file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Unification.fst
Unification.lemma_subst_term_idem
val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t))
val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t))
let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 69, "end_line": 272, "start_col": 0, "start_line": 270 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Unification.subst -> t: Unification.term -> FStar.Pervasives.Lemma (requires Unification.ok s) (ensures Unification.subst_term s (Unification.subst_term s t) = Unification.subst_term s t)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Unification.subst", "Unification.term", "Prims.nat", "Unification.lemma_subst_id", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "Unification.lemma_subst_term_idem", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_subst_term_idem s t =
match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2
false
Unification.fst
Unification.lsubst_funs_monotone
val lsubst_funs_monotone: l:list subst -> t:term -> Lemma (ensures (funs (lsubst_term l t) >= funs t))
val lsubst_funs_monotone: l:list subst -> t:term -> Lemma (ensures (funs (lsubst_term l t) >= funs t))
let rec lsubst_funs_monotone l t = match l with | [] -> () | hd::tl -> lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t)
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 294, "start_col": 0, "start_line": 291 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e)) let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t)) let rec subst_funs_monotone s = function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2 val lsubst_funs_monotone: l:list subst -> t:term -> Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Unification.subst -> t: Unification.term -> FStar.Pervasives.Lemma (ensures Unification.funs (Unification.lsubst_term l t) >= Unification.funs t)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Unification.subst", "Unification.term", "Unification.subst_funs_monotone", "Unification.lsubst_term", "Prims.unit", "Unification.lsubst_funs_monotone" ]
[ "recursion" ]
false
false
true
false
false
let rec lsubst_funs_monotone l t =
match l with | [] -> () | hd :: tl -> lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t)
false
Unification.fst
Unification.subst_funs_monotone
val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t))
val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t))
let rec subst_funs_monotone s = function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 287, "start_col": 0, "start_line": 285 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e)) let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y val subst_funs_monotone: s:subst -> t:term -> Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Unification.subst -> t: Unification.term -> FStar.Pervasives.Lemma (ensures Unification.funs (Unification.subst_term s t) >= Unification.funs t)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Unification.subst", "Unification.term", "Prims.nat", "Unification.subst_funs_monotone", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec subst_funs_monotone s =
function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2
false
Unification.fst
Unification.lemma_subst_idem
val lemma_subst_idem: l:list subst -> x:nat -> t:term -> t':term -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_term l (subst_term (x,t) t') = lsubst_term l t'))
val lemma_subst_idem: l:list subst -> x:nat -> t:term -> t':term -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_term l (subst_term (x,t) t') = lsubst_term l t'))
let rec lemma_subst_idem l x t t' = match t' with | V y -> () | F t1 t2 -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 325, "start_col": 0, "start_line": 323 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e)) let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t)) let rec subst_funs_monotone s = function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2 val lsubst_funs_monotone: l:list subst -> t:term -> Lemma (ensures (funs (lsubst_term l t) >= funs t)) let rec lsubst_funs_monotone l t = match l with | [] -> () | hd::tl -> lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t) val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma (funs (lsubst_term s t) >= (funs t + funs (lsubst_term s (V x)))) let rec lemma_occurs_not_solveable_aux x t s = match t with | F t1 t2 -> if occurs x t1 then let _ = lsubst_funs_monotone s t2 in match t1 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t1 s else if occurs x t2 then let _ = lsubst_funs_monotone s t1 in match t2 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t2 s else () type not_solveable s = forall l. lsubst_term l (fst s) <> lsubst_term l (snd s) val lemma_occurs_not_solveable: x:nat -> t:term -> Lemma (requires (occurs x t /\ not (V? t))) (ensures (not_solveable (V x, t))) let lemma_occurs_not_solveable x t = FStar.Classical.forall_intro (lemma_occurs_not_solveable_aux x t) val lemma_subst_idem: l:list subst -> x:nat -> t:term -> t':term -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Unification.subst -> x: Prims.nat -> t: Unification.term -> t': Unification.term -> FStar.Pervasives.Lemma (requires Unification.lsubst_term l (Unification.V x) = Unification.lsubst_term l t) (ensures Unification.lsubst_term l (Unification.subst_term (x, t) t') = Unification.lsubst_term l t')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Unification.subst", "Prims.nat", "Unification.term", "Unification.lemma_subst_idem", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_subst_idem l x t t' =
match t' with | V y -> () | F t1 t2 -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2
false
Unification.fst
Unification.lemma_subst_eqns_idem
val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e))
val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e))
let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 281, "start_col": 0, "start_line": 277 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Unification.subst -> e: Unification.eqns -> FStar.Pervasives.Lemma (requires Unification.ok s) (ensures Unification.lsubst_eqns [s] (Unification.lsubst_eqns [s] e) = Unification.lsubst_eqns [s] e)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Unification.subst", "Unification.eqns", "Unification.term", "Prims.list", "FStar.Pervasives.Native.tuple2", "Unification.lemma_subst_term_idem", "Prims.unit", "Unification.lemma_subst_eqns_idem" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_subst_eqns_idem s =
function | [] -> () | (x, y) :: tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y
false
Unification.fst
Unification.lemma_occurs_not_solveable
val lemma_occurs_not_solveable: x:nat -> t:term -> Lemma (requires (occurs x t /\ not (V? t))) (ensures (not_solveable (V x, t)))
val lemma_occurs_not_solveable: x:nat -> t:term -> Lemma (requires (occurs x t /\ not (V? t))) (ensures (not_solveable (V x, t)))
let lemma_occurs_not_solveable x t = FStar.Classical.forall_intro (lemma_occurs_not_solveable_aux x t)
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 102, "end_line": 318, "start_col": 0, "start_line": 318 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e)) let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t)) let rec subst_funs_monotone s = function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2 val lsubst_funs_monotone: l:list subst -> t:term -> Lemma (ensures (funs (lsubst_term l t) >= funs t)) let rec lsubst_funs_monotone l t = match l with | [] -> () | hd::tl -> lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t) val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma (funs (lsubst_term s t) >= (funs t + funs (lsubst_term s (V x)))) let rec lemma_occurs_not_solveable_aux x t s = match t with | F t1 t2 -> if occurs x t1 then let _ = lsubst_funs_monotone s t2 in match t1 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t1 s else if occurs x t2 then let _ = lsubst_funs_monotone s t1 in match t2 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t2 s else () type not_solveable s = forall l. lsubst_term l (fst s) <> lsubst_term l (snd s) val lemma_occurs_not_solveable: x:nat -> t:term -> Lemma (requires (occurs x t /\ not (V? t)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> t: Unification.term -> FStar.Pervasives.Lemma (requires Unification.occurs x t /\ Prims.op_Negation (V? t)) (ensures Unification.not_solveable (Unification.V x, t))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Unification.term", "FStar.Classical.forall_intro", "Prims.list", "Unification.subst", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Unification.funs", "Unification.lsubst_term", "Prims.op_Addition", "Unification.V", "Unification.lemma_occurs_not_solveable_aux", "Prims.unit" ]
[]
false
false
true
false
false
let lemma_occurs_not_solveable x t =
FStar.Classical.forall_intro (lemma_occurs_not_solveable_aux x t)
false
Unification.fst
Unification.lemma_occurs_not_solveable_aux
val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma (funs (lsubst_term s t) >= (funs t + funs (lsubst_term s (V x))))
val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma (funs (lsubst_term s t) >= (funs t + funs (lsubst_term s (V x))))
let rec lemma_occurs_not_solveable_aux x t s = match t with | F t1 t2 -> if occurs x t1 then let _ = lsubst_funs_monotone s t2 in match t1 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t1 s else if occurs x t2 then let _ = lsubst_funs_monotone s t1 in match t2 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t2 s else ()
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 11, "end_line": 310, "start_col": 0, "start_line": 298 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e)) let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t)) let rec subst_funs_monotone s = function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2 val lsubst_funs_monotone: l:list subst -> t:term -> Lemma (ensures (funs (lsubst_term l t) >= funs t)) let rec lsubst_funs_monotone l t = match l with | [] -> () | hd::tl -> lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t) val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> t: Unification.term{Unification.occurs x t /\ Prims.op_Negation (V? t)} -> s: Prims.list Unification.subst -> FStar.Pervasives.Lemma (ensures Unification.funs (Unification.lsubst_term s t) >= Unification.funs t + Unification.funs (Unification.lsubst_term s (Unification.V x)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Unification.term", "Prims.l_and", "Prims.b2t", "Unification.occurs", "Prims.op_Negation", "Unification.uu___is_V", "Prims.list", "Unification.subst", "Unification.lemma_occurs_not_solveable_aux", "Prims.unit", "Unification.lsubst_funs_monotone", "Prims.bool" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_occurs_not_solveable_aux x t s =
match t with | F t1 t2 -> if occurs x t1 then let _ = lsubst_funs_monotone s t2 in match t1 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t1 s else if occurs x t2 then let _ = lsubst_funs_monotone s t1 in match t2 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t2 s
false
Unification.fst
Unification.lemma_subst_eqns
val lemma_subst_eqns: l:list subst -> x:nat -> t:term -> e:eqns -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_eqns l (lsubst_eqns [x,t] e) = lsubst_eqns l e))
val lemma_subst_eqns: l:list subst -> x:nat -> t:term -> e:eqns -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_eqns l (lsubst_eqns [x,t] e) = lsubst_eqns l e))
let rec lemma_subst_eqns l x t = function | [] -> () | (t1,t2)::tl -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2; lemma_subst_eqns l x t tl
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 335, "start_col": 0, "start_line": 330 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e)) let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t)) let rec subst_funs_monotone s = function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2 val lsubst_funs_monotone: l:list subst -> t:term -> Lemma (ensures (funs (lsubst_term l t) >= funs t)) let rec lsubst_funs_monotone l t = match l with | [] -> () | hd::tl -> lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t) val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma (funs (lsubst_term s t) >= (funs t + funs (lsubst_term s (V x)))) let rec lemma_occurs_not_solveable_aux x t s = match t with | F t1 t2 -> if occurs x t1 then let _ = lsubst_funs_monotone s t2 in match t1 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t1 s else if occurs x t2 then let _ = lsubst_funs_monotone s t1 in match t2 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t2 s else () type not_solveable s = forall l. lsubst_term l (fst s) <> lsubst_term l (snd s) val lemma_occurs_not_solveable: x:nat -> t:term -> Lemma (requires (occurs x t /\ not (V? t))) (ensures (not_solveable (V x, t))) let lemma_occurs_not_solveable x t = FStar.Classical.forall_intro (lemma_occurs_not_solveable_aux x t) val lemma_subst_idem: l:list subst -> x:nat -> t:term -> t':term -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_term l (subst_term (x,t) t') = lsubst_term l t')) let rec lemma_subst_idem l x t t' = match t' with | V y -> () | F t1 t2 -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2 val lemma_subst_eqns: l:list subst -> x:nat -> t:term -> e:eqns -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Unification.subst -> x: Prims.nat -> t: Unification.term -> e: Unification.eqns -> FStar.Pervasives.Lemma (requires Unification.lsubst_term l (Unification.V x) = Unification.lsubst_term l t) (ensures Unification.lsubst_eqns l (Unification.lsubst_eqns [x, t] e) = Unification.lsubst_eqns l e)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Unification.subst", "Prims.nat", "Unification.term", "Unification.eqns", "FStar.Pervasives.Native.tuple2", "Unification.lemma_subst_eqns", "Prims.unit", "Unification.lemma_subst_idem" ]
[ "recursion" ]
false
false
true
false
false
let rec lemma_subst_eqns l x t =
function | [] -> () | (t1, t2) :: tl -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2; lemma_subst_eqns l x t tl
false
Unification.fst
Unification.unify_eqns
val unify_eqns : e:eqns -> Tot (option lsubst)
val unify_eqns : e:eqns -> Tot (option lsubst)
let unify_eqns e = unify e []
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 400, "start_col": 0, "start_line": 400 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e)) let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t)) let rec subst_funs_monotone s = function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2 val lsubst_funs_monotone: l:list subst -> t:term -> Lemma (ensures (funs (lsubst_term l t) >= funs t)) let rec lsubst_funs_monotone l t = match l with | [] -> () | hd::tl -> lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t) val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma (funs (lsubst_term s t) >= (funs t + funs (lsubst_term s (V x)))) let rec lemma_occurs_not_solveable_aux x t s = match t with | F t1 t2 -> if occurs x t1 then let _ = lsubst_funs_monotone s t2 in match t1 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t1 s else if occurs x t2 then let _ = lsubst_funs_monotone s t1 in match t2 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t2 s else () type not_solveable s = forall l. lsubst_term l (fst s) <> lsubst_term l (snd s) val lemma_occurs_not_solveable: x:nat -> t:term -> Lemma (requires (occurs x t /\ not (V? t))) (ensures (not_solveable (V x, t))) let lemma_occurs_not_solveable x t = FStar.Classical.forall_intro (lemma_occurs_not_solveable_aux x t) val lemma_subst_idem: l:list subst -> x:nat -> t:term -> t':term -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_term l (subst_term (x,t) t') = lsubst_term l t')) let rec lemma_subst_idem l x t t' = match t' with | V y -> () | F t1 t2 -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2 val lemma_subst_eqns: l:list subst -> x:nat -> t:term -> e:eqns -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_eqns l (lsubst_eqns [x,t] e) = lsubst_eqns l e)) let rec lemma_subst_eqns l x t = function | [] -> () | (t1,t2)::tl -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2; lemma_subst_eqns l x t tl type not_solveable_eqns e = forall l. not (solved (lsubst_eqns l e)) val lemma_not_solveable_cons_aux: x:nat -> t:term -> tl:eqns -> l:list subst -> Lemma (requires (not_solveable_eqns (lsubst_eqns [x,t] tl) /\ solved (lsubst_eqns l ((V x,t)::tl)))) (ensures False) [SMTPat (solved (lsubst_eqns l ((V x,t)::tl)))] let lemma_not_solveable_cons_aux x t tl l = lemma_subst_eqns l x t tl val lemma_not_solveable_cons: x:nat -> t:term -> tl:eqns -> Lemma (requires (not_solveable_eqns (lsubst_eqns [x,t] tl))) (ensures (not_solveable_eqns ((V x, t)::tl))) let lemma_not_solveable_cons x t tl = () val unify_correct_aux: l:list subst -> e:eqns -> Pure (list subst) (requires (b2t (lsubst_eqns l e = e))) (ensures (fun m -> match unify e l with | None -> not_solveable_eqns e | Some l' -> l' = (m @ l) /\ solved (lsubst_eqns l' e))) (decreases %[n_evars e; efuns e; n_flex_rhs e]) #set-options "--z3rlimit 100" let rec unify_correct_aux l = function | [] -> [] | hd::tl -> begin match hd with | (V x, y) -> if V? y && V?.i y=x then unify_correct_aux l tl else if occurs x y then (lemma_occurs_not_solveable x y; []) else begin let s = (x,y) in let l' = extend_subst s l in vars_decrease_eqns x y tl; let tl' = lsubst_eqns [s] tl in lemma_extend_lsubst_distributes_eqns [s] l tl; assert (lsubst_eqns l' tl' = lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] tl))); lemma_lsubst_eqns_commutes s l tl; lemma_subst_eqns_idem s tl; let lpre = unify_correct_aux l' tl' in begin match unify tl' l' with | None -> lemma_not_solveable_cons x y tl; [] | Some l'' -> key_lemma x y tl l lpre l''; lemma_shift_append lpre s l; lpre@[s] end end | (y, V x) -> evars_permute_hd y (V x) tl; unify_correct_aux l ((V x, y)::tl) | F t1 t2, F s1 s2 -> evars_unfun t1 t2 s1 s2 tl; unify_correct_aux l ((t1, s1)::(t2, s2)::tl) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Unification.eqns -> FStar.Pervasives.Native.option Unification.lsubst
Prims.Tot
[ "total" ]
[]
[ "Unification.eqns", "Unification.unify", "Prims.Nil", "Unification.subst", "FStar.Pervasives.Native.option", "Unification.lsubst" ]
[]
false
false
false
true
false
let unify_eqns e =
unify e []
false
Unification.fst
Unification.lemma_not_solveable_cons_aux
val lemma_not_solveable_cons_aux: x:nat -> t:term -> tl:eqns -> l:list subst -> Lemma (requires (not_solveable_eqns (lsubst_eqns [x,t] tl) /\ solved (lsubst_eqns l ((V x,t)::tl)))) (ensures False) [SMTPat (solved (lsubst_eqns l ((V x,t)::tl)))]
val lemma_not_solveable_cons_aux: x:nat -> t:term -> tl:eqns -> l:list subst -> Lemma (requires (not_solveable_eqns (lsubst_eqns [x,t] tl) /\ solved (lsubst_eqns l ((V x,t)::tl)))) (ensures False) [SMTPat (solved (lsubst_eqns l ((V x,t)::tl)))]
let lemma_not_solveable_cons_aux x t tl l = lemma_subst_eqns l x t tl
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 69, "end_line": 345, "start_col": 0, "start_line": 345 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e)) let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t)) let rec subst_funs_monotone s = function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2 val lsubst_funs_monotone: l:list subst -> t:term -> Lemma (ensures (funs (lsubst_term l t) >= funs t)) let rec lsubst_funs_monotone l t = match l with | [] -> () | hd::tl -> lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t) val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma (funs (lsubst_term s t) >= (funs t + funs (lsubst_term s (V x)))) let rec lemma_occurs_not_solveable_aux x t s = match t with | F t1 t2 -> if occurs x t1 then let _ = lsubst_funs_monotone s t2 in match t1 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t1 s else if occurs x t2 then let _ = lsubst_funs_monotone s t1 in match t2 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t2 s else () type not_solveable s = forall l. lsubst_term l (fst s) <> lsubst_term l (snd s) val lemma_occurs_not_solveable: x:nat -> t:term -> Lemma (requires (occurs x t /\ not (V? t))) (ensures (not_solveable (V x, t))) let lemma_occurs_not_solveable x t = FStar.Classical.forall_intro (lemma_occurs_not_solveable_aux x t) val lemma_subst_idem: l:list subst -> x:nat -> t:term -> t':term -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_term l (subst_term (x,t) t') = lsubst_term l t')) let rec lemma_subst_idem l x t t' = match t' with | V y -> () | F t1 t2 -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2 val lemma_subst_eqns: l:list subst -> x:nat -> t:term -> e:eqns -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_eqns l (lsubst_eqns [x,t] e) = lsubst_eqns l e)) let rec lemma_subst_eqns l x t = function | [] -> () | (t1,t2)::tl -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2; lemma_subst_eqns l x t tl type not_solveable_eqns e = forall l. not (solved (lsubst_eqns l e)) val lemma_not_solveable_cons_aux: x:nat -> t:term -> tl:eqns -> l:list subst -> Lemma (requires (not_solveable_eqns (lsubst_eqns [x,t] tl) /\ solved (lsubst_eqns l ((V x,t)::tl)))) (ensures False)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> t: Unification.term -> tl: Unification.eqns -> l: Prims.list Unification.subst -> FStar.Pervasives.Lemma (requires Unification.not_solveable_eqns (Unification.lsubst_eqns [x, t] tl) /\ Unification.solved (Unification.lsubst_eqns l ((Unification.V x, t) :: tl))) (ensures Prims.l_False) [SMTPat (Unification.solved (Unification.lsubst_eqns l ((Unification.V x, t) :: tl)))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Unification.term", "Unification.eqns", "Prims.list", "Unification.subst", "Unification.lemma_subst_eqns", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_not_solveable_cons_aux x t tl l =
lemma_subst_eqns l x t tl
false
FStar.Algebra.CommMonoid.Fold.Nested.fsti
FStar.Algebra.CommMonoid.Fold.Nested.transpose_generator
val transpose_generator (#c: _) (#m0 #mk #n0 #nk: int) (gen: (ifrom_ito m0 mk -> ifrom_ito n0 nk -> c)) : (f: (ifrom_ito n0 nk -> ifrom_ito m0 mk -> c){forall i j. f j i == gen i j})
val transpose_generator (#c: _) (#m0 #mk #n0 #nk: int) (gen: (ifrom_ito m0 mk -> ifrom_ito n0 nk -> c)) : (f: (ifrom_ito n0 nk -> ifrom_ito m0 mk -> c){forall i j. f j i == gen i j})
