: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Vale.AES.AES_common_s.nk", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let is_aes_key_word (alg: algorithm) (s: seq nat32) : prop0 =
length s == nk alg
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.eval_rounds_reveal
val eval_rounds_reveal : _: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.AES_BE_s.eval_rounds == Vale.AES.AES_BE_s.eval_rounds_def)
let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 96, "end_line": 45, "start_col": 12, "start_line": 45 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n)
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.AES_BE_s.eval_rounds == Vale.AES.AES_BE_s.eval_rounds_def)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Opaque_s.opaque_revealer", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Vale.AES.AES_BE_s.eval_rounds", "Vale.AES.AES_BE_s.eval_rounds_def" ]
[]
true
false
true
false
false
let eval_rounds_reveal =
opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.eval_cipher_reveal
val eval_cipher_reveal : _: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.AES_BE_s.eval_cipher == Vale.AES.AES_BE_s.eval_cipher_def)
let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 96, "end_line": 58, "start_col": 12, "start_line": 58 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.AES_BE_s.eval_cipher == Vale.AES.AES_BE_s.eval_cipher_def)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Opaque_s.opaque_revealer", "Vale.AES.AES_common_s.algorithm", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Addition", "Vale.AES.AES_common_s.nr", "Prims.l_True", "Vale.AES.AES_BE_s.eval_cipher", "Vale.AES.AES_BE_s.eval_cipher_def" ]
[]
true
false
true
false
false
let eval_cipher_reveal =
opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.eval_cipher
val eval_cipher : alg: Vale.AES.AES_common_s.algorithm -> input: Vale.Def.Types_s.quad32 -> round_keys: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> Prims.Pure Vale.Def.Types_s.quad32
let eval_cipher = opaque_make eval_cipher_def
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 64, "end_line": 57, "start_col": 19, "start_line": 57 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> input: Vale.Def.Types_s.quad32 -> round_keys: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> Prims.Pure Vale.Def.Types_s.quad32
Prims.Pure
[]
[]
[ "Vale.Def.Opaque_s.opaque_make", "Vale.AES.AES_common_s.algorithm", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Addition", "Vale.AES.AES_common_s.nr", "Prims.l_True", "Vale.AES.AES_BE_s.eval_cipher_def" ]
[]
false
false
false
false
false
let eval_cipher =
opaque_make eval_cipher_def
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.expand_key
val expand_key : _: Vale.AES.AES_common_s.algorithm -> _: Vale.AES.AES_BE_s.aes_key_word _ -> _: size: Prims.nat{size <= Vale.AES.AES_common_s.nb * (Vale.AES.AES_common_s.nr _ + 1)} -> ek: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 {FStar.Seq.Base.length ek == _}
let expand_key = opaque_make expand_key_def
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 78, "start_col": 19, "start_line": 78 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Vale.AES.AES_common_s.algorithm -> _: Vale.AES.AES_BE_s.aes_key_word _ -> _: size: Prims.nat{size <= Vale.AES.AES_common_s.nb * (Vale.AES.AES_common_s.nr _ + 1)} -> ek: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 {FStar.Seq.Base.length ek == _}
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Opaque_s.opaque_make", "Vale.AES.AES_common_s.algorithm", "Vale.AES.AES_BE_s.aes_key_word", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Vale.AES.AES_common_s.nb", "Prims.op_Addition", "Vale.AES.AES_common_s.nr", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Prims.eq2", "FStar.Seq.Base.length", "Vale.AES.AES_BE_s.expand_key_def" ]
[]
false
false
false
false
false
let expand_key =
opaque_make expand_key_def
false
Steel.Semantics.Instantiate.fst
Steel.Semantics.Instantiate.is_unit
val is_unit: Prims.unit -> Lemma (S.is_unit emp equiv star)
val is_unit: Prims.unit -> Lemma (S.is_unit emp equiv star)
let is_unit () : Lemma (S.is_unit emp equiv star) = let aux (y:slprop) : Lemma (star emp y `equiv` y /\ star y emp `equiv` y) = emp_unit y; star_commutative emp y in Classical.forall_intro aux
{ "file_name": "lib/steel/Steel.Semantics.Instantiate.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 30, "end_line": 27, "start_col": 0, "start_line": 21 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Semantics.Instantiate open Steel.Memory module S = Steel.Semantics.Hoare.MST
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Semantics.Instantiate.fst" }
[ { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "S" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "S" }, { "abbrev": false, "full_module": "Steel.Semantics", "short_module": null }, { "abbrev": false, "full_module": "Steel.Semantics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Steel.Semantics.Hoare.MST.is_unit Steel.Memory.emp Steel.Memory.equiv Steel.Memory.star )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "FStar.Classical.forall_intro", "Steel.Memory.slprop", "Prims.l_and", "Steel.Memory.equiv", "Steel.Memory.star", "Steel.Memory.emp", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Memory.star_commutative", "Steel.Memory.emp_unit", "Steel.Semantics.Hoare.MST.is_unit" ]
[]
false
false
true
false
false
let is_unit () : Lemma (S.is_unit emp equiv star) =
let aux (y: slprop) : Lemma ((star emp y) `equiv` y /\ (star y emp) `equiv` y) = emp_unit y; star_commutative emp y in Classical.forall_intro aux
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.expand_key_reveal
val expand_key_reveal : _: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.AES_BE_s.expand_key == Vale.AES.AES_BE_s.expand_key_def)
let expand_key_reveal = opaque_revealer (`%expand_key) expand_key expand_key_def
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 79, "start_col": 12, "start_line": 79 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp))
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.AES_BE_s.expand_key == Vale.AES.AES_BE_s.expand_key_def)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Opaque_s.opaque_revealer", "Vale.AES.AES_common_s.algorithm", "Vale.AES.AES_BE_s.aes_key_word", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Vale.AES.AES_common_s.nb", "Prims.op_Addition", "Vale.AES.AES_common_s.nr", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Prims.eq2", "FStar.Seq.Base.length", "Vale.AES.AES_BE_s.expand_key", "Vale.AES.AES_BE_s.expand_key_def" ]
[]
true
false
true
false
false
let expand_key_reveal =
opaque_revealer (`%expand_key) expand_key expand_key_def
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.eval_cipher_def
val eval_cipher_def (alg: algorithm) (input: quad32) (round_keys: seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True)
val eval_cipher_def (alg: algorithm) (input: quad32) (round_keys: seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True)
let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 7, "end_line": 56, "start_col": 0, "start_line": 47 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> input: Vale.Def.Types_s.quad32 -> round_keys: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> Prims.Pure Vale.Def.Types_s.quad32
Prims.Pure
[]
[]
[ "Vale.AES.AES_common_s.algorithm", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32_xor", "FStar.Seq.Base.index", "Vale.AES.AES_common_s.nr", "Vale.AES.AES_BE_s.shift_rows", "Vale.AES.AES_common_s.sub_bytes", "Vale.AES.AES_BE_s.eval_rounds_def", "Prims.op_Subtraction", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Addition", "Prims.l_True" ]
[]
false
false
false
false
false
let eval_cipher_def (alg: algorithm) (input: quad32) (round_keys: seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) =
let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.aes_encrypt_word_reveal
val aes_encrypt_word_reveal : _: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.AES_BE_s.aes_encrypt_word == Vale.AES.AES_BE_s.aes_encrypt_word_def)
let aes_encrypt_word_reveal = opaque_revealer (`%aes_encrypt_word) aes_encrypt_word aes_encrypt_word_def
