effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b))
let bn_from_bytes_le_st (t: limb_t) =
false
null
false
len: size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b: lbuffer uint8 len -> res: lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Bignum.Definitions.lbignum", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.seq", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Definitions.blocks", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.Convert.bn_from_bytes_le" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract
false
true
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_from_bytes_le_st : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.Convert.bn_from_bytes_le_st
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 62, "end_line": 111, "start_col": 4, "start_line": 105 }
Prims.Tot
val bn_to_bytes_le: #t:_ -> len:_ -> bn_to_bytes_le_st t len
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_to_bytes_le #t = match t with | U32 -> bn_to_bytes_le_uint32 | U64 -> bn_to_bytes_le_uint64
val bn_to_bytes_le: #t:_ -> len:_ -> bn_to_bytes_le_st t len let bn_to_bytes_le #t =
false
null
false
match t with | U32 -> bn_to_bytes_le_uint32 | U64 -> bn_to_bytes_le_uint64
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Convert.bn_to_bytes_le_uint32", "Hacl.Bignum.Convert.bn_to_bytes_le_uint64", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Convert.bn_to_bytes_le_st" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame () [@CInline] let bn_from_bytes_le_uint32 : bn_from_bytes_le_st U32 = mk_bn_from_bytes_le #U32 false [@CInline] let bn_from_bytes_le_uint64 : bn_from_bytes_le_st U64 = mk_bn_from_bytes_le #U64 false inline_for_extraction noextract val bn_from_bytes_le: #t:limb_t -> bn_from_bytes_le_st t let bn_from_bytes_le #t = match t with | U32 -> bn_from_bytes_le_uint32 | U64 -> bn_from_bytes_le_uint64 inline_for_extraction noextract val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b)) let bn_to_bytes_be_ #t len b res = [@inline_let] let numb = size (numbytes t) in let h0 = ST.get () in [@ inline_let] let a_spec (i:nat{i <= v len}) = unit in [@ inline_let] let spec (h:mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b)) inline_for_extraction noextract let bn_to_bytes_be_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len let mk_bn_to_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; bn_to_bytes_be_ bnLen b res end else begin bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end; pop_frame () [@CInline] let bn_to_bytes_be_uint32 len : bn_to_bytes_be_st U32 len = mk_bn_to_bytes_be #U32 false len let bn_to_bytes_be_uint64 len : bn_to_bytes_be_st U64 len = mk_bn_to_bytes_be #U64 false len inline_for_extraction noextract val bn_to_bytes_be: #t:_ -> len:_ -> bn_to_bytes_be_st t len let bn_to_bytes_be #t = match t with | U32 -> bn_to_bytes_be_uint32 | U64 -> bn_to_bytes_be_uint64 inline_for_extraction noextract let bn_to_bytes_le_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_le: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_le_st t len let mk_bn_to_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; uints_to_bytes_le bnLen res b end else begin uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len) end; pop_frame () [@CInline] let bn_to_bytes_le_uint32 len : bn_to_bytes_le_st U32 len = mk_bn_to_bytes_le #U32 false len [@CInline] let bn_to_bytes_le_uint64 len : bn_to_bytes_le_st U64 len = mk_bn_to_bytes_le #U64 false len inline_for_extraction noextract val bn_to_bytes_le: #t:_ -> len:_ -> bn_to_bytes_le_st t len
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_to_bytes_le: #t:_ -> len:_ -> bn_to_bytes_le_st t len
[]
Hacl.Bignum.Convert.bn_to_bytes_le
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes t * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes t))) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.Convert.bn_to_bytes_le_st t len
{ "end_col": 32, "end_line": 280, "start_col": 2, "start_line": 278 }
Prims.Tot
val bn_to_bytes_le_uint64 (len: _) : bn_to_bytes_le_st U64 len
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_to_bytes_le_uint64 len : bn_to_bytes_le_st U64 len = mk_bn_to_bytes_le #U64 false len
val bn_to_bytes_le_uint64 (len: _) : bn_to_bytes_le_st U64 len let bn_to_bytes_le_uint64 len : bn_to_bytes_le_st U64 len =
false
null
false
mk_bn_to_bytes_le #U64 false len
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.U64", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Convert.mk_bn_to_bytes_le", "Hacl.Bignum.Convert.bn_to_bytes_le_st" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame () [@CInline] let bn_from_bytes_le_uint32 : bn_from_bytes_le_st U32 = mk_bn_from_bytes_le #U32 false [@CInline] let bn_from_bytes_le_uint64 : bn_from_bytes_le_st U64 = mk_bn_from_bytes_le #U64 false inline_for_extraction noextract val bn_from_bytes_le: #t:limb_t -> bn_from_bytes_le_st t let bn_from_bytes_le #t = match t with | U32 -> bn_from_bytes_le_uint32 | U64 -> bn_from_bytes_le_uint64 inline_for_extraction noextract val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b)) let bn_to_bytes_be_ #t len b res = [@inline_let] let numb = size (numbytes t) in let h0 = ST.get () in [@ inline_let] let a_spec (i:nat{i <= v len}) = unit in [@ inline_let] let spec (h:mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b)) inline_for_extraction noextract let bn_to_bytes_be_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len let mk_bn_to_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; bn_to_bytes_be_ bnLen b res end else begin bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end; pop_frame () [@CInline] let bn_to_bytes_be_uint32 len : bn_to_bytes_be_st U32 len = mk_bn_to_bytes_be #U32 false len let bn_to_bytes_be_uint64 len : bn_to_bytes_be_st U64 len = mk_bn_to_bytes_be #U64 false len inline_for_extraction noextract val bn_to_bytes_be: #t:_ -> len:_ -> bn_to_bytes_be_st t len let bn_to_bytes_be #t = match t with | U32 -> bn_to_bytes_be_uint32 | U64 -> bn_to_bytes_be_uint64 inline_for_extraction noextract let bn_to_bytes_le_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_le: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_le_st t len let mk_bn_to_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; uints_to_bytes_le bnLen res b end else begin uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len) end; pop_frame () [@CInline] let bn_to_bytes_le_uint32 len : bn_to_bytes_le_st U32 len = mk_bn_to_bytes_le #U32 false len
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_to_bytes_le_uint64 (len: _) : bn_to_bytes_le_st U64 len
[]
Hacl.Bignum.Convert.bn_to_bytes_le_uint64
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes Lib.IntTypes.U64 * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes Lib.IntTypes.U64))) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.Convert.bn_to_bytes_le_st Lib.IntTypes.U64 len
{ "end_col": 92, "end_line": 272, "start_col": 60, "start_line": 272 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_to_bytes_le_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_le (v len) (as_seq h0 b))
let bn_to_bytes_le_st (t: limb_t) (len: size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) =
false
null
false
b: lbignum t (blocks len (size (numbytes t))) -> res: lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_le (v len) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.disjoint", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "Lib.Sequence.lseq", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.Convert.bn_to_bytes_le" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame () [@CInline] let bn_from_bytes_le_uint32 : bn_from_bytes_le_st U32 = mk_bn_from_bytes_le #U32 false [@CInline] let bn_from_bytes_le_uint64 : bn_from_bytes_le_st U64 = mk_bn_from_bytes_le #U64 false inline_for_extraction noextract val bn_from_bytes_le: #t:limb_t -> bn_from_bytes_le_st t let bn_from_bytes_le #t = match t with | U32 -> bn_from_bytes_le_uint32 | U64 -> bn_from_bytes_le_uint64 inline_for_extraction noextract val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b)) let bn_to_bytes_be_ #t len b res = [@inline_let] let numb = size (numbytes t) in let h0 = ST.get () in [@ inline_let] let a_spec (i:nat{i <= v len}) = unit in [@ inline_let] let spec (h:mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b)) inline_for_extraction noextract let bn_to_bytes_be_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len let mk_bn_to_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; bn_to_bytes_be_ bnLen b res end else begin bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end; pop_frame () [@CInline] let bn_to_bytes_be_uint32 len : bn_to_bytes_be_st U32 len = mk_bn_to_bytes_be #U32 false len let bn_to_bytes_be_uint64 len : bn_to_bytes_be_st U64 len = mk_bn_to_bytes_be #U64 false len inline_for_extraction noextract val bn_to_bytes_be: #t:_ -> len:_ -> bn_to_bytes_be_st t len let bn_to_bytes_be #t = match t with | U32 -> bn_to_bytes_be_uint32 | U64 -> bn_to_bytes_be_uint64 inline_for_extraction noextract
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_to_bytes_le_st : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes t * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes t))) <= Lib.IntTypes.max_size_t } -> Type0
[]
Hacl.Bignum.Convert.bn_to_bytes_le_st
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes t * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes t))) <= Lib.IntTypes.max_size_t } -> Type0
{ "end_col": 60, "end_line": 236, "start_col": 4, "start_line": 230 }
Prims.Tot
val bn_to_bytes_be: #t:_ -> len:_ -> bn_to_bytes_be_st t len
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_to_bytes_be #t = match t with | U32 -> bn_to_bytes_be_uint32 | U64 -> bn_to_bytes_be_uint64
val bn_to_bytes_be: #t:_ -> len:_ -> bn_to_bytes_be_st t len let bn_to_bytes_be #t =
false
null
false
match t with | U32 -> bn_to_bytes_be_uint32 | U64 -> bn_to_bytes_be_uint64
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Convert.bn_to_bytes_be_uint32", "Hacl.Bignum.Convert.bn_to_bytes_be_uint64", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Convert.bn_to_bytes_be_st" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame () [@CInline] let bn_from_bytes_le_uint32 : bn_from_bytes_le_st U32 = mk_bn_from_bytes_le #U32 false [@CInline] let bn_from_bytes_le_uint64 : bn_from_bytes_le_st U64 = mk_bn_from_bytes_le #U64 false inline_for_extraction noextract val bn_from_bytes_le: #t:limb_t -> bn_from_bytes_le_st t let bn_from_bytes_le #t = match t with | U32 -> bn_from_bytes_le_uint32 | U64 -> bn_from_bytes_le_uint64 inline_for_extraction noextract val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b)) let bn_to_bytes_be_ #t len b res = [@inline_let] let numb = size (numbytes t) in let h0 = ST.get () in [@ inline_let] let a_spec (i:nat{i <= v len}) = unit in [@ inline_let] let spec (h:mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b)) inline_for_extraction noextract let bn_to_bytes_be_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len let mk_bn_to_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; bn_to_bytes_be_ bnLen b res end else begin bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end; pop_frame () [@CInline] let bn_to_bytes_be_uint32 len : bn_to_bytes_be_st U32 len = mk_bn_to_bytes_be #U32 false len let bn_to_bytes_be_uint64 len : bn_to_bytes_be_st U64 len = mk_bn_to_bytes_be #U64 false len inline_for_extraction noextract val bn_to_bytes_be: #t:_ -> len:_ -> bn_to_bytes_be_st t len
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_to_bytes_be: #t:_ -> len:_ -> bn_to_bytes_be_st t len
[]
Hacl.Bignum.Convert.bn_to_bytes_be
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes t * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes t))) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.Convert.bn_to_bytes_be_st t len
{ "end_col": 32, "end_line": 225, "start_col": 2, "start_line": 223 }
FStar.HyperStack.ST.Stack
val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x)
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x
val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b =
true
null
false
memset b (uint #t 0) len; b.(0ul) <- x
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Bignum.Definitions.limb", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.op_Array_Assignment", "FStar.UInt32.__uint_to_t", "Prims.unit", "Lib.Buffer.memset", "Lib.IntTypes.uint", "Lib.IntTypes.SEC" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x)
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x)
[]
Hacl.Bignum.Convert.bn_from_uint
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t{0 < Lib.IntTypes.v len} -> x: Hacl.Bignum.Definitions.limb t -> b: Hacl.Bignum.Definitions.lbignum t len -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 33, "start_col": 2, "start_line": 32 }
FStar.HyperStack.ST.Stack
val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b))
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t))))
val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res =
true
null
false
let h0 = ST.get () in [@@ inline_let ]let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t))))
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.fill", "Hacl.Bignum.Definitions.limb", "Prims.op_LessThan", "Lib.ByteBuffer.uint_from_bytes_be", "Lib.IntTypes.SEC", "Lib.IntTypes.uint_t", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.mk_int", "Lib.Buffer.sub", "Lib.IntTypes.op_Subtraction_Bang", "FStar.UInt32.__uint_to_t", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.nat", "Hacl.Spec.Bignum.Definitions.limb", "Hacl.Spec.Bignum.Convert.bn_from_bytes_be_f", "Lib.Buffer.as_seq", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b))
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b))
[]
Hacl.Bignum.Convert.bn_from_bytes_be_
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t{Lib.IntTypes.numbytes t * Lib.IntTypes.v len <= Lib.IntTypes.max_size_t} -> b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 (Lib.IntTypes.size (Lib.IntTypes.numbytes t) *! len) -> res: Hacl.Bignum.Definitions.lbignum t len -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 102, "end_line": 52, "start_col": 36, "start_line": 47 }
FStar.HyperStack.ST.Stack
val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b))
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_to_bytes_be_ #t len b res = [@inline_let] let numb = size (numbytes t) in let h0 = ST.get () in [@ inline_let] let a_spec (i:nat{i <= v len}) = unit in [@ inline_let] let spec (h:mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b))
val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b)) let bn_to_bytes_be_ #t len b res =
true
null
false
[@@ inline_let ]let numb = size (numbytes t) in let h0 = ST.get () in [@@ inline_let ]let a_spec (i: nat{i <= v len}) = unit in [@@ inline_let ]let spec (h: mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b))
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "FStar.Pervasives.norm_spec", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Prims.unit", "Lib.Buffer.fill_blocks", "FStar.Monotonic.HyperStack.mem", "Lib.IntTypes.size_nat", "LowStar.Monotonic.Buffer.loc_none", "LowStar.Monotonic.Buffer.loc", "Prims.l_and", "LowStar.Monotonic.Buffer.loc_disjoint", "Lib.Buffer.loc", "LowStar.Monotonic.Buffer.loc_includes", "LowStar.Monotonic.Buffer.address_liveness_insensitive_locs", "Prims.op_LessThan", "Lib.ByteBuffer.uint_to_bytes_be", "Lib.IntTypes.SEC", "Lib.IntTypes.int_t", "Lib.Buffer.op_Array_Access", "Lib.IntTypes.op_Subtraction_Bang", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.U8", "Lib.IntTypes.mk_int", "Lib.Buffer.sub", "Prims.nat", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_f", "Prims.eqtype", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame () [@CInline] let bn_from_bytes_le_uint32 : bn_from_bytes_le_st U32 = mk_bn_from_bytes_le #U32 false [@CInline] let bn_from_bytes_le_uint64 : bn_from_bytes_le_st U64 = mk_bn_from_bytes_le #U64 false inline_for_extraction noextract val bn_from_bytes_le: #t:limb_t -> bn_from_bytes_le_st t let bn_from_bytes_le #t = match t with | U32 -> bn_from_bytes_le_uint32 | U64 -> bn_from_bytes_le_uint64 inline_for_extraction noextract val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b))
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b))
[]
Hacl.Bignum.Convert.bn_to_bytes_be_
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t{Lib.IntTypes.numbytes t * Lib.IntTypes.v len <= Lib.IntTypes.max_size_t} -> b: Hacl.Bignum.Definitions.lbignum t len -> res: Lib.Buffer.lbuffer Lib.IntTypes.uint8 (Lib.IntTypes.size (Lib.IntTypes.numbytes t) *! len) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 88, "end_line": 172, "start_col": 2, "start_line": 164 }
Prims.Tot
val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame ()
val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res =
false
null
false
push_frame (); if is_known_len then [@@ inline_let ]let numb = size (numbytes t) in [@@ inline_let ]let bnLen = blocks len numb in [@@ inline_let ]let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res else ([@@ inline_let ]let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res); pop_frame ()
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Prims.bool", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Bignum.Definitions.lbignum", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.IntTypes.op_Equals_Dot", "Hacl.Bignum.Convert.bn_from_bytes_be_", "Lib.Buffer.update_sub", "Lib.Buffer.MUT", "Lib.IntTypes.op_Subtraction_Bang", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.IntTypes.op_Star_Bang", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Hacl.Spec.Bignum.Definitions.blocks", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t
[]
Hacl.Bignum.Convert.mk_bn_from_bytes_be
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
is_known_len: Prims.bool -> Hacl.Bignum.Convert.bn_from_bytes_be_st t
{ "end_col": 14, "end_line": 87, "start_col": 2, "start_line": 69 }
Prims.Tot
val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame ()
val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res =
false
null
false
push_frame (); if is_known_len then [@@ inline_let ]let numb = size (numbytes t) in [@@ inline_let ]let bnLen = blocks len numb in [@@ inline_let ]let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp else ([@@ inline_let ]let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp); pop_frame ()
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Prims.bool", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Bignum.Definitions.lbignum", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.IntTypes.op_Equals_Dot", "Lib.ByteBuffer.uints_from_bytes_le", "Lib.IntTypes.SEC", "Lib.Buffer.update_sub", "Lib.Buffer.MUT", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.IntTypes.op_Star_Bang", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Hacl.Spec.Bignum.Definitions.blocks", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t