let transpose_generator #c (#m0 #mk: int) (#n0 #nk: int) (gen: ifrom_ito m0 mk -> ifrom_ito n0 nk -> c) : (f: (ifrom_ito n0 nk -> ifrom_ito m0 mk -> c) { forall i j. f j i == gen i j }) = fun j i -> gen i j
{ "file_name": "ulib/FStar.Algebra.CommMonoid.Fold.Nested.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 41, "start_col": 0, "start_line": 37 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* Here we reason about nested folds of functions over arbitrary integer intervals. We call such functions generators. *) module FStar.Algebra.CommMonoid.Fold.Nested module CF = FStar.Algebra.CommMonoid.Fold module CE = FStar.Algebra.CommMonoid.Equiv open FStar.IntegerIntervals (* This constructs a generator function that has its arguments in reverse order. Useful when reasoning about nested folds, transposed matrices, etc. Note how this utility is more general than transposed_matrix_gen found in FStar.Seq.Matrix -- but for zero-based domains, latter is
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": false, "source_file": "FStar.Algebra.CommMonoid.Fold.Nested.fsti" }
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
gen: (_: FStar.IntegerIntervals.ifrom_ito m0 mk -> _: FStar.IntegerIntervals.ifrom_ito n0 nk -> c) -> f: (_: FStar.IntegerIntervals.ifrom_ito n0 nk -> _: FStar.IntegerIntervals.ifrom_ito m0 mk -> c) { forall (i: FStar.IntegerIntervals.ifrom_ito m0 mk) (j: FStar.IntegerIntervals.ifrom_ito n0 nk). f j i == gen i j }
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "FStar.IntegerIntervals.ifrom_ito", "Prims.l_Forall", "Prims.eq2" ]
[]
false
false
false
false
false
let transpose_generator #c (#m0: int) (#mk: int) (#n0: int) (#nk: int) (gen: (ifrom_ito m0 mk -> ifrom_ito n0 nk -> c)) : (f: (ifrom_ito n0 nk -> ifrom_ito m0 mk -> c){forall i j. f j i == gen i j}) =
fun j i -> gen i j
false
FStar.Algebra.CommMonoid.Fold.Nested.fsti
FStar.Algebra.CommMonoid.Fold.Nested.double_fold
val double_fold : cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> g: (_: FStar.IntegerIntervals.ifrom_ito a0 ak -> _: FStar.IntegerIntervals.ifrom_ito b0 bk -> c) -> c
let double_fold #c #eq #a0 (#ak: not_less_than a0) #b0 (#bk:not_less_than b0) (cm: CE.cm c eq) (g: ifrom_ito a0 ak -> ifrom_ito b0 bk -> c) = CF.fold cm a0 ak (fun (i: ifrom_ito a0 ak) -> CF.fold cm b0 bk (g i))
{ "file_name": "ulib/FStar.Algebra.CommMonoid.Fold.Nested.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 71, "end_line": 46, "start_col": 0, "start_line": 43 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* Here we reason about nested folds of functions over arbitrary integer intervals. We call such functions generators. *) module FStar.Algebra.CommMonoid.Fold.Nested module CF = FStar.Algebra.CommMonoid.Fold module CE = FStar.Algebra.CommMonoid.Equiv open FStar.IntegerIntervals (* This constructs a generator function that has its arguments in reverse order. Useful when reasoning about nested folds, transposed matrices, etc. Note how this utility is more general than transposed_matrix_gen found in FStar.Seq.Matrix -- but for zero-based domains, latter is more convenient. *) let transpose_generator #c (#m0 #mk: int) (#n0 #nk: int) (gen: ifrom_ito m0 mk -> ifrom_ito n0 nk -> c) : (f: (ifrom_ito n0 nk -> ifrom_ito m0 mk -> c) { forall i j. f j i == gen i j }) = fun j i -> gen i j
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": false, "source_file": "FStar.Algebra.CommMonoid.Fold.Nested.fsti" }
[ { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> g: (_: FStar.IntegerIntervals.ifrom_ito a0 ak -> _: FStar.IntegerIntervals.ifrom_ito b0 bk -> c) -> c
Prims.Tot
[ "total" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.int", "FStar.IntegerIntervals.not_less_than", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.IntegerIntervals.ifrom_ito", "FStar.Algebra.CommMonoid.Fold.fold" ]
[]
false
false
false
false
false
let double_fold #c #eq #a0 (#ak: not_less_than a0) #b0 (#bk: not_less_than b0) (cm: CE.cm c eq) (g: (ifrom_ito a0 ak -> ifrom_ito b0 bk -> c)) =
CF.fold cm a0 ak (fun (i: ifrom_ito a0 ak) -> CF.fold cm b0 bk (g i))
false
Steel.ST.Array.Util.fst
Steel.ST.Array.Util.forall2_body
val forall2_body: #a: Type0 -> #b: Type0 -> n: US.t -> a0: A.array a -> a1: A.array b -> p: (a -> b -> bool) -> r: R.ref US.t -> p0: perm -> p1: perm -> s0: G.erased (Seq.seq a) -> s1: G.erased (Seq.seq b) -> squash (Seq.length s0 == US.v n /\ Seq.length s0 == Seq.length s1) -> unit -> STT unit (forall2_inv n a0 a1 p r p0 p1 s0 s1 () true) (fun _ -> exists_ (forall2_inv n a0 a1 p r p0 p1 s0 s1 ()))
val forall2_body: #a: Type0 -> #b: Type0 -> n: US.t -> a0: A.array a -> a1: A.array b -> p: (a -> b -> bool) -> r: R.ref US.t -> p0: perm -> p1: perm -> s0: G.erased (Seq.seq a) -> s1: G.erased (Seq.seq b) -> squash (Seq.length s0 == US.v n /\ Seq.length s0 == Seq.length s1) -> unit -> STT unit (forall2_inv n a0 a1 p r p0 p1 s0 s1 () true) (fun _ -> exists_ (forall2_inv n a0 a1 p r p0 p1 s0 s1 ()))
let forall2_body (#a #b:Type0) (n:US.t) (a0:A.array a) (a1:A.array b) (p:a -> b -> bool) (r:R.ref US.t) (p0 p1:perm) (s0:G.erased (Seq.seq a)) (s1:G.erased (Seq.seq b)) (_:squash (Seq.length s0 == US.v n /\ Seq.length s0 == Seq.length s1)) : unit -> STT unit (forall2_inv n a0 a1 p r p0 p1 s0 s1 () true) (fun _ -> exists_ (forall2_inv n a0 a1 p r p0 p1 s0 s1 ())) = fun _ -> let _ = elim_exists () in elim_pure _; elim_pure _; //atomic increment? let i = R.read r in R.write r (US.add i 1sz); intro_pure (forall2_pure_inv n p s0 s1 () (US.add i 1sz)); intro_pure (forall2_pure_inv_b n p s0 s1 () (US.add i 1sz) ((US.add i 1sz) `US.lt` n && p (Seq.index s0 (US.v (US.add i 1sz))) (Seq.index s1 (US.v (US.add i 1sz))))); intro_exists (US.add i 1sz) (forall2_pred n a0 a1 p r p0 p1 s0 s1 () ((US.add i 1sz) `US.lt` n && p (Seq.index s0 (US.v (US.add i 1sz))) (Seq.index s1 (US.v (US.add i 1sz))))); intro_exists ((US.add i 1sz) `US.lt` n && p (Seq.index s0 (US.v (US.add i 1sz))) (Seq.index s1 (US.v (US.add i 1sz)))) (forall2_inv n a0 a1 p r p0 p1 s0 s1 ())
{ "file_name": "lib/steel/Steel.ST.Array.Util.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 46, "end_line": 404, "start_col": 0, "start_line": 367 }
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Array.Util module G = FStar.Ghost module US = FStar.SizeT module R = Steel.ST.Reference module A = Steel.ST.Array module Loops = Steel.ST.Loops open Steel.FractionalPermission open Steel.ST.Effect open Steel.ST.Util /// Implementation of array_literal using a for loop let array_literal_inv_pure (#a:Type0) (n:US.t) (f:(i:US.t{US.v i < US.v n} -> a)) (i:Loops.nat_at_most n) (s:Seq.seq a) : prop = forall (j:nat). (j < i /\ j < Seq.length s) ==> Seq.index s j == f (US.uint_to_t j) [@@ __reduce__] let array_literal_inv (#a:Type0) (n:US.t) (arr:A.array a) (f:(i:US.t{US.v i < US.v n} -> a)) (i:Loops.nat_at_most n) : Seq.seq a -> vprop = fun s -> A.pts_to arr full_perm s `star` pure (array_literal_inv_pure n f i s) inline_for_extraction let array_literal_loop_body (#a:Type0) (n:US.t) (arr:A.array a{A.length arr == US.v n}) (f:(i:US.t{US.v i < US.v n} -> a)) : i:Loops.u32_between 0sz n -> STT unit (exists_ (array_literal_inv n arr f (US.v i))) (fun _ -> exists_ (array_literal_inv n arr f (US.v i + 1))) = fun i -> let s = elim_exists () in (); A.pts_to_length arr s; elim_pure (array_literal_inv_pure n f (US.v i) s); A.write arr i (f i); intro_pure (array_literal_inv_pure n f (US.v i + 1) (Seq.upd s (US.v i) (f i))); intro_exists (Seq.upd s (US.v i) (f i)) (array_literal_inv n arr f (US.v i + 1)) let array_literal #a n f = let arr = A.alloc (f 0sz) n in intro_pure (array_literal_inv_pure n f 1 (Seq.create (US.v n) (f 0sz))); intro_exists (Seq.create (US.v n) (f 0sz)) (array_literal_inv n arr f 1); Loops.for_loop 1sz n (fun i -> exists_ (array_literal_inv n arr f i)) (array_literal_loop_body n arr f); let s = elim_exists () in A.pts_to_length arr s; elim_pure (array_literal_inv_pure n f (US.v n) s); assert (Seq.equal s (Seq.init (US.v n) (fun i -> f (US.uint_to_t i)))); rewrite (A.pts_to arr full_perm s) _; return arr /// Implementation of for_all using a while loop let forall_pure_inv (#a:Type0) (n:US.t) (p:a -> bool) (s:Seq.seq a) (_:squash (Seq.length s == US.v n)) (i:US.t) : prop = i `US.lte` n /\ (forall (j:nat). j < US.v i ==> p (Seq.index s j)) let forall_pure_inv_b (#a:Type0) (n:US.t) (p:a -> bool) (s:Seq.seq a) (_:squash (Seq.length s == US.v n)) (i:US.t) (b:bool) : prop = b == (i `US.lt` n && p (Seq.index s (US.v i))) [@@ __reduce__] let forall_pred (#a:Type0) (n:US.t) (arr:A.array a) (p:a -> bool) (r:R.ref US.t) (perm:perm) (s:Seq.seq a) (_:squash (Seq.length s == US.v n)) (b:bool) : US.t -> vprop = fun i -> A.pts_to arr perm s `star` R.pts_to r full_perm i `star` pure (forall_pure_inv n p s () i) `star` pure (forall_pure_inv_b n p s () i b) [@@ __reduce__] let forall_inv (#a:Type0) (n:US.t) (arr:A.array a) (p:a -> bool) (r:R.ref US.t) (perm:perm) (s:Seq.seq a) (_:squash (Seq.length s == US.v n)) : bool -> vprop = fun b -> exists_ (forall_pred n arr p r perm s () b) inline_for_extraction let forall_cond (#a:Type0) (n:US.t) (arr:A.array a) (p:a -> bool) (r:R.ref US.t) (perm:perm) (s:G.erased (Seq.seq a)) (_:squash (Seq.length s == US.v n)) : unit -> STT bool (exists_ (forall_inv n arr p r perm s ())) (forall_inv n arr p r perm s ()) = fun _ -> let _ = elim_exists () in let _ = elim_exists () in elim_pure _; elim_pure _; let i = R.read r in let b = i = n in let res = if b then return false else let elt = A.read arr i in return (p elt) in intro_pure (forall_pure_inv n p s () i); intro_pure (forall_pure_inv_b n p s () i res); intro_exists i (forall_pred n arr p r perm s () res); return res inline_for_extraction let forall_body (#a:Type0) (n:US.t) (arr:A.array a) (p:a -> bool) (r:R.ref US.t) (perm:perm) (s:G.erased (Seq.seq a)) (_:squash (Seq.length s == US.v n)) : unit -> STT unit (forall_inv n arr p r perm s () true) (fun _ -> exists_ (forall_inv n arr p r perm s ())) = fun _ -> let _ = elim_exists () in elim_pure _; elim_pure _; //atomic increment? let i = R.read r in R.write r (US.add i 1sz); intro_pure (forall_pure_inv n p s () (US.add i 1sz)); intro_pure (forall_pure_inv_b n p s () (US.add i 1sz) ((US.add i 1sz) `US.lt` n && p (Seq.index s (US.v (US.add i 1sz))))); intro_exists (US.add i 1sz) (forall_pred n arr p r perm s () ((US.add i 1sz) `US.lt` n && p (Seq.index s (US.v (US.add i 1sz))))); intro_exists ((US.add i 1sz) `US.lt` n && p (Seq.index s (US.v (US.add i 1sz)))) (forall_inv n arr p r perm s ()) let for_all #a #perm #s n arr p = A.pts_to_length arr s; let b = n = 0sz in if b then return true else begin //This could be stack allocated let r = R.alloc 0sz in intro_pure (forall_pure_inv n p s () 0sz); intro_pure (forall_pure_inv_b n p s () 0sz (0sz `US.lt` n && p (Seq.index s (US.v 0sz)))); intro_exists 0sz (forall_pred n arr p r perm s () (0sz `US.lt` n && p (Seq.index s (US.v 0sz)))); intro_exists (0sz `US.lt` n && p (Seq.index s (US.v 0sz))) (forall_inv n arr p r perm s ()); Loops.while_loop (forall_inv n arr p r perm s ()) (forall_cond n arr p r perm s ()) (forall_body n arr p r perm s ()); let _ = elim_exists () in let _ = elim_pure _ in let _ = elim_pure _ in let i = R.read r in //This free would go away if we had stack allocations R.free r; return (i = n) end /// Implementation of for_all2 using a while loop let forall2_pure_inv (#a #b:Type0) (n:US.t) (p:a -> b -> bool) (s0:Seq.seq a) (s1:Seq.seq b) (_:squash (Seq.length s0 == US.v n /\ Seq.length s0 == Seq.length s1)) (i:US.t) : prop = i `US.lte` n /\ (forall (j:nat). j < US.v i ==> p (Seq.index s0 j) (Seq.index s1 j)) let forall2_pure_inv_b (#a #b:Type0) (n:US.t) (p:a -> b -> bool) (s0:Seq.seq a) (s1:Seq.seq b) (_:squash (Seq.length s0 == US.v n /\ Seq.length s0 == Seq.length s1)) (i:US.t) (g:bool) : prop = g == (i `US.lt` n && p (Seq.index s0 (US.v i)) (Seq.index s1 (US.v i))) [@@ __reduce__] let forall2_pred (#a #b:Type0) (n:US.t) (a0:A.array a) (a1:A.array b) (p:a -> b -> bool) (r:R.ref US.t) (p0 p1:perm) (s0:Seq.seq a) (s1:Seq.seq b) (_:squash (Seq.length s0 == US.v n /\ Seq.length s0 == Seq.length s1)) (g:bool) : US.t -> vprop = fun i -> A.pts_to a0 p0 s0 `star` A.pts_to a1 p1 s1 `star` R.pts_to r full_perm i `star` pure (forall2_pure_inv n p s0 s1 () i) `star` pure (forall2_pure_inv_b n p s0 s1 () i g) [@@ __reduce__] let forall2_inv (#a #b:Type0) (n:US.t) (a0:A.array a) (a1:A.array b) (p:a -> b -> bool) (r:R.ref US.t) (p0 p1:perm) (s0:Seq.seq a) (s1:Seq.seq b) (_:squash (Seq.length s0 == US.v n /\ Seq.length s0 == Seq.length s1)) : bool -> vprop = fun g -> exists_ (forall2_pred n a0 a1 p r p0 p1 s0 s1 () g) inline_for_extraction let forall2_cond (#a #b:Type0) (n:US.t) (a0:A.array a) (a1:A.array b) (p:a -> b -> bool) (r:R.ref US.t) (p0 p1:perm) (s0:G.erased (Seq.seq a)) (s1:G.erased (Seq.seq b)) (_:squash (Seq.length s0 == US.v n /\ Seq.length s0 == Seq.length s1)) : unit -> STT bool (exists_ (forall2_inv n a0 a1 p r p0 p1 s0 s1 ())) (forall2_inv n a0 a1 p r p0 p1 s0 s1 ()) = fun _ -> let _ = elim_exists () in let _ = elim_exists () in elim_pure _; elim_pure _; let i = R.read r in let b = i = n in let res = if b then return false else let elt0 = A.read a0 i in let elt1 = A.read a1 i in return (p elt0 elt1) in intro_pure (forall2_pure_inv n p s0 s1 () i); intro_pure (forall2_pure_inv_b n p s0 s1 () i res); intro_exists i (forall2_pred n a0 a1 p r p0 p1 s0 s1 () res); return res
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Reference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.ST.Effect.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.Array.Util.fst" }
[ { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "Steel.ST.Loops", "short_module": "Loops" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "Steel.ST.Reference", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: FStar.SizeT.t -> a0: Steel.ST.Array.array a -> a1: Steel.ST.Array.array b -> p: (_: a -> _: b -> Prims.bool) -> r: Steel.ST.Reference.ref FStar.SizeT.t -> p0: Steel.FractionalPermission.perm -> p1: Steel.FractionalPermission.perm -> s0: FStar.Ghost.erased (FStar.Seq.Base.seq a) -> s1: FStar.Ghost.erased (FStar.Seq.Base.seq b) -> _: Prims.squash (FStar.Seq.Base.length (FStar.Ghost.reveal s0) == FStar.SizeT.v n /\ FStar.Seq.Base.length (FStar.Ghost.reveal s0) == FStar.Seq.Base.length (FStar.Ghost.reveal s1)) -> _: Prims.unit -> Steel.ST.Effect.STT Prims.unit
Steel.ST.Effect.STT
[]
[]
[ "FStar.SizeT.t", "Steel.ST.Array.array", "Prims.bool", "Steel.ST.Reference.ref", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Prims.squash", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "FStar.Ghost.reveal", "FStar.SizeT.v", "Prims.unit", "Steel.ST.Util.intro_exists", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Prims.op_AmpAmp", "FStar.SizeT.lt", "FStar.SizeT.add", "FStar.SizeT.__uint_to_t", "FStar.Seq.Base.index", "Steel.ST.Array.Util.forall2_inv", "Steel.ST.Array.Util.forall2_pred", "Steel.ST.Util.intro_pure", "Steel.ST.Array.Util.forall2_pure_inv_b", "Steel.ST.Array.Util.forall2_pure_inv", "Steel.ST.Reference.write", "Steel.ST.Reference.read", "Steel.FractionalPermission.full_perm", "Steel.ST.Util.elim_pure", "Steel.ST.Util.elim_exists", "Steel.Effect.Common.VStar", "Steel.ST.Array.pts_to", "Steel.ST.Reference.pts_to", "Steel.ST.Util.pure", "Steel.Effect.Common.vprop", "Steel.ST.Util.exists_" ]
[]
false
true
false
false
false
let forall2_body (#a: Type0) (#b: Type0) (n: US.t) (a0: A.array a) (a1: A.array b) (p: (a -> b -> bool)) (r: R.ref US.t) (p0: perm) (p1: perm) (s0: G.erased (Seq.seq a)) (s1: G.erased (Seq.seq b)) (_: squash (Seq.length s0 == US.v n /\ Seq.length s0 == Seq.length s1)) : unit -> STT unit (forall2_inv n a0 a1 p r p0 p1 s0 s1 () true) (fun _ -> exists_ (forall2_inv n a0 a1 p r p0 p1 s0 s1 ())) =
fun _ -> let _ = elim_exists () in elim_pure _; elim_pure _; let i = R.read r in R.write r (US.add i 1sz); intro_pure (forall2_pure_inv n p s0 s1 () (US.add i 1sz)); intro_pure (forall2_pure_inv_b n p s0 s1 () (US.add i 1sz) ((US.add i 1sz) `US.lt` n && p (Seq.index s0 (US.v (US.add i 1sz))) (Seq.index s1 (US.v (US.add i 1sz))))); intro_exists (US.add i 1sz) (forall2_pred n a0 a1 p r p0 p1 s0 s1 () ((US.add i 1sz) `US.lt` n && p (Seq.index s0 (US.v (US.add i 1sz))) (Seq.index s1 (US.v (US.add i 1sz))))); intro_exists ((US.add i 1sz) `US.lt` n && p (Seq.index s0 (US.v (US.add i 1sz))) (Seq.index s1 (US.v (US.add i 1sz)))) (forall2_inv n a0 a1 p r p0 p1 s0 s1 ())
false
Unification.fst
Unification.unify_eqns_correct
val unify_eqns_correct: e:eqns -> Lemma (requires True) (ensures (if None? (unify_eqns e) then not_solveable_eqns e else solved (lsubst_eqns (Some?.v (unify_eqns e)) e)))
val unify_eqns_correct: e:eqns -> Lemma (requires True) (ensures (if None? (unify_eqns e) then not_solveable_eqns e else solved (lsubst_eqns (Some?.v (unify_eqns e)) e)))
let unify_eqns_correct e = let _ = unify_correct_aux [] e in ()
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 408, "start_col": 0, "start_line": 407 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e)) let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t)) let rec subst_funs_monotone s = function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2 val lsubst_funs_monotone: l:list subst -> t:term -> Lemma (ensures (funs (lsubst_term l t) >= funs t)) let rec lsubst_funs_monotone l t = match l with | [] -> () | hd::tl -> lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t) val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma (funs (lsubst_term s t) >= (funs t + funs (lsubst_term s (V x)))) let rec lemma_occurs_not_solveable_aux x t s = match t with | F t1 t2 -> if occurs x t1 then let _ = lsubst_funs_monotone s t2 in match t1 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t1 s else if occurs x t2 then let _ = lsubst_funs_monotone s t1 in match t2 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t2 s else () type not_solveable s = forall l. lsubst_term l (fst s) <> lsubst_term l (snd s) val lemma_occurs_not_solveable: x:nat -> t:term -> Lemma (requires (occurs x t /\ not (V? t))) (ensures (not_solveable (V x, t))) let lemma_occurs_not_solveable x t = FStar.Classical.forall_intro (lemma_occurs_not_solveable_aux x t) val lemma_subst_idem: l:list subst -> x:nat -> t:term -> t':term -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_term l (subst_term (x,t) t') = lsubst_term l t')) let rec lemma_subst_idem l x t t' = match t' with | V y -> () | F t1 t2 -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2 val lemma_subst_eqns: l:list subst -> x:nat -> t:term -> e:eqns -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_eqns l (lsubst_eqns [x,t] e) = lsubst_eqns l e)) let rec lemma_subst_eqns l x t = function | [] -> () | (t1,t2)::tl -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2; lemma_subst_eqns l x t tl type not_solveable_eqns e = forall l. not (solved (lsubst_eqns l e)) val lemma_not_solveable_cons_aux: x:nat -> t:term -> tl:eqns -> l:list subst -> Lemma (requires (not_solveable_eqns (lsubst_eqns [x,t] tl) /\ solved (lsubst_eqns l ((V x,t)::tl)))) (ensures False) [SMTPat (solved (lsubst_eqns l ((V x,t)::tl)))] let lemma_not_solveable_cons_aux x t tl l = lemma_subst_eqns l x t tl val lemma_not_solveable_cons: x:nat -> t:term -> tl:eqns -> Lemma (requires (not_solveable_eqns (lsubst_eqns [x,t] tl))) (ensures (not_solveable_eqns ((V x, t)::tl))) let lemma_not_solveable_cons x t tl = () val unify_correct_aux: l:list subst -> e:eqns -> Pure (list subst) (requires (b2t (lsubst_eqns l e = e))) (ensures (fun m -> match unify e l with | None -> not_solveable_eqns e | Some l' -> l' = (m @ l) /\ solved (lsubst_eqns l' e))) (decreases %[n_evars e; efuns e; n_flex_rhs e]) #set-options "--z3rlimit 100" let rec unify_correct_aux l = function | [] -> [] | hd::tl -> begin match hd with | (V x, y) -> if V? y && V?.i y=x then unify_correct_aux l tl else if occurs x y then (lemma_occurs_not_solveable x y; []) else begin let s = (x,y) in let l' = extend_subst s l in vars_decrease_eqns x y tl; let tl' = lsubst_eqns [s] tl in lemma_extend_lsubst_distributes_eqns [s] l tl; assert (lsubst_eqns l' tl' = lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] tl))); lemma_lsubst_eqns_commutes s l tl; lemma_subst_eqns_idem s tl; let lpre = unify_correct_aux l' tl' in begin match unify tl' l' with | None -> lemma_not_solveable_cons x y tl; [] | Some l'' -> key_lemma x y tl l lpre l''; lemma_shift_append lpre s l; lpre@[s] end end | (y, V x) -> evars_permute_hd y (V x) tl; unify_correct_aux l ((V x, y)::tl) | F t1 t2, F s1 s2 -> evars_unfun t1 t2 s1 s2 tl; unify_correct_aux l ((t1, s1)::(t2, s2)::tl) end val unify_eqns : e:eqns -> Tot (option lsubst) let unify_eqns e = unify e [] val unify_eqns_correct: e:eqns -> Lemma (requires True) (ensures (if None? (unify_eqns e) then not_solveable_eqns e
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Unification.eqns -> FStar.Pervasives.Lemma (ensures ((match None? (Unification.unify_eqns e) with | true -> Unification.not_solveable_eqns e | _ -> Unification.solved (Unification.lsubst_eqns (Some?.v (Unification.unify_eqns e)) e) ) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Unification.eqns", "Prims.list", "Unification.subst", "Unification.unify_correct_aux", "Prims.Nil", "Prims.unit" ]
[]
true
false
true
false
false
let unify_eqns_correct e =
let _ = unify_correct_aux [] e in ()
false
Unification.fst
Unification.unify_correct_aux
val unify_correct_aux: l:list subst -> e:eqns -> Pure (list subst) (requires (b2t (lsubst_eqns l e = e))) (ensures (fun m -> match unify e l with | None -> not_solveable_eqns e | Some l' -> l' = (m @ l) /\ solved (lsubst_eqns l' e))) (decreases %[n_evars e; efuns e; n_flex_rhs e])
val unify_correct_aux: l:list subst -> e:eqns -> Pure (list subst) (requires (b2t (lsubst_eqns l e = e))) (ensures (fun m -> match unify e l with | None -> not_solveable_eqns e | Some l' -> l' = (m @ l) /\ solved (lsubst_eqns l' e))) (decreases %[n_evars e; efuns e; n_flex_rhs e])