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 116, "end_line": 102, "start_col": 12, "start_line": 102 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp)) [@"opaque_to_smt"] let expand_key = opaque_make expand_key_def irreducible let expand_key_reveal = opaque_revealer (`%expand_key) expand_key expand_key_def let rec key_schedule_to_round_keys (rounds:nat) (w:seq nat32 {length w >= 4 * rounds}) : (round_keys:seq quad32 {length round_keys == rounds}) = if rounds = 0 then empty else let round_keys = key_schedule_to_round_keys (rounds - 1) w in let rk = Mkfour (index w (4 * rounds - 1)) (index w (4 * rounds - 2)) (index w (4 * rounds - 3)) (index w (4 * rounds - 4)) in append round_keys (create 1 rk) [@"opaque_to_smt"] let key_to_round_keys_word (alg:algorithm) (key:seq nat32) : Pure (seq quad32) (requires is_aes_key_word alg key) (ensures fun round_keys -> length round_keys == nr alg + 1) = key_schedule_to_round_keys (nr alg + 1) (expand_key alg key (nb * (nr alg + 1))) let aes_encrypt_word_def (alg:algorithm) (key:seq nat32) (input:quad32) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) = eval_cipher_def alg input (key_to_round_keys_word alg key)
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Vale.AES.AES_BE_s.aes_encrypt_word == Vale.AES.AES_BE_s.aes_encrypt_word_def)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Opaque_s.opaque_revealer", "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Def.Types_s.quad32", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.l_True", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.AES.AES_BE_s.aes_encrypt_word_def" ]
[]
true
false
true
false
false
let aes_encrypt_word_reveal =
opaque_revealer (`%aes_encrypt_word) aes_encrypt_word aes_encrypt_word_def
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.aes_encrypt_word
val aes_encrypt_word : alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> input: Vale.Def.Types_s.quad32 -> Prims.Pure Vale.Def.Types_s.quad32
let aes_encrypt_word = opaque_make aes_encrypt_word_def
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 74, "end_line": 101, "start_col": 19, "start_line": 101 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp)) [@"opaque_to_smt"] let expand_key = opaque_make expand_key_def irreducible let expand_key_reveal = opaque_revealer (`%expand_key) expand_key expand_key_def let rec key_schedule_to_round_keys (rounds:nat) (w:seq nat32 {length w >= 4 * rounds}) : (round_keys:seq quad32 {length round_keys == rounds}) = if rounds = 0 then empty else let round_keys = key_schedule_to_round_keys (rounds - 1) w in let rk = Mkfour (index w (4 * rounds - 1)) (index w (4 * rounds - 2)) (index w (4 * rounds - 3)) (index w (4 * rounds - 4)) in append round_keys (create 1 rk) [@"opaque_to_smt"] let key_to_round_keys_word (alg:algorithm) (key:seq nat32) : Pure (seq quad32) (requires is_aes_key_word alg key) (ensures fun round_keys -> length round_keys == nr alg + 1) = key_schedule_to_round_keys (nr alg + 1) (expand_key alg key (nb * (nr alg + 1))) let aes_encrypt_word_def (alg:algorithm) (key:seq nat32) (input:quad32) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) =
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> input: Vale.Def.Types_s.quad32 -> Prims.Pure Vale.Def.Types_s.quad32
Prims.Pure
[]
[]
[ "Vale.Def.Opaque_s.opaque_make", "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Def.Types_s.quad32", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.l_True", "Vale.AES.AES_BE_s.aes_encrypt_word_def" ]
[]
false
false
false
false
false
let aes_encrypt_word =
opaque_make aes_encrypt_word_def
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.eval_rounds_def
val eval_rounds_def (init: quad32) (round_keys: seq quad32) (n: nat{n < length round_keys}) : quad32
val eval_rounds_def (init: quad32) (round_keys: seq quad32) (n: nat{n < length round_keys}) : quad32
let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n)
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 43, "start_col": 0, "start_line": 39 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
init: Vale.Def.Types_s.quad32 -> round_keys: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> n: Prims.nat{n < FStar.Seq.Base.length round_keys} -> Vale.Def.Types_s.quad32
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Prims.op_Equality", "Prims.int", "Prims.bool", "Vale.AES.AES_BE_s.eval_round", "Vale.AES.AES_BE_s.eval_rounds_def", "Prims.op_Subtraction", "FStar.Seq.Base.index" ]
[ "recursion" ]
false
false
false
false
false
let rec eval_rounds_def (init: quad32) (round_keys: seq quad32) (n: nat{n < length round_keys}) : quad32 =
if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n)
false
Steel.Semantics.Instantiate.fst
Steel.Semantics.Instantiate.state_obeys_st_laws
val state_obeys_st_laws (uses:inames) : Lemma (S.st_laws (state0 uses))
val state_obeys_st_laws (uses:inames) : Lemma (S.st_laws (state0 uses))
let state_obeys_st_laws uses = Classical.forall_intro_3 star_associative; Classical.forall_intro_2 star_commutative; is_unit (); FStar.Classical.forall_intro_3 disjoint_join; let aux (m0 m1:mem) : Lemma (requires disjoint m0 m1) (ensures join m0 m1 == join m1 m0) [SMTPat (disjoint m0 m1)] = join_commutative m0 m1 in let aux (m0 m1 m2:mem) : Lemma (requires disjoint m1 m2 /\ disjoint m0 (join m1 m2)) (ensures (disjoint_join m0 m1 m2; join m0 (join m1 m2) == join (join m0 m1) m2)) [SMTPat (disjoint m0 (join m1 m2))] = join_associative m0 m1 m2 in let aux (p1 p2 p3:slprop) : Lemma (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3)) [SMTPat ()] = equiv_extensional_on_star p1 p2 p3 in ()
{ "file_name": "lib/steel/Steel.Semantics.Instantiate.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 4, "end_line": 57, "start_col": 0, "start_line": 30 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Semantics.Instantiate open Steel.Memory module S = Steel.Semantics.Hoare.MST let is_unit () : Lemma (S.is_unit emp equiv star) = let aux (y:slprop) : Lemma (star emp y `equiv` y /\ star y emp `equiv` y) = emp_unit y; star_commutative emp y in Classical.forall_intro aux
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Semantics.Instantiate.fst" }
[ { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "S" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "S" }, { "abbrev": false, "full_module": "Steel.Semantics", "short_module": null }, { "abbrev": false, "full_module": "Steel.Semantics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
uses: Steel.Memory.inames -> FStar.Pervasives.Lemma (ensures Steel.Semantics.Hoare.MST.st_laws (Steel.Semantics.Instantiate.state0 uses))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Memory.inames", "Steel.Memory.slprop", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Steel.Memory.equiv", "Steel.Memory.star", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil", "Steel.Memory.equiv_extensional_on_star", "Steel.Memory.mem", "Prims.l_and", "Steel.Memory.disjoint", "Steel.Memory.join", "Prims.eq2", "Prims.prop", "Steel.Memory.join_associative", "Steel.Memory.disjoint_join", "Steel.Memory.join_commutative", "FStar.Classical.forall_intro_3", "Steel.Semantics.Instantiate.is_unit", "FStar.Classical.forall_intro_2", "Steel.Memory.star_commutative", "Steel.Memory.star_associative" ]
[]
false
false
true
false
false
let state_obeys_st_laws uses =
Classical.forall_intro_3 star_associative; Classical.forall_intro_2 star_commutative; is_unit (); FStar.Classical.forall_intro_3 disjoint_join; let aux (m0 m1: mem) : Lemma (requires disjoint m0 m1) (ensures join m0 m1 == join m1 m0) [SMTPat (disjoint m0 m1)] = join_commutative m0 m1 in let aux (m0 m1 m2: mem) : Lemma (requires disjoint m1 m2 /\ disjoint m0 (join m1 m2)) (ensures (disjoint_join m0 m1 m2; join m0 (join m1 m2) == join (join m0 m1) m2)) [SMTPat (disjoint m0 (join m1 m2))] = join_associative m0 m1 m2 in let aux (p1 p2 p3: slprop) : Lemma (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3)) [SMTPat ()] = equiv_extensional_on_star p1 p2 p3 in ()
false
Steel.Semantics.Instantiate.fst
Steel.Semantics.Instantiate.state_correspondence
val state_correspondence (inames:inames) : Lemma (let s = state_uses inames in s.S.hprop == slprop /\ s.S.mem == mem /\ s.S.interp == interp /\ s.S.star == star /\ s.S.locks_invariant == locks_invariant inames /\ (forall (p q frame:slprop) (m0:mem{interp (p `star` frame `star` locks_invariant inames m0) m0}) (m1:mem{interp (q `star` frame `star` locks_invariant inames m1) m1}). (forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)) ==> S.post_preserves_frame #s q frame m0 m1))
val state_correspondence (inames:inames) : Lemma (let s = state_uses inames in s.S.hprop == slprop /\ s.S.mem == mem /\ s.S.interp == interp /\ s.S.star == star /\ s.S.locks_invariant == locks_invariant inames /\ (forall (p q frame:slprop) (m0:mem{interp (p `star` frame `star` locks_invariant inames m0) m0}) (m1:mem{interp (q `star` frame `star` locks_invariant inames m1) m1}). (forall (f_frame:mprop frame). f_frame (core_mem m0) == f_frame (core_mem m1)) ==> S.post_preserves_frame #s q frame m0 m1))
let state_correspondence inames = let s = state_uses inames in assert_norm (s.S.hprop == slprop) ; assert_norm (s.S.mem == mem) ; assert_norm (s.S.interp == interp); assert_norm (s.S.star == star); assert_norm (s.S.locks_invariant == locks_invariant inames)