[]
Hacl.Bignum.Convert.mk_bn_from_bytes_le
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
is_known_len: Prims.bool -> Hacl.Bignum.Convert.bn_from_bytes_le_st t
{ "end_col": 14, "end_line": 135, "start_col": 2, "start_line": 117 }
Prims.Tot
val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_bn_to_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; bn_to_bytes_be_ bnLen b res end else begin bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end; pop_frame ()
val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len let mk_bn_to_bytes_be #t is_known_len len b res =
false
null
false
push_frame (); if is_known_len then [@@ inline_let ]let numb = size (numbytes t) in [@@ inline_let ]let bnLen = blocks len numb in [@@ inline_let ]let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then (LowStar.Ignore.ignore tmp; bn_to_bytes_be_ bnLen b res) else (bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len)) else ([@@ inline_let ]let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len)); pop_frame ()
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Prims.bool", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.IntTypes.op_Equals_Dot", "Hacl.Bignum.Convert.bn_to_bytes_be_", "LowStar.Ignore.ignore", "Lib.Buffer.copy", "Lib.Buffer.MUT", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.sub", "Lib.IntTypes.op_Subtraction_Bang", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.IntTypes.op_Star_Bang", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Hacl.Spec.Bignum.Definitions.blocks", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame () [@CInline] let bn_from_bytes_le_uint32 : bn_from_bytes_le_st U32 = mk_bn_from_bytes_le #U32 false [@CInline] let bn_from_bytes_le_uint64 : bn_from_bytes_le_st U64 = mk_bn_from_bytes_le #U64 false inline_for_extraction noextract val bn_from_bytes_le: #t:limb_t -> bn_from_bytes_le_st t let bn_from_bytes_le #t = match t with | U32 -> bn_from_bytes_le_uint32 | U64 -> bn_from_bytes_le_uint64 inline_for_extraction noextract val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b)) let bn_to_bytes_be_ #t len b res = [@inline_let] let numb = size (numbytes t) in let h0 = ST.get () in [@ inline_let] let a_spec (i:nat{i <= v len}) = unit in [@ inline_let] let spec (h:mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b)) inline_for_extraction noextract let bn_to_bytes_be_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len
[]
Hacl.Bignum.Convert.mk_bn_to_bytes_be
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
is_known_len: Prims.bool -> len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes t * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes t))) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.Convert.bn_to_bytes_be_st t len
{ "end_col": 14, "end_line": 212, "start_col": 2, "start_line": 193 }
Prims.Tot
val mk_bn_to_bytes_le: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_le_st t len
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_bn_to_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; uints_to_bytes_le bnLen res b end else begin uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len) end; pop_frame ()
val mk_bn_to_bytes_le: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_le_st t len let mk_bn_to_bytes_le #t is_known_len len b res =
false
null
false
push_frame (); if is_known_len then [@@ inline_let ]let numb = size (numbytes t) in [@@ inline_let ]let bnLen = blocks len numb in [@@ inline_let ]let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then (LowStar.Ignore.ignore tmp; uints_to_bytes_le bnLen res b) else (uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len)) else ([@@ inline_let ]let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len)); pop_frame ()
{ "checked_file": "Hacl.Bignum.Convert.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Prims.bool", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.IntTypes.op_Equals_Dot", "Lib.ByteBuffer.uints_to_bytes_le", "Lib.IntTypes.SEC", "LowStar.Ignore.ignore", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.Buffer.copy", "Lib.Buffer.MUT", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.Buffer.sub", "FStar.UInt32.__uint_to_t", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.IntTypes.op_Star_Bang", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Hacl.Spec.Bignum.Definitions.blocks", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame () [@CInline] let bn_from_bytes_le_uint32 : bn_from_bytes_le_st U32 = mk_bn_from_bytes_le #U32 false [@CInline] let bn_from_bytes_le_uint64 : bn_from_bytes_le_st U64 = mk_bn_from_bytes_le #U64 false inline_for_extraction noextract val bn_from_bytes_le: #t:limb_t -> bn_from_bytes_le_st t let bn_from_bytes_le #t = match t with | U32 -> bn_from_bytes_le_uint32 | U64 -> bn_from_bytes_le_uint64 inline_for_extraction noextract val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b)) let bn_to_bytes_be_ #t len b res = [@inline_let] let numb = size (numbytes t) in let h0 = ST.get () in [@ inline_let] let a_spec (i:nat{i <= v len}) = unit in [@ inline_let] let spec (h:mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b)) inline_for_extraction noextract let bn_to_bytes_be_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len let mk_bn_to_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; bn_to_bytes_be_ bnLen b res end else begin bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end; pop_frame () [@CInline] let bn_to_bytes_be_uint32 len : bn_to_bytes_be_st U32 len = mk_bn_to_bytes_be #U32 false len let bn_to_bytes_be_uint64 len : bn_to_bytes_be_st U64 len = mk_bn_to_bytes_be #U64 false len inline_for_extraction noextract val bn_to_bytes_be: #t:_ -> len:_ -> bn_to_bytes_be_st t len let bn_to_bytes_be #t = match t with | U32 -> bn_to_bytes_be_uint32 | U64 -> bn_to_bytes_be_uint64 inline_for_extraction noextract let bn_to_bytes_le_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_le: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_le_st t len
false
false
Hacl.Bignum.Convert.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_bn_to_bytes_le: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_le_st t len
[]
Hacl.Bignum.Convert.mk_bn_to_bytes_le
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
is_known_len: Prims.bool -> len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes t * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes t))) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.Convert.bn_to_bytes_le_st t len
{ "end_col": 14, "end_line": 266, "start_col": 2, "start_line": 247 }
Prims.GTot
val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_empty #hsz mt = MT?.j mt = 0
val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt =
false
null
false
MT?.j mt = 0
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "Prims.op_Equality", "Prims.int", "MerkleTree.New.High.__proj__MT__item__j", "Prims.bool" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool
[]
MerkleTree.New.High.mt_empty
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree -> Prims.GTot Prims.bool
{ "end_col": 14, "end_line": 85, "start_col": 2, "start_line": 85 }
Prims.GTot
val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32)
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sha256_compress = MTS.sha256_compress
val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress =
false
null
false
MTS.sha256_compress
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "MerkleTree.Spec.sha256_compress" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0)
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32)
[]
MerkleTree.New.High.sha256_compress
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
src1: MerkleTree.New.High.hash -> src2: MerkleTree.New.High.hash -> Prims.GTot MerkleTree.New.High.hash
{ "end_col": 41, "end_line": 27, "start_col": 22, "start_line": 27 }
Prims.GTot
val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz)
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let path_insert #_ p hp = S.snoc p hp
val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp =
false
null
false
S.snoc p hp
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.path", "MerkleTree.New.High.hash", "FStar.Seq.Properties.snoc" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = ()
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz)
[]
MerkleTree.New.High.path_insert
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
p: MerkleTree.New.High.path -> hp: MerkleTree.New.High.hash -> Prims.GTot MerkleTree.New.High.path
{ "end_col": 37, "end_line": 380, "start_col": 26, "start_line": 380 }
Prims.GTot
val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_not_empty #hsz mt = MT?.j mt > 0
val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt =
false
null
false
MT?.j mt > 0
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "Prims.op_GreaterThan", "MerkleTree.New.High.__proj__MT__item__j", "Prims.bool" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool
[]
MerkleTree.New.High.mt_not_empty
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree -> Prims.GTot Prims.bool
{ "end_col": 14, "end_line": 89, "start_col": 2, "start_line": 89 }
Prims.GTot
val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1
val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt =
false
null
false
MT?.j mt < pow2 32 - 1
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "Prims.op_LessThan", "MerkleTree.New.High.__proj__MT__item__j", "Prims.op_Subtraction", "Prims.pow2", "Prims.bool" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool
[]
MerkleTree.New.High.mt_not_full
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree -> Prims.GTot Prims.bool
{ "end_col": 24, "end_line": 81, "start_col": 2, "start_line": 81 }
Prims.GTot
val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j
val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) =
false
null
false
hs_wf_elts 0 hs i j
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.pow2", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.bool", "MerkleTree.New.High.hash", "MerkleTree.Spec.hash_fun_t", "MerkleTree.New.High.hs_wf_elts" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0
[]
MerkleTree.New.High.mt_wf_elts
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
_: MerkleTree.New.High.merkle_tree -> Prims.GTot Type0
{ "end_col": 21, "end_line": 136, "start_col": 2, "start_line": 136 }
Prims.GTot
val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt})
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt)
val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v =
false
null
false
MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "Prims.l_and", "MerkleTree.New.High.mt_wf_elts", "Prims.b2t", "MerkleTree.New.High.mt_not_full", "MerkleTree.New.High.hash", "MerkleTree.New.High.MT", "MerkleTree.New.High.__proj__MT__item__i", "Prims.op_Addition", "MerkleTree.New.High.__proj__MT__item__j", "MerkleTree.New.High.insert_", "MerkleTree.New.High.__proj__MT__item__hash_fun", "MerkleTree.New.High.__proj__MT__item__hs", "MerkleTree.New.High.__proj__MT__item__rhs", "MerkleTree.New.High.__proj__MT__item__mroot" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt})
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt})
[]
MerkleTree.New.High.mt_insert
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree {MerkleTree.New.High.mt_wf_elts mt /\ MerkleTree.New.High.mt_not_full mt} -> v: MerkleTree.New.High.hash -> Prims.GTot (imt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts imt})
{ "end_col": 22, "end_line": 241, "start_col": 2, "start_line": 235 }
Prims.GTot
val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt})
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f
val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ =
false
null
false
hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.unit", "MerkleTree.New.High.MT", "FStar.Seq.Base.create", "MerkleTree.New.High.hashes", "FStar.Seq.Base.empty", "MerkleTree.New.High.hash", "MerkleTree.New.High.hash_init", "MerkleTree.New.High.hs_wf_elts_empty", "MerkleTree.New.High.merkle_tree", "MerkleTree.New.High.mt_wf_elts" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt})
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt})
[]
MerkleTree.New.High.create_empty_mt
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
_: Prims.unit -> Prims.GTot (mt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts mt})
{ "end_col": 86, "end_line": 156, "start_col": 2, "start_line": 155 }
Prims.GTot
val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1)
val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd =
false
null
false
if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.bool", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_BarBar", "Prims.op_AmpAmp", "Prims.op_Addition", "Prims.op_Negation" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat
[]
MerkleTree.New.High.mt_path_length_step
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
k: Prims.nat -> j: Prims.nat{k <= j} -> actd: Prims.bool -> Prims.GTot Prims.nat
{ "end_col": 14, "end_line": 388, "start_col": 2, "start_line": 385 }
Prims.GTot
val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz)
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end
val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt =
false
null
false
if MT?.rhs_ok mt then (mt, MT?.mroot mt) else let nrhs, rt = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "MerkleTree.New.High.mt_wf_elts", "MerkleTree.New.High.hash", "MerkleTree.New.High.__proj__MT__item__rhs_ok", "FStar.Pervasives.Native.Mktuple2", "MerkleTree.New.High.__proj__MT__item__mroot", "Prims.bool", "MerkleTree.New.High.hashes", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.MT", "MerkleTree.New.High.__proj__MT__item__i", "MerkleTree.New.High.__proj__MT__item__j", "MerkleTree.New.High.__proj__MT__item__hs", "MerkleTree.New.High.__proj__MT__item__hash_fun", "FStar.Pervasives.Native.tuple2", "MerkleTree.New.High.construct_rhs", "MerkleTree.New.High.__proj__MT__item__rhs" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz)
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz)
[]
MerkleTree.New.High.mt_get_root
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts mt} -> drt: MerkleTree.New.High.hash -> Prims.GTot (MerkleTree.New.High.merkle_tree * MerkleTree.New.High.hash)
{ "end_col": 5, "end_line": 358, "start_col": 2, "start_line": 354 }
Prims.GTot
val mt_flush: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > MT?.i mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt})
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_flush #hsz mt = mt_flush_to mt (MT?.j mt - 1)
val mt_flush: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > MT?.i mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush #hsz mt =
false
null
false
mt_flush_to mt (MT?.j mt - 1)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "Prims.l_and", "MerkleTree.New.High.mt_wf_elts", "Prims.b2t", "Prims.op_GreaterThan", "MerkleTree.New.High.__proj__MT__item__j", "MerkleTree.New.High.__proj__MT__item__i", "MerkleTree.New.High.mt_flush_to", "Prims.op_Subtraction" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) #push-options "--z3rlimit 20" val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv)) let rec mt_get_path_pull #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd) #pop-options val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv)) let mt_get_path_slice #hsz lv hs rhs i j k p actd = mt_get_path_pull lv hs rhs i j k p actd val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) * hash #hsz) let mt_get_path #hsz mt idx drt = let (umt, root) = mt_get_root mt drt in let ofs = offset_of (MT?.i umt) in let np = path_insert S.empty (S.index (S.index (MT?.hs umt) 0) (idx - ofs)) in MT?.j umt, mt_get_path_ 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx np false, root /// Flushing val mt_flush_to_: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs pi j} -> GTot (fhs:hashess{ S.length fhs = 32 /\ S.equal (S.slice hs 0 lv) (S.slice fhs 0 lv) /\ hs_wf_elts #hsz lv fhs i j}) (decreases i) let rec mt_flush_to_ #hsz lv hs pi i j = let oi = offset_of i in let opi = offset_of pi in if oi = opi then hs else (let ofs = oi - opi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ (lv + 1) nhs (pi / 2) (i / 2) (j / 2)) val mt_flush_to_rec: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs pi j} -> Lemma (requires offset_of i <> offset_of pi) (ensures mt_flush_to_ lv hs pi i j == (let ofs = offset_of i - offset_of pi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ #hsz (lv + 1) nhs (pi / 2) (i / 2) (j / 2))) let mt_flush_to_rec #hsz lv hs pi i j = () val mt_flush_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{idx >= MT?.i mt /\ idx < MT?.j mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush_to #hsz mt idx = let fhs = mt_flush_to_ #hsz 0 (MT?.hs mt) (MT?.i mt) idx (MT?.j mt) in MT idx (MT?.j mt) fhs (MT?.rhs_ok mt) (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_flush: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > MT?.i mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt})
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_flush: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > MT?.i mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt})
[]
MerkleTree.New.High.mt_flush
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts mt /\ MT?.j mt > MT?.i mt} -> Prims.GTot (fmt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts fmt})
{ "end_col": 31, "end_line": 598, "start_col": 2, "start_line": 598 }
Prims.Tot
val offset_of: i:nat -> Tot nat
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let offset_of i = if i % 2 = 0 then i else i - 1
val offset_of: i:nat -> Tot nat let offset_of i =
false
null
false
if i % 2 = 0 then i else i - 1
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "total" ]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.bool", "Prims.op_Subtraction" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat
false
true
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val offset_of: i:nat -> Tot nat
[]
MerkleTree.New.High.offset_of
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
i: Prims.nat -> Prims.nat
{ "end_col": 32, "end_line": 96, "start_col": 2, "start_line": 96 }
Prims.GTot
val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt})
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init
val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init =
false
null
false
mt_insert #_ (create_empty_mt #_ #f ()) init
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "MerkleTree.New.High.hash", "MerkleTree.New.High.mt_insert", "MerkleTree.New.High.create_empty_mt", "MerkleTree.New.High.merkle_tree", "MerkleTree.New.High.mt_wf_elts" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt})