let rec unify_correct_aux l = function | [] -> [] | hd::tl -> begin match hd with | (V x, y) -> if V? y && V?.i y=x then unify_correct_aux l tl else if occurs x y then (lemma_occurs_not_solveable x y; []) else begin let s = (x,y) in let l' = extend_subst s l in vars_decrease_eqns x y tl; let tl' = lsubst_eqns [s] tl in lemma_extend_lsubst_distributes_eqns [s] l tl; assert (lsubst_eqns l' tl' = lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] tl))); lemma_lsubst_eqns_commutes s l tl; lemma_subst_eqns_idem s tl; let lpre = unify_correct_aux l' tl' in begin match unify tl' l' with | None -> lemma_not_solveable_cons x y tl; [] | Some l'' -> key_lemma x y tl l lpre l''; lemma_shift_append lpre s l; lpre@[s] end end | (y, V x) -> evars_permute_hd y (V x) tl; unify_correct_aux l ((V x, y)::tl) | F t1 t2, F s1 s2 -> evars_unfun t1 t2 s1 s2 tl; unify_correct_aux l ((t1, s1)::(t2, s2)::tl) end
{ "file_name": "examples/algorithms/Unification.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 8, "end_line": 397, "start_col": 0, "start_line": 362 }
(* Copyright 2008-2015 Nikhil Swamy and Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (* A verified implementation of first-order unification. The termination argument is based on Ana Bove's Licentiate Thesis: Programming in Martin-Löf Type Theory Unification - A non-trivial Example Department of Computer Science, Chalmers University of Technology 1999 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.3532 But, is done here directly with lex orderings. *) module Unification open FStar.List.Tot (* First, a missing lemma from the list library *) let op_At = append val lemma_shift_append: #a:eqtype -> l:list a -> x:a -> m:list a -> Lemma (ensures ( (l@(x::m)) = ((l@[x])@m))) let rec lemma_shift_append #a l x m = match l with | [] -> () | hd::tl -> lemma_shift_append tl x m (* A term language with variables V and pairs F *) type term = | V : i:nat -> term | F : t1:term -> t2:term -> term (* Finite, ordered sets of variables *) val nat_order : OrdSet.cmp nat let nat_order :(f:(nat -> nat -> bool){OrdSet.total_order nat f}) = fun x y -> x <= y type varset = OrdSet.ordset nat nat_order val empty_vars : varset let empty_vars = OrdSet.empty (* Collecting the variables in a term *) val vars : term -> Tot varset let rec vars = function | V i -> OrdSet.singleton i | F t1 t2 -> OrdSet.union (vars t1) (vars t2) (* Equations among pairs of terms, to be solved *) type eqns = list (term * term) (* All the variables in a set of equations *) val evars : eqns -> Tot varset let rec evars = function | [] -> empty_vars | (x, y)::tl -> OrdSet.union (OrdSet.union (vars x) (vars y)) (evars tl) (* Counting variables; used in the termination metric *) val n_evars : eqns -> Tot nat let n_evars eqns = OrdSet.size (evars eqns) (* Counting the number of F-applications; also for the termination metric *) val funs : term -> Tot nat let rec funs = function | V _ -> 0 | F t1 t2 -> 1 + funs t1 + funs t2 val efuns : eqns -> Tot nat let rec efuns = function | [] -> 0 | (x,y)::tl -> funs x + funs y + efuns tl (* Counting the number of equations with variables on the the RHS; // also for the termination metric *) val n_flex_rhs : eqns -> Tot nat let rec n_flex_rhs = function | [] -> 0 | (V _, V _)::tl | (_ , V _)::tl -> 1 + n_flex_rhs tl | _::tl -> n_flex_rhs tl (* A point substitution *) type subst = (nat * term) (* Composition of point substitutions *) type lsubst = list subst val subst_term : subst -> term -> Tot term let rec subst_term s t = match t with | V x -> if x = fst s then snd s else V x | F t1 t2 -> F (subst_term s t1) (subst_term s t2) val lsubst_term : list subst -> term -> Tot term let lsubst_term = fold_right subst_term let occurs x t = OrdSet.mem x (vars t) let ok s = not (occurs (fst s) (snd s)) val lsubst_eqns: list subst -> eqns -> Tot eqns let rec lsubst_eqns l = function | [] -> [] | (x,y)::tl -> (lsubst_term l x, lsubst_term l y)::lsubst_eqns l tl val lemma_lsubst_eqns_nil: e:eqns -> Lemma (requires True) (ensures (lsubst_eqns [] e = e)) [SMTPat (lsubst_eqns [] e)] let rec lemma_lsubst_eqns_nil = function | [] -> () | _::tl -> lemma_lsubst_eqns_nil tl (* A couple of lemmas about variable counts. // Both of these rely on extensional equality of sets. // So we need to use eq_lemma explicitly *) val evars_permute_hd : x:term -> y:term -> tl:eqns -> Lemma (ensures (evars ((x, y)::tl) = evars ((y, x)::tl))) let evars_permute_hd x y tl = OrdSet.eq_lemma (evars ((x,y)::tl)) (evars ((y,x)::tl)) val evars_unfun : x:term -> y:term -> x':term -> y':term -> tl:eqns -> Lemma (ensures (evars ((F x y, F x' y')::tl) = evars ((x, x')::(y, y')::tl))) let evars_unfun x y x' y' tl = OrdSet.eq_lemma (evars ((F x y, F x' y')::tl)) (evars ((x, x')::(y, y')::tl)) (* Eliminating a variable reduces the variable count *) val lemma_vars_decrease: s:subst -> t':term -> Lemma (requires (ok s)) (ensures (OrdSet.subset (vars (subst_term s t')) (OrdSet.remove (fst s) (OrdSet.union (vars (snd s)) (vars t'))))) let rec lemma_vars_decrease s t' = match t' with | V x -> () | F t1 t2 -> lemma_vars_decrease s t1; lemma_vars_decrease s t2 (* Lifting the prior lemma to equations *) val vars_decrease_eqns: x:nat -> t:term -> e:eqns -> Lemma (requires (ok (x, t))) (ensures (OrdSet.subset (evars (lsubst_eqns [x,t] e)) (OrdSet.remove x (evars ((V x, t)::e))))) let rec vars_decrease_eqns x t e = match e with | [] -> () | hd::tl -> lemma_vars_decrease (x,t) (fst hd); lemma_vars_decrease (x,t) (snd hd); vars_decrease_eqns x t tl val unify : e:eqns -> list subst -> Tot (option (list subst)) (decreases %[n_evars e; efuns e; n_flex_rhs e]) let rec unify e s = match e with | [] -> Some s | (V x, t)::tl -> if V? t && V?.i t = x then unify tl s //t is a flex-rhs else if occurs x t then None else (vars_decrease_eqns x t tl; unify (lsubst_eqns [x,t] tl) ((x,t)::s)) | (t, V x)::tl -> //flex-rhs evars_permute_hd t (V x) tl; unify ((V x, t)::tl) s | (F t1 t2, F t1' t2')::tl -> //efuns reduces evars_unfun t1 t2 t1' t2' tl; unify ((t1, t1')::(t2, t2')::tl) s (* All equations are solved when each one is just reflexive *) val solved : eqns -> Tot bool let rec solved = function | [] -> true | (x,y)::tl -> x=y && solved tl val lsubst_distributes_over_F: l:list subst -> t1:term -> t2:term -> Lemma (requires (True)) (ensures (lsubst_term l (F t1 t2) = F (lsubst_term l t1) (lsubst_term l t2))) [SMTPat (lsubst_term l (F t1 t2))] let rec lsubst_distributes_over_F l t1 t2 = match l with | [] -> () | hd::tl -> lsubst_distributes_over_F tl t1 t2 let extend_subst s l = s::l let extend_lsubst l l' = l @ l' val lemma_extend_lsubst_distributes_term: l:list subst -> l':list subst -> e:term -> Lemma (requires True) (ensures (lsubst_term (extend_lsubst l l') e = lsubst_term l (lsubst_term l' e))) let rec lemma_extend_lsubst_distributes_term l l' e = match l with | [] -> () | hd::tl -> lemma_extend_lsubst_distributes_term tl l' e val lemma_extend_lsubst_distributes_eqns: l:list subst -> l':list subst -> e:eqns -> Lemma (requires True) (ensures (lsubst_eqns (extend_lsubst l l') e = lsubst_eqns l (lsubst_eqns l' e))) [SMTPat (lsubst_eqns (extend_lsubst l l') e)] let rec lemma_extend_lsubst_distributes_eqns l l' e = match e with | [] -> () | (t1, t2)::tl -> lemma_extend_lsubst_distributes_term l l' t1; lemma_extend_lsubst_distributes_term l l' t2; lemma_extend_lsubst_distributes_eqns l l' tl val lemma_subst_id: x:nat -> z:term -> y:term -> Lemma (requires (not (occurs x y))) (ensures (subst_term (x,z) y = y)) let rec lemma_subst_id x z y = match y with | V x' -> () | F t1 t2 -> lemma_subst_id x z t1; lemma_subst_id x z t2 let neutral s (x, t) = subst_term s (V x) = V x && subst_term s t = t && ok (x, t) let neutral_l l (x, t) = lsubst_term l (V x) = V x && lsubst_term l t = t && ok (x, t) val lemma_lsubst_term_commutes: s:subst -> l:list subst -> e:term -> Lemma (requires (neutral_l l s)) (ensures (lsubst_term [s] (lsubst_term l (subst_term s e)) = lsubst_term [s] (lsubst_term l e))) let rec lemma_lsubst_term_commutes s l e = match e with | V y -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2 val lemma_lsubst_eqns_commutes: s:subst -> l:list subst -> e:eqns -> Lemma (requires (neutral_l l s)) (ensures (lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] e)) = lsubst_eqns [s] (lsubst_eqns l e))) let rec lemma_lsubst_eqns_commutes s l = function | [] -> () | (t1,t2)::tl -> lemma_lsubst_term_commutes s l t1; lemma_lsubst_term_commutes s l t2; lemma_lsubst_eqns_commutes s l tl let (++) l1 l2 = extend_lsubst l1 l2 let sub l e = lsubst_eqns l e let test l1 l2 l3 = assert (l1 ++ l2 ++ l3 == (l1 ++ l2) ++ l3) val key_lemma: x:nat -> y:term -> tl:eqns -> l:list subst -> lpre:list subst -> l'':list subst -> Lemma (requires (l'' = lpre ++ ([x,y] ++ l) /\ not (occurs x y) /\ l `sub` ((V x, y)::tl) = (V x, y)::tl /\ solved (l'' `sub` ([x, y] `sub` tl)))) (ensures (solved (l'' `sub` ((V x,y)::tl)))) let key_lemma x y tl l lpre l'' = let xy = [x,y] in let xyl = xy++l in let vxy = V x, y in assert (l'' `sub` (vxy::tl) == lpre `sub` (xy `sub` (l `sub` (vxy::tl)))); lemma_lsubst_eqns_commutes (x,y) l (vxy :: tl); assert (lpre `sub` (xy `sub` (l `sub` (vxy::tl))) == lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl))))); assert (lpre `sub` (xy `sub` (l `sub` (xy `sub` (vxy::tl)))) == l'' `sub` (xy `sub` (vxy :: tl))); lemma_subst_id x y y val lemma_subst_term_idem: s:subst -> t:term -> Lemma (requires (ok s)) (ensures (subst_term s (subst_term s t) = subst_term s t)) let rec lemma_subst_term_idem s t = match t with | V x -> lemma_subst_id (fst s) (snd s) (snd s) | F t1 t2 -> lemma_subst_term_idem s t1; lemma_subst_term_idem s t2 val lemma_subst_eqns_idem: s:subst -> e:eqns -> Lemma (requires (ok s)) (ensures (lsubst_eqns [s] (lsubst_eqns [s] e) = lsubst_eqns [s] e)) let rec lemma_subst_eqns_idem s = function | [] -> () | (x, y)::tl -> lemma_subst_eqns_idem s tl; lemma_subst_term_idem s x; lemma_subst_term_idem s y val subst_funs_monotone: s:subst -> t:term -> Lemma (ensures (funs (subst_term s t) >= funs t)) let rec subst_funs_monotone s = function | V x -> () | F t1 t2 -> subst_funs_monotone s t1; subst_funs_monotone s t2 val lsubst_funs_monotone: l:list subst -> t:term -> Lemma (ensures (funs (lsubst_term l t) >= funs t)) let rec lsubst_funs_monotone l t = match l with | [] -> () | hd::tl -> lsubst_funs_monotone tl t; subst_funs_monotone hd (lsubst_term tl t) val lemma_occurs_not_solveable_aux: x:nat -> t:term{occurs x t /\ not (V? t)} -> s:list subst -> Lemma (funs (lsubst_term s t) >= (funs t + funs (lsubst_term s (V x)))) let rec lemma_occurs_not_solveable_aux x t s = match t with | F t1 t2 -> if occurs x t1 then let _ = lsubst_funs_monotone s t2 in match t1 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t1 s else if occurs x t2 then let _ = lsubst_funs_monotone s t1 in match t2 with | V y -> () | _ -> lemma_occurs_not_solveable_aux x t2 s else () type not_solveable s = forall l. lsubst_term l (fst s) <> lsubst_term l (snd s) val lemma_occurs_not_solveable: x:nat -> t:term -> Lemma (requires (occurs x t /\ not (V? t))) (ensures (not_solveable (V x, t))) let lemma_occurs_not_solveable x t = FStar.Classical.forall_intro (lemma_occurs_not_solveable_aux x t) val lemma_subst_idem: l:list subst -> x:nat -> t:term -> t':term -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_term l (subst_term (x,t) t') = lsubst_term l t')) let rec lemma_subst_idem l x t t' = match t' with | V y -> () | F t1 t2 -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2 val lemma_subst_eqns: l:list subst -> x:nat -> t:term -> e:eqns -> Lemma (requires (lsubst_term l (V x) = lsubst_term l t)) (ensures (lsubst_eqns l (lsubst_eqns [x,t] e) = lsubst_eqns l e)) let rec lemma_subst_eqns l x t = function | [] -> () | (t1,t2)::tl -> lemma_subst_idem l x t t1; lemma_subst_idem l x t t2; lemma_subst_eqns l x t tl type not_solveable_eqns e = forall l. not (solved (lsubst_eqns l e)) val lemma_not_solveable_cons_aux: x:nat -> t:term -> tl:eqns -> l:list subst -> Lemma (requires (not_solveable_eqns (lsubst_eqns [x,t] tl) /\ solved (lsubst_eqns l ((V x,t)::tl)))) (ensures False) [SMTPat (solved (lsubst_eqns l ((V x,t)::tl)))] let lemma_not_solveable_cons_aux x t tl l = lemma_subst_eqns l x t tl val lemma_not_solveable_cons: x:nat -> t:term -> tl:eqns -> Lemma (requires (not_solveable_eqns (lsubst_eqns [x,t] tl))) (ensures (not_solveable_eqns ((V x, t)::tl))) let lemma_not_solveable_cons x t tl = () val unify_correct_aux: l:list subst -> e:eqns -> Pure (list subst) (requires (b2t (lsubst_eqns l e = e))) (ensures (fun m -> match unify e l with | None -> not_solveable_eqns e | Some l' -> l' = (m @ l) /\ solved (lsubst_eqns l' e))) (decreases %[n_evars e; efuns e; n_flex_rhs e])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSet.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Unification.fst" }
[ { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Unification.subst -> e: Unification.eqns -> Prims.Pure (Prims.list Unification.subst)
Prims.Pure
[ "" ]
[]
[ "Prims.list", "Unification.subst", "Unification.eqns", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "Unification.term", "Prims.nat", "Prims.op_AmpAmp", "Unification.uu___is_V", "Prims.op_Equality", "Unification.__proj__V__item__i", "Unification.unify_correct_aux", "Prims.bool", "Unification.occurs", "Prims.unit", "Unification.lemma_occurs_not_solveable", "Unification.unify", "Unification.lemma_not_solveable_cons", "Unification.op_At", "Prims.Cons", "Unification.lemma_shift_append", "Unification.key_lemma", "Unification.lemma_subst_eqns_idem", "Unification.lemma_lsubst_eqns_commutes", "Prims._assert", "Prims.b2t", "Unification.lsubst_eqns", "Unification.lemma_extend_lsubst_distributes_eqns", "Unification.vars_decrease_eqns", "Unification.extend_subst", "FStar.Pervasives.Native.Mktuple2", "Unification.V", "Unification.evars_permute_hd", "Unification.evars_unfun" ]
[ "recursion" ]
false
false
false
false
false
let rec unify_correct_aux l =
function | [] -> [] | hd :: tl -> match hd with | V x, y -> if V? y && V?.i y = x then unify_correct_aux l tl else if occurs x y then (lemma_occurs_not_solveable x y; []) else let s = (x, y) in let l' = extend_subst s l in vars_decrease_eqns x y tl; let tl' = lsubst_eqns [s] tl in lemma_extend_lsubst_distributes_eqns [s] l tl; assert (lsubst_eqns l' tl' = lsubst_eqns [s] (lsubst_eqns l (lsubst_eqns [s] tl))); lemma_lsubst_eqns_commutes s l tl; lemma_subst_eqns_idem s tl; let lpre = unify_correct_aux l' tl' in (match unify tl' l' with | None -> lemma_not_solveable_cons x y tl; [] | Some l'' -> key_lemma x y tl l lpre l''; lemma_shift_append lpre s l; lpre @ [s]) | y, V x -> evars_permute_hd y (V x) tl; unify_correct_aux l ((V x, y) :: tl) | F t1 t2, F s1 s2 -> evars_unfun t1 t2 s1 s2 tl; unify_correct_aux l ((t1, s1) :: (t2, s2) :: tl)
false
FStar.OrdSet.fst
FStar.OrdSet.base_induction
val base_induction (#t #f: _) (p: (ordset t f -> Type0)) (x: ordset t f) : Lemma (requires (forall (l: ordset t f {List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f {Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x)
val base_induction (#t #f: _) (p: (ordset t f -> Type0)) (x: ordset t f) : Lemma (requires (forall (l: ordset t f {List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f {Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x)
let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt)))
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 37, "start_col": 0, "start_line": 29 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: FStar.OrdSet.ordset t f -> Type0) -> x: FStar.OrdSet.ordset t f -> FStar.Pervasives.Lemma (requires (forall (l: FStar.OrdSet.ordset t f {FStar.List.Tot.Base.length l < 2}). p l) /\ (forall (l: FStar.OrdSet.ordset t f {Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases FStar.List.Tot.Base.length x)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_LessThan", "FStar.List.Tot.Base.length", "Prims.bool", "Prims.list", "Prims._assert", "Prims.__proj__Cons__item__tl", "Prims.Cons", "Prims.unit", "FStar.OrdSet.base_induction", "Prims.l_and", "Prims.l_Forall", "Prims.b2t", "Prims.uu___is_Cons", "Prims.l_imp", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec base_induction #t #f (p: (ordset t f -> Type0)) (x: ordset t f) : Lemma (requires (forall (l: ordset t f {List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f {Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) =
if List.Tot.Base.length x < 2 then () else match x with | ph :: pt -> base_induction p pt; assert (p (Cons?.tl (ph :: pt)))
false
FStar.OrdSet.fst
FStar.OrdSet.empty
val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f)
val empty : #a:eqtype -> #f:cmp a -> Tot (ordset a f)
let empty #_ #_ = []
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 39, "start_col": 0, "start_line": 39 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.OrdSet.ordset a f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "Prims.Nil", "FStar.OrdSet.ordset" ]
[]
false
false
false
false
false
let empty #_ #_ =
[]
false
FStar.OrdSet.fst
FStar.OrdSet.mem
val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool
val mem : #a:eqtype -> #f:cmp a -> a -> s:ordset a f -> Tot bool
let mem #_ #_ x s = List.Tot.mem x s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 44, "start_col": 0, "start_line": 44 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.OrdSet.ordset a f -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.List.Tot.Base.mem", "Prims.bool" ]
[]
false
false
false
false
false
let mem #_ #_ x s =
List.Tot.mem x s
false
FStar.OrdSet.fst
FStar.OrdSet.simple_induction
val simple_induction (#t #f: _) (p: (ordset t f -> Type0)) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f {Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x)
val simple_induction (#t #f: _) (p: (ordset t f -> Type0)) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f {Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x)
let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt)))
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 27, "start_col": 0, "start_line": 22 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: FStar.OrdSet.ordset t f -> Type0) -> x: FStar.OrdSet.ordset t f -> FStar.Pervasives.Lemma (requires p [] /\ (forall (l: FStar.OrdSet.ordset t f {Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.list", "Prims._assert", "Prims.__proj__Cons__item__tl", "Prims.Cons", "Prims.unit", "FStar.OrdSet.simple_induction", "Prims.l_and", "Prims.Nil", "Prims.l_Forall", "Prims.b2t", "Prims.uu___is_Cons", "Prims.l_imp", "Prims.squash", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec simple_induction #t #f (p: (ordset t f -> Type0)) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f {Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) =
match x with | [] -> () | ph :: pt -> simple_induction p pt; assert (p (Cons?.tl (ph :: pt)))
false
FStar.OrdSet.fst
FStar.OrdSet.tail
val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f
val tail (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : ordset a f
let tail #a #f s = Cons?.tl s <: ordset a f
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 41, "start_col": 0, "start_line": 41 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = []
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> FStar.OrdSet.ordset a f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "Prims.__proj__Cons__item__tl" ]
[]
false
false
false
false
false
let tail #a #f s =
Cons?.tl s <: ordset a f
false
FStar.OrdSet.fst
FStar.OrdSet.head
val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a
val head (#a:eqtype) (#f:cmp a) (s:ordset a f{s<>empty}) : a
let head #_ #_ s = Cons?.hd s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 42, "start_col": 0, "start_line": 42 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = []
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "Prims.__proj__Cons__item__hd" ]
[]
false
false
false
false
false
let head #_ #_ s =
Cons?.hd s
false
Steel.GhostMonotonicHigherReference.fst
Steel.GhostMonotonicHigherReference.share
val share (#inames:_) (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:a) : SteelGhostT unit inames (pts_to r f v) (fun _ -> pts_to r (half_perm f) v `star` pts_to r (half_perm f) v)
val share (#inames:_) (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:a) : SteelGhostT unit inames (pts_to r f v) (fun _ -> pts_to r (half_perm f) v `star` pts_to r (half_perm f) v)
let share #o (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:a) : SteelGhostT unit o (pts_to r f v) (fun _ -> pts_to r (half_perm f) v `star` pts_to r (half_perm f) v) = let open Steel.Effect.Atomic in elim_pts_to r f v; let h : erased (history a p) = witness_exists () in elim_pure _; let sh = split_current h in PR.share r h sh sh; intro_pure (history_val sh v (half_perm f)); intro_exists #(history a p) sh (pts_to_body r (half_perm f) v); intro_pts_to r (half_perm f) v; intro_pure (history_val sh v (half_perm f)); intro_exists #(history a p) sh (pts_to_body r (half_perm f) v); intro_pts_to r (half_perm f) v