{ "file_name": "lib/steel/Steel.Semantics.Instantiate.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 63, "end_line": 66, "start_col": 0, "start_line": 60 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Semantics.Instantiate open Steel.Memory module S = Steel.Semantics.Hoare.MST let is_unit () : Lemma (S.is_unit emp equiv star) = let aux (y:slprop) : Lemma (star emp y `equiv` y /\ star y emp `equiv` y) = emp_unit y; star_commutative emp y in Classical.forall_intro aux #push-options "--warn_error -271" let state_obeys_st_laws uses = Classical.forall_intro_3 star_associative; Classical.forall_intro_2 star_commutative; is_unit (); FStar.Classical.forall_intro_3 disjoint_join; let aux (m0 m1:mem) : Lemma (requires disjoint m0 m1) (ensures join m0 m1 == join m1 m0) [SMTPat (disjoint m0 m1)] = join_commutative m0 m1 in let aux (m0 m1 m2:mem) : Lemma (requires disjoint m1 m2 /\ disjoint m0 (join m1 m2)) (ensures (disjoint_join m0 m1 m2; join m0 (join m1 m2) == join (join m0 m1) m2)) [SMTPat (disjoint m0 (join m1 m2))] = join_associative m0 m1 m2 in let aux (p1 p2 p3:slprop) : Lemma (p1 `equiv` p2 ==> (p1 `star` p3) `equiv` (p2 `star` p3)) [SMTPat ()] = equiv_extensional_on_star p1 p2 p3 in () #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Semantics.Instantiate.fst" }
[ { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "S" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "S" }, { "abbrev": false, "full_module": "Steel.Semantics", "short_module": null }, { "abbrev": false, "full_module": "Steel.Semantics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
inames: Steel.Memory.inames -> FStar.Pervasives.Lemma (ensures (let s = Steel.Semantics.Instantiate.state_uses inames in Mkst0?.hprop s == Steel.Memory.slprop /\ Mkst0?.mem s == Steel.Memory.mem /\ Mkst0?.interp s == Steel.Memory.interp /\ Mkst0?.star s == Steel.Memory.star /\ Mkst0?.locks_invariant s == Steel.Memory.locks_invariant inames /\ (forall (p: Steel.Memory.slprop) (q: Steel.Memory.slprop) (frame: Steel.Memory.slprop) (m0: Steel.Memory.mem { Steel.Memory.interp (Steel.Memory.star (Steel.Memory.star p frame) (Steel.Memory.locks_invariant inames m0)) m0 }) (m1: Steel.Memory.mem { Steel.Memory.interp (Steel.Memory.star (Steel.Memory.star q frame) (Steel.Memory.locks_invariant inames m1)) m1 }). (forall (f_frame: Steel.Memory.mprop frame). f_frame (Steel.Memory.core_mem m0) == f_frame (Steel.Memory.core_mem m1)) ==> Steel.Semantics.Hoare.MST.post_preserves_frame q frame m0 m1)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Memory.inames", "FStar.Pervasives.assert_norm", "Prims.eq2", "Steel.Semantics.Hoare.MST.__proj__Mkst0__item__mem", "Steel.Memory.slprop", "Steel.Semantics.Hoare.MST.__proj__Mkst0__item__locks_invariant", "Steel.Memory.locks_invariant", "Prims.unit", "Steel.Semantics.Hoare.MST.__proj__Mkst0__item__hprop", "Steel.Semantics.Hoare.MST.__proj__Mkst0__item__star", "Steel.Memory.star", "Steel.Memory.mem", "Prims.prop", "Steel.Semantics.Hoare.MST.__proj__Mkst0__item__interp", "Steel.Memory.interp", "Steel.Semantics.Hoare.MST.st", "Steel.Semantics.Instantiate.state_uses" ]
[]
true
false
true
false
false
let state_correspondence inames =
let s = state_uses inames in assert_norm (s.S.hprop == slprop); assert_norm (s.S.mem == mem); assert_norm (s.S.interp == interp); assert_norm (s.S.star == star); assert_norm (s.S.locks_invariant == locks_invariant inames)
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.expand_key_def
val expand_key_def (alg: algorithm) (key: aes_key_word alg) (size: nat{size <= (nb * ((nr alg) + 1))}) : (ek: seq nat32 {length ek == size})
val expand_key_def (alg: algorithm) (key: aes_key_word alg) (size: nat{size <= (nb * ((nr alg) + 1))}) : (ek: seq nat32 {length ek == size})
let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp))
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 67, "end_line": 77, "start_col": 0, "start_line": 60 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: Vale.AES.AES_BE_s.aes_key_word alg -> size: Prims.nat{size <= Vale.AES.AES_common_s.nb * (Vale.AES.AES_common_s.nr alg + 1)} -> ek: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 {FStar.Seq.Base.length ek == size}
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "Vale.AES.AES_BE_s.aes_key_word", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Vale.AES.AES_common_s.nb", "Prims.op_Addition", "Vale.AES.AES_common_s.nr", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.empty", "Vale.Def.Types_s.nat32", "Prims.bool", "Prims.op_AmpAmp", "Prims.op_LessThan", "Vale.AES.AES_common_s.nk", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "FStar.Seq.Base.index", "Vale.Def.Types_s.nat32_xor", "Prims.op_Subtraction", "Vale.Def.Words_s.nat32", "Prims.op_Modulus", "Vale.AES.AES_common_s.sub_word", "Vale.AES.AES_BE_s.rot_word", "Vale.AES.AES_common_s.aes_rcon", "Prims.op_Division", "Prims.op_GreaterThan", "FStar.Seq.Base.seq", "Prims.eq2", "FStar.Seq.Base.length", "Vale.AES.AES_BE_s.expand_key_def" ]
[ "recursion" ]
false
false
false
false
false
let rec expand_key_def (alg: algorithm) (key: aes_key_word alg) (size: nat{size <= (nb * ((nr alg) + 1))}) : (ek: seq nat32 {length ek == size}) =
if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i - 1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp))
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.key_schedule_to_round_keys
val key_schedule_to_round_keys (rounds: nat) (w: seq nat32 {length w >= 4 * rounds}) : (round_keys: seq quad32 {length round_keys == rounds})
val key_schedule_to_round_keys (rounds: nat) (w: seq nat32 {length w >= 4 * rounds}) : (round_keys: seq quad32 {length round_keys == rounds})
let rec key_schedule_to_round_keys (rounds:nat) (w:seq nat32 {length w >= 4 * rounds}) : (round_keys:seq quad32 {length round_keys == rounds}) = if rounds = 0 then empty else let round_keys = key_schedule_to_round_keys (rounds - 1) w in let rk = Mkfour (index w (4 * rounds - 1)) (index w (4 * rounds - 2)) (index w (4 * rounds - 3)) (index w (4 * rounds - 4)) in append round_keys (create 1 rk)
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 87, "start_col": 0, "start_line": 81 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp)) [@"opaque_to_smt"] let expand_key = opaque_make expand_key_def irreducible let expand_key_reveal = opaque_revealer (`%expand_key) expand_key expand_key_def
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
rounds: Prims.nat -> w: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 {FStar.Seq.Base.length w >= 4 * rounds} -> round_keys: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 {FStar.Seq.Base.length round_keys == rounds}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.empty", "Vale.Def.Types_s.quad32", "Prims.bool", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "Vale.Def.Words_s.four", "Vale.Def.Words_s.nat32", "Vale.Def.Words_s.Mkfour", "FStar.Seq.Base.index", "Prims.op_Subtraction", "Prims.eq2", "Vale.AES.AES_BE_s.key_schedule_to_round_keys" ]
[ "recursion" ]
false
false
false
false
false
let rec key_schedule_to_round_keys (rounds: nat) (w: seq nat32 {length w >= 4 * rounds}) : (round_keys: seq quad32 {length round_keys == rounds}) =
if rounds = 0 then empty else let round_keys = key_schedule_to_round_keys (rounds - 1) w in let rk = Mkfour (index w (4 * rounds - 1)) (index w (4 * rounds - 2)) (index w (4 * rounds - 3)) (index w (4 * rounds - 4)) in append round_keys (create 1 rk)
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.key_to_round_keys_word
val key_to_round_keys_word (alg: algorithm) (key: seq nat32) : Pure (seq quad32) (requires is_aes_key_word alg key) (ensures fun round_keys -> length round_keys == nr alg + 1)
val key_to_round_keys_word (alg: algorithm) (key: seq nat32) : Pure (seq quad32) (requires is_aes_key_word alg key) (ensures fun round_keys -> length round_keys == nr alg + 1)
let key_to_round_keys_word (alg:algorithm) (key:seq nat32) : Pure (seq quad32) (requires is_aes_key_word alg key) (ensures fun round_keys -> length round_keys == nr alg + 1) = key_schedule_to_round_keys (nr alg + 1) (expand_key alg key (nb * (nr alg + 1)))
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 82, "end_line": 94, "start_col": 0, "start_line": 90 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp)) [@"opaque_to_smt"] let expand_key = opaque_make expand_key_def irreducible let expand_key_reveal = opaque_revealer (`%expand_key) expand_key expand_key_def let rec key_schedule_to_round_keys (rounds:nat) (w:seq nat32 {length w >= 4 * rounds}) : (round_keys:seq quad32 {length round_keys == rounds}) = if rounds = 0 then empty else let round_keys = key_schedule_to_round_keys (rounds - 1) w in let rk = Mkfour (index w (4 * rounds - 1)) (index w (4 * rounds - 2)) (index w (4 * rounds - 3)) (index w (4 * rounds - 4)) in append round_keys (create 1 rk)