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt})
[]
MerkleTree.New.High.mt_create
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hsz: Prims.pos -> f: MerkleTree.Spec.hash_fun_t -> init: MerkleTree.New.High.hash -> Prims.GTot (mt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts mt})
{ "end_col": 46, "end_line": 247, "start_col": 2, "start_line": 247 }
Prims.GTot
val mt_verify: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> k:nat -> j:nat{k < j} -> p:path #hsz {S.length p = 1 + mt_path_length k j false} -> rt:hash #hsz -> GTot prop
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_verify #_ #f k j p rt = let crt = mt_verify_ #_ #f k j p 1 (S.index p 0) false in crt == rt
val mt_verify: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> k:nat -> j:nat{k < j} -> p:path #hsz {S.length p = 1 + mt_path_length k j false} -> rt:hash #hsz -> GTot prop let mt_verify #_ #f k j p rt =
false
null
false
let crt = mt_verify_ #_ #f k j p 1 (S.index p 0) false in crt == rt
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "MerkleTree.New.High.path", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hash", "Prims.op_Addition", "MerkleTree.New.High.mt_path_length", "Prims.eq2", "MerkleTree.New.High.mt_verify_", "FStar.Seq.Base.index", "Prims.prop" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) #push-options "--z3rlimit 20" val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv)) let rec mt_get_path_pull #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd) #pop-options val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv)) let mt_get_path_slice #hsz lv hs rhs i j k p actd = mt_get_path_pull lv hs rhs i j k p actd val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) * hash #hsz) let mt_get_path #hsz mt idx drt = let (umt, root) = mt_get_root mt drt in let ofs = offset_of (MT?.i umt) in let np = path_insert S.empty (S.index (S.index (MT?.hs umt) 0) (idx - ofs)) in MT?.j umt, mt_get_path_ 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx np false, root /// Flushing val mt_flush_to_: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs pi j} -> GTot (fhs:hashess{ S.length fhs = 32 /\ S.equal (S.slice hs 0 lv) (S.slice fhs 0 lv) /\ hs_wf_elts #hsz lv fhs i j}) (decreases i) let rec mt_flush_to_ #hsz lv hs pi i j = let oi = offset_of i in let opi = offset_of pi in if oi = opi then hs else (let ofs = oi - opi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ (lv + 1) nhs (pi / 2) (i / 2) (j / 2)) val mt_flush_to_rec: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs pi j} -> Lemma (requires offset_of i <> offset_of pi) (ensures mt_flush_to_ lv hs pi i j == (let ofs = offset_of i - offset_of pi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ #hsz (lv + 1) nhs (pi / 2) (i / 2) (j / 2))) let mt_flush_to_rec #hsz lv hs pi i j = () val mt_flush_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{idx >= MT?.i mt /\ idx < MT?.j mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush_to #hsz mt idx = let fhs = mt_flush_to_ #hsz 0 (MT?.hs mt) (MT?.i mt) idx (MT?.j mt) in MT idx (MT?.j mt) fhs (MT?.rhs_ok mt) (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_flush: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > MT?.i mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush #hsz mt = mt_flush_to mt (MT?.j mt - 1) #push-options "--max_fuel 2" /// Retraction val mt_retract_to_: #hsz:pos -> hs:hashess #hsz {S.length hs = 32} -> lv:nat{lv < S.length hs} -> i:nat -> s:nat -> // s is the first index excluded from nhs j:nat{ i <= s /\ s <= j /\ j < pow2 (S.length hs - lv) /\ hs_wf_elts lv hs i j} -> GTot (nhs:hashess #hsz { S.length nhs = S.length hs /\ S.equal (S.slice hs 0 lv) (S.slice nhs 0 lv) /\ hs_wf_elts #hsz lv nhs i s}) (decreases (S.length hs - lv)) let rec mt_retract_to_ #hsz hs lv i s j = if lv >= S.length hs then hs else begin let hvec = S.index hs lv in let old_len = j - offset_of i in let new_len = s - offset_of i in assert (S.length hvec = old_len); assert (new_len <= old_len); assert (new_len <= S.length hvec); let retracted = S.slice hvec 0 new_len in let nhs = S.upd hs lv retracted in if lv >= S.length hs - 1 then nhs else begin hs_wf_elts_equal (lv + 1) hs nhs (i / 2) (j / 2); mt_retract_to_ nhs (lv + 1) (i / 2) (s / 2) (j / 2) end end #pop-options val mt_retract_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> r:nat{MT?.i mt <= r /\ r < MT?.j mt} -> GTot (rmt:merkle_tree #hsz {mt_wf_elts rmt /\ MT?.i rmt = MT?.i mt /\ MT?.j rmt = r + 1}) let mt_retract_to #hsz mt r = let nhs = mt_retract_to_ (MT?.hs mt) 0 (MT?.i mt) (r+1) (MT?.j mt) in MT (MT?.i mt) (r+1) nhs false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) /// Verification val mt_verify_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> k:nat -> j:nat{k <= j} -> p:path #hsz -> ppos:nat -> acc:hash #hsz -> actd:bool{ppos + mt_path_length k j actd <= S.length p} -> GTot (hash #hsz) let rec mt_verify_ #hsz #f k j p ppos acc actd = if j = 0 then acc else (let nactd = actd || (j % 2 = 1) in if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then mt_verify_ #_ #f (k / 2) (j / 2) p ppos acc nactd else (let nacc = f acc (S.index p ppos) in mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd)) else (let nacc = f (S.index p ppos) acc in mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd)) val mt_verify: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> k:nat -> j:nat{k < j} -> p:path #hsz {S.length p = 1 + mt_path_length k j false} -> rt:hash #hsz ->
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_verify: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> k:nat -> j:nat{k < j} -> p:path #hsz {S.length p = 1 + mt_path_length k j false} -> rt:hash #hsz -> GTot prop
[]
MerkleTree.New.High.mt_verify
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
k: Prims.nat -> j: Prims.nat{k < j} -> p: MerkleTree.New.High.path {FStar.Seq.Base.length p = 1 + MerkleTree.New.High.mt_path_length k j false} -> rt: MerkleTree.New.High.hash -> Prims.GTot Prims.prop
{ "end_col": 11, "end_line": 679, "start_col": 30, "start_line": 677 }
Prims.GTot
val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv))
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2))
val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j =
false
null
false
if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.op_GreaterThanOrEqual", "Prims.bool", "Prims.l_and", "Prims.eq2", "MerkleTree.New.High.hash", "FStar.Seq.Base.index", "Prims.op_Subtraction", "MerkleTree.New.High.hs_wf_elts", "Prims.op_Addition", "Prims.op_Division", "MerkleTree.New.High.offset_of" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv))
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.hs_wf_elts
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = 32} -> i: Prims.nat -> j: Prims.nat{j >= i} -> Prims.GTot Type0
{ "end_col": 51, "end_line": 108, "start_col": 2, "start_line": 105 }
Prims.Tot
val hash_init (#hsz: pos) : hash #hsz
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0)
val hash_init (#hsz: pos) : hash #hsz let hash_init (#hsz: pos) : hash #hsz =
false
null
false
Seq.create hsz (Lib.IntTypes.u8 0)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "total" ]
[ "Prims.pos", "FStar.Seq.Base.create", "Lib.IntTypes.uint8", "Lib.IntTypes.u8", "MerkleTree.New.High.hash" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash_init (#hsz: pos) : hash #hsz
[]
MerkleTree.New.High.hash_init
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
MerkleTree.New.High.hash
{ "end_col": 36, "end_line": 24, "start_col": 2, "start_line": 24 }
Prims.GTot
val mt_flush_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{idx >= MT?.i mt /\ idx < MT?.j mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt})
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_flush_to #hsz mt idx = let fhs = mt_flush_to_ #hsz 0 (MT?.hs mt) (MT?.i mt) idx (MT?.j mt) in MT idx (MT?.j mt) fhs (MT?.rhs_ok mt) (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt)
val mt_flush_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{idx >= MT?.i mt /\ idx < MT?.j mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush_to #hsz mt idx =
false
null
false
let fhs = mt_flush_to_ #hsz 0 (MT?.hs mt) (MT?.i mt) idx (MT?.j mt) in MT idx (MT?.j mt) fhs (MT?.rhs_ok mt) (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "MerkleTree.New.High.mt_wf_elts", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "MerkleTree.New.High.__proj__MT__item__i", "Prims.op_LessThan", "MerkleTree.New.High.__proj__MT__item__j", "MerkleTree.New.High.MT", "MerkleTree.New.High.__proj__MT__item__rhs_ok", "MerkleTree.New.High.__proj__MT__item__rhs", "MerkleTree.New.High.__proj__MT__item__mroot", "MerkleTree.New.High.__proj__MT__item__hash_fun", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "MerkleTree.New.High.__proj__MT__item__hs", "MerkleTree.New.High.hs_wf_elts", "MerkleTree.New.High.mt_flush_to_" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) #push-options "--z3rlimit 20" val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv)) let rec mt_get_path_pull #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd) #pop-options val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv)) let mt_get_path_slice #hsz lv hs rhs i j k p actd = mt_get_path_pull lv hs rhs i j k p actd val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) * hash #hsz) let mt_get_path #hsz mt idx drt = let (umt, root) = mt_get_root mt drt in let ofs = offset_of (MT?.i umt) in let np = path_insert S.empty (S.index (S.index (MT?.hs umt) 0) (idx - ofs)) in MT?.j umt, mt_get_path_ 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx np false, root /// Flushing val mt_flush_to_: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs pi j} -> GTot (fhs:hashess{ S.length fhs = 32 /\ S.equal (S.slice hs 0 lv) (S.slice fhs 0 lv) /\ hs_wf_elts #hsz lv fhs i j}) (decreases i) let rec mt_flush_to_ #hsz lv hs pi i j = let oi = offset_of i in let opi = offset_of pi in if oi = opi then hs else (let ofs = oi - opi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ (lv + 1) nhs (pi / 2) (i / 2) (j / 2)) val mt_flush_to_rec: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs pi j} -> Lemma (requires offset_of i <> offset_of pi) (ensures mt_flush_to_ lv hs pi i j == (let ofs = offset_of i - offset_of pi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ #hsz (lv + 1) nhs (pi / 2) (i / 2) (j / 2))) let mt_flush_to_rec #hsz lv hs pi i j = () val mt_flush_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{idx >= MT?.i mt /\ idx < MT?.j mt} ->
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_flush_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{idx >= MT?.i mt /\ idx < MT?.j mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt})
[]
MerkleTree.New.High.mt_flush_to
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts mt} -> idx: Prims.nat{idx >= MT?.i mt /\ idx < MT?.j mt} -> Prims.GTot (fmt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts fmt})
{ "end_col": 85, "end_line": 591, "start_col": 29, "start_line": 589 }
Prims.GTot
val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd)
val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd =
false
null
false
if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.bool", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "MerkleTree.New.High.mt_path_length_step", "MerkleTree.New.High.mt_path_length", "Prims.op_Division", "Prims.op_BarBar", "Prims.op_Modulus" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat
[ "recursion" ]
MerkleTree.New.High.mt_path_length
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
k: Prims.nat -> j: Prims.nat{k <= j} -> actd: Prims.bool -> Prims.GTot Prims.nat
{ "end_col": 44, "end_line": 396, "start_col": 2, "start_line": 393 }
FStar.Pervasives.Lemma
val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))]
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n)
val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] let seq_slice_more_equal #a s1 s2 n m k l =
false
null
true
slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.Seq.Properties.slice_slice", "Prims.op_Subtraction", "Prims.unit" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))]
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))]
[]
MerkleTree.New.High.seq_slice_more_equal
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> n: Prims.nat -> m: Prims.nat{n <= m && m <= FStar.Seq.Base.length s1 && m <= FStar.Seq.Base.length s2} -> k: Prims.nat{n <= k} -> l: Prims.nat{k <= l && l <= m} -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (FStar.Seq.Base.slice s1 n m) (FStar.Seq.Base.slice s2 n m)) (ensures FStar.Seq.Base.equal (FStar.Seq.Base.slice s1 k l) (FStar.Seq.Base.slice s2 k l)) [ SMTPat (FStar.Seq.Base.equal (FStar.Seq.Base.slice s1 n m) (FStar.Seq.Base.slice s2 n m)); SMTPat (FStar.Seq.Base.equal (FStar.Seq.Base.slice s1 k l) (FStar.Seq.Base.slice s2 k l)) ]
{ "end_col": 36, "end_line": 53, "start_col": 2, "start_line": 52 }
FStar.Pervasives.Lemma
val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv))
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1)
val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv =
false
null
true
if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "lemma", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Equality", "Prims.int", "Prims.bool", "MerkleTree.New.High.hs_wf_elts_empty", "Prims.op_Addition", "Prims.unit" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv))
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.hs_wf_elts_empty
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> FStar.Pervasives.Lemma (ensures MerkleTree.New.High.hs_wf_elts lv (FStar.Seq.Base.create 32 FStar.Seq.Base.empty) 0 0 ) (decreases 32 - lv)
{ "end_col": 37, "end_line": 148, "start_col": 2, "start_line": 147 }
FStar.Pervasives.Lemma
val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)]
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i))
val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k =
false
null
true
assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "lemma" ]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "Prims.op_LessThan", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "Prims.unit" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)]
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)]
[]
MerkleTree.New.High.seq_slice_equal_index
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> i: Prims.nat -> j: Prims.nat{i <= j && j <= FStar.Seq.Base.length s1 && j <= FStar.Seq.Base.length s2} -> k: Prims.nat{i <= k && k < j} -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.equal (FStar.Seq.Base.slice s1 i j) (FStar.Seq.Base.slice s2 i j)) (ensures FStar.Seq.Base.index s1 k == FStar.Seq.Base.index s2 k) [ SMTPat (FStar.Seq.Base.equal (FStar.Seq.Base.slice s1 i j) (FStar.Seq.Base.slice s2 i j)); SMTPat (FStar.Seq.Base.index s1 k) ]
{ "end_col": 79, "end_line": 41, "start_col": 2, "start_line": 41 }
Prims.GTot
val mt_verify_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> k:nat -> j:nat{k <= j} -> p:path #hsz -> ppos:nat -> acc:hash #hsz -> actd:bool{ppos + mt_path_length k j actd <= S.length p} -> GTot (hash #hsz)
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_verify_ #hsz #f k j p ppos acc actd = if j = 0 then acc else (let nactd = actd || (j % 2 = 1) in if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then mt_verify_ #_ #f (k / 2) (j / 2) p ppos acc nactd else (let nacc = f acc (S.index p ppos) in mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd)) else (let nacc = f (S.index p ppos) acc in mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd))
val mt_verify_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> k:nat -> j:nat{k <= j} -> p:path #hsz -> ppos:nat -> acc:hash #hsz -> actd:bool{ppos + mt_path_length k j actd <= S.length p} -> GTot (hash #hsz) let rec mt_verify_ #hsz #f k j p ppos acc actd =
false
null
false
if j = 0 then acc else (let nactd = actd || (j % 2 = 1) in if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then mt_verify_ #_ #f (k / 2) (j / 2) p ppos acc nactd else (let nacc = f acc (S.index p ppos) in mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd)) else (let nacc = f (S.index p ppos) acc in mt_verify_ #_ #f (k / 2) (j / 2) p (ppos + 1) nacc nactd))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.path", "MerkleTree.New.High.hash", "Prims.bool", "Prims.op_Addition", "MerkleTree.New.High.mt_path_length", "FStar.Seq.Base.length", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_BarBar", "Prims.op_AmpAmp", "Prims.op_Negation", "MerkleTree.New.High.mt_verify_", "Prims.op_Division", "MerkleTree.Spec.hash", "FStar.Seq.Base.index" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) #push-options "--z3rlimit 20" val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv)) let rec mt_get_path_pull #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd) #pop-options val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv)) let mt_get_path_slice #hsz lv hs rhs i j k p actd = mt_get_path_pull lv hs rhs i j k p actd val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) * hash #hsz) let mt_get_path #hsz mt idx drt = let (umt, root) = mt_get_root mt drt in let ofs = offset_of (MT?.i umt) in let np = path_insert S.empty (S.index (S.index (MT?.hs umt) 0) (idx - ofs)) in MT?.j umt, mt_get_path_ 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx np false, root /// Flushing val mt_flush_to_: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs pi j} -> GTot (fhs:hashess{ S.length fhs = 32 /\ S.equal (S.slice hs 0 lv) (S.slice fhs 0 lv) /\ hs_wf_elts #hsz lv fhs i j}) (decreases i) let rec mt_flush_to_ #hsz lv hs pi i j = let oi = offset_of i in let opi = offset_of pi in if oi = opi then hs else (let ofs = oi - opi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ (lv + 1) nhs (pi / 2) (i / 2) (j / 2)) val mt_flush_to_rec: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs pi j} -> Lemma (requires offset_of i <> offset_of pi) (ensures mt_flush_to_ lv hs pi i j == (let ofs = offset_of i - offset_of pi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ #hsz (lv + 1) nhs (pi / 2) (i / 2) (j / 2))) let mt_flush_to_rec #hsz lv hs pi i j = () val mt_flush_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{idx >= MT?.i mt /\ idx < MT?.j mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush_to #hsz mt idx = let fhs = mt_flush_to_ #hsz 0 (MT?.hs mt) (MT?.i mt) idx (MT?.j mt) in MT idx (MT?.j mt) fhs (MT?.rhs_ok mt) (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_flush: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > MT?.i mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush #hsz mt = mt_flush_to mt (MT?.j mt - 1) #push-options "--max_fuel 2" /// Retraction val mt_retract_to_: #hsz:pos -> hs:hashess #hsz {S.length hs = 32} -> lv:nat{lv < S.length hs} -> i:nat -> s:nat -> // s is the first index excluded from nhs j:nat{ i <= s /\ s <= j /\ j < pow2 (S.length hs - lv) /\ hs_wf_elts lv hs i j} -> GTot (nhs:hashess #hsz { S.length nhs = S.length hs /\ S.equal (S.slice hs 0 lv) (S.slice nhs 0 lv) /\ hs_wf_elts #hsz lv nhs i s}) (decreases (S.length hs - lv)) let rec mt_retract_to_ #hsz hs lv i s j = if lv >= S.length hs then hs else begin let hvec = S.index hs lv in let old_len = j - offset_of i in let new_len = s - offset_of i in assert (S.length hvec = old_len); assert (new_len <= old_len); assert (new_len <= S.length hvec); let retracted = S.slice hvec 0 new_len in let nhs = S.upd hs lv retracted in if lv >= S.length hs - 1 then nhs else begin hs_wf_elts_equal (lv + 1) hs nhs (i / 2) (j / 2); mt_retract_to_ nhs (lv + 1) (i / 2) (s / 2) (j / 2) end end #pop-options val mt_retract_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> r:nat{MT?.i mt <= r /\ r < MT?.j mt} -> GTot (rmt:merkle_tree #hsz {mt_wf_elts rmt /\ MT?.i rmt = MT?.i mt /\ MT?.j rmt = r + 1}) let mt_retract_to #hsz mt r = let nhs = mt_retract_to_ (MT?.hs mt) 0 (MT?.i mt) (r+1) (MT?.j mt) in MT (MT?.i mt) (r+1) nhs false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) /// Verification val mt_verify_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> k:nat -> j:nat{k <= j} -> p:path #hsz -> ppos:nat -> acc:hash #hsz -> actd:bool{ppos + mt_path_length k j actd <= S.length p} -> GTot (hash #hsz)