{ "file_name": "lib/steel/Steel.GhostMonotonicHigherReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 34, "end_line": 195, "start_col": 0, "start_line": 180 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.GhostMonotonicHigherReference open FStar.Ghost open FStar.PCM open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.GhostPCMReference open Steel.FractionalPermission open Steel.Preorder module Preorder = FStar.Preorder module Q = Steel.Preorder module M = Steel.Memory module PR = Steel.GhostPCMReference module A = Steel.Effect.Atomic open FStar.Real #set-options "--ide_id_info_off" let ref a p = PR.ref (history a p) pcm_history [@@__reduce__] let pts_to_body #a #p (r:ref a p) (f:perm) (v:a) (h:history a p) = PR.pts_to r h `star` pure (history_val h v f) let pts_to' (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v: a) = h_exists (pts_to_body r f v) let pts_to_sl r f v = hp_of (pts_to' r f v) let intro_pure #opened #a #p #f (r:ref a p) (v:a) (h:history a p { history_val h v f }) : SteelGhostT unit opened (PR.pts_to r h) (fun _ -> pts_to_body r f v h) = A.intro_pure (history_val h v f) let intro_pure_full #opened #a #p #f (r:ref a p) (v:a) (h:history a p { history_val h v f }) : SteelGhostT unit opened (PR.pts_to r h) (fun _ -> pts_to r f v) = intro_pure #_ #a #p #f r v h; intro_exists h (pts_to_body r f v) let alloc #_ (#a:Type) (p:Preorder.preorder a) (v:a) = let h = Current [v] full_perm in assert (compatible pcm_history h h); let x : ref a p = alloc h in intro_pure_full x v h; x let extract_pure #a #uses #p #f (r:ref a p) (v:a) (h:(history a p)) : SteelGhostT (_:unit{history_val h v f}) uses (pts_to_body r f v h) (fun _ -> pts_to_body r f v h) = elim_pure (history_val h v f); A.intro_pure (history_val h v f) let elim_pure #a #uses #p #f (r:ref a p) (v:a) (h:(history a p)) : SteelGhostT (_:unit{history_val h v f}) uses (pts_to_body r f v h) (fun _ -> PR.pts_to r h) = let _ = extract_pure r v h in drop (pure (history_val h v f)) let write (#opened: _) (#a:Type) (#p:Preorder.preorder a) (#v:a) (r:ref a p) (x:a) : SteelGhost unit opened (pts_to r full_perm v) (fun v -> pts_to r full_perm x) (requires fun _ -> p v x /\ True) (ensures fun _ _ _ -> True) = let h_old_e = witness_exists #_ #_ #(pts_to_body r full_perm v) () in let _ = elim_pure r v h_old_e in let h_old = read r in let h: history a p = extend_history' h_old x in write r h_old_e h; intro_pure_full r x h let witnessed #a #p r fact = PR.witnessed r (lift_fact fact) let get_squash (#p:prop) (_:unit{p}) : squash p = () let witness_thunk (#inames: _) (#a:Type) (#pcm:FStar.PCM.pcm a) (r:PR.ref a pcm) (fact:M.stable_property pcm) (v:erased a) (sq:squash (fact_valid_compat #_ #pcm fact v)) (_:unit) : SteelAtomicUT (PR.witnessed r fact) inames (PR.pts_to r v) (fun _ -> PR.pts_to r v) = witness r fact v sq let witness (#inames: _) (#a:Type) (#q:perm) (#p:Preorder.preorder a) (r:ref a p) (fact:stable_property p) (v:erased a) (_:squash (fact v)) : SteelAtomicUT (witnessed r fact) inames (pts_to r q v) (fun _ -> pts_to r q v) = let h = witness_exists #_ #_ #(pts_to_body r q v) () in let _ = elim_pure #_ #_ #_ #q r v h in assert (forall h'. compatible pcm_history h h' ==> lift_fact fact h'); lift_fact_is_stable #a #p fact; let w = witness_thunk #_ #_ #(pcm_history #a #p) r (lift_fact fact) h () () in intro_pure_full r v h; rewrite_slprop (pts_to _ q _) (pts_to r q v) (fun _ -> ()); return w let recall (#inames: _) (#a:Type u#1) (#q:perm) (#p:Preorder.preorder a) (fact:property a) (r:ref a p) (v:erased a) (w:witnessed r fact) = let h = witness_exists #_ #_ #(pts_to_body r q v) () in let _ = elim_pure #_ #_ #_ #q r v h in let h1 = recall (lift_fact fact) r h w in intro_pure_full r v h; rewrite_slprop (pts_to _ q _) (pts_to r q v) (fun _ -> ()) let elim_pts_to #o (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:a) : SteelGhostT unit o (pts_to r f v) (fun _ -> pts_to' r f v) = rewrite_slprop _ _ (fun _ -> ()) let intro_pts_to #o (#a:Type) (#p:Preorder.preorder a) (r:ref a p) (f:perm) (v:a) : SteelGhostT unit o (pts_to' r f v) (fun _ -> pts_to' r f v) = rewrite_slprop _ _ (fun _ -> ())
{ "checked_file": "/", "dependencies": [ "Steel.Preorder.fst.checked", "Steel.Memory.fsti.checked", "Steel.GhostPCMReference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Real.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.PCM.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.GhostMonotonicHigherReference.fst" }
[ { "abbrev": false, "full_module": "FStar.Real", "short_module": null }, { "abbrev": true, "full_module": "Steel.Effect.Atomic", "short_module": "A" }, { "abbrev": true, "full_module": "Steel.GhostPCMReference", "short_module": "PR" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "M" }, { "abbrev": true, "full_module": "Steel.Preorder", "short_module": "Q" }, { "abbrev": false, "full_module": "Steel.Preorder", "short_module": null }, { "abbrev": false, "full_module": "Steel.GhostPCMReference", "short_module": null }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "Preorder" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.GhostMonotonicHigherReference.ref a p -> f: Steel.FractionalPermission.perm -> v: a -> Steel.Effect.Atomic.SteelGhostT Prims.unit
Steel.Effect.Atomic.SteelGhostT
[]
[]
[ "Steel.Memory.inames", "FStar.Preorder.preorder", "Steel.GhostMonotonicHigherReference.ref", "Steel.FractionalPermission.perm", "Steel.GhostMonotonicHigherReference.intro_pts_to", "Steel.FractionalPermission.half_perm", "Prims.unit", "Steel.Effect.Atomic.intro_exists", "Steel.Preorder.history", "Steel.GhostMonotonicHigherReference.pts_to_body", "Steel.Effect.Atomic.intro_pure", "Steel.Preorder.history_val", "FStar.Ghost.hide", "Steel.GhostPCMReference.share", "Steel.Preorder.pcm_history", "FStar.Ghost.reveal", "Prims.l_and", "Prims.b2t", "Steel.Preorder.uu___is_Current", "FStar.PCM.composable", "Prims.eq2", "FStar.PCM.op", "Steel.Preorder.vhist", "Steel.Preorder.__proj__Current__item__h", "Steel.Preorder.hval", "Steel.Preorder.__proj__Current__item__f", "Steel.Preorder.split_current", "Steel.Effect.Atomic.elim_pure", "FStar.Ghost.erased", "Steel.Effect.Atomic.witness_exists", "Steel.GhostMonotonicHigherReference.elim_pts_to", "Steel.GhostMonotonicHigherReference.pts_to", "Steel.Effect.Common.star", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let share #o (#a: Type) (#p: Preorder.preorder a) (r: ref a p) (f: perm) (v: a) : SteelGhostT unit o (pts_to r f v) (fun _ -> (pts_to r (half_perm f) v) `star` (pts_to r (half_perm f) v)) =
let open Steel.Effect.Atomic in elim_pts_to r f v; let h:erased (history a p) = witness_exists () in elim_pure _; let sh = split_current h in PR.share r h sh sh; intro_pure (history_val sh v (half_perm f)); intro_exists #(history a p) sh (pts_to_body r (half_perm f) v); intro_pts_to r (half_perm f) v; intro_pure (history_val sh v (half_perm f)); intro_exists #(history a p) sh (pts_to_body r (half_perm f) v); intro_pts_to r (half_perm f) v
false
FStar.OrdSet.fst
FStar.OrdSet.last_lib
val last_lib : s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> a
let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 56, "start_col": 0, "start_line": 55 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "FStar.Pervasives.Native.snd", "Prims.list", "FStar.List.Tot.Base.unsnoc" ]
[]
false
false
false
false
false
let last_lib #a #f (s: ordset a f {s <> empty}) =
snd (List.Tot.Base.unsnoc s)
false
FStar.OrdSet.fst
FStar.OrdSet.last_direct
val last_direct (#a #f: _) (s: ordset a f {s <> empty}) : (x: a{mem x s /\ (forall (z: a{mem z s}). f z x)})
val last_direct (#a #f: _) (s: ordset a f {s <> empty}) : (x: a{mem x s /\ (forall (z: a{mem z s}). f z x)})
let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 35, "end_line": 53, "start_col": 0, "start_line": 49 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> x: a{FStar.OrdSet.mem x s /\ (forall (z: a{FStar.OrdSet.mem z s}). f z x)}
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "Prims.list", "FStar.OrdSet.last_direct", "FStar.OrdSet.tail", "Prims.l_and", "FStar.OrdSet.mem", "Prims.l_Forall" ]
[ "recursion" ]
false
false
false
false
false
let rec last_direct #a #f (s: ordset a f {s <> empty}) : (x: a{mem x s /\ (forall (z: a{mem z s}). f z x)}) =
match s with | [x] -> x | h :: g :: t -> last_direct (tail s)
false
FStar.OrdSet.fst
FStar.OrdSet.last_eq
val last_eq (#a #f: _) (s: ordset a f {s <> empty}) : Lemma (last_direct s = last_lib s)
val last_eq (#a #f: _) (s: ordset a f {s <> empty}) : Lemma (last_direct s = last_lib s)
let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 73, "end_line": 60, "start_col": 0, "start_line": 58 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.last_direct s = FStar.OrdSet.last_lib s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "FStar.OrdSet.simple_induction", "Prims.list", "Prims.Nil", "Prims.op_Equality", "FStar.OrdSet.last_direct", "FStar.OrdSet.last_lib", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let last_eq #a #f (s: ordset a f {s <> empty}) : Lemma (last_direct s = last_lib s) =
simple_induction (fun p -> if p <> [] then last_direct #a #f p = last_lib p else true) s
false
FStar.OrdSet.fst
FStar.OrdSet.last
val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s})
val last (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (x:a{(forall (z:a{mem z s}). f z x) /\ mem x s})
let last #a #f s = last_eq s; last_lib s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 62, "start_col": 0, "start_line": 62 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> x: a{(forall (z: a{FStar.OrdSet.mem z s}). f z x) /\ FStar.OrdSet.mem x s}
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "FStar.OrdSet.last_lib", "Prims.unit", "FStar.OrdSet.last_eq", "Prims.l_and", "Prims.l_Forall", "FStar.OrdSet.mem" ]
[]
false
false
false
false
false
let last #a #f s =
last_eq s; last_lib s
false
FStar.OrdSet.fst
FStar.OrdSet.liat_direct
val liat_direct (#a #f: _) (s: ordset a f {s <> empty}) : (l: ordset a f { (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) })
val liat_direct (#a #f: _) (s: ordset a f {s <> empty}) : (l: ordset a f { (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) })
let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t))
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 70, "start_col": 0, "start_line": 64 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> l: FStar.OrdSet.ordset a f { (forall (x: a). FStar.OrdSet.mem x l = (FStar.OrdSet.mem x s && x <> FStar.OrdSet.last s)) /\ (match FStar.OrdSet.tail s <> FStar.OrdSet.empty with | true -> FStar.OrdSet.head s = FStar.OrdSet.head l | _ -> true) }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "Prims.Nil", "Prims.list", "Prims.Cons", "FStar.OrdSet.liat_direct", "Prims.l_and", "Prims.l_Forall", "Prims.op_Equality", "Prims.bool", "FStar.OrdSet.mem", "Prims.op_AmpAmp", "FStar.OrdSet.last", "FStar.OrdSet.tail", "FStar.OrdSet.head", "Prims.logical" ]
[ "recursion" ]
false
false
false
false
false
let rec liat_direct #a #f (s: ordset a f {s <> empty}) : (l: ordset a f { (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) =
match s with | [x] -> [] | h :: g :: t -> h :: (liat_direct #a #f (g :: t))
false
FStar.OrdSet.fst
FStar.OrdSet.liat_lib
val liat_lib : s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> Prims.list a
let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 77, "end_line": 72, "start_col": 0, "start_line": 72 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> Prims.list a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "FStar.Pervasives.Native.fst", "Prims.list", "FStar.List.Tot.Base.unsnoc" ]
[]
false
false
false
false
false
let liat_lib #a #f (s: ordset a f {s <> empty}) =
fst (List.Tot.Base.unsnoc s)
false
FStar.OrdSet.fst
FStar.OrdSet.liat_eq
val liat_eq (#a #f: _) (s: ordset a f {s <> empty}) : Lemma (liat_direct s = liat_lib s)
val liat_eq (#a #f: _) (s: ordset a f {s <> empty}) : Lemma (liat_direct s = liat_lib s)
let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 76, "start_col": 0, "start_line": 74 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.liat_direct s = FStar.OrdSet.liat_lib s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "FStar.OrdSet.simple_induction", "Prims.list", "Prims.Nil", "Prims.op_Equality", "FStar.OrdSet.liat_direct", "FStar.OrdSet.liat_lib", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let liat_eq #a #f (s: ordset a f {s <> empty}) : Lemma (liat_direct s = liat_lib s) =
simple_induction (fun p -> if p <> [] then liat_direct p = liat_lib p else true) s
false
FStar.OrdSet.fst
FStar.OrdSet.liat
val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then (l <> empty) && (head s = head l) else true) })
val liat (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then (l <> empty) && (head s = head l) else true) })
let liat #a #f s = liat_eq s; liat_lib s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 78, "start_col": 0, "start_line": 78 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> l: FStar.OrdSet.ordset a f { (forall (x: a). FStar.OrdSet.mem x l = (FStar.OrdSet.mem x s && x <> FStar.OrdSet.last s)) /\ (match FStar.OrdSet.tail s <> FStar.OrdSet.empty with | true -> l <> FStar.OrdSet.empty && FStar.OrdSet.head s = FStar.OrdSet.head l | _ -> true) }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "FStar.OrdSet.liat_lib", "Prims.unit", "FStar.OrdSet.liat_eq", "Prims.l_and", "Prims.l_Forall", "Prims.op_Equality", "Prims.bool", "FStar.OrdSet.mem", "Prims.op_AmpAmp", "FStar.OrdSet.last", "FStar.OrdSet.tail", "FStar.OrdSet.head" ]
[]
false
false
false
false
false
let liat #a #f s =
liat_eq s; liat_lib s
false
FStar.OrdSet.fst
FStar.OrdSet.unsnoc
val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){ p = (liat s, last s) })
val unsnoc (#a:eqtype) (#f:cmp a) (s: ordset a f{s <> empty}) : Tot (p:(ordset a f * a){ p = (liat s, last s) })
let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 16, "end_line": 84, "start_col": 0, "start_line": 80 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> p: (FStar.OrdSet.ordset a f * a) {p = (FStar.OrdSet.liat s, FStar.OrdSet.last s)}
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.fst", "Prims.list", "FStar.Pervasives.Native.snd", "FStar.Pervasives.Native.tuple2", "FStar.List.Tot.Base.unsnoc", "Prims.unit", "FStar.OrdSet.last_eq", "FStar.OrdSet.liat_eq", "Prims.op_Equality", "FStar.OrdSet.liat", "FStar.OrdSet.last" ]
[]
false
false
false
false
false
let unsnoc #a #f s =
liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l)
false
FStar.OrdSet.fst
FStar.OrdSet.insert_mem
val insert_mem (#a: eqtype) (#f: _) (x: a) (s: ordset a f) : Lemma (mem x (insert' x s))
val insert_mem (#a: eqtype) (#f: _) (x: a) (s: ordset a f) : Lemma (mem x (insert' x s))
let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 108, "start_col": 0, "start_line": 106 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.mem x (FStar.OrdSet.insert' x s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_disEquality", "FStar.OrdSet.empty", "FStar.OrdSet.insert_mem", "FStar.OrdSet.tail", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.b2t", "FStar.OrdSet.mem", "FStar.OrdSet.insert'", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec insert_mem (#a: eqtype) #f (x: a) (s: ordset a f) : Lemma (mem x (insert' x s)) =
if s <> empty then insert_mem #a #f x (tail s)
false
FStar.OrdSet.fst
FStar.OrdSet.size'
val size' : s: FStar.OrdSet.ordset a f -> Prims.nat
let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 138, "start_col": 0, "start_line": 138 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.List.Tot.Base.length", "Prims.nat" ]
[]
false
false
false
false
false
let size' (#a: eqtype) (#f: cmp a) (s: ordset a f) =
List.Tot.length s
false
FStar.OrdSet.fst
FStar.OrdSet.as_list
val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{ sorted f l /\ (forall x. (List.Tot.mem x l = mem x s)) })
val as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{ sorted f l /\ (forall x. (List.Tot.mem x l = mem x s)) })
let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 82, "end_line": 86, "start_col": 0, "start_line": 86 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> l: Prims.list a { FStar.OrdSet.sorted f l /\ (forall (x: a). FStar.List.Tot.Base.mem x l = FStar.OrdSet.mem x s) }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.list", "Prims.b2t", "FStar.OrdSet.sorted", "Prims.l_and", "Prims.l_Forall", "Prims.op_Equality", "Prims.bool", "FStar.List.Tot.Base.mem", "FStar.OrdSet.mem" ]
[]
false
false
false
false
false
let as_list (#a: eqtype) (#f: cmp a) (s: ordset a f) : Tot (l: list a {sorted f l}) =
s
false
FStar.OrdSet.fst
FStar.OrdSet.insert_sub
val insert_sub (#a: eqtype) (#f x: _) (s: ordset a f) (test: _) : Lemma (mem test (insert' x s) = (mem test s || test = x))
val insert_sub (#a: eqtype) (#f x: _) (s: ordset a f) (test: _) : Lemma (mem test (insert' x s) = (mem test s || test = x))
let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 81, "end_line": 112, "start_col": 0, "start_line": 110 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.OrdSet.ordset a f -> test: a -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.mem test (FStar.OrdSet.insert' x s) = (FStar.OrdSet.mem test s || test = x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.simple_induction", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "FStar.OrdSet.mem", "FStar.OrdSet.insert'", "Prims.op_BarBar", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let insert_sub (#a: eqtype) #f x (s: ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) =
simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s
false
FStar.OrdSet.fst
FStar.OrdSet.union
val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val union : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 125, "start_col": 0, "start_line": 123 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.OrdSet.ordset a f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.list", "FStar.OrdSet.union", "FStar.OrdSet.insert'" ]
[ "recursion" ]
false
false
false
false
false
let rec union #_ #_ s1 s2 =
match s1 with | [] -> s2 | hd :: tl -> union tl (insert' hd s2)
false
FStar.OrdSet.fst
FStar.OrdSet.insert'
val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))})
val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))})
let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 99, "start_col": 0, "start_line": 93 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.OrdSet.ordset a f -> l: FStar.OrdSet.ordset a f { let s = FStar.OrdSet.as_list s in let l = FStar.OrdSet.as_list l in Cons? l /\ (FStar.OrdSet.head l = x \/ Cons? s /\ FStar.OrdSet.head l = FStar.OrdSet.head s) }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.Cons", "Prims.Nil", "Prims.list", "Prims.op_Equality", "Prims.bool", "FStar.OrdSet.insert'", "Prims.l_and", "Prims.b2t", "Prims.uu___is_Cons", "Prims.l_or", "FStar.OrdSet.head", "FStar.OrdSet.sorted", "Prims.l_Forall", "FStar.List.Tot.Base.mem", "FStar.OrdSet.mem", "FStar.OrdSet.as_list" ]
[ "recursion" ]
false
false
false
false
false
let rec insert' #_ #f x s =
match s with | [] -> [x] | hd :: tl -> if x = hd then hd :: tl else if f x hd then x :: hd :: tl else hd :: (insert' #_ #f x tl)
false
FStar.OrdSet.fst
FStar.OrdSet.distinct
val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f) (requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l))
val distinct (#a:eqtype) (f:cmp a) (l: list a) : Pure (ordset a f) (requires True) (ensures fun z -> forall x. (mem x z = List.Tot.Base.mem x l))
let distinct #a f l = distinct_props f l; distinct' f l
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 121, "start_col": 0, "start_line": 121 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: FStar.OrdSet.cmp a -> l: Prims.list a -> Prims.Pure (FStar.OrdSet.ordset a f)
Prims.Pure
[]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "Prims.list", "FStar.OrdSet.distinct'", "Prims.unit", "FStar.OrdSet.distinct_props", "FStar.OrdSet.ordset" ]
[]
false
false
false
false
false
let distinct #a f l =
distinct_props f l; distinct' f l
false
FStar.OrdSet.fst
FStar.OrdSet.remove
val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f)
val remove : #a:eqtype -> #f:cmp a -> a -> ordset a f -> Tot (ordset a f)
let remove #a #f x s = remove' #_ #f x s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 251, "start_col": 0, "start_line": 251 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.OrdSet.ordset a f -> FStar.OrdSet.ordset a f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.remove'" ]
[]
false
false
false
false
false
let remove #a #f x s =
remove' #_ #f x s
false
FStar.OrdSet.fst
FStar.OrdSet.not_mem_aux
val not_mem_aux (#a: eqtype) (#f: cmp a) (x: a) (s: ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s))
val not_mem_aux (#a: eqtype) (#f: cmp a) (x: a) (s: ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s))
let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 146, "start_col": 0, "start_line": 143 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (requires FStar.OrdSet.size' s > 0 && FStar.OrdSet.head s <> x && f x (FStar.OrdSet.head s)) (ensures Prims.op_Negation (FStar.OrdSet.mem x s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_disEquality", "Prims.list", "FStar.OrdSet.tail", "Prims.Nil", "FStar.OrdSet.not_mem_aux", "Prims.bool", "Prims.unit", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_GreaterThan", "FStar.OrdSet.size'", "FStar.OrdSet.head", "Prims.squash", "Prims.op_Negation", "FStar.OrdSet.mem", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec not_mem_aux (#a: eqtype) (#f: cmp a) (x: a) (s: ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) =
if tail s <> [] then not_mem_aux x (tail s)
false
FStar.OrdSet.fst
FStar.OrdSet.intersect
val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val intersect : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
let intersect #a #f s1 s2 = smart_intersect s1 s2
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 247, "start_col": 0, "start_line": 247 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.OrdSet.ordset a f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.smart_intersect" ]
[]
false
false
false
false
false
let intersect #a #f s1 s2 =
smart_intersect s1 s2
false
FStar.OrdSet.fst
FStar.OrdSet.size
val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat
val size : #a:eqtype -> #f:cmp a -> ordset a f -> Tot nat
let size #a #f s = size' s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 253, "start_col": 0, "start_line": 253 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.size'", "Prims.nat" ]
[]
false
false
false
false
false
let size #a #f s =
size' s
false
FStar.OrdSet.fst
FStar.OrdSet.remove'
val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))})
val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))})
let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 136, "start_col": 0, "start_line": 132 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))})
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.OrdSet.ordset a f -> l: FStar.OrdSet.ordset a f { (Nil? s ==> Nil? l) /\ (Cons? s ==> FStar.OrdSet.head s = x ==> l = FStar.OrdSet.tail s) /\ (Cons? s ==> ~(FStar.OrdSet.head s == x) ==> Cons? l /\ FStar.OrdSet.head l = Cons?.hd s) }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.Nil", "Prims.list", "Prims.op_Equality", "Prims.bool", "Prims.Cons", "FStar.OrdSet.remove'", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.uu___is_Nil", "Prims.uu___is_Cons", "FStar.OrdSet.head", "FStar.OrdSet.tail", "Prims.l_not", "Prims.eq2", "Prims.__proj__Cons__item__hd" ]
[ "recursion" ]
false
false
false
false
false
let rec remove' #a #f x s =
match s with | [] -> [] | hd :: (tl: ordset a f) -> if x = hd then tl else hd :: (remove' x tl)
false
FStar.OrdSet.fst
FStar.OrdSet.subset'
val subset' : s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.bool