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> Prims.Pure (FStar.Seq.Base.seq Vale.Def.Types_s.quad32)
Prims.Pure
[]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.AES.AES_BE_s.key_schedule_to_round_keys", "Prims.op_Addition", "Vale.AES.AES_common_s.nr", "Vale.AES.AES_BE_s.expand_key", "FStar.Mul.op_Star", "Vale.AES.AES_common_s.nb", "Vale.Def.Types_s.quad32", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length" ]
[]
false
false
false
false
false
let key_to_round_keys_word (alg: algorithm) (key: seq nat32) : Pure (seq quad32) (requires is_aes_key_word alg key) (ensures fun round_keys -> length round_keys == nr alg + 1) =
key_schedule_to_round_keys (nr alg + 1) (expand_key alg key (nb * (nr alg + 1)))
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.aes_encrypt_word_def
val aes_encrypt_word_def (alg: algorithm) (key: seq nat32) (input: quad32) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True)
val aes_encrypt_word_def (alg: algorithm) (key: seq nat32) (input: quad32) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True)
let aes_encrypt_word_def (alg:algorithm) (key:seq nat32) (input:quad32) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) = eval_cipher_def alg input (key_to_round_keys_word alg key)
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 100, "start_col": 0, "start_line": 96 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp)) [@"opaque_to_smt"] let expand_key = opaque_make expand_key_def irreducible let expand_key_reveal = opaque_revealer (`%expand_key) expand_key expand_key_def let rec key_schedule_to_round_keys (rounds:nat) (w:seq nat32 {length w >= 4 * rounds}) : (round_keys:seq quad32 {length round_keys == rounds}) = if rounds = 0 then empty else let round_keys = key_schedule_to_round_keys (rounds - 1) w in let rk = Mkfour (index w (4 * rounds - 1)) (index w (4 * rounds - 2)) (index w (4 * rounds - 3)) (index w (4 * rounds - 4)) in append round_keys (create 1 rk) [@"opaque_to_smt"] let key_to_round_keys_word (alg:algorithm) (key:seq nat32) : Pure (seq quad32) (requires is_aes_key_word alg key) (ensures fun round_keys -> length round_keys == nr alg + 1) = key_schedule_to_round_keys (nr alg + 1) (expand_key alg key (nb * (nr alg + 1)))
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Types_s.nat32 -> input: Vale.Def.Types_s.quad32 -> Prims.Pure Vale.Def.Types_s.quad32
Prims.Pure
[]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Def.Types_s.quad32", "Vale.AES.AES_BE_s.eval_cipher_def", "Vale.AES.AES_BE_s.key_to_round_keys_word", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.l_True" ]
[]
false
false
false
false
false
let aes_encrypt_word_def (alg: algorithm) (key: seq nat32) (input: quad32) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) =
eval_cipher_def alg input (key_to_round_keys_word alg key)
false
Unification.fst
Unification.op_At
val op_At : x: Prims.list _ -> y: Prims.list _ -> Prims.list _
let op_At = append
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 34, "start_col": 0, "start_line": 34 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.list _ -> y: Prims.list _ -> Prims.list _
Prims.Tot
[ "total" ]
[]
[ "FStar.List.Tot.Base.append", "Prims.list" ]
[]
false
false
false
true
false
let op_At =
append
false
Hacl.Hash.MD5.fst
Hacl.Hash.MD5.hash_oneshot
val hash_oneshot: hash_st MD5
val hash_oneshot: hash_st MD5
let hash_oneshot: hash_st MD5 = Hacl.Hash.MD.mk_hash MD5 alloca update_multi update_last finish
{ "file_name": "code/hash/Hacl.Hash.MD5.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 65, "end_line": 17, "start_col": 0, "start_line": 16 }
module Hacl.Hash.MD5 open Hacl.Hash.Definitions open Spec.Hash.Definitions include Hacl.Hash.Core.MD5 friend Hacl.Hash.MD let update_multi: update_multi_st (|MD5, ()|) = Hacl.Hash.MD.mk_update_multi MD5 update let update_last: update_last_st (|MD5, ()|) = Hacl.Hash.MD.mk_update_last MD5 update_multi pad
{ "checked_file": "/", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Hacl.Hash.MD.fst.checked", "Hacl.Hash.Definitions.fst.checked", "Hacl.Hash.Core.MD5.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Hash.MD5.fst" }
[ { "abbrev": false, "full_module": "Hacl.Hash.Core.MD5", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Hash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Hash.Definitions.hash_st Spec.Hash.Definitions.MD5
Prims.Tot
[ "total" ]
[]
[ "Hacl.Hash.MD.mk_hash", "Spec.Hash.Definitions.MD5", "Hacl.Hash.Core.MD5.alloca", "Hacl.Hash.MD5.update_multi", "Hacl.Hash.MD5.update_last", "Hacl.Hash.Core.MD5.finish", "Hacl.Hash.Definitions.hash_st" ]
[]
false
false
false
true
false
let hash_oneshot:hash_st MD5 =
Hacl.Hash.MD.mk_hash MD5 alloca update_multi update_last finish
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.key_to_round_keys
val key_to_round_keys (alg: algorithm) (key: aes_key alg) : (round_keys: seq nat8 {length round_keys == 16 * (nr alg + 1)})
val key_to_round_keys (alg: algorithm) (key: aes_key alg) : (round_keys: seq nat8 {length round_keys == 16 * (nr alg + 1)})
let key_to_round_keys (alg:algorithm) (key:aes_key alg) : (round_keys:seq nat8 {length round_keys == 16 * (nr alg + 1)}) = let key_word = seq_nat8_to_seq_nat32_BE key in seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (key_to_round_keys_word alg key_word))
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 85, "end_line": 108, "start_col": 0, "start_line": 105 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp)) [@"opaque_to_smt"] let expand_key = opaque_make expand_key_def irreducible let expand_key_reveal = opaque_revealer (`%expand_key) expand_key expand_key_def let rec key_schedule_to_round_keys (rounds:nat) (w:seq nat32 {length w >= 4 * rounds}) : (round_keys:seq quad32 {length round_keys == rounds}) = if rounds = 0 then empty else let round_keys = key_schedule_to_round_keys (rounds - 1) w in let rk = Mkfour (index w (4 * rounds - 1)) (index w (4 * rounds - 2)) (index w (4 * rounds - 3)) (index w (4 * rounds - 4)) in append round_keys (create 1 rk) [@"opaque_to_smt"] let key_to_round_keys_word (alg:algorithm) (key:seq nat32) : Pure (seq quad32) (requires is_aes_key_word alg key) (ensures fun round_keys -> length round_keys == nr alg + 1) = key_schedule_to_round_keys (nr alg + 1) (expand_key alg key (nb * (nr alg + 1))) let aes_encrypt_word_def (alg:algorithm) (key:seq nat32) (input:quad32) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) = eval_cipher_def alg input (key_to_round_keys_word alg key) [@"opaque_to_smt"] let aes_encrypt_word = opaque_make aes_encrypt_word_def irreducible let aes_encrypt_word_reveal = opaque_revealer (`%aes_encrypt_word) aes_encrypt_word aes_encrypt_word_def
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: Vale.AES.AES_common_s.aes_key alg -> round_keys: FStar.Seq.Base.seq Vale.Def.Types_s.nat8 {FStar.Seq.Base.length round_keys == 16 * (Vale.AES.AES_common_s.nr alg + 1)}
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "Vale.AES.AES_common_s.aes_key", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "Vale.AES.AES_BE_s.key_to_round_keys_word", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE", "Vale.Def.Types_s.nat8", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "Prims.op_Addition", "Vale.AES.AES_common_s.nr" ]
[]
false
false
false
false
false
let key_to_round_keys (alg: algorithm) (key: aes_key alg) : (round_keys: seq nat8 {length round_keys == 16 * (nr alg + 1)}) =
let key_word = seq_nat8_to_seq_nat32_BE key in seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (key_to_round_keys_word alg key_word))
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.aes_encrypt
val aes_encrypt (alg: algorithm) (key: aes_key alg) (input: seq16 nat8) : seq16 nat8
val aes_encrypt (alg: algorithm) (key: aes_key alg) (input: seq16 nat8) : seq16 nat8
let aes_encrypt (alg:algorithm) (key:aes_key alg) (input:seq16 nat8) : seq16 nat8 = let key_word = seq_nat8_to_seq_nat32_BE key in let input = be_bytes_to_quad32 input in be_quad32_to_bytes (aes_encrypt_word alg key_word input)