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_verify_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> k:nat -> j:nat{k <= j} -> p:path #hsz -> ppos:nat -> acc:hash #hsz -> actd:bool{ppos + mt_path_length k j actd <= S.length p} -> GTot (hash #hsz)
[ "recursion" ]
MerkleTree.New.High.mt_verify_
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
k: Prims.nat -> j: Prims.nat{k <= j} -> p: MerkleTree.New.High.path -> ppos: Prims.nat -> acc: MerkleTree.New.High.hash -> actd: Prims.bool{ppos + MerkleTree.New.High.mt_path_length k j actd <= FStar.Seq.Base.length p} -> Prims.GTot MerkleTree.New.High.hash
{ "end_col": 63, "end_line": 668, "start_col": 2, "start_line": 660 }
Prims.GTot
val mt_retract_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> r:nat{MT?.i mt <= r /\ r < MT?.j mt} -> GTot (rmt:merkle_tree #hsz {mt_wf_elts rmt /\ MT?.i rmt = MT?.i mt /\ MT?.j rmt = r + 1})
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_retract_to #hsz mt r = let nhs = mt_retract_to_ (MT?.hs mt) 0 (MT?.i mt) (r+1) (MT?.j mt) in MT (MT?.i mt) (r+1) nhs false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt)
val mt_retract_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> r:nat{MT?.i mt <= r /\ r < MT?.j mt} -> GTot (rmt:merkle_tree #hsz {mt_wf_elts rmt /\ MT?.i rmt = MT?.i mt /\ MT?.j rmt = r + 1}) let mt_retract_to #hsz mt r =
false
null
false
let nhs = mt_retract_to_ (MT?.hs mt) 0 (MT?.i mt) (r + 1) (MT?.j mt) in MT (MT?.i mt) (r + 1) nhs false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "MerkleTree.New.High.mt_wf_elts", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.__proj__MT__item__i", "Prims.op_LessThan", "MerkleTree.New.High.__proj__MT__item__j", "MerkleTree.New.High.MT", "Prims.op_Addition", "MerkleTree.New.High.__proj__MT__item__rhs", "MerkleTree.New.High.__proj__MT__item__mroot", "MerkleTree.New.High.__proj__MT__item__hash_fun", "MerkleTree.New.High.hashess", "Prims.op_Equality", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.__proj__MT__item__hs", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "MerkleTree.New.High.hs_wf_elts", "MerkleTree.New.High.mt_retract_to_", "Prims.int" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) #push-options "--z3rlimit 20" val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv)) let rec mt_get_path_pull #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd) #pop-options val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv)) let mt_get_path_slice #hsz lv hs rhs i j k p actd = mt_get_path_pull lv hs rhs i j k p actd val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) * hash #hsz) let mt_get_path #hsz mt idx drt = let (umt, root) = mt_get_root mt drt in let ofs = offset_of (MT?.i umt) in let np = path_insert S.empty (S.index (S.index (MT?.hs umt) 0) (idx - ofs)) in MT?.j umt, mt_get_path_ 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx np false, root /// Flushing val mt_flush_to_: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs pi j} -> GTot (fhs:hashess{ S.length fhs = 32 /\ S.equal (S.slice hs 0 lv) (S.slice fhs 0 lv) /\ hs_wf_elts #hsz lv fhs i j}) (decreases i) let rec mt_flush_to_ #hsz lv hs pi i j = let oi = offset_of i in let opi = offset_of pi in if oi = opi then hs else (let ofs = oi - opi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ (lv + 1) nhs (pi / 2) (i / 2) (j / 2)) val mt_flush_to_rec: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs pi j} -> Lemma (requires offset_of i <> offset_of pi) (ensures mt_flush_to_ lv hs pi i j == (let ofs = offset_of i - offset_of pi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ #hsz (lv + 1) nhs (pi / 2) (i / 2) (j / 2))) let mt_flush_to_rec #hsz lv hs pi i j = () val mt_flush_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{idx >= MT?.i mt /\ idx < MT?.j mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush_to #hsz mt idx = let fhs = mt_flush_to_ #hsz 0 (MT?.hs mt) (MT?.i mt) idx (MT?.j mt) in MT idx (MT?.j mt) fhs (MT?.rhs_ok mt) (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_flush: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > MT?.i mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush #hsz mt = mt_flush_to mt (MT?.j mt - 1) #push-options "--max_fuel 2" /// Retraction val mt_retract_to_: #hsz:pos -> hs:hashess #hsz {S.length hs = 32} -> lv:nat{lv < S.length hs} -> i:nat -> s:nat -> // s is the first index excluded from nhs j:nat{ i <= s /\ s <= j /\ j < pow2 (S.length hs - lv) /\ hs_wf_elts lv hs i j} -> GTot (nhs:hashess #hsz { S.length nhs = S.length hs /\ S.equal (S.slice hs 0 lv) (S.slice nhs 0 lv) /\ hs_wf_elts #hsz lv nhs i s}) (decreases (S.length hs - lv)) let rec mt_retract_to_ #hsz hs lv i s j = if lv >= S.length hs then hs else begin let hvec = S.index hs lv in let old_len = j - offset_of i in let new_len = s - offset_of i in assert (S.length hvec = old_len); assert (new_len <= old_len); assert (new_len <= S.length hvec); let retracted = S.slice hvec 0 new_len in let nhs = S.upd hs lv retracted in if lv >= S.length hs - 1 then nhs else begin hs_wf_elts_equal (lv + 1) hs nhs (i / 2) (j / 2); mt_retract_to_ nhs (lv + 1) (i / 2) (s / 2) (j / 2) end end #pop-options val mt_retract_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> r:nat{MT?.i mt <= r /\ r < MT?.j mt} ->
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_retract_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> r:nat{MT?.i mt <= r /\ r < MT?.j mt} -> GTot (rmt:merkle_tree #hsz {mt_wf_elts rmt /\ MT?.i rmt = MT?.i mt /\ MT?.j rmt = r + 1})
[]
MerkleTree.New.High.mt_retract_to
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts mt} -> r: Prims.nat{MT?.i mt <= r /\ r < MT?.j mt} -> Prims.GTot (rmt: MerkleTree.New.High.merkle_tree {MerkleTree.New.High.mt_wf_elts rmt /\ MT?.i rmt = MT?.i mt /\ MT?.j rmt = r + 1})
{ "end_col": 77, "end_line": 645, "start_col": 29, "start_line": 643 }
Prims.GTot
val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz)
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs)))
val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd =
false
null
false
let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs)))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.hash", "Prims.l_and", "Prims.op_disEquality", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hs_wf_elts", "Prims.op_AmpAmp", "MerkleTree.New.High.path", "Prims.bool", "Prims.op_Modulus", "MerkleTree.New.High.path_insert", "FStar.Seq.Base.index", "Prims.l_or", "Prims.op_Addition", "MerkleTree.New.High.offset_of" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool ->
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz)
[]
MerkleTree.New.High.mt_make_path_step
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = 32} -> rhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length rhs = 32} -> i: Prims.nat -> j: Prims.nat {j <> 0 /\ i <= j /\ j < Prims.pow2 (32 - lv) /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> k: Prims.nat{i <= k && k <= j} -> p: MerkleTree.New.High.path -> actd: Prims.bool -> Prims.GTot MerkleTree.New.High.path
{ "end_col": 64, "end_line": 420, "start_col": 51, "start_line": 411 }
FStar.Pervasives.Lemma
val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv))
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2))
val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j =
false
null
true
if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "lemma", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.op_GreaterThanOrEqual", "Prims.bool", "MerkleTree.New.High.hs_wf_elts_equal", "Prims.op_Addition", "Prims.op_Division", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Base.lemma_index_slice", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Seq.Properties.slice_slice", "Prims.op_Subtraction" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv))
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.hs_wf_elts_equal
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> hs1: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs1 = 32} -> hs2: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs2 = 32} -> i: Prims.nat -> j: Prims.nat{j >= i} -> FStar.Pervasives.Lemma (requires MerkleTree.New.High.hs_wf_elts lv hs1 i j /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice hs1 lv 32) (FStar.Seq.Base.slice hs2 lv 32)) (ensures MerkleTree.New.High.hs_wf_elts lv hs2 i j) (decreases 32 - lv)
{ "end_col": 57, "end_line": 132, "start_col": 2, "start_line": 124 }
Prims.GTot
val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j)
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true))
val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd =
false
null
false
let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.hash", "Prims.l_and", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hs_wf_elts", "Prims.bool", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Modulus", "MerkleTree.New.High.construct_rhs", "Prims.op_Addition", "Prims.op_Division", "FStar.Seq.Base.index", "FStar.Seq.Base.upd", "FStar.Pervasives.Native.tuple2", "MerkleTree.New.High.offset_of" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz))
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j)
[ "recursion" ]
MerkleTree.New.High.construct_rhs
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = 32} -> rhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length rhs = 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv) /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> acc: MerkleTree.New.High.hash -> actd: Prims.bool -> Prims.GTot (crhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length crhs = 32} * MerkleTree.New.High.hash)
{ "end_col": 73, "end_line": 279, "start_col": 54, "start_line": 269 }
FStar.Pervasives.Lemma
val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv))
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_get_path_slice #hsz lv hs rhs i j k p actd = mt_get_path_pull lv hs rhs i j k p actd
val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv)) let mt_get_path_slice #hsz lv hs rhs i j k p actd =
false
null
true
mt_get_path_pull lv hs rhs i j k p actd
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "lemma", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.hash", "Prims.l_and", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hs_wf_elts", "Prims.op_AmpAmp", "MerkleTree.New.High.path", "Prims.bool", "MerkleTree.New.High.mt_get_path_pull", "Prims.unit" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) #push-options "--z3rlimit 20" val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv)) let rec mt_get_path_pull #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd) #pop-options val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv))
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv))
[]
MerkleTree.New.High.mt_get_path_slice
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = 32} -> rhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length rhs = 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv) /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> k: Prims.nat{i <= k && k <= j} -> p: MerkleTree.New.High.path -> actd: Prims.bool -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Seq.Base.slice (MerkleTree.New.High.mt_get_path_ lv hs rhs i j k p actd) (FStar.Seq.Base.length p) (FStar.Seq.Base.length p + MerkleTree.New.High.mt_path_length k j actd)) (MerkleTree.New.High.mt_get_path_ lv hs rhs i j k FStar.Seq.Base.empty actd)) (decreases 32 - lv)
{ "end_col": 41, "end_line": 519, "start_col": 2, "start_line": 519 }
Prims.GTot
val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) * hash #hsz)
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mt_get_path #hsz mt idx drt = let (umt, root) = mt_get_root mt drt in let ofs = offset_of (MT?.i umt) in let np = path_insert S.empty (S.index (S.index (MT?.hs umt) 0) (idx - ofs)) in MT?.j umt, mt_get_path_ 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx np false, root
val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) * hash #hsz) let mt_get_path #hsz mt idx drt =
false
null
false
let umt, root = mt_get_root mt drt in let ofs = offset_of (MT?.i umt) in let np = path_insert S.empty (S.index (S.index (MT?.hs umt) 0) (idx - ofs)) in MT?.j umt, mt_get_path_ 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx np false, root
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "MerkleTree.New.High.merkle_tree", "MerkleTree.New.High.mt_wf_elts", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.__proj__MT__item__i", "Prims.op_LessThan", "MerkleTree.New.High.__proj__MT__item__j", "MerkleTree.New.High.hash", "FStar.Pervasives.Native.Mktuple3", "MerkleTree.New.High.path", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Addition", "MerkleTree.New.High.mt_path_length", "MerkleTree.New.High.mt_get_path_", "MerkleTree.New.High.__proj__MT__item__hs", "MerkleTree.New.High.__proj__MT__item__rhs", "MerkleTree.New.High.path_insert", "FStar.Seq.Base.empty", "FStar.Seq.Base.index", "MerkleTree.New.High.hashes", "Prims.op_Subtraction", "MerkleTree.New.High.offset_of", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.tuple2", "MerkleTree.New.High.mt_get_root" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) #push-options "--z3rlimit 20" val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv)) let rec mt_get_path_pull #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd) #pop-options val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv)) let mt_get_path_slice #hsz lv hs rhs i j k p actd = mt_get_path_pull lv hs rhs i j k p actd val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) *
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) * hash #hsz)
[]
MerkleTree.New.High.mt_get_path
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
mt: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts mt} -> idx: Prims.nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt: MerkleTree.New.High.hash -> Prims.GTot ((Prims.nat * np: MerkleTree.New.High.path {FStar.Seq.Base.length np = 1 + MerkleTree.New.High.mt_path_length idx (MT?.j mt) false}) * MerkleTree.New.High.hash)
{ "end_col": 6, "end_line": 536, "start_col": 33, "start_line": 529 }
Prims.GTot
val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)})
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs
val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v =
false
null
false
let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.hs_wf_elts", "MerkleTree.New.High.hash", "Prims.unit", "MerkleTree.New.High.hs_wf_elts_equal", "Prims.op_Addition", "Prims.op_Division", "FStar.Seq.Base.seq", "FStar.Seq.Base.upd", "FStar.Seq.Properties.snoc", "FStar.Seq.Base.index" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz ->
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)})
[]
MerkleTree.New.High.hashess_insert
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv < 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv) - 1} -> hs: MerkleTree.New.High.hashess {FStar.Seq.Base.length hs = 32 /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> v: MerkleTree.New.High.hash -> Prims.GTot (ihs: MerkleTree.New.High.hashess { FStar.Seq.Base.length ihs = 32 /\ MerkleTree.New.High.hs_wf_elts (lv + 1) ihs (i / 2) (j / 2) })
{ "end_col": 5, "end_line": 171, "start_col": 37, "start_line": 168 }
Prims.GTot
val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv))
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true))
val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd =
false
null
false
let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.hash", "Prims.l_and", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hs_wf_elts", "Prims.op_AmpAmp", "MerkleTree.New.High.path", "Prims.bool", "MerkleTree.New.High.mt_get_path_", "Prims.op_Addition", "Prims.op_Division", "Prims.op_Modulus", "Prims.precedes", "MerkleTree.New.High.mt_make_path_step", "MerkleTree.New.High.mt_path_length", "MerkleTree.New.High.offset_of" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd})
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.mt_get_path_
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = 32} -> rhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length rhs = 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv) /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> k: Prims.nat{i <= k && k <= j} -> p: MerkleTree.New.High.path -> actd: Prims.bool -> Prims.GTot (np: MerkleTree.New.High.path { FStar.Seq.Base.length np = FStar.Seq.Base.length p + MerkleTree.New.High.mt_path_length k j actd })
{ "end_col": 42, "end_line": 444, "start_col": 50, "start_line": 438 }
FStar.Pervasives.Lemma
val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j)
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv)))
val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd =
false
null
true
let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv)))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "lemma", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.hash", "Prims.l_and", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hs_wf_elts", "Prims.bool", "Prims.op_Modulus", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Pervasives.Native.fst", "MerkleTree.New.High.construct_rhs", "Prims.op_Addition", "Prims.op_Division", "Prims.unit", "MerkleTree.New.High.construct_rhs_unchanged", "FStar.Seq.Base.index", "FStar.Seq.Base.seq", "FStar.Seq.Base.upd", "MerkleTree.New.High.offset_of" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv))