let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 153, "start_col": 0, "start_line": 148 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.Pervasives.Native.Mktuple2", "Prims.list", "Prims.op_AmpAmp", "Prims.op_Equality", "FStar.OrdSet.subset'", "Prims.bool", "Prims.op_Negation" ]
[ "recursion" ]
false
false
false
false
false
let rec subset' #a #f (s1: ordset a f) (s2: ordset a f) =
match s1, s2 with | [], _ -> true | hd :: tl, hd' :: tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false
false
FStar.OrdSet.fst
FStar.OrdSet.distinct_props
val distinct_props (#a: _) (f: cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l))
val distinct_props (#a: _) (f: cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l))
let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t))
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 119, "start_col": 0, "start_line": 114 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: FStar.OrdSet.cmp a -> l: Prims.list a -> FStar.Pervasives.Lemma (ensures forall (x: a). FStar.OrdSet.mem x (FStar.OrdSet.distinct' f l) = FStar.List.Tot.Base.mem x l)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "Prims.list", "FStar.Classical.forall_intro", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "FStar.OrdSet.mem", "FStar.OrdSet.insert'", "FStar.OrdSet.distinct'", "Prims.op_BarBar", "FStar.OrdSet.insert_sub", "Prims.unit", "FStar.OrdSet.distinct_props", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "FStar.List.Tot.Base.mem", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec distinct_props #a (f: cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) =
match l with | [] -> () | x :: t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t))
false
FStar.OrdSet.fst
FStar.OrdSet.subset
val subset : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
val subset : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
let subset #a #f s1 s2 = subset' s1 s2
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 255, "start_col": 0, "start_line": 255 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.subset'", "Prims.bool" ]
[]
false
false
false
false
false
let subset #a #f s1 s2 =
subset' s1 s2
false
FStar.OrdSet.fst
FStar.OrdSet.self_is_subset
val self_is_subset (#a #f: _) (s: ordset a f) : Lemma (subset' s s)
val self_is_subset (#a #f: _) (s: ordset a f) : Lemma (subset' s s)
let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 80, "end_line": 160, "start_col": 0, "start_line": 159 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.subset' s s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.simple_induction", "Prims.b2t", "FStar.OrdSet.subset'", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let self_is_subset #a #f (s: ordset a f) : Lemma (subset' s s) =
simple_induction (fun (s: ordset a f) -> subset' s s) s
false
FStar.OrdSet.fst
FStar.OrdSet.liat_length
val liat_length (#a #f: _) (s: ordset a f {s <> empty}) : Lemma (size' (liat s) = ((size' s) - 1))
val liat_length (#a #f: _) (s: ordset a f {s <> empty}) : Lemma (size' (liat s) = ((size' s) - 1))
let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 91, "end_line": 141, "start_col": 0, "start_line": 140 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {s <> FStar.OrdSet.empty} -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.size' (FStar.OrdSet.liat s) = FStar.OrdSet.size' s - 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_disEquality", "FStar.OrdSet.empty", "FStar.OrdSet.simple_induction", "Prims.op_Equality", "Prims.int", "FStar.OrdSet.size'", "FStar.OrdSet.liat", "Prims.op_Subtraction", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let liat_length #a #f (s: ordset a f {s <> empty}) : Lemma (size' (liat s) = ((size' s) - 1)) =
simple_induction (fun p -> if p <> empty then size' (liat p) = ((size' p) - 1) else true) s
false
FStar.OrdSet.fst
FStar.OrdSet.remove_until_gt_prop
val remove_until_gt_prop (#a #f: _) (s: ordset a f) (x test: a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s))))
val remove_until_gt_prop (#a #f: _) (s: ordset a f) (x test: a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s))))
let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 198, "start_col": 0, "start_line": 189 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> x: a -> test: a -> FStar.Pervasives.Lemma (ensures f test x ==> Prims.op_Negation (FStar.OrdSet.mem test (FStar.Pervasives.Native.fst (FStar.OrdSet.remove_until_greater_than x s))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.list", "Prims.op_disEquality", "FStar.OrdSet.remove_until_gt_prop", "Prims.bool", "Prims.unit", "FStar.Classical.move_requires", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_Negation", "FStar.OrdSet.mem", "FStar.Pervasives.Native.fst", "FStar.OrdSet.remove_until_greater_than", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.l_True", "Prims.l_imp" ]
[ "recursion" ]
false
false
true
false
false
let rec remove_until_gt_prop #a #f (s: ordset a f) (x: a) (test: a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) =
match s with | [] -> () | h :: (t: ordset a f) -> let aux (test: a) : Lemma (requires f test x && h <> test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test
false
FStar.OrdSet.fst
FStar.OrdSet.mem_implies_f
val mem_implies_f (#a #f: _) (s: ordset a f) (x: a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x)
val mem_implies_f (#a #f: _) (s: ordset a f) (x: a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x)
let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 210, "start_col": 0, "start_line": 208 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> x: a -> FStar.Pervasives.Lemma (requires FStar.OrdSet.mem x s) (ensures f (Cons?.hd s) x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.simple_induction", "Prims.l_imp", "Prims.b2t", "FStar.OrdSet.mem", "FStar.OrdSet.head", "Prims.unit", "Prims.squash", "Prims.__proj__Cons__item__hd", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let mem_implies_f #a #f (s: ordset a f) (x: a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) =
simple_induction (fun s -> mem x s ==> f (head s) x) s
false
FStar.OrdSet.fst
FStar.OrdSet.tail_is_subset
val tail_is_subset (#a #f: _) (s: ordset a f {size' s > 0}) : Lemma ((Cons?.tl s) `subset'` s)
val tail_is_subset (#a #f: _) (s: ordset a f {size' s > 0}) : Lemma ((Cons?.tl s) `subset'` s)
let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 80, "end_line": 157, "start_col": 0, "start_line": 155 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {FStar.OrdSet.size' s > 0} -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.subset' (Cons?.tl s) s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_GreaterThan", "FStar.OrdSet.size'", "FStar.OrdSet.simple_induction", "Prims.op_BarBar", "Prims.op_Equality", "Prims.int", "FStar.OrdSet.subset'", "Prims.__proj__Cons__item__tl", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let tail_is_subset #a #f (s: ordset a f {size' s > 0}) : Lemma ((Cons?.tl s) `subset'` s) =
simple_induction (fun (s: ordset a f) -> size' s = 0 || subset' (Cons?.tl s) s) s
false
FStar.OrdSet.fst
FStar.OrdSet.remove_until_gt_mem
val remove_until_gt_mem (#a #f: _) (s: ordset a f) (x test: a) : Lemma (mem test (fst (remove_until_greater_than x s)) = (mem test s && f x test && (x <> test)))
val remove_until_gt_mem (#a #f: _) (s: ordset a f) (x test: a) : Lemma (mem test (fst (remove_until_greater_than x s)) = (mem test s && f x test && (x <> test)))
let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 206, "start_col": 0, "start_line": 200 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> x: a -> test: a -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.mem test (FStar.Pervasives.Native.fst (FStar.OrdSet.remove_until_greater_than x s)) = (FStar.OrdSet.mem test s && f x test && x <> test))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_GreaterThan", "FStar.OrdSet.size'", "FStar.OrdSet.remove_until_gt_mem", "FStar.OrdSet.tail", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.b2t", "Prims.op_Equality", "FStar.OrdSet.mem", "FStar.Pervasives.Native.fst", "FStar.OrdSet.remove_until_greater_than", "Prims.op_AmpAmp", "Prims.op_disEquality", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec remove_until_gt_mem #a #f (s: ordset a f) (x: a) (test: a) : Lemma (mem test (fst (remove_until_greater_than x s)) = (mem test s && f x test && (x <> test))) =
if size' s > 0 then remove_until_gt_mem (tail s) x test
false
FStar.OrdSet.fst
FStar.OrdSet.choose
val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a)
val choose : #a:eqtype -> #f:cmp a -> s:ordset a f -> Tot (option a)
let choose #a #f s = match s with | [] -> None | x::_ -> Some x
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 249, "start_col": 0, "start_line": 249 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> FStar.Pervasives.Native.option a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.Pervasives.Native.None", "Prims.list", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.option" ]
[]
false
false
false
false
false
let choose #a #f s =
match s with | [] -> None | x :: _ -> Some x
false
FStar.OrdSet.fst
FStar.OrdSet.remove_until_greater_than
val remove_until_greater_than (#a #f x: _) (s: ordset a f) : z: (ordset a f * bool) { (size' (fst z) <= size' s) && (not (mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h :: t -> (sorted f (x :: (fst z)))) }
val remove_until_greater_than (#a #f x: _) (s: ordset a f) : z: (ordset a f * bool) { (size' (fst z) <= size' s) && (not (mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h :: t -> (sorted f (x :: (fst z)))) }
let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 57, "end_line": 187, "start_col": 0, "start_line": 166 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.OrdSet.ordset a f -> z: (FStar.OrdSet.ordset a f * Prims.bool) { FStar.OrdSet.size' (FStar.Pervasives.Native.fst z) <= FStar.OrdSet.size' s && Prims.op_Negation (FStar.OrdSet.mem x (FStar.Pervasives.Native.fst z)) && FStar.OrdSet.subset' (FStar.Pervasives.Native.fst z) s && FStar.Pervasives.Native.snd z = FStar.OrdSet.mem x s && (match FStar.Pervasives.Native.fst z with | Prims.Nil #_ -> true | Prims.Cons #_ _ _ -> FStar.OrdSet.sorted f (x :: FStar.Pervasives.Native.fst z)) }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "Prims.Nil", "Prims.list", "Prims.op_Equality", "Prims.unit", "FStar.OrdSet.tail_is_subset", "Prims.op_GreaterThan", "FStar.OrdSet.size'", "FStar.OrdSet.not_mem_aux", "FStar.OrdSet.self_is_subset", "FStar.OrdSet.remove_until_greater_than", "FStar.Pervasives.Native.tuple2", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Pervasives.Native.fst", "Prims.op_Negation", "FStar.OrdSet.mem", "FStar.OrdSet.subset'", "FStar.Pervasives.Native.snd", "FStar.OrdSet.sorted", "Prims.Cons" ]
[ "recursion" ]
false
false
false
false
false
let rec remove_until_greater_than #a #f x (s: ordset a f) : z: (ordset a f * bool) { (size' (fst z) <= size' s) && (not (mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h :: t -> (sorted f (x :: (fst z)))) } =
match s with | [] -> ([], false) | h :: (t: ordset a f) -> if h = x then (if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true)) else if f x h then (not_mem_aux x s; self_is_subset s; (s, false)) else remove_until_greater_than x t
false
FStar.OrdSet.fst
FStar.OrdSet.singleton
val singleton : #a:eqtype -> #f:cmp a -> a -> Tot (ordset a f)
val singleton : #a:eqtype -> #f:cmp a -> a -> Tot (ordset a f)
let singleton (#a:eqtype) #f x = [x]
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 257, "start_col": 0, "start_line": 257 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> FStar.OrdSet.ordset a f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "Prims.Cons", "Prims.Nil", "FStar.OrdSet.ordset" ]
[]
false
false
false
false
false
let singleton (#a: eqtype) #f x =
[x]
false
FStar.OrdSet.fst
FStar.OrdSet.ncmp
val ncmp : x: Prims.nat -> y: Prims.nat -> Prims.bool
let ncmp (x y:nat) = x <= y
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 350, "start_col": 0, "start_line": 350 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> y: Prims.nat -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.bool" ]
[]
false
false
false
true
false
let ncmp (x y: nat) =
x <= y
false
FStar.OrdSet.fst
FStar.OrdSet.minus
val minus : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
val minus : #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot (ordset a f)
let minus #a #f s1 s2 = smart_minus s1 s2
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 41, "end_line": 353, "start_col": 0, "start_line": 353 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.OrdSet.ordset a f
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.smart_minus" ]
[]
false
false
false
false
false
let minus #a #f s1 s2 =
smart_minus s1 s2
false
FStar.OrdSet.fst
FStar.OrdSet.not_mem_of_tail
val not_mem_of_tail (#a #f: _) (s: ordset a f {size s > 0}) (x: a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s)
val not_mem_of_tail (#a #f: _) (s: ordset a f {size s > 0}) (x: a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s)
let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 267, "start_col": 0, "start_line": 265 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {FStar.OrdSet.size s > 0} -> x: a -> FStar.Pervasives.Lemma (ensures Prims.op_Negation (FStar.OrdSet.mem x (FStar.OrdSet.tail s)) = Prims.op_Negation (FStar.OrdSet.mem x s) || x = FStar.OrdSet.head s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_GreaterThan", "FStar.OrdSet.size", "FStar.OrdSet.simple_induction", "Prims.l_imp", "FStar.OrdSet.mem", "FStar.OrdSet.head", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.op_BarBar", "Prims.op_Equality", "Prims.bool", "Prims.op_Negation", "FStar.OrdSet.tail", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let not_mem_of_tail #a #f (s: ordset a f {size s > 0}) (x: a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) =
simple_induction (fun s -> mem x s ==> f (head s) x) s
false
FStar.OrdSet.fst
FStar.OrdSet.remove_until_gt_exclusion
val remove_until_gt_exclusion (#a #f: _) (s: ordset a f) (x test: a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x = test || not (mem test s))
val remove_until_gt_exclusion (#a #f: _) (s: ordset a f) (x test: a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x = test || not (mem test s))
let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 290, "start_col": 0, "start_line": 287 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> x: a -> test: a -> FStar.Pervasives.Lemma (requires f x test && Prims.op_Negation (FStar.OrdSet.mem test (FStar.Pervasives.Native.fst (FStar.OrdSet.remove_until_greater_than x s)))) (ensures x = test || Prims.op_Negation (FStar.OrdSet.mem test s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.remove_until_gt_mem", "Prims.unit", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_Negation", "FStar.OrdSet.mem", "FStar.Pervasives.Native.fst", "Prims.bool", "FStar.OrdSet.remove_until_greater_than", "Prims.squash", "Prims.op_BarBar", "Prims.op_Equality", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let remove_until_gt_exclusion #a #f (s: ordset a f) (x: a) (test: a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x = test || not (mem test s)) =
remove_until_gt_mem s x test
false
FStar.OrdSet.fst
FStar.OrdSet.head_is_never_in_tail
val head_is_never_in_tail (#a #f: _) (s: ordset a f {size s > 0}) : Lemma (not (mem (head s) (tail s)))
val head_is_never_in_tail (#a #f: _) (s: ordset a f {size s > 0}) : Lemma (not (mem (head s) (tail s)))
let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 317, "start_col": 0, "start_line": 316 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {FStar.OrdSet.size s > 0} -> FStar.Pervasives.Lemma (ensures Prims.op_Negation (FStar.OrdSet.mem (FStar.OrdSet.head s) (FStar.OrdSet.tail s)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_GreaterThan", "FStar.OrdSet.size", "FStar.OrdSet.set_props", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.op_Negation", "FStar.OrdSet.mem", "FStar.OrdSet.head", "FStar.OrdSet.tail", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let head_is_never_in_tail #a #f (s: ordset a f {size s > 0}) : Lemma (not (mem (head s) (tail s))) =
set_props s
false
FStar.OrdSet.fst
FStar.OrdSet.same_members_means_eq
val same_members_means_eq (#a #f: _) (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2)
val same_members_means_eq (#a #f: _) (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2)
let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 57, "end_line": 281, "start_col": 0, "start_line": 274 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (requires forall (x: a). FStar.OrdSet.mem x s1 = FStar.OrdSet.mem x s2) (ensures s1 == s2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_GreaterThan", "FStar.OrdSet.size", "Prims._assert", "Prims.b2t", "FStar.OrdSet.mem", "FStar.OrdSet.head", "Prims.bool", "Prims.unit", "Prims.list", "FStar.OrdSet.same_members_means_eq", "FStar.OrdSet.set_props", "Prims.l_Forall", "Prims.op_Equality", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec same_members_means_eq #a #f (s1: ordset a f) (s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) =
match s1 with | [] -> if size s2 > 0 then assert (mem (head s2) s2) | h1 :: t1 -> set_props s1; set_props s2; match s2 with | h2 :: t2 -> same_members_means_eq #a #f t1 t2
false
FStar.OrdSet.fst
FStar.OrdSet.subset_transitivity
val subset_transitivity (#a #f: _) (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r)
val subset_transitivity (#a #f: _) (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r)
let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 314, "start_col": 0, "start_line": 309 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: FStar.OrdSet.ordset a f -> q: FStar.OrdSet.ordset a f -> r: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (requires FStar.OrdSet.subset p q /\ FStar.OrdSet.subset q r) (ensures FStar.OrdSet.subset p r)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.mem_implies_subset", "Prims.unit", "FStar.OrdSet.subset_implies_mem", "Prims.l_and", "Prims.b2t", "FStar.OrdSet.subset", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let subset_transitivity #a #f (p: ordset a f) (q: ordset a f) (r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) =
subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r
false
FStar.OrdSet.fst
FStar.OrdSet.set_props
val set_props (#a #f: _) (s: ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s))
val set_props (#a #f: _) (s: ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s))
let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 272, "start_col": 0, "start_line": 269 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures ((match FStar.OrdSet.size s > 0 with | true -> forall (x: a). FStar.OrdSet.mem x (FStar.OrdSet.tail s) ==> f (FStar.OrdSet.head s) x /\ FStar.OrdSet.head s <> x | _ -> forall (x: a). Prims.op_Negation (FStar.OrdSet.mem x s)) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_GreaterThan", "FStar.OrdSet.size", "FStar.OrdSet.set_props", "FStar.OrdSet.tail", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_Forall", "Prims.l_imp", "Prims.b2t", "FStar.OrdSet.mem", "Prims.l_and", "FStar.OrdSet.head", "Prims.op_disEquality", "Prims.op_Negation", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec set_props #a #f (s: ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) =
if (size s > 1) then set_props (tail s)
false
FStar.OrdSet.fst
FStar.OrdSet.intersect_is_symmetric
val intersect_is_symmetric (#a #f: _) (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1)
val intersect_is_symmetric (#a #f: _) (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1)
let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 285, "start_col": 0, "start_line": 283 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.intersect s1 s2 = FStar.OrdSet.intersect s2 s1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.same_members_means_eq", "FStar.OrdSet.intersect", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.b2t", "Prims.op_Equality", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let intersect_is_symmetric #a #f (s1: ordset a f) (s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) =
same_members_means_eq (intersect s1 s2) (intersect s2 s1)
false
FStar.OrdSet.fst
FStar.OrdSet.eq_lemma
val eq_lemma: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> Lemma (requires (equal s1 s2)) (ensures (s1 = s2)) [SMTPat (equal s1 s2)]
val eq_lemma: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> Lemma (requires (equal s1 s2)) (ensures (s1 = s2)) [SMTPat (equal s1 s2)]
let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 357, "start_col": 0, "start_line": 357 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (requires FStar.OrdSet.equal s1 s2) (ensures s1 = s2) [SMTPat (FStar.OrdSet.equal s1 s2)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.same_members_means_eq", "Prims.unit" ]
[]
true
false
true
false
false
let eq_lemma #a #f s1 s2 =
same_members_means_eq s1 s2
false
FStar.OrdSet.fst
FStar.OrdSet.strict_subset
val strict_subset: #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
val strict_subset: #a:eqtype -> #f:cmp a -> ordset a f -> ordset a f -> Tot bool
let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 355, "start_col": 0, "start_line": 355 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_AmpAmp", "Prims.op_disEquality", "FStar.OrdSet.subset", "Prims.bool" ]
[]
false
false
false
false
false
let strict_subset #a #f s1 s2 =
s1 <> s2 && subset s1 s2
false
FStar.OrdSet.fst
FStar.OrdSet.smart_intersect
val smart_intersect (#a #f: _) (s1 s2: ordset a f) : Tot (z: ordset a f { (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x: a{sorted f (x :: s1)}). sorted f (x :: z)) /\ (forall (x: a{sorted f (x :: s2)}). sorted f (x :: z)) }) (decreases size' s1 + size' s2)
val smart_intersect (#a #f: _) (s1 s2: ordset a f) : Tot (z: ordset a f { (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x: a{sorted f (x :: s1)}). sorted f (x :: z)) /\ (forall (x: a{sorted f (x :: s2)}). sorted f (x :: z)) }) (decreases size' s1 + size' s2)
let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 9, "end_line": 245, "start_col": 0, "start_line": 219 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5].