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 114, "start_col": 0, "start_line": 111 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp)) [@"opaque_to_smt"] let expand_key = opaque_make expand_key_def irreducible let expand_key_reveal = opaque_revealer (`%expand_key) expand_key expand_key_def let rec key_schedule_to_round_keys (rounds:nat) (w:seq nat32 {length w >= 4 * rounds}) : (round_keys:seq quad32 {length round_keys == rounds}) = if rounds = 0 then empty else let round_keys = key_schedule_to_round_keys (rounds - 1) w in let rk = Mkfour (index w (4 * rounds - 1)) (index w (4 * rounds - 2)) (index w (4 * rounds - 3)) (index w (4 * rounds - 4)) in append round_keys (create 1 rk) [@"opaque_to_smt"] let key_to_round_keys_word (alg:algorithm) (key:seq nat32) : Pure (seq quad32) (requires is_aes_key_word alg key) (ensures fun round_keys -> length round_keys == nr alg + 1) = key_schedule_to_round_keys (nr alg + 1) (expand_key alg key (nb * (nr alg + 1))) let aes_encrypt_word_def (alg:algorithm) (key:seq nat32) (input:quad32) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) = eval_cipher_def alg input (key_to_round_keys_word alg key) [@"opaque_to_smt"] let aes_encrypt_word = opaque_make aes_encrypt_word_def irreducible let aes_encrypt_word_reveal = opaque_revealer (`%aes_encrypt_word) aes_encrypt_word aes_encrypt_word_def #push-options "--z3rlimit 20" let key_to_round_keys (alg:algorithm) (key:aes_key alg) : (round_keys:seq nat8 {length round_keys == 16 * (nr alg + 1)}) = let key_word = seq_nat8_to_seq_nat32_BE key in seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (key_to_round_keys_word alg key_word)) #pop-options
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: Vale.AES.AES_common_s.aes_key alg -> input: Vale.Def.Words.Seq_s.seq16 Vale.Def.Types_s.nat8 -> Vale.Def.Words.Seq_s.seq16 Vale.Def.Types_s.nat8
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "Vale.AES.AES_common_s.aes_key", "Vale.Def.Words.Seq_s.seq16", "Vale.Def.Types_s.nat8", "Vale.Arch.Types.be_quad32_to_bytes", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.be_bytes_to_quad32", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_nat32_BE" ]
[]
false
false
false
false
false
let aes_encrypt (alg: algorithm) (key: aes_key alg) (input: seq16 nat8) : seq16 nat8 =
let key_word = seq_nat8_to_seq_nat32_BE key in let input = be_bytes_to_quad32 input in be_quad32_to_bytes (aes_encrypt_word alg key_word input)
false
Vale.AES.AES_BE_s.fst
Vale.AES.AES_BE_s.lemma_shl_rcon
val lemma_shl_rcon (rcon: nat8) : Lemma (ishl32 rcon 16 == ishl64 rcon 16 % pow2_32)
val lemma_shl_rcon (rcon: nat8) : Lemma (ishl32 rcon 16 == ishl64 rcon 16 % pow2_32)
let lemma_shl_rcon (rcon:nat8) : Lemma (ishl32 rcon 16 == ishl64 rcon 16 % pow2_32) = Vale.Def.TypesNative_s.reveal_ishl 32 rcon 16; FStar.UInt.shift_left_value_lemma #32 rcon 16; Vale.Def.TypesNative_s.reveal_ishl 64 rcon 16; FStar.UInt.shift_left_value_lemma #64 rcon 16
{ "file_name": "vale/specs/crypto/Vale.AES.AES_BE_s.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 121, "start_col": 0, "start_line": 116 }
module Vale.AES.AES_BE_s // IMPORTANT: This specification is written assuming a big-endian mapping from bytes to quad32s // This is explicit in key_schedule_to_round_keys when we construct the round_key rk, // but it also applies implicitly to the input quad32 open Vale.Def.Prop_s open Vale.Def.Opaque_s open Vale.Def.Words_s open Vale.Def.Words.Four_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open FStar.Seq open FStar.Mul include Vale.AES.AES_common_s // operations assume that the quad32 and nat32 values are big-endian interpretations // of 16-byte and 4-byte sequences assume val mix_columns (q:quad32) : quad32 assume val inv_mix_columns (q:quad32) : quad32 assume val shift_rows (q:quad32) : quad32 assume val inv_shift_rows (q:quad32) : quad32 assume val rot_word (w:nat32) : nat32 assume val commute_rot_word_sub_word (x:nat32) (rcon:nat32) : Lemma (rot_word (sub_word x *^ ishl32 rcon 16) == sub_word (rot_word x) *^ rcon) let is_aes_key_word (alg:algorithm) (s:seq nat32) : prop0 = length s == nk alg type aes_key_word (alg:algorithm) : eqtype = s:(seq nat32){is_aes_key_word alg s} let eval_round (state round_key:quad32) = let s = sub_bytes state in let s = shift_rows s in let s = mix_columns s in let s = quad32_xor s round_key in s let rec eval_rounds_def (init:quad32) (round_keys:seq quad32) (n:nat{n < length round_keys}) : quad32 = if n = 0 then init else eval_round (eval_rounds_def init round_keys (n - 1)) (index round_keys n) [@"opaque_to_smt"] let eval_rounds = opaque_make eval_rounds_def irreducible let eval_rounds_reveal = opaque_revealer (`%eval_rounds) eval_rounds eval_rounds_def let eval_cipher_def (alg:algorithm) (input:quad32) (round_keys:seq quad32) : Pure quad32 (requires length round_keys == nr alg + 1) (ensures fun _ -> True) = let state = quad32_xor input (index round_keys 0) in let state = eval_rounds_def state round_keys (nr alg - 1) in let state = sub_bytes state in let state = shift_rows state in let state = quad32_xor state (index round_keys (nr alg)) in state [@"opaque_to_smt"] let eval_cipher = opaque_make eval_cipher_def irreducible let eval_cipher_reveal = opaque_revealer (`%eval_cipher) eval_cipher eval_cipher_def let rec expand_key_def (alg:algorithm) (key:aes_key_word alg) (size:nat{size <= (nb * ((nr alg) + 1))}) : (ek:seq nat32 {length ek == size}) = if size = 0 then empty else let w = expand_key_def alg key (size - 1) in let i = size - 1 in if 0 <= i && i < nk alg then append w (create 1 (index key i)) else let temp = if i % (nk alg) = 0 then nat32_xor (sub_word (rot_word (index w (i-1)))) (aes_rcon ((i / (nk alg)) - 1)) else if nk alg > 6 && i % (nk alg) = 4 then sub_word (index w (i - 1)) else index w (i - 1) in append w (create 1 (nat32_xor (index w (i - (nk alg))) temp)) [@"opaque_to_smt"] let expand_key = opaque_make expand_key_def irreducible let expand_key_reveal = opaque_revealer (`%expand_key) expand_key expand_key_def let rec key_schedule_to_round_keys (rounds:nat) (w:seq nat32 {length w >= 4 * rounds}) : (round_keys:seq quad32 {length round_keys == rounds}) = if rounds = 0 then empty else let round_keys = key_schedule_to_round_keys (rounds - 1) w in let rk = Mkfour (index w (4 * rounds - 1)) (index w (4 * rounds - 2)) (index w (4 * rounds - 3)) (index w (4 * rounds - 4)) in append round_keys (create 1 rk) [@"opaque_to_smt"] let key_to_round_keys_word (alg:algorithm) (key:seq nat32) : Pure (seq quad32) (requires is_aes_key_word alg key) (ensures fun round_keys -> length round_keys == nr alg + 1) = key_schedule_to_round_keys (nr alg + 1) (expand_key alg key (nb * (nr alg + 1))) let aes_encrypt_word_def (alg:algorithm) (key:seq nat32) (input:quad32) : Pure quad32 (requires is_aes_key_word alg key) (ensures fun _ -> True) = eval_cipher_def alg input (key_to_round_keys_word alg key) [@"opaque_to_smt"] let aes_encrypt_word = opaque_make aes_encrypt_word_def irreducible let aes_encrypt_word_reveal = opaque_revealer (`%aes_encrypt_word) aes_encrypt_word aes_encrypt_word_def #push-options "--z3rlimit 20" let key_to_round_keys (alg:algorithm) (key:aes_key alg) : (round_keys:seq nat8 {length round_keys == 16 * (nr alg + 1)}) = let key_word = seq_nat8_to_seq_nat32_BE key in seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (key_to_round_keys_word alg key_word)) #pop-options let aes_encrypt (alg:algorithm) (key:aes_key alg) (input:seq16 nat8) : seq16 nat8 = let key_word = seq_nat8_to_seq_nat32_BE key in let input = be_bytes_to_quad32 input in be_quad32_to_bytes (aes_encrypt_word alg key_word input)
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Words.Four_s.fsti.checked", "Vale.Def.TypesNative_s.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.AES.AES_BE_s.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.AES_common_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
rcon: Vale.Def.Types_s.nat8 -> FStar.Pervasives.Lemma (ensures Vale.Arch.Types.ishl32 rcon 16 == Vale.Arch.Types.ishl64 rcon 16 % Vale.Def.Words_s.pow2_32)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.nat8", "FStar.UInt.shift_left_value_lemma", "Prims.unit", "Vale.Def.TypesNative_s.reveal_ishl", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Vale.Arch.Types.ishl32", "Prims.op_Modulus", "Vale.Arch.Types.ishl64", "Vale.Def.Words_s.pow2_32", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_shl_rcon (rcon: nat8) : Lemma (ishl32 rcon 16 == ishl64 rcon 16 % pow2_32) =
Vale.Def.TypesNative_s.reveal_ishl 32 rcon 16; FStar.UInt.shift_left_value_lemma #32 rcon 16; Vale.Def.TypesNative_s.reveal_ishl 64 rcon 16; FStar.UInt.shift_left_value_lemma #64 rcon 16
false
Unification.fst
Unification.nat_order
val nat_order : OrdSet.cmp nat
val nat_order : OrdSet.cmp nat
let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 85, "end_line": 48, "start_col": 0, "start_line": 48 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.OrdSet.cmp Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.bool", "FStar.OrdSet.total_order" ]
[]
false
false
false
true
false
let nat_order:(f: (nat -> nat -> bool){OrdSet.total_order nat f}) =
fun x y -> x <= y
false
Unification.fst
Unification.lemma_shift_append