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j)
[ "recursion" ]
MerkleTree.New.High.construct_rhs_unchanged
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = 32} -> rhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length rhs = 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv) /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> acc: MerkleTree.New.High.hash -> actd: Prims.bool -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (FStar.Seq.Base.slice rhs 0 lv) (FStar.Seq.Base.slice (FStar.Pervasives.Native.fst (MerkleTree.New.High.construct_rhs lv hs rhs i j acc actd)) 0 lv)) (decreases j)
{ "end_col": 63, "end_line": 310, "start_col": 64, "start_line": 296 }
Prims.GTot
val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j)
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs
val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc =
false
null
false
let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 then (remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs) else ihs
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "MerkleTree.Spec.hash_fun_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.hs_wf_elts", "MerkleTree.New.High.hash", "Prims.op_Modulus", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "Prims.op_Addition", "FStar.Seq.Base.index", "MerkleTree.New.High.offset_of", "Prims.eq2", "Prims.op_Division", "MerkleTree.New.High.insert_", "MerkleTree.Spec.hash", "FStar.Seq.Properties.last", "MerkleTree.New.High.remainder_2_1_div", "Prims.bool", "MerkleTree.New.High.hashess_insert" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)})
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j)
[ "recursion" ]
MerkleTree.New.High.insert_
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv < 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv) - 1} -> hs: MerkleTree.New.High.hashess {FStar.Seq.Base.length hs = 32 /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> acc: MerkleTree.New.High.hash -> Prims.GTot (ihs: MerkleTree.New.High.hashess { FStar.Seq.Base.length ihs = 32 /\ MerkleTree.New.High.hs_wf_elts lv ihs i (j + 1) /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice hs 0 lv) (FStar.Seq.Base.slice ihs 0 lv) })
{ "end_col": 10, "end_line": 201, "start_col": 39, "start_line": 185 }
Prims.GTot
val mt_retract_to_: #hsz:pos -> hs:hashess #hsz {S.length hs = 32} -> lv:nat{lv < S.length hs} -> i:nat -> s:nat -> // s is the first index excluded from nhs j:nat{ i <= s /\ s <= j /\ j < pow2 (S.length hs - lv) /\ hs_wf_elts lv hs i j} -> GTot (nhs:hashess #hsz { S.length nhs = S.length hs /\ S.equal (S.slice hs 0 lv) (S.slice nhs 0 lv) /\ hs_wf_elts #hsz lv nhs i s}) (decreases (S.length hs - lv))
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_retract_to_ #hsz hs lv i s j = if lv >= S.length hs then hs else begin let hvec = S.index hs lv in let old_len = j - offset_of i in let new_len = s - offset_of i in assert (S.length hvec = old_len); assert (new_len <= old_len); assert (new_len <= S.length hvec); let retracted = S.slice hvec 0 new_len in let nhs = S.upd hs lv retracted in if lv >= S.length hs - 1 then nhs else begin hs_wf_elts_equal (lv + 1) hs nhs (i / 2) (j / 2); mt_retract_to_ nhs (lv + 1) (i / 2) (s / 2) (j / 2) end end
val mt_retract_to_: #hsz:pos -> hs:hashess #hsz {S.length hs = 32} -> lv:nat{lv < S.length hs} -> i:nat -> s:nat -> // s is the first index excluded from nhs j:nat{ i <= s /\ s <= j /\ j < pow2 (S.length hs - lv) /\ hs_wf_elts lv hs i j} -> GTot (nhs:hashess #hsz { S.length nhs = S.length hs /\ S.equal (S.slice hs 0 lv) (S.slice nhs 0 lv) /\ hs_wf_elts #hsz lv nhs i s}) (decreases (S.length hs - lv)) let rec mt_retract_to_ #hsz hs lv i s j =
false
null
false
if lv >= S.length hs then hs else let hvec = S.index hs lv in let old_len = j - offset_of i in let new_len = s - offset_of i in assert (S.length hvec = old_len); assert (new_len <= old_len); assert (new_len <= S.length hvec); let retracted = S.slice hvec 0 new_len in let nhs = S.upd hs lv retracted in if lv >= S.length hs - 1 then nhs else (hs_wf_elts_equal (lv + 1) hs nhs (i / 2) (j / 2); mt_retract_to_ nhs (lv + 1) (i / 2) (s / 2) (j / 2))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "MerkleTree.New.High.hashess", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.nat", "Prims.op_LessThan", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hs_wf_elts", "Prims.op_GreaterThanOrEqual", "Prims.bool", "MerkleTree.New.High.mt_retract_to_", "Prims.op_Addition", "Prims.op_Division", "Prims.unit", "MerkleTree.New.High.hs_wf_elts_equal", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Seq.Base.seq", "FStar.Seq.Base.upd", "MerkleTree.New.High.hash", "Prims._assert", "MerkleTree.New.High.offset_of", "FStar.Seq.Base.index" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) #push-options "--z3rlimit 20" val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv)) let rec mt_get_path_pull #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd) #pop-options val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv)) let mt_get_path_slice #hsz lv hs rhs i j k p actd = mt_get_path_pull lv hs rhs i j k p actd val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) * hash #hsz) let mt_get_path #hsz mt idx drt = let (umt, root) = mt_get_root mt drt in let ofs = offset_of (MT?.i umt) in let np = path_insert S.empty (S.index (S.index (MT?.hs umt) 0) (idx - ofs)) in MT?.j umt, mt_get_path_ 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx np false, root /// Flushing val mt_flush_to_: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs pi j} -> GTot (fhs:hashess{ S.length fhs = 32 /\ S.equal (S.slice hs 0 lv) (S.slice fhs 0 lv) /\ hs_wf_elts #hsz lv fhs i j}) (decreases i) let rec mt_flush_to_ #hsz lv hs pi i j = let oi = offset_of i in let opi = offset_of pi in if oi = opi then hs else (let ofs = oi - opi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ (lv + 1) nhs (pi / 2) (i / 2) (j / 2)) val mt_flush_to_rec: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs pi j} -> Lemma (requires offset_of i <> offset_of pi) (ensures mt_flush_to_ lv hs pi i j == (let ofs = offset_of i - offset_of pi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ #hsz (lv + 1) nhs (pi / 2) (i / 2) (j / 2))) let mt_flush_to_rec #hsz lv hs pi i j = () val mt_flush_to: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{idx >= MT?.i mt /\ idx < MT?.j mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush_to #hsz mt idx = let fhs = mt_flush_to_ #hsz 0 (MT?.hs mt) (MT?.i mt) idx (MT?.j mt) in MT idx (MT?.j mt) fhs (MT?.rhs_ok mt) (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_flush: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ MT?.j mt > MT?.i mt} -> GTot (fmt:merkle_tree{mt_wf_elts #hsz fmt}) let mt_flush #hsz mt = mt_flush_to mt (MT?.j mt - 1) #push-options "--max_fuel 2" /// Retraction val mt_retract_to_: #hsz:pos -> hs:hashess #hsz {S.length hs = 32} -> lv:nat{lv < S.length hs} -> i:nat -> s:nat -> // s is the first index excluded from nhs j:nat{ i <= s /\ s <= j /\ j < pow2 (S.length hs - lv) /\ hs_wf_elts lv hs i j} -> GTot (nhs:hashess #hsz { S.length nhs = S.length hs /\ S.equal (S.slice hs 0 lv) (S.slice nhs 0 lv) /\ hs_wf_elts #hsz lv nhs i s}) (decreases (S.length hs - lv))
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_retract_to_: #hsz:pos -> hs:hashess #hsz {S.length hs = 32} -> lv:nat{lv < S.length hs} -> i:nat -> s:nat -> // s is the first index excluded from nhs j:nat{ i <= s /\ s <= j /\ j < pow2 (S.length hs - lv) /\ hs_wf_elts lv hs i j} -> GTot (nhs:hashess #hsz { S.length nhs = S.length hs /\ S.equal (S.slice hs 0 lv) (S.slice nhs 0 lv) /\ hs_wf_elts #hsz lv nhs i s}) (decreases (S.length hs - lv))
[ "recursion" ]
MerkleTree.New.High.mt_retract_to_
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = 32} -> lv: Prims.nat{lv < FStar.Seq.Base.length hs} -> i: Prims.nat -> s: Prims.nat -> j: Prims.nat { i <= s /\ s <= j /\ j < Prims.pow2 (FStar.Seq.Base.length hs - lv) /\ MerkleTree.New.High.hs_wf_elts lv hs i j } -> Prims.GTot (nhs: MerkleTree.New.High.hashess { FStar.Seq.Base.length nhs = FStar.Seq.Base.length hs /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice hs 0 lv) (FStar.Seq.Base.slice nhs 0 lv) /\ MerkleTree.New.High.hs_wf_elts lv nhs i s })
{ "end_col": 5, "end_line": 634, "start_col": 2, "start_line": 619 }
Prims.GTot
val mt_flush_to_: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs pi j} -> GTot (fhs:hashess{ S.length fhs = 32 /\ S.equal (S.slice hs 0 lv) (S.slice fhs 0 lv) /\ hs_wf_elts #hsz lv fhs i j}) (decreases i)
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_flush_to_ #hsz lv hs pi i j = let oi = offset_of i in let opi = offset_of pi in if oi = opi then hs else (let ofs = oi - opi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ (lv + 1) nhs (pi / 2) (i / 2) (j / 2))
val mt_flush_to_: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs pi j} -> GTot (fhs:hashess{ S.length fhs = 32 /\ S.equal (S.slice hs 0 lv) (S.slice fhs 0 lv) /\ hs_wf_elts #hsz lv fhs i j}) (decreases i) let rec mt_flush_to_ #hsz lv hs pi i j =
false
null
false
let oi = offset_of i in let opi = offset_of pi in if oi = opi then hs else (let ofs = oi - opi in let hvec = S.index hs lv in let flushed = S.slice hvec ofs (S.length hvec) in let nhs = S.upd hs lv flushed in hs_wf_elts_equal (lv + 1) hs nhs (pi / 2) (j / 2); mt_flush_to_ (lv + 1) nhs (pi / 2) (i / 2) (j / 2))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "sometrivial", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "Prims.op_GreaterThanOrEqual", "Prims.l_and", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hs_wf_elts", "Prims.bool", "MerkleTree.New.High.mt_flush_to_", "Prims.op_Addition", "Prims.op_Division", "Prims.unit", "MerkleTree.New.High.hs_wf_elts_equal", "FStar.Seq.Base.seq", "FStar.Seq.Base.upd", "MerkleTree.New.High.hash", "FStar.Seq.Base.slice", "FStar.Seq.Base.index", "FStar.Seq.Base.equal", "MerkleTree.New.High.offset_of" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) #push-options "--z3rlimit 20" val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv)) let rec mt_get_path_pull #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd) #pop-options val mt_get_path_slice: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice (mt_get_path_ lv hs rhs i j k p actd) (S.length p) (S.length p + mt_path_length k j actd)) (mt_get_path_ lv hs rhs i j k S.empty actd)) (decreases (32 - lv)) let mt_get_path_slice #hsz lv hs rhs i j k p actd = mt_get_path_pull lv hs rhs i j k p actd val mt_get_path: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> idx:nat{MT?.i mt <= idx /\ idx < MT?.j mt} -> drt:hash #hsz -> GTot (nat * (np:path #hsz {S.length np = 1 + mt_path_length idx (MT?.j mt) false}) * hash #hsz) let mt_get_path #hsz mt idx drt = let (umt, root) = mt_get_root mt drt in let ofs = offset_of (MT?.i umt) in let np = path_insert S.empty (S.index (S.index (MT?.hs umt) 0) (idx - ofs)) in MT?.j umt, mt_get_path_ 0 (MT?.hs umt) (MT?.rhs umt) (MT?.i umt) (MT?.j umt) idx np false, root /// Flushing val mt_flush_to_: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs pi j} -> GTot (fhs:hashess{ S.length fhs = 32 /\ S.equal (S.slice hs 0 lv) (S.slice fhs 0 lv) /\ hs_wf_elts #hsz lv fhs i j})
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_flush_to_: #hsz:pos -> lv:nat{lv < 32} -> hs:hashess #hsz {S.length hs = 32} -> pi:nat -> i:nat{i >= pi} -> j:nat{ j >= i /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs pi j} -> GTot (fhs:hashess{ S.length fhs = 32 /\ S.equal (S.slice hs 0 lv) (S.slice fhs 0 lv) /\ hs_wf_elts #hsz lv fhs i j}) (decreases i)
[ "recursion" ]
MerkleTree.New.High.mt_flush_to_
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv < 32} -> hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = 32} -> pi: Prims.nat -> i: Prims.nat{i >= pi} -> j: Prims.nat{j >= i /\ j < Prims.pow2 (32 - lv) /\ MerkleTree.New.High.hs_wf_elts lv hs pi j} -> Prims.GTot (fhs: MerkleTree.New.High.hashess { FStar.Seq.Base.length fhs = 32 /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice hs 0 lv) (FStar.Seq.Base.slice fhs 0 lv) /\ MerkleTree.New.High.hs_wf_elts lv fhs i j })
{ "end_col": 58, "end_line": 563, "start_col": 40, "start_line": 554 }
FStar.Pervasives.Lemma
val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv))
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true))
val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd =
false
null
true
let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true))
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "lemma", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.hash", "Prims.l_and", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hs_wf_elts", "Prims.op_AmpAmp", "MerkleTree.New.High.path", "Prims.bool", "MerkleTree.New.High.mt_get_path_unchanged", "Prims.op_Addition", "Prims.op_Division", "Prims.op_Modulus", "Prims.precedes", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "MerkleTree.New.High.mt_make_path_step", "MerkleTree.New.High.offset_of" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p)))
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.mt_get_path_unchanged
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = 32} -> rhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length rhs = 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv) /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> k: Prims.nat{i <= k && k <= j} -> p: MerkleTree.New.High.path -> actd: Prims.bool -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal p (FStar.Seq.Base.slice (MerkleTree.New.High.mt_get_path_ lv hs rhs i j k p actd) 0 (FStar.Seq.Base.length p))) (decreases 32 - lv)
{ "end_col": 41, "end_line": 469, "start_col": 59, "start_line": 462 }
FStar.Pervasives.Lemma
val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv))
[ { "abbrev": true, "full_module": "MerkleTree.Spec", "short_module": "MTS" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "MerkleTree.New", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mt_get_path_pull #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd)
val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv)) let rec mt_get_path_pull #hsz lv hs rhs i j k p actd =
false
null
true
let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in let nactd = if j % 2 = 0 then actd else true in mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np nactd; mt_get_path_pull (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) (mt_make_path_step lv hs rhs i j k S.empty actd) nactd)
{ "checked_file": "MerkleTree.New.High.fst.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "MerkleTree.Spec.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "MerkleTree.New.High.fst" }
[ "lemma", "" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "MerkleTree.New.High.hashess", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "MerkleTree.New.High.hashes", "MerkleTree.New.High.hash", "Prims.l_and", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Subtraction", "MerkleTree.New.High.hs_wf_elts", "Prims.op_AmpAmp", "MerkleTree.New.High.path", "Prims.bool", "MerkleTree.New.High.mt_get_path_pull", "Prims.op_Addition", "Prims.op_Division", "MerkleTree.New.High.mt_make_path_step", "FStar.Seq.Base.empty", "Prims.unit", "Prims.precedes", "Prims.op_Modulus", "MerkleTree.New.High.offset_of" ]
[]
module MerkleTree.New.High open FStar.Ghost open FStar.Seq module S = FStar.Seq module U32 = FStar.UInt32 module U8 = FStar.UInt8 module MTS = MerkleTree.Spec #set-options "--z3rlimit 10 --max_fuel 0 --max_ifuel 0" type uint32_t = U32.t type uint8_t = U8.t type hash (#hsz:pos) = b:Spec.Hash.Definitions.bytes{Seq.length b = hsz} type hashes (#hsz:pos) = S.seq (hash #hsz) type hashess (#hsz:pos) = S.seq (hashes #hsz) noextract let hash_init (#hsz:pos): hash #hsz = Seq.create hsz (Lib.IntTypes.u8 0) val sha256_compress: src1:hash #32 -> src2:hash #32 -> GTot (hash #32) let sha256_compress = MTS.sha256_compress /// Facts about sequences val seq_slice_equal_index: #a:Type -> s1:S.seq a -> s2:S.seq a -> i:nat -> j:nat{i <= j && j <= S.length s1 && j <= S.length s2} -> k:nat{i <= k && k < j} -> Lemma (requires S.equal (S.slice s1 i j) (S.slice s2 i j)) (ensures S.index s1 k == S.index s2 k) [SMTPat (S.equal (S.slice s1 i j) (S.slice s2 i j)); SMTPat (S.index s1 k)] let seq_slice_equal_index #a s1 s2 i j k = assert (S.index (S.slice s1 i j) (k - i) == S.index (S.slice s2 i j) (k - i)) private val seq_slice_more_equal: #a:Type -> s1:S.seq a -> s2:S.seq a -> n:nat -> m:nat{n <= m && m <= S.length s1 && m <= S.length s2} -> k:nat{n <= k} -> l:nat{k <= l && l <= m} -> Lemma (requires S.equal (S.slice s1 n m) (S.slice s2 n m)) (ensures S.equal (S.slice s1 k l) (S.slice s2 k l)) [SMTPat (S.equal (S.slice s1 n m) (S.slice s2 n m)); SMTPat (S.equal (S.slice s1 k l) (S.slice s2 k l))] private let seq_slice_more_equal #a s1 s2 n m k l = slice_slice s1 n m (k - n) (l - n); slice_slice s2 n m (k - n) (l - n) /// Facts about "2" val remainder_2_not_1_div: n:nat -> Lemma (requires n % 2 <> 1) (ensures n / 2 = (n + 1) / 2) let remainder_2_not_1_div n = () val remainder_2_1_div: n:nat -> Lemma (requires n % 2 = 1) (ensures n / 2 + 1 = (n + 1) / 2) let remainder_2_1_div n = () /// High-level Merkle tree data structure noeq type merkle_tree (#hsz:pos) = | MT: i:nat -> j:nat{i <= j && j < pow2 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs_ok:bool -> rhs:hashes #hsz {S.length rhs = 32} -> // Rightmost hashes mroot:hash #hsz -> hash_fun:MTS.hash_fun_t #hsz -> merkle_tree #hsz val mt_not_full (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_full #hsz mt = MT?.j mt < pow2 32 - 1 val mt_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_empty #hsz mt = MT?.j mt = 0 val mt_not_empty (#hsz:pos): merkle_tree #hsz -> GTot bool let mt_not_empty #hsz mt = MT?.j mt > 0 /// Well-formedness w.r.t. indices of base hash elements noextract val offset_of: i:nat -> Tot nat let offset_of i = if i % 2 = 0 then i else i - 1 val hs_wf_elts: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> i:nat -> j:nat{j >= i} -> GTot Type0 (decreases (32 - lv)) let rec hs_wf_elts #hsz lv hs i j = if lv = 32 then true else (let ofs = offset_of i in S.length (S.index hs lv) == j - ofs /\ hs_wf_elts #hsz (lv + 1) hs (i / 2) (j / 2)) #push-options "--max_fuel 1" val hs_wf_elts_equal: #hsz:pos -> lv:nat{lv <= 32} -> hs1:hashess #hsz {S.length hs1 = 32} -> hs2:hashess #hsz {S.length hs2 = 32} -> i:nat -> j:nat{j >= i} -> Lemma (requires hs_wf_elts lv hs1 i j /\ S.equal (S.slice hs1 lv 32) (S.slice hs2 lv 32)) (ensures hs_wf_elts lv hs2 i j) (decreases (32 - lv)) let rec hs_wf_elts_equal #hsz lv hs1 hs2 i j = if lv = 32 then () else (S.slice_slice hs1 lv 32 1 (32 - lv); S.slice_slice hs2 lv 32 1 (32 - lv); assert (S.equal (S.slice hs1 (lv + 1) 32) (S.slice hs2 (lv + 1) 32)); S.lemma_index_slice hs1 lv 32 0; S.lemma_index_slice hs2 lv 32 0; assert (S.index hs1 lv == S.index hs2 lv); hs_wf_elts_equal (lv + 1) hs1 hs2 (i / 2) (j / 2)) val mt_wf_elts (#hsz:pos): merkle_tree #hsz -> GTot Type0 let mt_wf_elts #_ (MT i j hs _ _ _ _) = hs_wf_elts 0 hs i j /// Construction val hs_wf_elts_empty: #hsz:pos -> lv:nat{lv <= 32} -> Lemma (requires True) (ensures hs_wf_elts #hsz lv (S.create 32 S.empty) 0 0) (decreases (32 - lv)) let rec hs_wf_elts_empty #hsz lv = if lv = 32 then () else hs_wf_elts_empty #hsz (lv + 1) // NOTE: the public function is `create_mt` defined below, which // builds a tree with an initial hash. noextract inline_for_extraction val create_empty_mt (#hsz:pos) (#f:MTS.hash_fun_t #hsz): unit -> GTot (mt:merkle_tree #hsz {mt_wf_elts #hsz mt}) let create_empty_mt #hsz #f _ = hs_wf_elts_empty #hsz 0; MT 0 0 (S.create 32 S.empty) false (S.create 32 (hash_init #hsz)) (hash_init #hsz) f /// Insertion val hashess_insert: #hsz:pos -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> v:hash #hsz -> GTot (ihs:hashess #hsz {S.length ihs = 32 /\ hs_wf_elts (lv + 1) ihs (i / 2) (j / 2)}) let hashess_insert #hsz lv i j hs v = let ihs = S.upd hs lv (S.snoc (S.index hs lv) v) in hs_wf_elts_equal (lv + 1) hs ihs (i / 2) (j / 2); ihs val insert_: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv < 32} -> i:nat -> j:nat{i <= j /\ j < pow2 (32 - lv) - 1} -> hs:hashess #hsz {S.length hs = 32 /\ hs_wf_elts lv hs i j} -> acc:hash #hsz -> GTot (ihs:hashess #hsz { S.length ihs = 32 /\ hs_wf_elts #hsz lv ihs i (j + 1) /\ S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)}) (decreases j) let rec insert_ #hsz #f lv i j hs acc = let ihs = hashess_insert #hsz lv i j hs acc in assert (S.equal (S.slice hs 0 lv) (S.slice ihs 0 lv)); if j % 2 = 1 // S.length (S.index hs lv) > 0 then begin remainder_2_1_div j; let nacc = f (S.last (S.index hs lv)) acc in let rihs = insert_ #hsz #f (lv + 1) (i / 2) (j / 2) ihs nacc in assert (hs_wf_elts #hsz (lv + 1) rihs (i / 2) (j / 2 + 1)); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.index ihs lv == S.index rihs lv); assert (S.length (S.index rihs lv) = (j + 1) - offset_of i); assert (S.equal (S.slice ihs 0 (lv + 1)) (S.slice rihs 0 (lv + 1))); assert (S.equal (S.slice ihs 0 lv) (S.slice rihs 0 lv)); rihs end else ihs val insert_base: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess #hsz -> acc:hash #hsz -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 <> 1) (ensures S.equal (insert_ #_ #f lv i j hs acc) (hashess_insert lv i j hs acc)) let insert_base #_ #_ lv i j hs acc = () val insert_rec: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat -> i:nat -> j:nat -> hs:hashess -> acc:hash -> Lemma (requires lv < 32 /\ i <= j /\ j < pow2 (32 - lv) - 1 /\ S.length hs = 32 /\ hs_wf_elts lv hs i j /\ j % 2 == 1) (ensures (hs_wf_elts_equal (lv + 1) hs (hashess_insert lv i j hs acc) (i / 2) (j / 2); S.equal (insert_ #_ #f lv i j hs acc) (insert_ #_ #f (lv + 1) (i / 2) (j / 2) (hashess_insert lv i j hs acc) (f (S.last (S.index hs lv)) acc)))) let insert_rec #_ #_ lv i j hs acc = () val mt_insert: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt /\ mt_not_full mt} -> v:hash #hsz -> GTot (imt:merkle_tree #hsz{mt_wf_elts #hsz imt}) let mt_insert #hsz mt v = MT (MT?.i mt) (MT?.j mt + 1) (insert_ #_ #(MT?.hash_fun mt) 0 (MT?.i mt) (MT?.j mt) (MT?.hs mt) v) false (MT?.rhs mt) (MT?.mroot mt) (MT?.hash_fun mt) val mt_create: hsz:pos -> f:MTS.hash_fun_t #hsz -> init:hash #hsz -> GTot (mt:merkle_tree{mt_wf_elts #hsz mt}) let mt_create hsz f init = mt_insert #_ (create_empty_mt #_ #f ()) init /// Getting the Merkle root and path type path (#hsz:pos) = S.seq (hash #hsz) // Construct the rightmost hashes for a given (incomplete) Merkle tree. // This function calculates the Merkle root as well, which is the final // accumulator value. val construct_rhs: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> GTot (crhs:hashes #hsz {S.length crhs = 32} * (hash #hsz)) (decreases j) let rec construct_rhs #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then (rhs, acc) else (if j % 2 = 0 then (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) val construct_rhs_unchanged: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (S.slice rhs 0 lv) (S.slice (fst (construct_rhs #_ #f lv hs rhs i j acc actd)) 0 lv)) (decreases j) let rec construct_rhs_unchanged #hsz #f lv hs rhs i j acc actd = let ofs = offset_of i in if j = 0 then () else if j % 2 = 0 then (construct_rhs_unchanged #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) in assert (S.equal (S.slice rhs 0 lv) (S.slice rrhs 0 lv))) else (let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs_unchanged #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true; let rrhs = fst (construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true) in assert (S.equal (S.slice nrhs 0 lv) (S.slice rrhs 0 lv)); assert (S.equal (S.slice rhs 0 lv) (S.slice nrhs 0 lv))) val construct_rhs_even: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> acc:hash #hsz -> actd:bool -> Lemma (requires j <> 0 /\ j % 2 = 0) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == construct_rhs #_ #f (lv + 1) hs rhs (i / 2) (j / 2) acc actd) let construct_rhs_even #_ #_ _ _ _ _ _ _ _ = () val construct_rhs_odd: #hsz:pos -> #f:MTS.hash_fun_t #hsz -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> acc:hash -> actd:bool -> Lemma (requires j % 2 = 1) (ensures construct_rhs #_ #f lv hs rhs i j acc actd == (let ofs = offset_of i in let nrhs = if actd then S.upd rhs lv acc else rhs in let nacc = if actd then f (S.index (S.index hs lv) (j - 1 - ofs)) acc else S.index (S.index hs lv) (j - 1 - ofs) in construct_rhs #_ #f (lv + 1) hs nrhs (i / 2) (j / 2) nacc true)) let construct_rhs_odd #_ #_ _ _ _ _ _ _ _ = () val mt_get_root: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts #hsz mt} -> drt:hash #hsz -> GTot (merkle_tree #hsz * hash #hsz) let mt_get_root #hsz mt drt = if MT?.rhs_ok mt then (mt, MT?.mroot mt) else begin let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt) end val mt_get_root_rhs_ok_true: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash #hsz -> Lemma (requires MT?.rhs_ok mt == true) (ensures mt_get_root #hsz mt drt == (mt, MT?.mroot mt)) let mt_get_root_rhs_ok_true #hsz mt drt = () val mt_get_root_rhs_ok_false: #hsz:pos -> mt:merkle_tree #hsz {mt_wf_elts mt} -> drt:hash -> Lemma (requires MT?.rhs_ok mt == false) (ensures mt_get_root mt drt == (let (nrhs, rt) = construct_rhs #_ #(MT?.hash_fun mt) 0 (MT?.hs mt) (MT?.rhs mt) (MT?.i mt) (MT?.j mt) drt false in (MT (MT?.i mt) (MT?.j mt) (MT?.hs mt) true nrhs rt (MT?.hash_fun mt), rt))) let mt_get_root_rhs_ok_false #_ _ _ = () val path_insert: (#hsz:pos) -> p:path #hsz -> hp:hash #hsz -> GTot (path #hsz) let path_insert #_ p hp = S.snoc p hp val mt_path_length_step: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let mt_path_length_step k j actd = if j = 0 then 0 else (if k % 2 = 0 then (if j = k || (j = k + 1 && not actd) then 0 else 1) else 1) val mt_path_length: k:nat -> j:nat{k <= j} -> actd:bool -> GTot nat let rec mt_path_length k j actd = if j = 0 then 0 else (let nactd = actd || (j % 2 = 1) in mt_path_length_step k j actd + mt_path_length (k / 2) (j / 2) nactd) val mt_make_path_step: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ j <> 0 /\ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (path #hsz) let mt_make_path_step #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if k % 2 = 1 then path_insert p (S.index (S.index hs lv) (k - 1 - ofs)) else (if k = j then p else if k + 1 = j then (if actd then path_insert p (S.index rhs lv) else p) else path_insert p (S.index (S.index hs lv) (k + 1 - ofs))) // Construct a Merkle path for a given index `k`, hashes `hs`, // and rightmost hashes `rhs`. val mt_get_path_: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> GTot (np:path #hsz {S.length np = S.length p + mt_path_length k j actd}) (decreases (32 - lv)) let rec mt_get_path_ #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then p else (let np = mt_make_path_step lv hs rhs i j k p actd in mt_get_path_ (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) val mt_get_path_unchanged: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts #hsz lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal p (S.slice (mt_get_path_ lv hs rhs i j k p actd) 0 (S.length p))) (decreases (32 - lv)) let rec mt_get_path_unchanged #hsz lv hs rhs i j k p actd = let ofs = offset_of i in if j = 0 then () else (let np = mt_make_path_step lv hs rhs i j k p actd in assert (S.equal p (S.slice np 0 (S.length p))); mt_get_path_unchanged (lv + 1) hs rhs (i / 2) (j / 2) (k / 2) np (if j % 2 = 0 then actd else true)) #push-options "--z3rlimit 20" val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd)))
false
false
MerkleTree.New.High.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mt_get_path_pull: #hsz:pos -> lv:nat{lv <= 32} -> hs:hashess #hsz {S.length hs = 32} -> rhs:hashes #hsz {S.length rhs = 32} -> i:nat -> j:nat{ i <= j /\ j < pow2 (32 - lv) /\ hs_wf_elts lv hs i j} -> k:nat{i <= k && k <= j} -> p:path #hsz -> actd:bool -> Lemma (requires True) (ensures S.equal (mt_get_path_ lv hs rhs i j k p actd) (S.append p (mt_get_path_ lv hs rhs i j k S.empty actd))) (decreases (32 - lv))
[ "recursion" ]
MerkleTree.New.High.mt_get_path_pull
{ "file_name": "src/MerkleTree.New.High.fst", "git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3", "git_url": "https://github.com/hacl-star/merkle-tree.git", "project_name": "merkle-tree" }
lv: Prims.nat{lv <= 32} -> hs: MerkleTree.New.High.hashess{FStar.Seq.Base.length hs = 32} -> rhs: MerkleTree.New.High.hashes{FStar.Seq.Base.length rhs = 32} -> i: Prims.nat -> j: Prims.nat{i <= j /\ j < Prims.pow2 (32 - lv) /\ MerkleTree.New.High.hs_wf_elts lv hs i j} -> k: Prims.nat{i <= k && k <= j} -> p: MerkleTree.New.High.path -> actd: Prims.bool -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal (MerkleTree.New.High.mt_get_path_ lv hs rhs i j k p actd) (FStar.Seq.Base.append p (MerkleTree.New.High.mt_get_path_ lv hs rhs i j k FStar.Seq.Base.empty actd))) (decreases 32 - lv)
{ "end_col": 61, "end_line": 497, "start_col": 54, "start_line": 489 }
FStar.Pervasives.Lemma
val ffdhe_p_bits_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in pow2 (8 * len - 1) < p_n)
[ { "abbrev": false, "full_module": "Spec.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p_bits_lemma a = let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in nat_from_intseq_be_slice_lemma p 1; assert (p_n == nat_from_bytes_be (slice p 1 len) + pow2 (8 * (len - 1)) * nat_from_bytes_be (slice p 0 1)); nat_from_intseq_be_lemma0 (slice p 0 1); assert (p_n == nat_from_bytes_be (slice p 1 len) + pow2 (8 * (len - 1)) * v p.[0]); assert (pow2 (8 * (len - 1)) * v p.[0] <= p_n); ffdhe_p_lemma_len a; assert (pow2 (8 * (len - 1)) * (pow2 8 - 1) <= p_n); pow2_lt_len len
val ffdhe_p_bits_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in pow2 (8 * len - 1) < p_n) let ffdhe_p_bits_lemma a =
false
null
true
let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in nat_from_intseq_be_slice_lemma p 1; assert (p_n == nat_from_bytes_be (slice p 1 len) + pow2 (8 * (len - 1)) * nat_from_bytes_be (slice p 0 1)); nat_from_intseq_be_lemma0 (slice p 0 1); assert (p_n == nat_from_bytes_be (slice p 1 len) + pow2 (8 * (len - 1)) * v p.[ 0 ]); assert (pow2 (8 * (len - 1)) * v p.[ 0 ] <= p_n); ffdhe_p_lemma_len a; assert (pow2 (8 * (len - 1)) * (pow2 8 - 1) <= p_n); pow2_lt_len len
{ "checked_file": "Hacl.Spec.FFDHE.Lemmas.fst.checked", "dependencies": [ "Spec.FFDHE.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.FFDHE.Lemmas.fst" }
[ "lemma" ]
[ "Spec.FFDHE.ffdhe_alg", "Hacl.Spec.FFDHE.Lemmas.pow2_lt_len", "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Subtraction", "Hacl.Spec.FFDHE.Lemmas.ffdhe_p_lemma_len", "Lib.IntTypes.v", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "Lib.Sequence.op_String_Access", "Lib.IntTypes.pub_uint8", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p_len", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Lib.ByteSequence.nat_from_bytes_be", "Lib.Sequence.slice", "Lib.ByteSequence.nat_from_intseq_be_lemma0", "Lib.ByteSequence.nat_from_intseq_be_slice_lemma", "Prims.nat", "Prims.op_LessThan", "Prims.op_Multiply", "Lib.Sequence.length", "Lib.IntTypes.int_t", "Lib.Sequence.lseq", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p", "Prims.pos", "Spec.FFDHE.ffdhe_len", "Spec.FFDHE.ffdhe_params_t", "Spec.FFDHE.get_ffdhe_params" ]
[]
module Hacl.Spec.FFDHE.Lemmas open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.FFDHE #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val ffdhe_p_lemma_len: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p 0 == 0xffuy) let ffdhe_p_lemma_len a = let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in allow_inversion ffdhe_alg; match a with | FFDHE2048 -> assert (p == of_list list_ffdhe_p2048); assert_norm (List.Tot.index list_ffdhe_p2048 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p2048) 0 == 0xffuy) | FFDHE3072 -> assert (p == of_list list_ffdhe_p3072); assert_norm (List.Tot.index list_ffdhe_p3072 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p3072) 0 == 0xffuy) | FFDHE4096 -> assert (p == of_list list_ffdhe_p4096); assert_norm (List.Tot.index list_ffdhe_p4096 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p4096) 0 == 0xffuy) | FFDHE6144 -> assert (p == of_list list_ffdhe_p6144); assert_norm (List.Tot.index list_ffdhe_p6144 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p6144) 0 == 0xffuy) | FFDHE8192 -> assert (p == of_list list_ffdhe_p8192); assert_norm (List.Tot.index list_ffdhe_p8192 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p8192) 0 == 0xffuy) // the proof should be somehow simpler val pow2_lt_len: len:size_pos -> Lemma (pow2 (8 * len - 1) < pow2 (8 * (len - 1)) * (pow2 8 - 1)) let pow2_lt_len len = let a = pow2 (8 * len - 1) in let b = pow2 (8 * (len - 1)) * (pow2 8 - 1) in calc (==) { b / a; (==) { Math.Lemmas.pow2_plus (8 * len - 8) 7 } b / (pow2 (8 * len - 8) * pow2 7); (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (8 * len - 8)) (pow2 7) } b / pow2 (8 * len - 8) / pow2 7; (==) { Math.Lemmas.cancel_mul_div (pow2 8 - 1) (pow2 (8 * len - 8)) } (pow2 8 - 1) / pow2 7; (==) { Math.Lemmas.pow2_plus 7 1 } (pow2 7 * 2 - 1) / pow2 7; (==) { } 1; }; // assert (b / a * a <= b); // assert (a <= b) calc (>) { pow2 (8 * len - 8) * (pow2 8 - 1) % pow2 (8 * len - 1); (==) { Math.Lemmas.pow2_plus (8 * len - 8) 8 } (pow2 (8 * len) - pow2 (8 * len - 8)) % pow2 (8 * len - 1); (==) { Math.Lemmas.lemma_mod_plus_distr_l (pow2 (8 * len)) (- pow2 (8 * len - 8)) (pow2 (8 * len - 1)) } (pow2 (8 * len) % pow2 (8 * len - 1) - pow2 (8 * len - 8)) % pow2 (8 * len - 1); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 (8 * len - 1) (8 * len) } (0 - pow2 (8 * len - 8)) % pow2 (8 * len - 1); //(==) { Math.Lemmas.pow2_lt_compat (8 * len - 1) (8 * len - 8) } //pow2 (8 * len - 1) - pow2 (8 * len - 8); (>) { Math.Lemmas.pow2_lt_compat (8 * len - 1) (8 * len - 8) } 0; }; assert (a < b) val ffdhe_p_bits_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in pow2 (8 * len - 1) < p_n)
false
false
Hacl.Spec.FFDHE.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p_bits_lemma: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let len = ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = nat_from_bytes_be p in pow2 (8 * len - 1) < p_n)
[]
Hacl.Spec.FFDHE.Lemmas.ffdhe_p_bits_lemma
{ "file_name": "code/ffdhe/Hacl.Spec.FFDHE.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.FFDHE.ffdhe_alg -> FStar.Pervasives.Lemma (ensures (let ffdhe_p = Spec.FFDHE.get_ffdhe_params a in let len = Spec.FFDHE.ffdhe_len a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in let p_n = Lib.ByteSequence.nat_from_bytes_be p in Prims.pow2 (8 * len - 1) < p_n))
{ "end_col": 17, "end_line": 104, "start_col": 26, "start_line": 91 }
FStar.Pervasives.Lemma
val pow2_lt_len: len:size_pos -> Lemma (pow2 (8 * len - 1) < pow2 (8 * (len - 1)) * (pow2 8 - 1))
[ { "abbrev": false, "full_module": "Spec.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pow2_lt_len len = let a = pow2 (8 * len - 1) in let b = pow2 (8 * (len - 1)) * (pow2 8 - 1) in calc (==) { b / a; (==) { Math.Lemmas.pow2_plus (8 * len - 8) 7 } b / (pow2 (8 * len - 8) * pow2 7); (==) { Math.Lemmas.division_multiplication_lemma b (pow2 (8 * len - 8)) (pow2 7) } b / pow2 (8 * len - 8) / pow2 7; (==) { Math.Lemmas.cancel_mul_div (pow2 8 - 1) (pow2 (8 * len - 8)) } (pow2 8 - 1) / pow2 7; (==) { Math.Lemmas.pow2_plus 7 1 } (pow2 7 * 2 - 1) / pow2 7; (==) { } 1; }; // assert (b / a * a <= b); // assert (a <= b) calc (>) { pow2 (8 * len - 8) * (pow2 8 - 1) % pow2 (8 * len - 1); (==) { Math.Lemmas.pow2_plus (8 * len - 8) 8 } (pow2 (8 * len) - pow2 (8 * len - 8)) % pow2 (8 * len - 1); (==) { Math.Lemmas.lemma_mod_plus_distr_l (pow2 (8 * len)) (- pow2 (8 * len - 8)) (pow2 (8 * len - 1)) } (pow2 (8 * len) % pow2 (8 * len - 1) - pow2 (8 * len - 8)) % pow2 (8 * len - 1); (==) { Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 (8 * len - 1) (8 * len) } (0 - pow2 (8 * len - 8)) % pow2 (8 * len - 1); //(==) { Math.Lemmas.pow2_lt_compat (8 * len - 1) (8 * len - 8) } //pow2 (8 * len - 1) - pow2 (8 * len - 8); (>) { Math.Lemmas.pow2_lt_compat (8 * len - 1) (8 * len - 8) } 0; }; assert (a < b)
val pow2_lt_len: len:size_pos -> Lemma (pow2 (8 * len - 1) < pow2 (8 * (len - 1)) * (pow2 8 - 1)) let pow2_lt_len len =
false
null
true
let a = pow2 (8 * len - 1) in let b = pow2 (8 * (len - 1)) * (pow2 8 - 1) in calc ( == ) { b / a; ( == ) { Math.Lemmas.pow2_plus (8 * len - 8) 7 } b / (pow2 (8 * len - 8) * pow2 7); ( == ) { Math.Lemmas.division_multiplication_lemma b (pow2 (8 * len - 8)) (pow2 7) } b / pow2 (8 * len - 8) / pow2 7; ( == ) { Math.Lemmas.cancel_mul_div (pow2 8 - 1) (pow2 (8 * len - 8)) } (pow2 8 - 1) / pow2 7; ( == ) { Math.Lemmas.pow2_plus 7 1 } (pow2 7 * 2 - 1) / pow2 7; ( == ) { () } 1; }; calc ( > ) { pow2 (8 * len - 8) * (pow2 8 - 1) % pow2 (8 * len - 1); ( == ) { Math.Lemmas.pow2_plus (8 * len - 8) 8 } (pow2 (8 * len) - pow2 (8 * len - 8)) % pow2 (8 * len - 1); ( == ) { Math.Lemmas.lemma_mod_plus_distr_l (pow2 (8 * len)) (- pow2 (8 * len - 8)) (pow2 (8 * len - 1)) } (pow2 (8 * len) % pow2 (8 * len - 1) - pow2 (8 * len - 8)) % pow2 (8 * len - 1); ( == ) { Math.Lemmas.pow2_multiplication_modulo_lemma_1 1 (8 * len - 1) (8 * len) } (0 - pow2 (8 * len - 8)) % pow2 (8 * len - 1); ( > ) { Math.Lemmas.pow2_lt_compat (8 * len - 1) (8 * len - 8) } 0; }; assert (a < b)
{ "checked_file": "Hacl.Spec.FFDHE.Lemmas.fst.checked", "dependencies": [ "Spec.FFDHE.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.FFDHE.Lemmas.fst" }
[ "lemma" ]