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> Prims.Tot (z: FStar.OrdSet.ordset a f { (forall (x: a). FStar.OrdSet.mem x z = (FStar.OrdSet.mem x s1 && FStar.OrdSet.mem x s2)) /\ (forall (x: a{FStar.OrdSet.sorted f (x :: s1)}). FStar.OrdSet.sorted f (x :: z)) /\ (forall (x: a{FStar.OrdSet.sorted f (x :: s2)}). FStar.OrdSet.sorted f (x :: z)) })
Prims.Tot
[ "total", "" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.Nil", "Prims.list", "Prims.op_Equality", "Prims.Cons", "FStar.OrdSet.smart_intersect", "Prims.bool", "Prims.l_and", "Prims.l_Forall", "Prims.b2t", "FStar.OrdSet.mem", "Prims.op_AmpAmp", "FStar.OrdSet.sorted", "Prims.unit", "FStar.Classical.forall_intro", "Prims.l_imp", "Prims.__proj__Cons__item__hd", "FStar.Classical.move_requires", "FStar.OrdSet.mem_implies_f", "FStar.Pervasives.Native.fst", "FStar.OrdSet.remove_until_greater_than", "Prims.op_disEquality", "FStar.OrdSet.remove_until_gt_mem", "FStar.Pervasives.Native.tuple2", "Prims.op_LessThanOrEqual", "FStar.OrdSet.size'", "Prims.op_Negation", "FStar.OrdSet.subset'", "FStar.Pervasives.Native.snd" ]
[ "recursion" ]
false
false
false
false
false
let rec smart_intersect #a #f (s1: ordset a f) (s2: ordset a f) : Tot (z: ordset a f { (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x: a{sorted f (x :: s1)}). sorted f (x :: z)) /\ (forall (x: a{sorted f (x :: s2)}). sorted f (x :: z)) }) (decreases size' s1 + size' s2) =
match s1 with | [] -> [] | h1 :: (t1: ordset a f) -> match s2 with | [] -> [] | h2 :: (t2: ordset a f) -> if h1 = h2 then h1 :: smart_intersect t1 t2 else if f h1 h2 then (let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult:ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2 :: subresult else subresult) else (let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1 :: subresult else subresult)
false
FStar.OrdSet.fst
FStar.OrdSet.subset_implies_mem
val subset_implies_mem (#a #f: _) (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q))
val subset_implies_mem (#a #f: _) (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q))
let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 307, "start_col": 0, "start_line": 302 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: FStar.OrdSet.ordset a f -> q: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.subset p q ==> (forall (x: a). FStar.OrdSet.mem x p ==> FStar.OrdSet.mem x q))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_AmpAmp", "Prims.uu___is_Cons", "Prims.op_Equality", "FStar.OrdSet.head", "FStar.OrdSet.subset_implies_mem", "FStar.OrdSet.tail", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.b2t", "FStar.OrdSet.subset", "Prims.l_Forall", "FStar.OrdSet.mem", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec subset_implies_mem #a #f (p: ordset a f) (q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) =
if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q)
false
FStar.OrdSet.fst
FStar.OrdSet.mem_implies_subset
val mem_implies_subset (#a #f: _) (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2)
val mem_implies_subset (#a #f: _) (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2)
let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 300, "start_col": 0, "start_line": 292 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures (forall (x: a). FStar.OrdSet.mem x s1 ==> FStar.OrdSet.mem x s2) ==> FStar.OrdSet.subset s1 s2 )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.list", "Prims.op_AmpAmp", "Prims.op_GreaterThan", "FStar.OrdSet.size", "FStar.OrdSet.head", "FStar.OrdSet.mem_implies_subset", "FStar.OrdSet.tail", "Prims.bool", "Prims.unit", "FStar.OrdSet.set_props", "Prims.l_True", "Prims.squash", "Prims.l_imp", "Prims.l_Forall", "Prims.b2t", "FStar.OrdSet.mem", "FStar.OrdSet.subset", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec mem_implies_subset #a #f (s1: ordset a f) (s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) =
match s1 with | [] -> () | h1 :: (t1: ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2)
false
FStar.OrdSet.fst
FStar.OrdSet.mem_union
val mem_union: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> x:a -> Lemma (requires True) (ensures (mem #a #f x (union #a #f s1 s2) = (mem #a #f x s1 || mem #a #f x s2))) [SMTPat (mem #a #f x (union #a #f s1 s2))]
val mem_union: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> x:a -> Lemma (requires True) (ensures (mem #a #f x (union #a #f s1 s2) = (mem #a #f x s1 || mem #a #f x s2))) [SMTPat (mem #a #f x (union #a #f s1 s2))]
let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 371, "start_col": 0, "start_line": 367 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> x: a -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.mem x (FStar.OrdSet.union s1 s2) = (FStar.OrdSet.mem x s1 || FStar.OrdSet.mem x s2)) [SMTPat (FStar.OrdSet.mem x (FStar.OrdSet.union s1 s2))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_GreaterThan", "FStar.OrdSet.size", "Prims.list", "FStar.OrdSet.mem_insert", "Prims.unit", "FStar.OrdSet.mem_union", "FStar.OrdSet.insert'", "Prims.bool" ]
[ "recursion" ]
false
false
true
false
false
let rec mem_union #_ #_ s1 s2 x =
if size s1 > 0 then match s1 with | hd :: tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x
false
FStar.OrdSet.fst
FStar.OrdSet.mem_insert
val mem_insert (#a: eqtype) (#f: _) (el: a) (s: ordset a f) (x: a) : Lemma (mem x (insert' el s) = (x = el || mem x s))
val mem_insert (#a: eqtype) (#f: _) (el: a) (s: ordset a f) (x: a) : Lemma (mem x (insert' el s) = (x = el || mem x s))
let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 365, "start_col": 0, "start_line": 363 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
el: a -> s: FStar.OrdSet.ordset a f -> x: a -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.mem x (FStar.OrdSet.insert' el s) = (x = el || FStar.OrdSet.mem x s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.simple_induction", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "FStar.OrdSet.mem", "FStar.OrdSet.insert'", "Prims.op_BarBar", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let mem_insert (#a: eqtype) #f (el: a) (s: ordset a f) (x: a) : Lemma (mem x (insert' el s) = (x = el || mem x s)) =
simple_induction (fun p -> mem x (insert' el p) = (x = el || mem x p)) s
false
FStar.OrdSet.fst
FStar.OrdSet.mem_subset
val mem_subset: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> Lemma (requires True) (ensures (subset #a #f s1 s2 <==> (forall x. mem #a #f x s1 ==> mem #a #f x s2))) [SMTPat (subset #a #f s1 s2)]
val mem_subset: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> Lemma (requires True) (ensures (subset #a #f s1 s2 <==> (forall x. mem #a #f x s1 ==> mem #a #f x s2))) [SMTPat (subset #a #f s1 s2)]
let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 377, "start_col": 0, "start_line": 375 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.subset s1 s2 <==> (forall (x: a). FStar.OrdSet.mem x s1 ==> FStar.OrdSet.mem x s2)) [SMTPat (FStar.OrdSet.subset s1 s2)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.mem_implies_subset", "Prims.unit", "FStar.OrdSet.subset_implies_mem" ]
[]
true
false
true
false
false
let mem_subset (#a: eqtype) #f s1 s2 =
subset_implies_mem s1 s2; mem_implies_subset s1 s2
false
FStar.OrdSet.fst
FStar.OrdSet.fold
val fold (#a:eqtype) (#acc:Type) (#f:cmp a) (g:acc -> a -> acc) (init:acc) (s:ordset a f) : Tot acc
val fold (#a:eqtype) (#acc:Type) (#f:cmp a) (g:acc -> a -> acc) (init:acc) (s:ordset a f) : Tot acc
let fold #a #acc #f g init s = List.Tot.fold_left g init s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 431, "start_col": 0, "start_line": 431 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: (_: acc -> _: a -> acc) -> init: acc -> s: FStar.OrdSet.ordset a f -> acc
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.List.Tot.Base.fold_left" ]
[]
false
false
false
false
false
let fold #a #acc #f g init s =
List.Tot.fold_left g init s
false
FStar.OrdSet.fst
FStar.OrdSet.mem_remove
val mem_remove: #a:eqtype -> #f:cmp a -> x:a -> y:a -> s:ordset a f -> Lemma (requires True) (ensures (mem #a #f x (remove #a #f y s) = (mem #a #f x s && not (x = y)))) [SMTPat (mem #a #f x (remove #a #f y s))]
val mem_remove: #a:eqtype -> #f:cmp a -> x:a -> y:a -> s:ordset a f -> Lemma (requires True) (ensures (mem #a #f x (remove #a #f y s) = (mem #a #f x s && not (x = y)))) [SMTPat (mem #a #f x (remove #a #f y s))]
let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s))
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 384, "start_col": 0, "start_line": 383 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> y: a -> s: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.mem x (FStar.OrdSet.remove y s) = (FStar.OrdSet.mem x s && Prims.op_Negation (x = y))) [SMTPat (FStar.OrdSet.mem x (FStar.OrdSet.remove y s))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_GreaterThan", "FStar.OrdSet.size", "FStar.OrdSet.mem_remove", "FStar.OrdSet.tail", "Prims.unit", "FStar.OrdSet.set_props", "Prims.bool" ]
[ "recursion" ]
false
false
true
false
false
let rec mem_remove (#a: eqtype) #f x y s =
if size s > 0 then (set_props s; mem_remove x y (tail s))
false
FStar.OrdSet.fst
FStar.OrdSet.eq_remove
val eq_remove: #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Lemma (requires (not (mem #a #f x s))) (ensures (s = remove #a #f x s)) [SMTPat (remove #a #f x s)]
val eq_remove: #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Lemma (requires (not (mem #a #f x s))) (ensures (s = remove #a #f x s)) [SMTPat (remove #a #f x s)]
let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 387, "start_col": 0, "start_line": 386 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> s: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (requires Prims.op_Negation (FStar.OrdSet.mem x s)) (ensures s = FStar.OrdSet.remove x s) [SMTPat (FStar.OrdSet.remove x s)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.simple_induction", "Prims.l_imp", "Prims.b2t", "Prims.op_Negation", "FStar.OrdSet.mem", "Prims.op_Equality", "FStar.OrdSet.remove", "Prims.unit" ]
[]
false
false
true
false
false
let eq_remove (#a: eqtype) #f x s =
simple_induction (fun p -> not (mem x p) ==> p = remove x p) s
false
FStar.OrdSet.fst
FStar.OrdSet.insert_when_already_exists
val insert_when_already_exists (#a: eqtype) (#f: _) (s: ordset a f) (x: a) : Lemma (requires mem x s) (ensures insert' x s == s)
val insert_when_already_exists (#a: eqtype) (#f: _) (s: ordset a f) (x: a) : Lemma (requires mem x s) (ensures insert' x s == s)
let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 405, "start_col": 0, "start_line": 402 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> x: a -> FStar.Pervasives.Lemma (requires FStar.OrdSet.mem x s) (ensures FStar.OrdSet.insert' x s == s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.simple_induction", "Prims.l_iff", "Prims.b2t", "FStar.OrdSet.mem", "Prims.op_Equality", "FStar.OrdSet.insert'", "Prims.unit", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let insert_when_already_exists (#a: eqtype) #f (s: ordset a f) (x: a) : Lemma (requires mem x s) (ensures insert' x s == s) =
simple_induction (fun p -> mem x p <==> insert' x p = p) s
false
FStar.OrdSet.fst
FStar.OrdSet.size_remove
val size_remove: #a:eqtype -> #f:cmp a -> y:a -> s:ordset a f -> Lemma (requires (mem #a #f y s)) (ensures (size #a #f s = size #a #f (remove #a #f y s) + 1)) [SMTPat (size #a #f (remove #a #f y s))]
val size_remove: #a:eqtype -> #f:cmp a -> y:a -> s:ordset a f -> Lemma (requires (mem #a #f y s)) (ensures (size #a #f s = size #a #f (remove #a #f y s) + 1)) [SMTPat (size #a #f (remove #a #f y s))]
let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 392, "start_col": 0, "start_line": 391 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
y: a -> s: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (requires FStar.OrdSet.mem y s) (ensures FStar.OrdSet.size s = FStar.OrdSet.size (FStar.OrdSet.remove y s) + 1) [SMTPat (FStar.OrdSet.size (FStar.OrdSet.remove y s))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.list", "Prims.op_disEquality", "FStar.OrdSet.size_remove", "Prims.bool", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec size_remove (#a: eqtype) #f x s =
match s with | hd :: tl -> if x <> hd then size_remove #_ #f x tl
false
FStar.OrdSet.fst
FStar.OrdSet.size_of_union_left
val size_of_union_left (#a: eqtype) (#f: _) (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2)
val size_of_union_left (#a: eqtype) (#f: _) (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2)
let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 420, "start_col": 0, "start_line": 415 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.size (FStar.OrdSet.union s1 s2) >= FStar.OrdSet.size s2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.list", "FStar.OrdSet.precise_size_insert", "Prims.unit", "FStar.OrdSet.size_of_union_left", "FStar.OrdSet.insert'", "Prims.l_True", "Prims.squash", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.OrdSet.size", "FStar.OrdSet.union", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec size_of_union_left (#a: eqtype) #f (s1: ordset a f) (s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) =
match s1 with | [] -> () | hd :: tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd
false
FStar.OrdSet.fst
FStar.OrdSet.precise_size_insert
val precise_size_insert (#a: eqtype) (#f: _) (s: ordset a f) (x: a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1))
val precise_size_insert (#a: eqtype) (#f: _) (s: ordset a f) (x: a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1))
let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 413, "start_col": 0, "start_line": 411 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> x: a -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.size (FStar.OrdSet.insert' x s) = (match FStar.OrdSet.mem x s with | true -> FStar.OrdSet.size s | _ -> FStar.OrdSet.size s + 1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_GreaterThan", "FStar.OrdSet.size", "FStar.OrdSet.precise_size_insert", "FStar.OrdSet.tail", "Prims.bool", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.OrdSet.insert'", "FStar.OrdSet.mem", "Prims.op_Addition", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec precise_size_insert (#a: eqtype) #f (s: ordset a f) (x: a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) =
if size s > 0 then precise_size_insert (tail s) x
false
FStar.OrdSet.fst
FStar.OrdSet.size_insert
val size_insert (#a: eqtype) (#f: _) (s: ordset a f) (x: a) : Lemma (size (insert' x s) >= size s)
val size_insert (#a: eqtype) (#f: _) (s: ordset a f) (x: a) : Lemma (size (insert' x s) >= size s)
let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 409, "start_col": 0, "start_line": 407 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> x: a -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.size (FStar.OrdSet.insert' x s) >= FStar.OrdSet.size s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.simple_induction", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.OrdSet.size", "FStar.OrdSet.insert'", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let size_insert (#a: eqtype) #f (s: ordset a f) (x: a) : Lemma (size (insert' x s) >= size s) =
simple_induction (fun p -> size (insert' x p) >= size p) s
false
FStar.OrdSet.fst
FStar.OrdSet.size_of_union_right
val size_of_union_right (#a: eqtype) (#f: _) (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1)
val size_of_union_right (#a: eqtype) (#f: _) (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1)
let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 425, "start_col": 0, "start_line": 422 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.size (FStar.OrdSet.union s1 s2) >= FStar.OrdSet.size s1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.size_of_union_left", "Prims.unit", "FStar.OrdSet.eq_lemma", "FStar.OrdSet.union", "Prims.l_True", "Prims.squash", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.OrdSet.size", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let size_of_union_right (#a: eqtype) #f (s1: ordset a f) (s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) =
eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1
false
FStar.OrdSet.fst
FStar.OrdSet.subset_size
val subset_size: #a:eqtype -> #f:cmp a -> x:ordset a f -> y:ordset a f -> Lemma (requires (subset #a #f x y)) (ensures (size #a #f x <= size #a #f y)) [SMTPat (subset #a #f x y)]
val subset_size: #a:eqtype -> #f:cmp a -> x:ordset a f -> y:ordset a f -> Lemma (requires (subset #a #f x y)) (ensures (size #a #f x <= size #a #f y)) [SMTPat (subset #a #f x y)]
let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl'
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 400, "start_col": 0, "start_line": 396 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.OrdSet.ordset a f -> y: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (requires FStar.OrdSet.subset x y) (ensures FStar.OrdSet.size x <= FStar.OrdSet.size y) [SMTPat (FStar.OrdSet.subset x y)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.Pervasives.Native.Mktuple2", "Prims.list", "Prims.op_AmpAmp", "Prims.op_Equality", "FStar.OrdSet.subset_size", "Prims.bool", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec subset_size (#a: eqtype) #f x y =
match x, y with | [], _ -> () | hd :: tl, hd' :: (tl': ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl'
false
FStar.OrdSet.fst
FStar.OrdSet.smart_minus
val smart_minus (#a #f: _) (p q: ordset a f) : z: ordset a f { (forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p, z with | ph :: pt, zh :: zt -> f ph zh | ph :: pt, [] -> subset p q | [], _ -> z = []) }
val smart_minus (#a #f: _) (p q: ordset a f) : z: ordset a f { (forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p, z with | ph :: pt, zh :: zt -> f ph zh | ph :: pt, [] -> subset p q | [], _ -> z = []) }
let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 344, "start_col": 0, "start_line": 319 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: FStar.OrdSet.ordset a f -> q: FStar.OrdSet.ordset a f -> z: FStar.OrdSet.ordset a f { (forall (x: a). FStar.OrdSet.mem x z = (FStar.OrdSet.mem x p && Prims.op_Negation (FStar.OrdSet.mem x q))) /\ (match p, z with | FStar.Pervasives.Native.Mktuple2 #_ #_ (Prims.Cons #_ ph _) (Prims.Cons #_ zh _) -> f ph zh | FStar.Pervasives.Native.Mktuple2 #_ #_ (Prims.Cons #_ _ _) (Prims.Nil #_) -> FStar.OrdSet.subset p q | FStar.Pervasives.Native.Mktuple2 #_ #_ (Prims.Nil #_) _ -> z = []) }
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.Nil", "Prims.list", "Prims.bool", "Prims.unit", "Prims.op_Equality", "FStar.OrdSet.mem_implies_subset", "FStar.OrdSet.subset_implies_mem", "FStar.OrdSet.subset_transitivity", "FStar.OrdSet.set_props", "Prims.l_and", "Prims.l_Forall", "Prims.b2t", "FStar.OrdSet.mem", "Prims.op_AmpAmp", "Prims.op_Negation", "FStar.Pervasives.Native.Mktuple2", "FStar.OrdSet.subset", "FStar.OrdSet.smart_minus", "Prims.Cons", "Prims.logical", "FStar.Classical.forall_intro", "Prims.l_imp", "Prims.__proj__Cons__item__hd", "FStar.Classical.move_requires", "FStar.OrdSet.mem_implies_f", "FStar.Pervasives.Native.fst", "FStar.OrdSet.remove_until_greater_than", "Prims.op_disEquality", "FStar.OrdSet.remove_until_gt_mem", "FStar.Pervasives.Native.tuple2", "Prims.op_LessThanOrEqual", "FStar.OrdSet.size'", "FStar.OrdSet.subset'", "FStar.Pervasives.Native.snd", "FStar.OrdSet.sorted" ]
[ "recursion" ]
false
false
false
false
false
let rec smart_minus #a #f (p: ordset a f) (q: ordset a f) : z: ordset a f { (forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p, z with | ph :: pt, zh :: zt -> f ph zh | ph :: pt, [] -> subset p q | [], _ -> z = []) } =
match p with | [] -> [] | ph :: (pt: ordset a f) -> match q with | [] -> p | qh :: (qt: ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then let result = smart_minus pt q_after_ph in set_props p; if result = [] then (subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q); result else ph :: (smart_minus pt q_after_ph)
false
FStar.OrdSet.fst
FStar.OrdSet.lemma_strict_subset_size
val lemma_strict_subset_size (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) : Lemma (requires (strict_subset s1 s2)) (ensures (subset s1 s2 /\ size s1 < size s2)) [SMTPat (strict_subset s1 s2)]
val lemma_strict_subset_size (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) : Lemma (requires (strict_subset s1 s2)) (ensures (subset s1 s2 /\ size s1 < size s2)) [SMTPat (strict_subset s1 s2)]
let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 475, "start_col": 0, "start_line": 464 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (requires FStar.OrdSet.strict_subset s1 s2) (ensures FStar.OrdSet.subset s1 s2 /\ FStar.OrdSet.size s1 < FStar.OrdSet.size s2) [SMTPat (FStar.OrdSet.strict_subset s1 s2)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.Classical.Sugar.exists_elim", "Prims.b2t", "Prims.op_AmpAmp", "FStar.OrdSet.mem", "Prims.op_Negation", "Prims.op_GreaterThan", "FStar.OrdSet.size", "Prims.squash", "Prims._assert", "FStar.OrdSet.subset", "FStar.OrdSet.insert'", "Prims.unit", "FStar.OrdSet.precise_size_insert", "FStar.Classical.forall_intro", "Prims.op_Equality", "Prims.bool", "Prims.op_BarBar", "FStar.OrdSet.mem_insert", "FStar.Classical.move_requires_2", "Prims.l_Forall", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.OrdSet.eq_lemma" ]