val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m)))
val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m)))
let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 39, "start_col": 0, "start_line": 37 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list a -> x: a -> m: Prims.list a -> FStar.Pervasives.Lemma (ensures l @ x :: m = (l @ [x]) @ m)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "Prims.list", "Unification.lemma_shift_append", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_shift_append #a l x m =
match l with | [] -> () | hd :: tl -> lemma_shift_append tl x m
false
Unification.fst
Unification.empty_vars
val empty_vars : varset
val empty_vars : varset
let empty_vars = OrdSet.empty
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 52, "start_col": 0, "start_line": 52 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Unification.varset
Prims.Tot
[ "total" ]
[]
[ "FStar.OrdSet.empty", "Prims.nat", "Unification.nat_order" ]
[]
false
false
false
true
false
let empty_vars =
OrdSet.empty
false
Unification.fst
Unification.vars
val vars : term -> Tot varset
val vars : term -> Tot varset
let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2)
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 58, "start_col": 0, "start_line": 56 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Unification.term -> Unification.varset
Prims.Tot
[ "total" ]
[]
[ "Unification.term", "Prims.nat", "FStar.OrdSet.singleton", "Unification.nat_order", "FStar.OrdSet.union", "Unification.vars", "Unification.varset" ]
[ "recursion" ]
false
false
false
true
false
let rec vars =
function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2)
false
Unification.fst
Unification.evars
val evars : eqns -> Tot varset
val evars : eqns -> Tot varset
let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl)
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 67, "start_col": 0, "start_line": 65 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Unification.eqns -> Unification.varset
Prims.Tot
[ "total" ]
[]
[ "Unification.eqns", "Unification.empty_vars", "Unification.term", "Prims.list", "FStar.Pervasives.Native.tuple2", "FStar.OrdSet.union", "Prims.nat", "Unification.nat_order", "Unification.vars", "Unification.evars", "Unification.varset" ]
[ "recursion" ]
false
false
false
true
false
let rec evars =
function | [] -> empty_vars | (x, y) :: tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl)
false
Unification.fst
Unification.lsubst_term
val lsubst_term : list subst -> term -> Tot term
val lsubst_term : list subst -> term -> Tot term
let lsubst_term = fold_right subst_term
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 105, "start_col": 0, "start_line": 105 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.list Unification.subst -> _: Unification.term -> Unification.term
Prims.Tot
[ "total" ]
[]
[ "FStar.List.Tot.Base.fold_right", "Unification.subst", "Unification.term", "Unification.subst_term" ]
[]
false
false
false
true
false
let lsubst_term =
fold_right subst_term
false
Unification.fst
Unification.n_evars
val n_evars : eqns -> Tot nat
val n_evars : eqns -> Tot nat
let n_evars eqns = OrdSet.size (evars eqns)
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 71, "start_col": 0, "start_line": 71 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eqns: Unification.eqns -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Unification.eqns", "FStar.OrdSet.size", "Prims.nat", "Unification.nat_order", "Unification.evars" ]
[]
false
false
false
true
false
let n_evars eqns =
OrdSet.size (evars eqns)
false
Unification.fst
Unification.efuns
val efuns : eqns -> Tot nat
val efuns : eqns -> Tot nat
let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 82, "start_col": 0, "start_line": 80 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Unification.eqns -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Unification.eqns", "Unification.term", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.op_Addition", "Unification.funs", "Unification.efuns", "Prims.nat" ]
[ "recursion" ]
false
false
false
true
false
let rec efuns =
function | [] -> 0 | (x, y) :: tl -> funs x + funs y + efuns tl
false
Unification.fst
Unification.funs
val funs : term -> Tot nat
val funs : term -> Tot nat
let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 77, "start_col": 0, "start_line": 75 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Unification.term -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Unification.term", "Prims.nat", "Prims.op_Addition", "Unification.funs" ]
[ "recursion" ]
false
false
false
true
false
let rec funs =
function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2
false
Unification.fst
Unification.ok
val ok : s: (Prims.nat * Unification.term) -> Prims.bool
let ok s = not (occurs (fst s) (snd s))
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 108, "start_col": 0, "start_line": 108 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: (Prims.nat * Unification.term) -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.tuple2", "Prims.nat", "Unification.term", "Prims.op_Negation", "Unification.occurs", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "Prims.bool" ]
[]
false
false
false
true
false
let ok s =
not (occurs (fst s) (snd s))
false
Unification.fst
Unification.n_flex_rhs
val n_flex_rhs : eqns -> Tot nat
val n_flex_rhs : eqns -> Tot nat
let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 91, "start_col": 0, "start_line": 87 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Unification.eqns -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Unification.eqns", "Prims.nat", "Prims.list", "FStar.Pervasives.Native.tuple2", "Unification.term", "Prims.op_Addition", "Unification.n_flex_rhs" ]
[ "recursion" ]
false
false
false
true
false
let rec n_flex_rhs =
function | [] -> 0 | (V _, V _) :: tl | (_, V _) :: tl -> 1 + n_flex_rhs tl | _ :: tl -> n_flex_rhs tl
false
Unification.fst
Unification.subst_term
val subst_term : subst -> term -> Tot term
val subst_term : subst -> term -> Tot term
let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2)
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 102, "start_col": 0, "start_line": 100 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Unification.subst -> t: Unification.term -> Unification.term
Prims.Tot
[ "total" ]
[]
[ "Unification.subst", "Unification.term", "Prims.nat", "Prims.op_Equality", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "Prims.bool", "Unification.V", "Unification.F", "Unification.subst_term" ]
[ "recursion" ]
false
false
false
true
false
let rec subst_term s t =
match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2)
false
Unification.fst
Unification.occurs
val occurs : x: Prims.nat -> t: Unification.term -> Prims.bool
let occurs x t = OrdSet.mem x (vars t)
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 107, "start_col": 0, "start_line": 107 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> t: Unification.term -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Unification.term", "FStar.OrdSet.mem", "Unification.nat_order", "Unification.vars", "Prims.bool" ]
[]
false
false
false
true
false
let occurs x t =
OrdSet.mem x (vars t)
false
Unification.fst
Unification.lsubst_eqns
val lsubst_eqns: list subst -> eqns -> Tot eqns
val lsubst_eqns: list subst -> eqns -> Tot eqns
let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 69, "end_line": 113, "start_col": 0, "start_line": 111 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Unification.subst -> _: Unification.eqns -> Unification.eqns
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Unification.subst", "Unification.eqns", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "Unification.term", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "Unification.lsubst_term", "Unification.lsubst_eqns" ]
[ "recursion" ]
false
false
false
true
false
let rec lsubst_eqns l =
function | [] -> [] | (x, y) :: tl -> (lsubst_term l x, lsubst_term l y) :: lsubst_eqns l tl
false
Unification.fst
Unification.lemma_lsubst_eqns_nil
val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)]
val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)]
let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 121, "start_col": 0, "start_line": 119 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Unification.eqns -> FStar.Pervasives.Lemma (ensures Unification.lsubst_eqns [] e = e) [SMTPat (Unification.lsubst_eqns [] e)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Unification.eqns", "FStar.Pervasives.Native.tuple2", "Unification.term", "Prims.list", "Unification.lemma_lsubst_eqns_nil", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_lsubst_eqns_nil =