[ "Lib.IntTypes.size_pos", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.op_GreaterThan", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.pow2", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.eq2", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.pow2_plus", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "Prims.op_Minus", "FStar.Math.Lemmas.pow2_multiplication_modulo_lemma_1", "FStar.Math.Lemmas.pow2_lt_compat", "Prims.op_Division", "FStar.Math.Lemmas.division_multiplication_lemma", "FStar.Math.Lemmas.cancel_mul_div", "Prims.pos" ]
[]
module Hacl.Spec.FFDHE.Lemmas open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.FFDHE #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val ffdhe_p_lemma_len: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p 0 == 0xffuy) let ffdhe_p_lemma_len a = let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in allow_inversion ffdhe_alg; match a with | FFDHE2048 -> assert (p == of_list list_ffdhe_p2048); assert_norm (List.Tot.index list_ffdhe_p2048 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p2048) 0 == 0xffuy) | FFDHE3072 -> assert (p == of_list list_ffdhe_p3072); assert_norm (List.Tot.index list_ffdhe_p3072 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p3072) 0 == 0xffuy) | FFDHE4096 -> assert (p == of_list list_ffdhe_p4096); assert_norm (List.Tot.index list_ffdhe_p4096 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p4096) 0 == 0xffuy) | FFDHE6144 -> assert (p == of_list list_ffdhe_p6144); assert_norm (List.Tot.index list_ffdhe_p6144 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p6144) 0 == 0xffuy) | FFDHE8192 -> assert (p == of_list list_ffdhe_p8192); assert_norm (List.Tot.index list_ffdhe_p8192 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p8192) 0 == 0xffuy) // the proof should be somehow simpler
false
false
Hacl.Spec.FFDHE.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2_lt_len: len:size_pos -> Lemma (pow2 (8 * len - 1) < pow2 (8 * (len - 1)) * (pow2 8 - 1))
[]
Hacl.Spec.FFDHE.Lemmas.pow2_lt_len
{ "file_name": "code/ffdhe/Hacl.Spec.FFDHE.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_pos -> FStar.Pervasives.Lemma (ensures Prims.pow2 (8 * len - 1) < Prims.pow2 (8 * (len - 1)) * (Prims.pow2 8 - 1))
{ "end_col": 16, "end_line": 81, "start_col": 21, "start_line": 48 }
FStar.Pervasives.Lemma
val ffdhe_p_lemma_len: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p 0 == 0xffuy)
[ { "abbrev": false, "full_module": "Spec.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.FFDHE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ffdhe_p_lemma_len a = let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in allow_inversion ffdhe_alg; match a with | FFDHE2048 -> assert (p == of_list list_ffdhe_p2048); assert_norm (List.Tot.index list_ffdhe_p2048 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p2048) 0 == 0xffuy) | FFDHE3072 -> assert (p == of_list list_ffdhe_p3072); assert_norm (List.Tot.index list_ffdhe_p3072 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p3072) 0 == 0xffuy) | FFDHE4096 -> assert (p == of_list list_ffdhe_p4096); assert_norm (List.Tot.index list_ffdhe_p4096 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p4096) 0 == 0xffuy) | FFDHE6144 -> assert (p == of_list list_ffdhe_p6144); assert_norm (List.Tot.index list_ffdhe_p6144 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p6144) 0 == 0xffuy) | FFDHE8192 -> assert (p == of_list list_ffdhe_p8192); assert_norm (List.Tot.index list_ffdhe_p8192 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p8192) 0 == 0xffuy)
val ffdhe_p_lemma_len: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p 0 == 0xffuy) let ffdhe_p_lemma_len a =
false
null
true
let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in allow_inversion ffdhe_alg; match a with | FFDHE2048 -> assert (p == of_list list_ffdhe_p2048); assert_norm (List.Tot.index list_ffdhe_p2048 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p2048) 0 == 0xffuy) | FFDHE3072 -> assert (p == of_list list_ffdhe_p3072); assert_norm (List.Tot.index list_ffdhe_p3072 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p3072) 0 == 0xffuy) | FFDHE4096 -> assert (p == of_list list_ffdhe_p4096); assert_norm (List.Tot.index list_ffdhe_p4096 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p4096) 0 == 0xffuy) | FFDHE6144 -> assert (p == of_list list_ffdhe_p6144); assert_norm (List.Tot.index list_ffdhe_p6144 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p6144) 0 == 0xffuy) | FFDHE8192 -> assert (p == of_list list_ffdhe_p8192); assert_norm (List.Tot.index list_ffdhe_p8192 0 == 0xffuy); assert (Seq.index (Seq.seq_of_list list_ffdhe_p8192) 0 == 0xffuy)
{ "checked_file": "Hacl.Spec.FFDHE.Lemmas.fst.checked", "dependencies": [ "Spec.FFDHE.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.FFDHE.Lemmas.fst" }
[ "lemma" ]
[ "Spec.FFDHE.ffdhe_alg", "Prims._assert", "Prims.eq2", "FStar.UInt8.t", "FStar.Seq.Base.index", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.PUB", "FStar.Seq.Properties.seq_of_list", "Spec.FFDHE.list_ffdhe_p2048", "FStar.UInt8.__uint_to_t", "Prims.unit", "FStar.Pervasives.assert_norm", "FStar.List.Tot.Base.index", "Lib.Sequence.seq", "Lib.IntTypes.pub_uint8", "Prims.l_or", "Prims.nat", "FStar.Seq.Base.length", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p_len", "Prims.l_and", "FStar.List.Tot.Base.length", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "Lib.Sequence.of_list", "Spec.FFDHE.list_ffdhe_p3072", "Spec.FFDHE.list_ffdhe_p4096", "Spec.FFDHE.list_ffdhe_p6144", "Spec.FFDHE.list_ffdhe_p8192", "FStar.Pervasives.allow_inversion", "Lib.Sequence.lseq", "Spec.FFDHE.__proj__Mk_ffdhe_params__item__ffdhe_p", "Spec.FFDHE.ffdhe_params_t", "Spec.FFDHE.get_ffdhe_params" ]
[]
module Hacl.Spec.FFDHE.Lemmas open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.FFDHE #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" val ffdhe_p_lemma_len: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p 0 == 0xffuy)
false
false
Hacl.Spec.FFDHE.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val ffdhe_p_lemma_len: a:ffdhe_alg -> Lemma (let ffdhe_p = get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in Seq.index p 0 == 0xffuy)
[]
Hacl.Spec.FFDHE.Lemmas.ffdhe_p_lemma_len
{ "file_name": "code/ffdhe/Hacl.Spec.FFDHE.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.FFDHE.ffdhe_alg -> FStar.Pervasives.Lemma (ensures (let ffdhe_p = Spec.FFDHE.get_ffdhe_params a in let p = Mk_ffdhe_params?.ffdhe_p ffdhe_p in FStar.Seq.Base.index p 0 == 0xffuy))
{ "end_col": 69, "end_line": 43, "start_col": 25, "start_line": 18 }
Prims.Tot
val cswap2: cswap2_t M64 p
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let cswap2 bit p1 p2 = let h0 = ST.get() in if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fswap_inline.cswap2 bit p1 p2 else Vale.Wrapper.X64.Fswap.cswap2_e bit p1 p2; let h1 = ST.get() in // Seq.equal is swapped in the interop wrappers, so the SMTPat is not matching: // We have Seq.equal s1 s2 but are trying to prove s2 == s1 let aux1 () : Lemma (requires v bit == 1) (ensures as_seq h1 p1 == as_seq h0 p2 /\ as_seq h1 p2 == as_seq h0 p1) = Seq.lemma_eq_elim (B.as_seq h0 p2) (B.as_seq h1 p1); Seq.lemma_eq_elim (B.as_seq h0 p1) (B.as_seq h1 p2) in let aux2 () : Lemma (requires v bit == 0) (ensures as_seq h1 p1 == as_seq h0 p1 /\ as_seq h1 p2 == as_seq h0 p2) = Seq.lemma_eq_elim (B.as_seq h0 p1) (B.as_seq h1 p1); Seq.lemma_eq_elim (B.as_seq h0 p2) (B.as_seq h1 p2) in Classical.move_requires aux1 (); Classical.move_requires aux2 ()
val cswap2: cswap2_t M64 p let cswap2 bit p1 p2 =
false
null
false
let h0 = ST.get () in if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fswap_inline.cswap2 bit p1 p2 else Vale.Wrapper.X64.Fswap.cswap2_e bit p1 p2; let h1 = ST.get () in let aux1 () : Lemma (requires v bit == 1) (ensures as_seq h1 p1 == as_seq h0 p2 /\ as_seq h1 p2 == as_seq h0 p1) = Seq.lemma_eq_elim (B.as_seq h0 p2) (B.as_seq h1 p1); Seq.lemma_eq_elim (B.as_seq h0 p1) (B.as_seq h1 p2) in let aux2 () : Lemma (requires v bit == 0) (ensures as_seq h1 p1 == as_seq h0 p1 /\ as_seq h1 p2 == as_seq h0 p2) = Seq.lemma_eq_elim (B.as_seq h0 p1) (B.as_seq h1 p1); Seq.lemma_eq_elim (B.as_seq h0 p2) (B.as_seq h1 p2) in Classical.move_requires aux1 (); Classical.move_requires aux2 ()
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "total" ]
[ "Lib.IntTypes.uint64", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Impl.Curve25519.Fields.Core.felem2", "Hacl.Impl.Curve25519.Fields.Core.M64", "FStar.Classical.move_requires", "Prims.unit", "Prims.eq2", "Prims.int", "Prims.l_and", "Lib.Sequence.lseq", "Hacl.Impl.Curve25519.Fields.Core.limb", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.op_Plus_Dot", "Hacl.Impl.Curve25519.Fields.Core.nlimb", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Prims.squash", "Lib.IntTypes.int_t", "Lib.IntTypes.add_mod", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Seq.Base.lemma_eq_elim", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "EverCrypt.TargetConfig.hacl_can_compile_inline_asm", "Vale.Inline.X64.Fswap_inline.cswap2", "Prims.bool", "Vale.Wrapper.X64.Fswap.cswap2_e" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len}) let as_nat_is_as_nat (b:lbuffer uint64 4ul) (h:HS.mem): Lemma (ensures (FA.as_nat b h == F64.as_nat h b)) [ SMTPat (as_nat h b) ] = () let _: squash (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) = assert_norm (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) // This one only goes through in a reasonable amount of rlimit thanks to // ``as_nat_is_as_nat`` and ``buffer_is_buffer`` above. [@ CInline] let add_scalar out f1 f2 = if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2 // Spec discrepancy. Need to call the right lemma from FStar.Math.Lemmas. #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 400" [@ CInline] let fadd out f1 f2 = let h0 = ST.get () in let aux () : Lemma (P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { FStar.Math.Lemmas.modulo_distributivity (as_nat h0 f1) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a1; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fadd out f1 f2 else Vale.Wrapper.X64.Fadd.fadd_e out f1 f2 #pop-options [@ CInline] let fsub out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_sub_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (- as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fsub out f1 f2 else Vale.Wrapper.X64.Fsub.fsub_e out f1 f2 #push-options "--z3rlimit 200" let lemma_fmul_equiv (h0:HS.mem) (f1 f2:F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * (F64.as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime)) % Vale.Curve25519.Fast_defs.prime in let a2 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (F64.as_nat h0 f1 * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_r (F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } #pop-options [@ CInline] let fmul out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 f1 f2; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then ( assert (disjoint f1 (gsub tmp 0ul 8ul)); assert (disjoint f2 (gsub tmp 0ul 8ul)); Vale.Inline.X64.Fmul_inline.fmul out f1 f2 (sub tmp 0ul 8ul) ) else Vale.Wrapper.X64.Fmul.fmul_e (sub tmp 0ul 8ul) f1 out f2 #push-options "--z3rlimit 500" [@ CInline] let fmul2 out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 (gsub f1 0ul 4ul) (gsub f2 0ul 4ul); lemma_fmul_equiv h0 (gsub f1 4ul 4ul) (gsub f2 4ul 4ul); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul2 out f1 f2 tmp else Vale.Wrapper.X64.Fmul.fmul2_e tmp f1 out f2 #pop-options [@ CInline] let fmul_scalar out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fmul (F64.fevalh h0 f1) (v f2) == (FA.as_nat f1 h0 * v f2) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (v f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * v f2) % Vale.Curve25519.Fast_defs.prime in let a2 = (F64.as_nat h0 f1 * v f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * v f2) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (v f2) Vale.Curve25519.Fast_defs.prime } a2; == { } b; } in aux(); assert_norm (pow2 17 = 131072); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul_scalar out f1 f2 else Vale.Wrapper.X64.Fmul.fmul_scalar_e out f1 f2 [@ CInline] let fsqr out f1 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 f1 f1; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fsqr_inline.fsqr out f1 tmp else Vale.Wrapper.X64.Fsqr.fsqr_e tmp f1 out [@ CInline] let fsqr2 out f tmp = let h0 = ST.get() in lemma_fmul_equiv h0 (gsub f 0ul 4ul) (gsub f 0ul 4ul); lemma_fmul_equiv h0 (gsub f 4ul 4ul) (gsub f 4ul 4ul); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fsqr_inline.fsqr2 out f tmp else Vale.Wrapper.X64.Fsqr.fsqr2_e tmp f out
false
true
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val cswap2: cswap2_t M64 p
[]
Hacl.Impl.Curve25519.Field64.Vale.cswap2
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Curve25519.Fields.Core.cswap2_t Hacl.Impl.Curve25519.Fields.Core.M64 Hacl.Impl.Curve25519.Field64.Vale.p
{ "end_col": 33, "end_line": 224, "start_col": 22, "start_line": 203 }
Prims.Tot
val fmul: fmul_t M64 p
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 f1 f2; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then ( assert (disjoint f1 (gsub tmp 0ul 8ul)); assert (disjoint f2 (gsub tmp 0ul 8ul)); Vale.Inline.X64.Fmul_inline.fmul out f1 f2 (sub tmp 0ul 8ul) ) else Vale.Wrapper.X64.Fmul.fmul_e (sub tmp 0ul 8ul) f1 out f2
val fmul: fmul_t M64 p let fmul out f1 f2 tmp =
false
null
false
let h0 = ST.get () in lemma_fmul_equiv h0 f1 f2; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then (assert (disjoint f1 (gsub tmp 0ul 8ul)); assert (disjoint f2 (gsub tmp 0ul 8ul)); Vale.Inline.X64.Fmul_inline.fmul out f1 f2 (sub tmp 0ul 8ul)) else Vale.Wrapper.X64.Fmul.fmul_e (sub tmp 0ul 8ul) f1 out f2
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "total" ]
[ "Hacl.Impl.Curve25519.Fields.Core.felem", "Hacl.Impl.Curve25519.Fields.Core.M64", "Hacl.Impl.Curve25519.Fields.Core.felem_wide2", "EverCrypt.TargetConfig.hacl_can_compile_inline_asm", "Vale.Inline.X64.Fmul_inline.fmul", "Prims.unit", "LowStar.Buffer.buffer", "FStar.UInt64.t", "Prims.eq2", "Prims.int", "LowStar.Monotonic.Buffer.length", "LowStar.Buffer.trivial_preorder", "Lib.Buffer.sub", "Lib.Buffer.MUT", "Hacl.Impl.Curve25519.Fields.Core.wide", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Curve25519.Fields.Core.nwide", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Prims._assert", "Lib.Buffer.disjoint", "Hacl.Impl.Curve25519.Fields.Core.limb", "Lib.Buffer.gsub", "Prims.bool", "Vale.Wrapper.X64.Fmul.fmul_e", "Hacl.Impl.Curve25519.Field64.Vale.lemma_fmul_equiv", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len}) let as_nat_is_as_nat (b:lbuffer uint64 4ul) (h:HS.mem): Lemma (ensures (FA.as_nat b h == F64.as_nat h b)) [ SMTPat (as_nat h b) ] = () let _: squash (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) = assert_norm (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) // This one only goes through in a reasonable amount of rlimit thanks to // ``as_nat_is_as_nat`` and ``buffer_is_buffer`` above. [@ CInline] let add_scalar out f1 f2 = if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2 // Spec discrepancy. Need to call the right lemma from FStar.Math.Lemmas. #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 400" [@ CInline] let fadd out f1 f2 = let h0 = ST.get () in let aux () : Lemma (P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { FStar.Math.Lemmas.modulo_distributivity (as_nat h0 f1) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a1; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fadd out f1 f2 else Vale.Wrapper.X64.Fadd.fadd_e out f1 f2 #pop-options [@ CInline] let fsub out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_sub_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (- as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fsub out f1 f2 else Vale.Wrapper.X64.Fsub.fsub_e out f1 f2 #push-options "--z3rlimit 200" let lemma_fmul_equiv (h0:HS.mem) (f1 f2:F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * (F64.as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime)) % Vale.Curve25519.Fast_defs.prime in let a2 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (F64.as_nat h0 f1 * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_r (F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } #pop-options
false
true
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul: fmul_t M64 p
[]
Hacl.Impl.Curve25519.Field64.Vale.fmul
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Curve25519.Fields.Core.fmul_t Hacl.Impl.Curve25519.Fields.Core.M64 Hacl.Impl.Curve25519.Field64.Vale.p
{ "end_col": 60, "end_line": 145, "start_col": 24, "start_line": 137 }
Prims.Tot
val fmul_scalar: fmul1_t M64 p
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul_scalar out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fmul (F64.fevalh h0 f1) (v f2) == (FA.as_nat f1 h0 * v f2) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (v f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * v f2) % Vale.Curve25519.Fast_defs.prime in let a2 = (F64.as_nat h0 f1 * v f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * v f2) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (v f2) Vale.Curve25519.Fast_defs.prime } a2; == { } b; } in aux(); assert_norm (pow2 17 = 131072); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul_scalar out f1 f2 else Vale.Wrapper.X64.Fmul.fmul_scalar_e out f1 f2
val fmul_scalar: fmul1_t M64 p let fmul_scalar out f1 f2 =
false
null
false
let h0 = ST.get () in let aux () : Lemma (P.fmul (F64.fevalh h0 f1) (v f2) == (FA.as_nat f1 h0 * v f2) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (v f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * v f2) % Vale.Curve25519.Fast_defs.prime in let a2 = (F64.as_nat h0 f1 * v f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * v f2) % Vale.Curve25519.Fast_defs.prime in calc ( == ) { a; ( == ) { () } a1; ( == ) { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (v f2) Vale.Curve25519.Fast_defs.prime } a2; ( == ) { () } b; } in aux (); assert_norm (pow2 17 = 131072); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul_scalar out f1 f2 else Vale.Wrapper.X64.Fmul.fmul_scalar_e out f1 f2
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "total" ]