[]
false
false
true
false
false
let lemma_strict_subset_size #a #f s1 s2 =
let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p = q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. (Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2))
false
FStar.OrdSet.fst
FStar.OrdSet.map
val map (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> (size sb <= size sa) /\ (as_list sb == FStar.List.Tot.map g (as_list sa)) /\ (let sa = as_list sa in let sb = as_list sb in Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))))
val map (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> (size sb <= size sa) /\ (as_list sb == FStar.List.Tot.map g (as_list sa)) /\ (let sa = as_list sa in let sb = as_list sb in Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))))
let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 462, "start_col": 0, "start_line": 459 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: (_: a -> b) -> sa: FStar.OrdSet.ordset a fa -> Prims.Pure (FStar.OrdSet.ordset b fb)
Prims.Pure
[]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.map_internal", "Prims.unit", "FStar.OrdSet.map_as_list", "FStar.OrdSet.map_size" ]
[]
false
false
false
false
false
let map #a #b #fa #fb g sa =
map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa
false
FStar.OrdSet.fst
FStar.OrdSet.map_internal
val map_internal (#a #b: eqtype) (#fa: cmp a) (#fb: cmp b) (g: (a -> b)) (sa: ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> (g x) `fb` (g y)) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa)))
val map_internal (#a #b: eqtype) (#fa: cmp a) (#fb: cmp b) (g: (a -> b)) (sa: ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> (g x) `fb` (g y)) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa)))
let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 11, "end_line": 445, "start_col": 0, "start_line": 434 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: (_: a -> b) -> sa: FStar.OrdSet.ordset a fa -> Prims.Pure (FStar.OrdSet.ordset b fb)
Prims.Pure
[]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.Nil", "Prims.list", "Prims.op_BarBar", "Prims.op_Negation", "Prims.uu___is_Cons", "Prims.op_disEquality", "Prims.__proj__Cons__item__hd", "Prims.Cons", "Prims.bool", "FStar.OrdSet.map_internal", "Prims.l_Forall", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.l_iff", "Prims.op_Equality", "Prims.eq2" ]
[ "recursion" ]
false
false
false
false
false
let rec map_internal (#a #b: eqtype) (#fa: cmp a) (#fb: cmp b) (g: (a -> b)) (sa: ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> (g x) `fb` (g y)) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) =
match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys
false
FStar.OrdSet.fst
FStar.OrdSet.count
val count (#a:eqtype) (#f: cmp a) (s: ordset a f) (c: condition a) : nat
val count (#a:eqtype) (#f: cmp a) (s: ordset a f) (c: condition a) : nat
let rec count #a #f s c : nat = match s with | [] -> 0 | h::t -> if c h then 1 + count #a #f t c else count #a #f t c
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 504, "start_col": 0, "start_line": 499 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = () let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end let diff_element_implies_strict_subset #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2 /\ (exists x. (mem x s2 /\ not (mem x s1)))) (ensures strict_subset s1 s2) = () let lemma_strict_subset_exists_diff #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) = Classical.move_requires_2 strict_subset_implies_diff_element s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> c: FStar.OrdSet.condition a -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.condition", "Prims.list", "Prims.op_Addition", "FStar.OrdSet.count", "Prims.bool", "Prims.nat" ]
[ "recursion" ]
false
false
false
false
false
let rec count #a #f s c : nat =
match s with | [] -> 0 | h :: t -> if c h then 1 + count #a #f t c else count #a #f t c
false
FStar.OrdSet.fst
FStar.OrdSet.strict_subset_implies_diff_element
val strict_subset_implies_diff_element (#a #f: _) (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1)))
val strict_subset_implies_diff_element (#a #f: _) (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1)))
let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 488, "start_col": 0, "start_line": 479 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (requires FStar.OrdSet.strict_subset s1 s2) (ensures exists (x: a). FStar.OrdSet.mem x s2 /\ Prims.op_Negation (FStar.OrdSet.mem x s1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.Pervasives.Native.Mktuple2", "Prims.list", "Prims.op_Equality", "FStar.OrdSet.set_props", "Prims.unit", "FStar.OrdSet.strict_subset_implies_diff_element", "Prims.bool", "FStar.Classical.move_requires", "Prims.b2t", "FStar.OrdSet.mem", "Prims.__proj__Cons__item__hd", "FStar.OrdSet.mem_implies_f", "FStar.OrdSet.strict_subset", "Prims.squash", "Prims.l_Exists", "Prims.l_and", "Prims.op_Negation", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec strict_subset_implies_diff_element #a #f (s1: ordset a f) (s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) =
match s1, s2 with | [], h :: t -> () | h1 :: t1, h2 :: t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1 = h2 then (strict_subset_implies_diff_element #a #f t1 t2; set_props s2)
false
FStar.OrdSet.fst
FStar.OrdSet.map_size
val map_size (#a #b: eqtype) (#fa: cmp a) (#fb: cmp b) (g: (a -> b)) (sa: ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> (g x) `fb` (g y)) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa)
val map_size (#a #b: eqtype) (#fa: cmp a) (#fb: cmp b) (g: (a -> b)) (sa: ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> (g x) `fb` (g y)) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa)
let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa)
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 450, "start_col": 0, "start_line": 447 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: (_: a -> b) -> sa: FStar.OrdSet.ordset a fa -> FStar.Pervasives.Lemma (requires forall (x: a) (y: a). (fa x y ==> fb (g x) (g y)) /\ (x = y <==> g x = g y)) (ensures FStar.OrdSet.size (FStar.OrdSet.map_internal g sa) <= FStar.OrdSet.size sa)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.op_GreaterThan", "FStar.OrdSet.size", "FStar.OrdSet.map_size", "FStar.OrdSet.tail", "Prims.bool", "Prims.unit", "Prims.l_Forall", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.l_iff", "Prims.op_Equality", "Prims.squash", "Prims.op_LessThanOrEqual", "FStar.OrdSet.map_internal", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec map_size (#a #b: eqtype) (#fa: cmp a) (#fb: cmp b) (g: (a -> b)) (sa: ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> (g x) `fb` (g y)) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) =
if size sa > 0 then map_size #a #b #fa #fb g (tail sa)
false
FStar.OrdSet.fst
FStar.OrdSet.lemma_strict_subset_exists_diff
val lemma_strict_subset_exists_diff (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1))))
val lemma_strict_subset_exists_diff (#a:eqtype) (#f:cmp a) (s1:ordset a f) (s2:ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1))))
let lemma_strict_subset_exists_diff #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) = Classical.move_requires_2 strict_subset_implies_diff_element s1 s2
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 70, "end_line": 497, "start_col": 0, "start_line": 494 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = () let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end let diff_element_implies_strict_subset #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2 /\ (exists x. (mem x s2 /\ not (mem x s1)))) (ensures strict_subset s1 s2) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (requires FStar.OrdSet.subset s1 s2) (ensures FStar.OrdSet.strict_subset s1 s2 <==> (exists (x: a). FStar.OrdSet.mem x s2 /\ Prims.op_Negation (FStar.OrdSet.mem x s1)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.Classical.move_requires_2", "Prims.b2t", "FStar.OrdSet.strict_subset", "Prims.l_Exists", "Prims.l_and", "FStar.OrdSet.mem", "Prims.op_Negation", "FStar.OrdSet.strict_subset_implies_diff_element", "Prims.unit", "FStar.OrdSet.subset", "Prims.squash", "Prims.l_iff", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_strict_subset_exists_diff #a #f (s1: ordset a f) (s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) =
Classical.move_requires_2 strict_subset_implies_diff_element s1 s2
false
FStar.OrdSet.fst
FStar.OrdSet.count_of_impossible
val count_of_impossible (#a:eqtype) (#f: cmp a) (s: ordset a f) (c: condition a{forall p. not (c p)}) : Lemma (count s c = 0)
val count_of_impossible (#a:eqtype) (#f: cmp a) (s: ordset a f) (c: condition a{forall p. not (c p)}) : Lemma (count s c = 0)
let count_of_impossible #a #f s c = simple_induction (fun p -> count p c = 0) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 508, "start_col": 0, "start_line": 508 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = () let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end let diff_element_implies_strict_subset #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2 /\ (exists x. (mem x s2 /\ not (mem x s1)))) (ensures strict_subset s1 s2) = () let lemma_strict_subset_exists_diff #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) = Classical.move_requires_2 strict_subset_implies_diff_element s1 s2 let rec count #a #f s c : nat = match s with | [] -> 0 | h::t -> if c h then 1 + count #a #f t c else count #a #f t c let count_of_empty #_ #_ _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> c: FStar.OrdSet.condition a {forall (p: a). Prims.op_Negation (c p)} -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.count s c = 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.condition", "Prims.l_Forall", "Prims.b2t", "Prims.op_Negation", "FStar.OrdSet.simple_induction", "Prims.op_Equality", "Prims.int", "FStar.OrdSet.count", "Prims.unit" ]
[]
false
false
true
false
false
let count_of_impossible #a #f s c =
simple_induction (fun p -> count p c = 0) s
false
FStar.OrdSet.fst
FStar.OrdSet.size_union
val size_union: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> Lemma (requires True) (ensures ((size #a #f (union #a #f s1 s2) >= size #a #f s1) && (size #a #f (union #a #f s1 s2) >= size #a #f s2))) [SMTPat (size #a #f (union #a #f s1 s2))]
val size_union: #a:eqtype -> #f:cmp a -> s1:ordset a f -> s2:ordset a f -> Lemma (requires True) (ensures ((size #a #f (union #a #f s1 s2) >= size #a #f s1) && (size #a #f (union #a #f s1 s2) >= size #a #f s2))) [SMTPat (size #a #f (union #a #f s1 s2))]
let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 429, "start_col": 0, "start_line": 427 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.OrdSet.ordset a f -> s2: FStar.OrdSet.ordset a f -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.size (FStar.OrdSet.union s1 s2) >= FStar.OrdSet.size s1 && FStar.OrdSet.size (FStar.OrdSet.union s1 s2) >= FStar.OrdSet.size s2) [SMTPat (FStar.OrdSet.size (FStar.OrdSet.union s1 s2))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.size_of_union_right", "Prims.unit", "FStar.OrdSet.size_of_union_left" ]
[]
true
false
true
false
false
let size_union #a #f s1 s2 =
size_of_union_left s1 s2; size_of_union_right s1 s2
false
FStar.OrdSet.fst
FStar.OrdSet.map_as_list
val map_as_list (#a #b: eqtype) (#fa: cmp a) (#fb: cmp b) (g: (a -> b)) (sa: ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> (g x) `fb` (g y)) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa))
val map_as_list (#a #b: eqtype) (#fa: cmp a) (#fb: cmp b) (g: (a -> b)) (sa: ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> (g x) `fb` (g y)) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa))
let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 457, "start_col": 0, "start_line": 452 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: (_: a -> b) -> sa: FStar.OrdSet.ordset a fa -> FStar.Pervasives.Lemma (requires forall (x: a) (y: a). (fa x y ==> fb (g x) (g y)) /\ (x = y <==> g x = g y)) (ensures FStar.OrdSet.as_list (FStar.OrdSet.map_internal g sa) == FStar.List.Tot.Base.map g (FStar.OrdSet.as_list sa))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.list", "FStar.OrdSet.map_as_list", "Prims.unit", "Prims.l_Forall", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.l_iff", "Prims.op_Equality", "Prims.squash", "Prims.eq2", "FStar.OrdSet.as_list", "FStar.OrdSet.map_internal", "FStar.List.Tot.Base.map", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec map_as_list (#a #b: eqtype) (#fa: cmp a) (#fb: cmp b) (g: (a -> b)) (sa: ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> (g x) `fb` (g y)) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) =
match sa with | [] -> () | h :: (t: ordset a fa) -> map_as_list #a #b #fa #fb g t
false
FStar.OrdSet.fst
FStar.OrdSet.count_of_cons
val count_of_cons (#a:eqtype) (#f: cmp a) (s: ordset a f{size s > 0}) (c: condition a) : Lemma (count s c = (count (tail s) c + (if (c (head s)) then 1 else 0)))
val count_of_cons (#a:eqtype) (#f: cmp a) (s: ordset a f{size s > 0}) (c: condition a) : Lemma (count s c = (count (tail s) c + (if (c (head s)) then 1 else 0)))
let rec count_of_cons #a #f s c = if size s > 1 then count_of_cons (tail s) c
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 77, "end_line": 512, "start_col": 0, "start_line": 512 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = () let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end let diff_element_implies_strict_subset #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2 /\ (exists x. (mem x s2 /\ not (mem x s1)))) (ensures strict_subset s1 s2) = () let lemma_strict_subset_exists_diff #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) = Classical.move_requires_2 strict_subset_implies_diff_element s1 s2 let rec count #a #f s c : nat = match s with | [] -> 0 | h::t -> if c h then 1 + count #a #f t c else count #a #f t c let count_of_empty #_ #_ _ _ = () let count_of_impossible #a #f s c = simple_induction (fun p -> count p c = 0) s let count_all #a #f s c = simple_induction (fun p -> count p c = size p) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f {FStar.OrdSet.size s > 0} -> c: FStar.OrdSet.condition a -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.count s c = FStar.OrdSet.count (FStar.OrdSet.tail s) c + (match c (FStar.OrdSet.head s) with | true -> 1 | _ -> 0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "Prims.b2t", "Prims.op_GreaterThan", "FStar.OrdSet.size", "FStar.OrdSet.condition", "FStar.OrdSet.count_of_cons", "FStar.OrdSet.tail", "Prims.bool", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec count_of_cons #a #f s c =
if size s > 1 then count_of_cons (tail s) c
false
FStar.OrdSet.fst
FStar.OrdSet.count_all
val count_all (#a:eqtype) (#f: cmp a) (s: ordset a f) (c: condition a{forall p. c p}) : Lemma (count s c = size s)
val count_all (#a:eqtype) (#f: cmp a) (s: ordset a f) (c: condition a{forall p. c p}) : Lemma (count s c = size s)
let count_all #a #f s c = simple_induction (fun p -> count p c = size p) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 510, "start_col": 0, "start_line": 510 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = () let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end let diff_element_implies_strict_subset #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2 /\ (exists x. (mem x s2 /\ not (mem x s1)))) (ensures strict_subset s1 s2) = () let lemma_strict_subset_exists_diff #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) = Classical.move_requires_2 strict_subset_implies_diff_element s1 s2 let rec count #a #f s c : nat = match s with | [] -> 0 | h::t -> if c h then 1 + count #a #f t c else count #a #f t c let count_of_empty #_ #_ _ _ = () let count_of_impossible #a #f s c = simple_induction (fun p -> count p c = 0) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> c: FStar.OrdSet.condition a {forall (p: a). c p} -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.count s c = FStar.OrdSet.size s)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.condition", "Prims.l_Forall", "Prims.b2t", "FStar.OrdSet.simple_induction", "Prims.op_Equality", "Prims.nat", "FStar.OrdSet.count", "FStar.OrdSet.size", "Prims.unit" ]
[]
false
false
true
false
false
let count_all #a #f s c =
simple_induction (fun p -> count p c = size p) s
false
FStar.OrdSet.fst
FStar.OrdSet.all
val all (#a:eqtype) (#f:cmp a) (s: ordset a f) (c: condition a) : Tot bool
val all (#a:eqtype) (#f:cmp a) (s: ordset a f) (c: condition a) : Tot bool
let rec all #a #f (s: ordset a f) (c: condition a) : Tot bool = match s with | [] -> true | h::t -> c h && all #a #f t c
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 517, "start_col": 0, "start_line": 514 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = () let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end let diff_element_implies_strict_subset #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2 /\ (exists x. (mem x s2 /\ not (mem x s1)))) (ensures strict_subset s1 s2) = () let lemma_strict_subset_exists_diff #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) = Classical.move_requires_2 strict_subset_implies_diff_element s1 s2 let rec count #a #f s c : nat = match s with | [] -> 0 | h::t -> if c h then 1 + count #a #f t c else count #a #f t c let count_of_empty #_ #_ _ _ = () let count_of_impossible #a #f s c = simple_induction (fun p -> count p c = 0) s let count_all #a #f s c = simple_induction (fun p -> count p c = size p) s let rec count_of_cons #a #f s c = if size s > 1 then count_of_cons (tail s) c
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> c: FStar.OrdSet.condition a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.condition", "Prims.list", "Prims.op_AmpAmp", "FStar.OrdSet.all", "Prims.bool" ]
[ "recursion" ]
false
false
false
false
false
let rec all #a #f (s: ordset a f) (c: condition a) : Tot bool =
match s with | [] -> true | h :: t -> c h && all #a #f t c
false
FStar.OrdSet.fst
FStar.OrdSet.any
val any (#a:eqtype) (#f:cmp a) (s: ordset a f) (c: condition a) : Tot bool
val any (#a:eqtype) (#f:cmp a) (s: ordset a f) (c: condition a) : Tot bool
let rec any #a #f (s: ordset a f) (c: condition a) : Tot bool = match s with | [] -> false | h::t -> c h || any #a #f t c
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 522, "start_col": 0, "start_line": 519 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = () let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end let diff_element_implies_strict_subset #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2 /\ (exists x. (mem x s2 /\ not (mem x s1)))) (ensures strict_subset s1 s2) = () let lemma_strict_subset_exists_diff #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) = Classical.move_requires_2 strict_subset_implies_diff_element s1 s2 let rec count #a #f s c : nat = match s with | [] -> 0 | h::t -> if c h then 1 + count #a #f t c else count #a #f t c let count_of_empty #_ #_ _ _ = () let count_of_impossible #a #f s c = simple_induction (fun p -> count p c = 0) s let count_all #a #f s c = simple_induction (fun p -> count p c = size p) s let rec count_of_cons #a #f s c = if size s > 1 then count_of_cons (tail s) c let rec all #a #f (s: ordset a f) (c: condition a) : Tot bool = match s with | [] -> true | h::t -> c h && all #a #f t c
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> c: FStar.OrdSet.condition a -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.condition", "Prims.list", "Prims.op_BarBar", "FStar.OrdSet.any", "Prims.bool" ]
[ "recursion" ]
false
false
false
false
false
let rec any #a #f (s: ordset a f) (c: condition a) : Tot bool =
match s with | [] -> false | h :: t -> c h || any #a #f t c
false
FStar.OrdSet.fst
FStar.OrdSet.any_if_mem
val any_if_mem (#a #f: _) (s: ordset a f) (c: condition a) (x: _) : Lemma (requires mem x s && c x) (ensures any s c)
val any_if_mem (#a #f: _) (s: ordset a f) (c: condition a) (x: _) : Lemma (requires mem x s && c x) (ensures any s c)
let any_if_mem #a #f (s:ordset a f) (c: condition a) x : Lemma (requires mem x s && c x) (ensures any s c) = simple_induction (fun p -> mem x p && c x ==> any p c) s