function | [] -> () | _ :: tl -> lemma_lsubst_eqns_nil tl
false
Unification.fst
Unification.evars_permute_hd
val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl)))
val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl)))
let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl))
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 85, "end_line": 128, "start_col": 0, "start_line": 128 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Unification.term -> y: Unification.term -> tl: Unification.eqns -> FStar.Pervasives.Lemma (ensures Unification.evars ((x, y) :: tl) = Unification.evars ((y, x) :: tl))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Unification.term", "Unification.eqns", "FStar.OrdSet.eq_lemma", "Prims.nat", "Unification.nat_order", "Unification.evars", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Prims.unit" ]
[]
true
false
true
false
false
let evars_permute_hd x y tl =
OrdSet.eq_lemma (evars ((x, y) :: tl)) (evars ((y, x) :: tl))
false
Unification.fst
Unification.evars_unfun
val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl)))
val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl)))
let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl))
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 108, "end_line": 132, "start_col": 0, "start_line": 132 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Unification.term -> y: Unification.term -> x': Unification.term -> y': Unification.term -> tl: Unification.eqns -> FStar.Pervasives.Lemma (ensures Unification.evars ((Unification.F x y, Unification.F x' y') :: tl) = Unification.evars ((x, x') :: (y, y') :: tl))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Unification.term", "Unification.eqns", "FStar.OrdSet.eq_lemma", "Prims.nat", "Unification.nat_order", "Unification.evars", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Unification.F", "Prims.unit" ]
[]
true
false
true
false
false
let evars_unfun x y x' y' tl =
OrdSet.eq_lemma (evars ((F x y, F x' y') :: tl)) (evars ((x, x') :: (y, y') :: tl))
false
Unification.fst
Unification.extend_subst
val extend_subst : s: _ -> l: Prims.list _ -> Prims.list _
let extend_subst s l = s::l
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 191, "start_col": 0, "start_line": 191 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: _ -> l: Prims.list _ -> Prims.list _
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims.Cons" ]
[]
false
false
false
true
false
let extend_subst s l =
s :: l
false
Unification.fst
Unification.lemma_vars_decrease
val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t')))))
val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t')))))
let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 143, "start_col": 0, "start_line": 139 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t'))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Unification.subst -> t': Unification.term -> FStar.Pervasives.Lemma (requires Unification.ok s) (ensures FStar.OrdSet.subset (Unification.vars (Unification.subst_term s t')) (FStar.OrdSet.remove (FStar.Pervasives.Native.fst s) (FStar.OrdSet.union (Unification.vars (FStar.Pervasives.Native.snd s)) (Unification.vars t'))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Unification.subst", "Unification.term", "Prims.nat", "Unification.lemma_vars_decrease", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_vars_decrease s t' =
match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2
false
Unification.fst
Unification.extend_lsubst
val extend_lsubst : l: Prims.list _ -> l': Prims.list _ -> Prims.list _
let extend_lsubst l l' = l @ l'
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 192, "start_col": 0, "start_line": 192 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list _ -> l': Prims.list _ -> Prims.list _
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Unification.op_At" ]
[]
false
false
false
true
false
let extend_lsubst l l' =
l @ l'
false
Unification.fst
Unification.unify
val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e])
val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e])
let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 175, "start_col": 0, "start_line": 158 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Unification.eqns -> s: Prims.list Unification.subst -> Prims.Tot (FStar.Pervasives.Native.option (Prims.list Unification.subst))
Prims.Tot
[ "total", "" ]
[]
[ "Unification.eqns", "Prims.list", "Unification.subst", "FStar.Pervasives.Native.Some", "Prims.nat", "Unification.term", "FStar.Pervasives.Native.tuple2", "Prims.op_AmpAmp", "Unification.uu___is_V", "Prims.op_Equality", "Unification.__proj__V__item__i", "Unification.unify", "Prims.bool", "Unification.occurs", "FStar.Pervasives.Native.None", "Unification.lsubst_eqns", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "Prims.Nil", "Prims.unit", "Unification.vars_decrease_eqns", "FStar.Pervasives.Native.option", "Unification.V", "Unification.evars_permute_hd", "Unification.evars_unfun" ]
[ "recursion" ]
false
false
false
true
false
let rec unify e s =
match e with | [] -> Some s | (V x, t) :: tl -> if V? t && V?.i t = x then unify tl s else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x, t] tl) ((x, t) :: s)) | (t, V x) :: tl -> evars_permute_hd t (V x) tl; unify ((V x, t) :: tl) s | (F t1 t2, F t1' t2') :: tl -> evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1') :: (t2, t2') :: tl) s
false
Unification.fst
Unification.vars_decrease_eqns
val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e)))))
val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e)))))
let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 154, "start_col": 0, "start_line": 150 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> t: Unification.term -> e: Unification.eqns -> FStar.Pervasives.Lemma (requires Unification.ok (x, t)) (ensures FStar.OrdSet.subset (Unification.evars (Unification.lsubst_eqns [x, t] e)) (FStar.OrdSet.remove x (Unification.evars ((Unification.V x, t) :: e))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Unification.term", "Unification.eqns", "FStar.Pervasives.Native.tuple2", "Prims.list", "Unification.vars_decrease_eqns", "Prims.unit", "Unification.lemma_vars_decrease", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.snd", "FStar.Pervasives.Native.fst" ]
[ "recursion" ]
false
false
true
false
false
let rec vars_decrease_eqns x t e =
match e with | [] -> () | hd :: tl -> lemma_vars_decrease (x, t) (fst hd); lemma_vars_decrease (x, t) (snd hd); vars_decrease_eqns x t tl
false
Unification.fst
Unification.solved
val solved : eqns -> Tot bool
val solved : eqns -> Tot bool
let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 181, "start_col": 0, "start_line": 179 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Unification.eqns -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Unification.eqns", "Unification.term", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.op_AmpAmp", "Prims.op_Equality", "Unification.solved", "Prims.bool" ]
[ "recursion" ]
false
false
false
true
false
let rec solved =
function | [] -> true | (x, y) :: tl -> x = y && solved tl
false
Unification.fst
Unification.lsubst_distributes_over_F
val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))]
val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))]
let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 189, "start_col": 0, "start_line": 187 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Unification.subst -> t1: Unification.term -> t2: Unification.term -> FStar.Pervasives.Lemma (ensures Unification.lsubst_term l (Unification.F t1 t2) = Unification.F (Unification.lsubst_term l t1) (Unification.lsubst_term l t2)) [SMTPat (Unification.lsubst_term l (Unification.F t1 t2))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Unification.subst", "Unification.term", "Unification.lsubst_distributes_over_F", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lsubst_distributes_over_F l t1 t2 =
match l with | [] -> () | hd :: tl -> lsubst_distributes_over_F tl t1 t2
false
Unification.fst
Unification.sub
val sub : l: Prims.list Unification.subst -> e: Unification.eqns -> Unification.eqns
let sub l e = lsubst_eqns l e
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 243, "start_col": 0, "start_line": 243 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Unification.subst -> e: Unification.eqns -> Unification.eqns
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Unification.subst", "Unification.eqns", "Unification.lsubst_eqns" ]
[]
false
false
false
true
false
let sub l e =
lsubst_eqns l e
false
Unification.fst
Unification.lemma_extend_lsubst_distributes_term
val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e)))