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 528, "start_col": 0, "start_line": 526 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = () let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end let diff_element_implies_strict_subset #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2 /\ (exists x. (mem x s2 /\ not (mem x s1)))) (ensures strict_subset s1 s2) = () let lemma_strict_subset_exists_diff #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) = Classical.move_requires_2 strict_subset_implies_diff_element s1 s2 let rec count #a #f s c : nat = match s with | [] -> 0 | h::t -> if c h then 1 + count #a #f t c else count #a #f t c let count_of_empty #_ #_ _ _ = () let count_of_impossible #a #f s c = simple_induction (fun p -> count p c = 0) s let count_all #a #f s c = simple_induction (fun p -> count p c = size p) s let rec count_of_cons #a #f s c = if size s > 1 then count_of_cons (tail s) c let rec all #a #f (s: ordset a f) (c: condition a) : Tot bool = match s with | [] -> true | h::t -> c h && all #a #f t c let rec any #a #f (s: ordset a f) (c: condition a) : Tot bool = match s with | [] -> false | h::t -> c h || any #a #f t c let rec mem_if_any #a #f s c x = if head s<>x then mem_if_any (tail s) c x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> c: FStar.OrdSet.condition a -> x: a -> FStar.Pervasives.Lemma (requires FStar.OrdSet.mem x s && c x) (ensures FStar.OrdSet.any s c)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.condition", "FStar.OrdSet.simple_induction", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "FStar.OrdSet.mem", "FStar.OrdSet.any", "Prims.unit", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let any_if_mem #a #f (s: ordset a f) (c: condition a) x : Lemma (requires mem x s && c x) (ensures any s c) =
simple_induction (fun p -> mem x p && c x ==> any p c) s
false
FStar.OrdSet.fst
FStar.OrdSet.find_first
val find_first (#a:eqtype) (#f:cmp a) (s: ordset a f) (c: condition a) : option a
val find_first (#a:eqtype) (#f:cmp a) (s: ordset a f) (c: condition a) : option a
let rec find_first #a #f s c = match s with | [] -> None | h::(t:ordset a f) -> if c h then Some h else find_first t c
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 534, "start_col": 0, "start_line": 532 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = () let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end let diff_element_implies_strict_subset #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2 /\ (exists x. (mem x s2 /\ not (mem x s1)))) (ensures strict_subset s1 s2) = () let lemma_strict_subset_exists_diff #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) = Classical.move_requires_2 strict_subset_implies_diff_element s1 s2 let rec count #a #f s c : nat = match s with | [] -> 0 | h::t -> if c h then 1 + count #a #f t c else count #a #f t c let count_of_empty #_ #_ _ _ = () let count_of_impossible #a #f s c = simple_induction (fun p -> count p c = 0) s let count_all #a #f s c = simple_induction (fun p -> count p c = size p) s let rec count_of_cons #a #f s c = if size s > 1 then count_of_cons (tail s) c let rec all #a #f (s: ordset a f) (c: condition a) : Tot bool = match s with | [] -> true | h::t -> c h && all #a #f t c let rec any #a #f (s: ordset a f) (c: condition a) : Tot bool = match s with | [] -> false | h::t -> c h || any #a #f t c let rec mem_if_any #a #f s c x = if head s<>x then mem_if_any (tail s) c x let any_if_mem #a #f (s:ordset a f) (c: condition a) x : Lemma (requires mem x s && c x) (ensures any s c) = simple_induction (fun p -> mem x p && c x ==> any p c) s let all_means_not_any_not #a #f s c = simple_induction (fun p -> all p c = not (any p (inv c))) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> c: FStar.OrdSet.condition a -> FStar.Pervasives.Native.option a
Prims.Tot
[ "total" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.condition", "FStar.Pervasives.Native.None", "Prims.list", "FStar.Pervasives.Native.Some", "Prims.bool", "FStar.OrdSet.find_first", "FStar.Pervasives.Native.option" ]
[ "recursion" ]
false
false
false
false
false
let rec find_first #a #f s c =
match s with | [] -> None | h :: (t: ordset a f) -> if c h then Some h else find_first t c
false
FStar.OrdSet.fst
FStar.OrdSet.mem_if_any
val mem_if_any (#a:eqtype) (#f:cmp a) (s:ordset a f) (c: condition a) (x:a{mem x s && c x}) : Lemma (any s c)
val mem_if_any (#a:eqtype) (#f:cmp a) (s:ordset a f) (c: condition a) (x:a{mem x s && c x}) : Lemma (any s c)
let rec mem_if_any #a #f s c x = if head s<>x then mem_if_any (tail s) c x
{ "file_name": "ulib/experimental/FStar.OrdSet.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 524, "start_col": 0, "start_line": 524 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.OrdSet type ordset a f = l:(list a){sorted f l} let hasEq_ordset _ _ = () let rec simple_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires p [] /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) = match x with | [] -> () | ph::pt -> simple_induction p pt; assert (p (Cons?.tl (ph::pt))) let rec base_induction #t #f (p: ordset t f -> Type0) (x: ordset t f) : Lemma (requires (forall (l: ordset t f{List.Tot.Base.length l < 2}). p l) /\ (forall (l: ordset t f{Cons? l}). p (Cons?.tl l) ==> p l)) (ensures p x) (decreases List.Tot.Base.length x) = if List.Tot.Base.length x < 2 then () else match x with | ph::pt -> base_induction p pt; assert (p (Cons?.tl (ph::pt))) let empty #_ #_ = [] let tail #a #f s = Cons?.tl s <: ordset a f let head #_ #_ s = Cons?.hd s let mem #_ #_ x s = List.Tot.mem x s (* In case snoc-based List implementation is optimized, we use library ones, but we additionally supply them with relevant postconditions that come from s being an ordset. *) let rec last_direct #a #f (s: ordset a f{s <> empty}) : (x:a{mem x s /\ (forall (z:a{mem z s}). f z x)}) = match s with | [x] -> x | h::g::t -> last_direct (tail s) let last_lib #a #f (s: ordset a f{s <> empty}) = snd (List.Tot.Base.unsnoc s) let last_eq #a #f (s: ordset a f{s <> empty}) : Lemma (last_direct s = last_lib s) = simple_induction (fun p -> if p<>[] then last_direct #a #f p = last_lib p else true) s let last #a #f s = last_eq s; last_lib s let rec liat_direct #a #f (s: ordset a f{s <> empty}) : (l:ordset a f{ (forall x. mem x l = (mem x s && (x <> last s))) /\ (if tail s <> empty then head s = head l else true) }) = match s with | [x] -> [] | h::g::t -> h::(liat_direct #a #f (g::t)) let liat_lib #a #f (s: ordset a f{s <> empty}) = fst (List.Tot.Base.unsnoc s) let liat_eq #a #f (s:ordset a f {s<>empty}) : Lemma (liat_direct s = liat_lib s) = simple_induction (fun p -> if p<>[] then liat_direct p = liat_lib p else true) s let liat #a #f s = liat_eq s; liat_lib s let unsnoc #a #f s = liat_eq s; last_eq s; let l = List.Tot.Base.unsnoc s in (fst l, snd l) let as_list (#a:eqtype) (#f:cmp a) (s:ordset a f) : Tot (l:list a{sorted f l}) = s val insert': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){let s = as_list s in let l = as_list l in (Cons? l /\ (head #a #f l = x \/ (Cons? s /\ head #a #f l = head #a #f s)))}) let rec insert' #_ #f x s = match s with | [] -> [x] | hd::tl -> if x = hd then hd::tl else if f x hd then x::hd::tl else hd::(insert' #_ #f x tl) let rec distinct' #a f l : Tot (ordset a f) = match l with | [] -> [] | x::t -> insert' x (distinct' f t) let rec insert_mem (#a:eqtype) #f (x:a) (s:ordset a f) : Lemma (mem x (insert' x s)) = if s<>empty then insert_mem #a #f x (tail s) let insert_sub (#a:eqtype) #f x (s:ordset a f) test : Lemma (mem test (insert' x s) = (mem test s || test = x)) = simple_induction (fun p -> mem test (insert' x p) = (mem test p || test = x)) s let rec distinct_props #a (f:cmp a) (l: list a) : Lemma (forall x. (mem x (distinct' f l) = List.Tot.Base.mem x l)) = match l with | [] -> () | x::t -> distinct_props f t; Classical.forall_intro (insert_sub x (distinct' f t)) let distinct #a f l = distinct_props f l; distinct' f l let rec union #_ #_ s1 s2 = match s1 with | [] -> s2 | hd::tl -> union tl (insert' hd s2) val remove': #a:eqtype -> #f:cmp a -> x:a -> s:ordset a f -> Tot (l:(ordset a f){ ((Nil? s ==> Nil? l) /\ (Cons? s ==> head s = x ==> l = tail s) /\ (Cons? s ==> head s =!= x ==> (Cons? l /\ head l = Cons?.hd s)))}) let rec remove' #a #f x s = match s with | [] -> [] | hd::(tl: ordset a f) -> if x = hd then tl else hd::(remove' x tl) let size' (#a:eqtype) (#f:cmp a) (s:ordset a f) = List.Tot.length s let liat_length #a #f (s:ordset a f{s<>empty}) : Lemma (size' (liat s) = ((size' s) - 1)) = simple_induction (fun p -> if p<>empty then size' (liat p) = ((size' p)-1) else true) s let rec not_mem_aux (#a:eqtype) (#f:cmp a) (x:a) (s:ordset a f) : Lemma (requires (size' s > 0) && (head s <> x) && (f x (head s))) (ensures not (mem x s)) = if tail s <> [] then not_mem_aux x (tail s) let rec subset' #a #f (s1 s2: ordset a f) = match s1, s2 with | [], _ -> true | hd::tl, hd'::tl' -> if f hd hd' && hd = hd' then subset' #a #f tl tl' else if f hd hd' && not (hd = hd') then false else subset' #a #f s1 tl' | _, _ -> false let tail_is_subset #a #f (s:ordset a f{size' s > 0}) : Lemma (Cons?.tl s `subset'` s) = simple_induction (fun (s:ordset a f) -> size' s=0 || subset' (Cons?.tl s) s) s let self_is_subset #a #f (s:ordset a f) : Lemma (subset' s s) = simple_induction (fun (s:ordset a f) -> subset' s s) s (* returns a pair of (fst z) = (everything from s that goes after x) and (snd z) = (true if x was found in s, false otherwise) *) let rec remove_until_greater_than #a #f x (s: ordset a f) : z:(ordset a f * bool) { (size' (fst z) <= size' s) && (not(mem x (fst z))) && (subset' (fst z) s) && (snd z = mem x s) && (match (fst z) with | [] -> true | h::t -> (sorted f (x::(fst z)))) } = match s with | [] -> ([], false) | h::(t:ordset a f) -> if h=x then begin if size' t > 0 then not_mem_aux x t; tail_is_subset s; (t, true) end else if f x h then begin not_mem_aux x s; self_is_subset s; (s, false) end else remove_until_greater_than x t let rec remove_until_gt_prop #a #f (s: ordset a f) (x:a) (test:a) : Lemma (f test x ==> not (mem test (fst (remove_until_greater_than x s)))) = match s with | [] -> () | h::(t:ordset a f) -> let aux (test:a) : Lemma (requires f test x && h<>test) (ensures not (mem test (fst (remove_until_greater_than x s)))) = remove_until_gt_prop #a #f t x test in Classical.move_requires aux test; if h <> x then remove_until_gt_prop t x test let rec remove_until_gt_mem #a #f (s: ordset a f) (x:a) (test:a) : Lemma (mem test (fst (remove_until_greater_than x s)) = ( mem test s && f x test && (x<>test) )) = if size' s > 0 then remove_until_gt_mem (tail s) x test let mem_implies_f #a #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures f (Cons?.hd s) x) = simple_induction (fun s -> mem x s ==> f (head s) x) s (* Smart intersect is the set intersect that accounts for the ordering of both lists, eliminating some checks by trimming leading elements of one of the input lists that are guaranteeed to not belong to the other list. E.g. smart_intersect [1;2;3] [3;4;5] can safely trim [1;2;3] to just [3] upon inspecting the head of [3;4;5]. *) let rec smart_intersect #a #f (s1 s2: ordset a f) : Tot (z:ordset a f{ (forall x. mem x z = (mem x s1 && mem x s2)) /\ (forall (x:a{sorted f (x::s1)}). sorted f (x::z)) /\ (forall (x:a{sorted f (x::s2)}). sorted f (x::z)) }) (decreases size' s1 + size' s2) = match s1 with | [] -> [] | h1::(t1:ordset a f) -> match s2 with | [] -> [] | h2::(t2:ordset a f) -> if h1=h2 then h1::smart_intersect t1 t2 else begin if f h1 h2 then ( let skip1, found = remove_until_greater_than #a #f h2 t1 in let subresult : ordset a f = smart_intersect skip1 t2 in Classical.forall_intro (remove_until_gt_mem t1 h2); Classical.forall_intro (Classical.move_requires (mem_implies_f s2)); if found then h2::subresult else subresult ) else ( let skip2, found = remove_until_greater_than #a #f h1 t2 in let subresult = smart_intersect #a #f t1 skip2 in Classical.forall_intro (remove_until_gt_mem t2 h1); Classical.forall_intro (Classical.move_requires (mem_implies_f s1)); if found then h1::subresult else subresult ) end let intersect #a #f s1 s2 = smart_intersect s1 s2 let choose #a #f s = match s with | [] -> None | x::_ -> Some x let remove #a #f x s = remove' #_ #f x s let size #a #f s = size' s let subset #a #f s1 s2 = subset' s1 s2 let singleton (#a:eqtype) #f x = [x] let mem_of_empty #a #f (s: ordset a f{size s = 0}) (x: a) : Lemma (not (mem x s)) = () let mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma ((mem #a #f x (Cons?.tl s) || (x = Cons?.hd s)) = mem x s) = () let not_mem_of_tail #a #f (s: ordset a f{size s > 0}) (x:a) : Lemma (not (mem x (tail s)) = not (mem x s) || x = head s) = simple_induction (fun s -> mem x s ==> f (head s) x) s let rec set_props #a #f (s:ordset a f) : Lemma (if size s > 0 then ((forall x. mem x (tail s) ==> f (head s) x /\ head s <> x)) else forall x. not (mem x s)) = if (size s > 1) then set_props (tail s) let rec same_members_means_eq #a #f (s1 s2: ordset a f) : Lemma (requires forall x. mem x s1 = mem x s2) (ensures s1 == s2) = match s1 with | [] -> if size s2>0 then assert (mem (head s2) s2) | h1::t1 -> set_props s1; set_props s2; match s2 with | h2::t2 -> same_members_means_eq #a #f t1 t2 let intersect_is_symmetric #a #f (s1 s2: ordset a f) : Lemma (intersect s1 s2 = intersect s2 s1) = same_members_means_eq (intersect s1 s2) (intersect s2 s1) let remove_until_gt_exclusion #a #f (s:ordset a f) (x:a) (test:a) : Lemma (requires f x test && (not (mem test (fst (remove_until_greater_than x s))))) (ensures x=test || not (mem test s)) = remove_until_gt_mem s x test let rec mem_implies_subset #a #f (s1 s2: ordset a f) : Lemma ((forall x. mem x s1 ==> mem x s2) ==> subset s1 s2) = match s1 with | [] -> () | h1::(t1:ordset a f) -> set_props s1; set_props s2; mem_implies_subset t1 s2; if (size s2 > 0 && f (head s2) h1) then mem_implies_subset s1 (tail s2) let rec subset_implies_mem #a #f (p q: ordset a f) : Lemma (subset p q ==> (forall x. mem x p ==> mem x q)) = if Cons? p && Cons? q then if head p = head q then subset_implies_mem (tail p) (tail q) else subset_implies_mem p (tail q) let subset_transitivity #a #f (p q r: ordset a f) : Lemma (requires p `subset` q /\ q `subset` r) (ensures p `subset` r) = subset_implies_mem p q; subset_implies_mem q r; mem_implies_subset p r let head_is_never_in_tail #a #f (s:ordset a f{size s > 0}) : Lemma (not (mem (head s) (tail s))) = set_props s let rec smart_minus #a #f (p q: ordset a f) : z:ordset a f { ( forall x. mem x z = (mem x p && (not (mem x q)))) /\ (match p,z with | ph::pt, zh::zt -> f ph zh | ph::pt, [] -> subset p q | [], _ -> z = []) } = match p with | [] -> [] | ph::(pt:ordset a f) -> match q with | [] -> p | qh::(qt:ordset a f) -> let q_after_ph, found = remove_until_greater_than ph q in Classical.forall_intro (remove_until_gt_mem q ph); Classical.forall_intro (Classical.move_requires (mem_implies_f p)); if found then begin let result = smart_minus pt q_after_ph in set_props p; if result = [] then begin subset_transitivity pt q_after_ph q; subset_implies_mem pt q; mem_implies_subset p q end; result end else ph::(smart_minus pt q_after_ph) let empty_minus_means_subset #a #f (p q: ordset a f) : Lemma (requires size (smart_minus p q) = 0) (ensures subset p q) = () // a little test versus integers :) let ncmp (x y:nat) = x <= y let _ = assert (smart_minus #nat #ncmp [1;2;3;4] [3] == [1;2;4]) let minus #a #f s1 s2 = smart_minus s1 s2 let strict_subset #a #f s1 s2 = s1 <> s2 && subset s1 s2 let eq_lemma #a #f s1 s2 = same_members_means_eq s1 s2 let mem_empty #_ #_ _ = () let mem_singleton #_ #_ _ _ = () let mem_insert (#a:eqtype) #f (el:a) (s: ordset a f) (x:a) : Lemma (mem x (insert' el s) = (x=el || mem x s)) = simple_induction (fun p -> mem x (insert' el p) = (x=el || mem x p)) s let rec mem_union #_ #_ s1 s2 x = if size s1 > 0 then match s1 with | hd::tl -> mem_union tl (insert' hd s2) x; mem_insert hd s2 x let mem_intersect #_ #f s1 s2 x = () let mem_subset (#a:eqtype) #f s1 s2 = subset_implies_mem s1 s2; mem_implies_subset s1 s2 let choose_empty (#a:eqtype) #f = () let choose_s (#a:eqtype) #f s = () let rec mem_remove (#a:eqtype) #f x y s = if size s > 0 then (set_props s; mem_remove x y (tail s)) let eq_remove (#a:eqtype) #f x s = simple_induction (fun p -> not (mem x p) ==> p = remove x p) s let size_empty (#a:eqtype) #f s = () let rec size_remove (#a:eqtype) #f x s = match s with | hd::tl -> if x<>hd then size_remove #_ #f x tl let size_singleton (#a:eqtype) #f x = () let rec subset_size (#a:eqtype) #f x y = match x, y with | [], _ -> () | hd::tl, hd'::(tl':ordset a f) -> if f hd hd' && hd = hd' then subset_size tl tl' else subset_size x tl' let insert_when_already_exists (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (requires mem x s) (ensures insert' x s == s) = simple_induction (fun p -> mem x p <==> insert' x p = p) s let size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) >= size s) = simple_induction (fun p -> size (insert' x p) >= size p) s let rec precise_size_insert (#a:eqtype) #f (s: ordset a f) (x:a) : Lemma (size (insert' x s) = (if mem x s then size s else (size s) + 1)) = if size s > 0 then precise_size_insert (tail s) x let rec size_of_union_left (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s2) = match s1 with | [] -> () | hd::tl -> size_of_union_left tl (insert' hd s2); precise_size_insert s2 hd let size_of_union_right (#a:eqtype) #f (s1 s2: ordset a f) : Lemma (ensures size (union s1 s2) >= size s1) = eq_lemma (union s1 s2) (union s2 s1); size_of_union_left s2 s1 let size_union #a #f s1 s2 = size_of_union_left s1 s2; size_of_union_right s1 s2 let fold #a #acc #f g init s = List.Tot.fold_left g init s private let rec map_internal (#a #b:eqtype) (#fa:cmp a) (#fb:cmp b) (g:a -> b) (sa:ordset a fa) : Pure (ordset b fb) (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures (fun sb -> Cons? sb ==> Cons? sa /\ Cons?.hd sb == g (Cons?.hd sa))) = match sa with | [] -> [] | x :: xs -> let y = g x in let ys = map_internal #a #b #fa #fb g xs in if not (Cons? ys) || Cons?.hd ys <> y then y :: ys else ys let rec map_size (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures size (map_internal #a #b #fa #fb g sa) <= size sa) = if size sa > 0 then map_size #a #b #fa #fb g (tail sa) let rec map_as_list (#a #b:eqtype) (#fa:cmp a) (#fb: cmp b) (g: a->b) (sa:ordset a fa) : Lemma (requires (forall x y. (x `fa` y ==> g x `fb` g y) /\ (x = y <==> g x = g y))) (ensures as_list (map_internal #a #b #fa #fb g sa) == FStar.List.Tot.map g (as_list sa)) = match sa with | [] -> () | h::(t:ordset a fa) -> map_as_list #a #b #fa #fb g t let map #a #b #fa #fb g sa = map_size #a #b #fa #fb g sa; map_as_list #a #b #fa #fb g sa; map_internal #a #b #fa #fb g sa let lemma_strict_subset_size #a #f s1 s2 = let eql (p q: ordset a f) : Lemma (requires forall x. mem x p = mem x q) (ensures p=q) = eq_lemma p q in Classical.move_requires_2 eql s1 s2; eliminate exists x. mem x s2 && not (mem x s1) returns size s2 > size s1 with _. begin Classical.forall_intro (mem_insert x s1); precise_size_insert s1 x; assert (subset (insert' x s1) s2) end let lemma_minus_mem #a #f s1 s2 x = () let rec strict_subset_implies_diff_element #a #f (s1 s2: ordset a f) : Lemma (requires strict_subset s1 s2) (ensures exists x. (mem x s2 /\ not (mem x s1))) = match s1,s2 with | [], h::t -> () | h1::t1, h2::t2 -> Classical.move_requires (mem_implies_f s1) h2; if h1=h2 then begin strict_subset_implies_diff_element #a #f t1 t2; set_props s2 end let diff_element_implies_strict_subset #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2 /\ (exists x. (mem x s2 /\ not (mem x s1)))) (ensures strict_subset s1 s2) = () let lemma_strict_subset_exists_diff #a #f (s1 s2: ordset a f) : Lemma (requires subset s1 s2) (ensures (strict_subset s1 s2) <==> (exists x. (mem x s2 /\ not (mem x s1)))) = Classical.move_requires_2 strict_subset_implies_diff_element s1 s2 let rec count #a #f s c : nat = match s with | [] -> 0 | h::t -> if c h then 1 + count #a #f t c else count #a #f t c let count_of_empty #_ #_ _ _ = () let count_of_impossible #a #f s c = simple_induction (fun p -> count p c = 0) s let count_all #a #f s c = simple_induction (fun p -> count p c = size p) s let rec count_of_cons #a #f s c = if size s > 1 then count_of_cons (tail s) c let rec all #a #f (s: ordset a f) (c: condition a) : Tot bool = match s with | [] -> true | h::t -> c h && all #a #f t c let rec any #a #f (s: ordset a f) (c: condition a) : Tot bool = match s with | [] -> false | h::t -> c h || any #a #f t c
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.OrdSet.fst" }
[ { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.OrdSet.ordset a f -> c: FStar.OrdSet.condition a -> x: a{FStar.OrdSet.mem x s && c x} -> FStar.Pervasives.Lemma (ensures FStar.OrdSet.any s c)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.OrdSet.cmp", "FStar.OrdSet.ordset", "FStar.OrdSet.condition", "Prims.b2t", "Prims.op_AmpAmp", "FStar.OrdSet.mem", "Prims.op_disEquality", "FStar.OrdSet.head", "FStar.OrdSet.mem_if_any", "FStar.OrdSet.tail", "Prims.bool", "Prims.unit" ]
[ "recursion" ]
false
false
true
false
false
let rec mem_if_any #a #f s c x =
if head s <> x then mem_if_any (tail s) c x
false