val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e)))
let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 199, "start_col": 0, "start_line": 197 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Unification.subst -> l': Prims.list Unification.subst -> e: Unification.term -> FStar.Pervasives.Lemma (ensures Unification.lsubst_term (Unification.extend_lsubst l l') e = Unification.lsubst_term l (Unification.lsubst_term l' e))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Unification.subst", "Unification.term", "Unification.lemma_extend_lsubst_distributes_term", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_extend_lsubst_distributes_term l l' e =
match l with | [] -> () | hd :: tl -> lemma_extend_lsubst_distributes_term tl l' e
false
Unification.fst
Unification.neutral
val neutral : s: Unification.subst -> _: (Prims.nat * Unification.term) -> Prims.bool
let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t)
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 86, "end_line": 219, "start_col": 0, "start_line": 219 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Unification.subst -> _: (Prims.nat * Unification.term) -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Unification.subst", "FStar.Pervasives.Native.tuple2", "Prims.nat", "Unification.term", "Prims.op_AmpAmp", "Prims.op_Equality", "Unification.subst_term", "Unification.V", "Unification.ok", "FStar.Pervasives.Native.Mktuple2", "Prims.bool" ]
[]
false
false
false
true
false
let neutral s (x, t) =
subst_term s (V x) = V x && subst_term s t = t && ok (x, t)
false
Unification.fst
Unification.lemma_extend_lsubst_distributes_eqns
val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)]
val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)]
let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 210, "start_col": 0, "start_line": 205 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Unification.subst -> l': Prims.list Unification.subst -> e: Unification.eqns -> FStar.Pervasives.Lemma (ensures Unification.lsubst_eqns (Unification.extend_lsubst l l') e = Unification.lsubst_eqns l (Unification.lsubst_eqns l' e)) [SMTPat (Unification.lsubst_eqns (Unification.extend_lsubst l l') e)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Unification.subst", "Unification.eqns", "Unification.term", "FStar.Pervasives.Native.tuple2", "Unification.lemma_extend_lsubst_distributes_eqns", "Prims.unit", "Unification.lemma_extend_lsubst_distributes_term" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_extend_lsubst_distributes_eqns l l' e =
match e with | [] -> () | (t1, t2) :: tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl
false
Unification.fst
Unification.test
val test : l1: Prims.list _ -> l2: Prims.list _ -> l3: Prims.list _ -> Prims.unit
let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3)
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 245, "start_col": 0, "start_line": 245 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l1: Prims.list _ -> l2: Prims.list _ -> l3: Prims.list _ -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Prims._assert", "Prims.eq2", "Unification.op_Plus_Plus", "Prims.unit" ]
[]
false
false
false
true
false
let test l1 l2 l3 =
assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3)
false
Unification.fst
Unification.neutral_l
val neutral_l : l: Prims.list Unification.subst -> _: (Prims.nat * Unification.term) -> Prims.bool
let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t)
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 86, "end_line": 220, "start_col": 0, "start_line": 220 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Unification.subst -> _: (Prims.nat * Unification.term) -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Unification.subst", "FStar.Pervasives.Native.tuple2", "Prims.nat", "Unification.term", "Prims.op_AmpAmp", "Prims.op_Equality", "Unification.lsubst_term", "Unification.V", "Unification.ok", "FStar.Pervasives.Native.Mktuple2", "Prims.bool" ]
[]
false
false
false
true
false
let neutral_l l (x, t) =
lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t)
false
Unification.fst
Unification.lemma_subst_id
val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y))
val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y))
let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 217, "start_col": 0, "start_line": 215 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> z: Unification.term -> y: Unification.term -> FStar.Pervasives.Lemma (requires Prims.op_Negation (Unification.occurs x y)) (ensures Unification.subst_term (x, z) y = y)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Unification.term", "Unification.lemma_subst_id", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_subst_id x z y =
match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2
false
Unification.fst
Unification.lemma_lsubst_term_commutes
val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e)))
val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e)))
let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 230, "start_col": 0, "start_line": 226 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) =
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Unification.subst -> l: Prims.list Unification.subst -> e: Unification.term -> FStar.Pervasives.Lemma (requires Unification.neutral_l l s) (ensures Unification.lsubst_term [s] (Unification.lsubst_term l (Unification.subst_term s e)) = Unification.lsubst_term [s] (Unification.lsubst_term l e))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Unification.subst", "Prims.list", "Unification.term", "Prims.nat", "Unification.lemma_subst_id", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "Unification.lemma_lsubst_term_commutes", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_lsubst_term_commutes s l e =
match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2
false
Unification.fst
Unification.lemma_lsubst_eqns_commutes
val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e)))
val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e)))
let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 240, "start_col": 0, "start_line": 236 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) =
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Unification.subst -> l: Prims.list Unification.subst -> e: Unification.eqns -> FStar.Pervasives.Lemma (requires Unification.neutral_l l s) (ensures Unification.lsubst_eqns [s] (Unification.lsubst_eqns l (Unification.lsubst_eqns [s] e)) = Unification.lsubst_eqns [s] (Unification.lsubst_eqns l e))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Unification.subst", "Prims.list", "Unification.eqns", "Unification.term", "FStar.Pervasives.Native.tuple2", "Unification.lemma_lsubst_eqns_commutes", "Prims.unit", "Unification.lemma_lsubst_term_commutes" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_lsubst_eqns_commutes s l =
function | [] -> () | (t1, t2) :: tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl
false
Unification.fst
Unification.key_lemma
val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl))))
val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl))))
let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 265, "start_col": 0, "start_line": 254 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl))))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> y: Unification.term -> tl: Unification.eqns -> l: Prims.list Unification.subst -> lpre: Prims.list Unification.subst -> l'': Prims.list Unification.subst -> FStar.Pervasives.Lemma (requires l'' = lpre ++ ([x, y] ++ l) /\ Prims.op_Negation (Unification.occurs x y) /\ Unification.sub l ((Unification.V x, y) :: tl) = (Unification.V x, y) :: tl /\ Unification.solved (Unification.sub l'' (Unification.sub [x, y] tl))) (ensures Unification.solved (Unification.sub l'' ((Unification.V x, y) :: tl)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Unification.term", "Unification.eqns", "Prims.list", "Unification.subst", "Unification.lemma_subst_id", "Prims.unit", "Prims._assert", "Prims.eq2", "Unification.sub", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "Unification.lemma_lsubst_eqns_commutes", "FStar.Pervasives.Native.Mktuple2", "Unification.V", "Unification.op_Plus_Plus", "Prims.Nil" ]
[]
true
false
true
false
false
let key_lemma x y tl l lpre l'' =
let xy = [x, y] in let xyl = xy ++ l in let vxy = V x, y in assert (l'' `sub` (vxy :: tl) == lpre `sub` (xy `sub` (l `sub` (vxy :: tl)))); lemma_lsubst_eqns_commutes (x, y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy :: tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy :: tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy :: tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y
false