[ "Hacl.Impl.Curve25519.Fields.Core.felem", "Hacl.Impl.Curve25519.Fields.Core.M64", "Lib.IntTypes.uint64", "EverCrypt.TargetConfig.hacl_can_compile_inline_asm", "Vale.Inline.X64.Fmul_inline.fmul_scalar", "Prims.unit", "Prims.bool", "Vale.Wrapper.X64.Fmul.fmul_scalar_e", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.pow2", "Prims.l_True", "Prims.squash", "Prims.eq2", "Spec.Curve25519.fmul", "Hacl.Impl.Curve25519.Field64.fevalh", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.op_Modulus", "Prims.op_Multiply", "Vale.Wrapper.X64.Fadd.as_nat", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Calc.calc_finish", "Spec.Curve25519.elem", "Prims.Cons", "FStar.Preorder.relation", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Hacl.Impl.Curve25519.Field64.as_nat", "Vale.Curve25519.Fast_defs.prime", "FStar.Mul.op_Star", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len}) let as_nat_is_as_nat (b:lbuffer uint64 4ul) (h:HS.mem): Lemma (ensures (FA.as_nat b h == F64.as_nat h b)) [ SMTPat (as_nat h b) ] = () let _: squash (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) = assert_norm (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) // This one only goes through in a reasonable amount of rlimit thanks to // ``as_nat_is_as_nat`` and ``buffer_is_buffer`` above. [@ CInline] let add_scalar out f1 f2 = if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2 // Spec discrepancy. Need to call the right lemma from FStar.Math.Lemmas. #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 400" [@ CInline] let fadd out f1 f2 = let h0 = ST.get () in let aux () : Lemma (P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { FStar.Math.Lemmas.modulo_distributivity (as_nat h0 f1) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a1; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fadd out f1 f2 else Vale.Wrapper.X64.Fadd.fadd_e out f1 f2 #pop-options [@ CInline] let fsub out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_sub_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (- as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fsub out f1 f2 else Vale.Wrapper.X64.Fsub.fsub_e out f1 f2 #push-options "--z3rlimit 200" let lemma_fmul_equiv (h0:HS.mem) (f1 f2:F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * (F64.as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime)) % Vale.Curve25519.Fast_defs.prime in let a2 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (F64.as_nat h0 f1 * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_r (F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } #pop-options [@ CInline] let fmul out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 f1 f2; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then ( assert (disjoint f1 (gsub tmp 0ul 8ul)); assert (disjoint f2 (gsub tmp 0ul 8ul)); Vale.Inline.X64.Fmul_inline.fmul out f1 f2 (sub tmp 0ul 8ul) ) else Vale.Wrapper.X64.Fmul.fmul_e (sub tmp 0ul 8ul) f1 out f2 #push-options "--z3rlimit 500" [@ CInline] let fmul2 out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 (gsub f1 0ul 4ul) (gsub f2 0ul 4ul); lemma_fmul_equiv h0 (gsub f1 4ul 4ul) (gsub f2 4ul 4ul); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul2 out f1 f2 tmp else Vale.Wrapper.X64.Fmul.fmul2_e tmp f1 out f2 #pop-options
false
true
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul_scalar: fmul1_t M64 p
[]
Hacl.Impl.Curve25519.Field64.Vale.fmul_scalar
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Curve25519.Fields.Core.fmul1_t Hacl.Impl.Curve25519.Fields.Core.M64 Hacl.Impl.Curve25519.Field64.Vale.p
{ "end_col": 49, "end_line": 181, "start_col": 27, "start_line": 160 }
Prims.Tot
val fsqr: fsqr_t M64 p
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsqr out f1 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 f1 f1; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fsqr_inline.fsqr out f1 tmp else Vale.Wrapper.X64.Fsqr.fsqr_e tmp f1 out
val fsqr: fsqr_t M64 p let fsqr out f1 tmp =
false
null
false
let h0 = ST.get () in lemma_fmul_equiv h0 f1 f1; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fsqr_inline.fsqr out f1 tmp else Vale.Wrapper.X64.Fsqr.fsqr_e tmp f1 out
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "total" ]
[ "Hacl.Impl.Curve25519.Fields.Core.felem", "Hacl.Impl.Curve25519.Fields.Core.M64", "Hacl.Impl.Curve25519.Fields.Core.felem_wide", "EverCrypt.TargetConfig.hacl_can_compile_inline_asm", "Vale.Inline.X64.Fsqr_inline.fsqr", "Prims.unit", "Prims.bool", "Vale.Wrapper.X64.Fsqr.fsqr_e", "Hacl.Impl.Curve25519.Field64.Vale.lemma_fmul_equiv", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len}) let as_nat_is_as_nat (b:lbuffer uint64 4ul) (h:HS.mem): Lemma (ensures (FA.as_nat b h == F64.as_nat h b)) [ SMTPat (as_nat h b) ] = () let _: squash (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) = assert_norm (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) // This one only goes through in a reasonable amount of rlimit thanks to // ``as_nat_is_as_nat`` and ``buffer_is_buffer`` above. [@ CInline] let add_scalar out f1 f2 = if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2 // Spec discrepancy. Need to call the right lemma from FStar.Math.Lemmas. #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 400" [@ CInline] let fadd out f1 f2 = let h0 = ST.get () in let aux () : Lemma (P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { FStar.Math.Lemmas.modulo_distributivity (as_nat h0 f1) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a1; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fadd out f1 f2 else Vale.Wrapper.X64.Fadd.fadd_e out f1 f2 #pop-options [@ CInline] let fsub out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_sub_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (- as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fsub out f1 f2 else Vale.Wrapper.X64.Fsub.fsub_e out f1 f2 #push-options "--z3rlimit 200" let lemma_fmul_equiv (h0:HS.mem) (f1 f2:F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * (F64.as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime)) % Vale.Curve25519.Fast_defs.prime in let a2 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (F64.as_nat h0 f1 * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_r (F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } #pop-options [@ CInline] let fmul out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 f1 f2; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then ( assert (disjoint f1 (gsub tmp 0ul 8ul)); assert (disjoint f2 (gsub tmp 0ul 8ul)); Vale.Inline.X64.Fmul_inline.fmul out f1 f2 (sub tmp 0ul 8ul) ) else Vale.Wrapper.X64.Fmul.fmul_e (sub tmp 0ul 8ul) f1 out f2 #push-options "--z3rlimit 500" [@ CInline] let fmul2 out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 (gsub f1 0ul 4ul) (gsub f2 0ul 4ul); lemma_fmul_equiv h0 (gsub f1 4ul 4ul) (gsub f2 4ul 4ul); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul2 out f1 f2 tmp else Vale.Wrapper.X64.Fmul.fmul2_e tmp f1 out f2 #pop-options [@ CInline] let fmul_scalar out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fmul (F64.fevalh h0 f1) (v f2) == (FA.as_nat f1 h0 * v f2) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (v f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * v f2) % Vale.Curve25519.Fast_defs.prime in let a2 = (F64.as_nat h0 f1 * v f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * v f2) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (v f2) Vale.Curve25519.Fast_defs.prime } a2; == { } b; } in aux(); assert_norm (pow2 17 = 131072); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul_scalar out f1 f2 else Vale.Wrapper.X64.Fmul.fmul_scalar_e out f1 f2
false
true
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsqr: fsqr_t M64 p
[]
Hacl.Impl.Curve25519.Field64.Vale.fsqr
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Curve25519.Fields.Core.fsqr_t Hacl.Impl.Curve25519.Fields.Core.M64 Hacl.Impl.Curve25519.Field64.Vale.p
{ "end_col": 43, "end_line": 190, "start_col": 21, "start_line": 184 }
FStar.Pervasives.Lemma
val buffer_is_buffer (a len: _) : Lemma (ensures (lbuffer a len == b: B.buffer a {B.length b == UInt32.v len})) [SMTPat (lbuffer a len)]
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})
val buffer_is_buffer (a len: _) : Lemma (ensures (lbuffer a len == b: B.buffer a {B.length b == UInt32.v len})) [SMTPat (lbuffer a len)] let buffer_is_buffer a len : Lemma (ensures (lbuffer a len == b: B.buffer a {B.length b == UInt32.v len})) [SMTPat (lbuffer a len)] =
false
null
true
assert_norm (lbuffer a len == b: B.buffer a {B.length b == UInt32.v len})
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "lemma" ]
[ "FStar.UInt32.t", "FStar.Pervasives.assert_norm", "Prims.eq2", "Lib.Buffer.lbuffer", "Lib.Buffer.buffer", "Prims.int", "Prims.l_or", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "Lib.Buffer.length", "Lib.Buffer.MUT", "FStar.UInt32.v", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ]
false
false
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val buffer_is_buffer (a len: _) : Lemma (ensures (lbuffer a len == b: B.buffer a {B.length b == UInt32.v len})) [SMTPat (lbuffer a len)]
[]
Hacl.Impl.Curve25519.Field64.Vale.buffer_is_buffer
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Type0 -> len: FStar.UInt32.t -> FStar.Pervasives.Lemma (ensures Lib.Buffer.lbuffer a len == b: Lib.Buffer.buffer a {Lib.Buffer.length b == FStar.UInt32.v len}) [SMTPat (Lib.Buffer.lbuffer a len)]
{ "end_col": 73, "end_line": 37, "start_col": 2, "start_line": 37 }
FStar.Pervasives.Lemma
val lemma_fmul_equiv (h0: HS.mem) (f1 f2: F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime)
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_fmul_equiv (h0:HS.mem) (f1 f2:F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * (F64.as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime)) % Vale.Curve25519.Fast_defs.prime in let a2 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (F64.as_nat h0 f1 * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_r (F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a3; == { } b; }
val lemma_fmul_equiv (h0: HS.mem) (f1 f2: F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) let lemma_fmul_equiv (h0: HS.mem) (f1 f2: F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) =
false
null
true
let a = P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * (F64.as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime)) % Vale.Curve25519.Fast_defs.prime in let a2 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (F64.as_nat h0 f1 * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc ( == ) { a; ( == ) { () } a1; ( == ) { FStar.Math.Lemmas.lemma_mod_mul_distr_r (F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; ( == ) { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a3; ( == ) { () } b; }
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "lemma" ]
[ "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Curve25519.Field64.u256", "FStar.Calc.calc_finish", "Spec.Curve25519.elem", "Prims.eq2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Prims.op_Modulus", "Hacl.Impl.Curve25519.Field64.as_nat", "Vale.Curve25519.Fast_defs.prime", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Prims.int", "FStar.Mul.op_Star", "Vale.Wrapper.X64.Fadd.as_nat", "Spec.Curve25519.fmul", "Hacl.Impl.Curve25519.Field64.fevalh", "Prims.l_True", "FStar.Pervasives.pattern" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len}) let as_nat_is_as_nat (b:lbuffer uint64 4ul) (h:HS.mem): Lemma (ensures (FA.as_nat b h == F64.as_nat h b)) [ SMTPat (as_nat h b) ] = () let _: squash (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) = assert_norm (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) // This one only goes through in a reasonable amount of rlimit thanks to // ``as_nat_is_as_nat`` and ``buffer_is_buffer`` above. [@ CInline] let add_scalar out f1 f2 = if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2 // Spec discrepancy. Need to call the right lemma from FStar.Math.Lemmas. #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 400" [@ CInline] let fadd out f1 f2 = let h0 = ST.get () in let aux () : Lemma (P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { FStar.Math.Lemmas.modulo_distributivity (as_nat h0 f1) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a1; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fadd out f1 f2 else Vale.Wrapper.X64.Fadd.fadd_e out f1 f2 #pop-options [@ CInline] let fsub out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_sub_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (- as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fsub out f1 f2 else Vale.Wrapper.X64.Fsub.fsub_e out f1 f2 #push-options "--z3rlimit 200" let lemma_fmul_equiv (h0:HS.mem) (f1 f2:F64.u256) : Lemma
false
false
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_fmul_equiv (h0: HS.mem) (f1 f2: F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime)
[]
Hacl.Impl.Curve25519.Field64.Vale.lemma_fmul_equiv
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h0: FStar.Monotonic.HyperStack.mem -> f1: Hacl.Impl.Curve25519.Field64.u256 -> f2: Hacl.Impl.Curve25519.Field64.u256 -> FStar.Pervasives.Lemma (ensures Spec.Curve25519.fmul (Hacl.Impl.Curve25519.Field64.fevalh h0 f1) (Hacl.Impl.Curve25519.Field64.fevalh h0 f2) == Vale.Wrapper.X64.Fadd.as_nat f1 h0 * Vale.Wrapper.X64.Fadd.as_nat f2 h0 % Vale.Curve25519.Fast_defs.prime)
{ "end_col": 5, "end_line": 133, "start_col": 3, "start_line": 118 }
Prims.Tot
val add_scalar: add1_t p
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_scalar out f1 f2 = if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2
val add_scalar: add1_t p let add_scalar out f1 f2 =
false
null
false
if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "total" ]
[ "Hacl.Impl.Curve25519.Fields.Core.felem", "Hacl.Impl.Curve25519.Fields.Core.M64", "Lib.IntTypes.uint64", "EverCrypt.TargetConfig.hacl_can_compile_inline_asm", "Vale.Inline.X64.Fadd_inline.add_scalar", "FStar.Ghost.erased", "FStar.UInt64.t", "Prims.bool", "Vale.Wrapper.X64.Fadd.add_scalar_e" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len}) let as_nat_is_as_nat (b:lbuffer uint64 4ul) (h:HS.mem): Lemma (ensures (FA.as_nat b h == F64.as_nat h b)) [ SMTPat (as_nat h b) ] = () let _: squash (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) = assert_norm (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) // This one only goes through in a reasonable amount of rlimit thanks to // ``as_nat_is_as_nat`` and ``buffer_is_buffer`` above. [@ CInline]
false
true
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_scalar: add1_t p
[]
Hacl.Impl.Curve25519.Field64.Vale.add_scalar
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Curve25519.Fields.Core.add1_t Hacl.Impl.Curve25519.Field64.Vale.p
{ "end_col": 48, "end_line": 55, "start_col": 2, "start_line": 52 }
Prims.Tot
val fadd: fadd_t M64 p
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fadd out f1 f2 = let h0 = ST.get () in let aux () : Lemma (P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { FStar.Math.Lemmas.modulo_distributivity (as_nat h0 f1) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a1; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fadd out f1 f2 else Vale.Wrapper.X64.Fadd.fadd_e out f1 f2
val fadd: fadd_t M64 p let fadd out f1 f2 =
false
null
false
let h0 = ST.get () in let aux () : Lemma (P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime ) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc ( == ) { a; ( == ) { FStar.Math.Lemmas.modulo_distributivity (as_nat h0 f1) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a1; ( == ) { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; ( == ) { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; ( == ) { () } b; } in aux (); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fadd out f1 f2 else Vale.Wrapper.X64.Fadd.fadd_e out f1 f2
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "total" ]
[ "Hacl.Impl.Curve25519.Fields.Core.felem", "Hacl.Impl.Curve25519.Fields.Core.M64", "EverCrypt.TargetConfig.hacl_can_compile_inline_asm", "Vale.Inline.X64.Fadd_inline.fadd", "Prims.unit", "Prims.bool", "Vale.Wrapper.X64.Fadd.fadd_e", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Spec.Curve25519.fadd", "Hacl.Impl.Curve25519.Field64.fevalh", "Prims.op_Modulus", "Prims.op_Addition", "Vale.Wrapper.X64.Fadd.as_nat", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Calc.calc_finish", "Spec.Curve25519.elem", "Prims.Cons", "FStar.Preorder.relation", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.modulo_distributivity", "Hacl.Impl.Curve25519.Fields.Core.as_nat", "Vale.Curve25519.Fast_defs.prime", "FStar.Math.Lemmas.lemma_mod_add_distr", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len}) let as_nat_is_as_nat (b:lbuffer uint64 4ul) (h:HS.mem): Lemma (ensures (FA.as_nat b h == F64.as_nat h b)) [ SMTPat (as_nat h b) ] = () let _: squash (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) = assert_norm (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) // This one only goes through in a reasonable amount of rlimit thanks to // ``as_nat_is_as_nat`` and ``buffer_is_buffer`` above. [@ CInline] let add_scalar out f1 f2 = if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2 // Spec discrepancy. Need to call the right lemma from FStar.Math.Lemmas. #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 400"
false
true
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 400, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fadd: fadd_t M64 p
[]
Hacl.Impl.Curve25519.Field64.Vale.fadd
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Curve25519.Fields.Core.fadd_t Hacl.Impl.Curve25519.Fields.Core.M64 Hacl.Impl.Curve25519.Field64.Vale.p
{ "end_col": 42, "end_line": 85, "start_col": 20, "start_line": 60 }
Prims.Tot
val fsub: fsub_t M64 p
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsub out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_sub_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (- as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fsub out f1 f2 else Vale.Wrapper.X64.Fsub.fsub_e out f1 f2
val fsub: fsub_t M64 p let fsub out f1 f2 =
false
null
false
let h0 = ST.get () in let aux () : Lemma (P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime ) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc ( == ) { a; ( == ) { () } a1; ( == ) { FStar.Math.Lemmas.lemma_mod_sub_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; ( == ) { FStar.Math.Lemmas.lemma_mod_add_distr (- as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; ( == ) { () } b; } in aux (); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fsub out f1 f2 else Vale.Wrapper.X64.Fsub.fsub_e out f1 f2
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "total" ]
[ "Hacl.Impl.Curve25519.Fields.Core.felem", "Hacl.Impl.Curve25519.Fields.Core.M64", "EverCrypt.TargetConfig.hacl_can_compile_inline_asm", "Vale.Inline.X64.Fadd_inline.fsub", "Prims.unit", "Prims.bool", "Vale.Wrapper.X64.Fsub.fsub_e", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "Spec.Curve25519.fsub", "Hacl.Impl.Curve25519.Field64.fevalh", "Prims.op_Modulus", "Prims.op_Subtraction", "Vale.Wrapper.X64.Fadd.as_nat", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Calc.calc_finish", "Spec.Curve25519.elem", "Prims.Cons", "FStar.Preorder.relation", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_mod_sub_distr", "Hacl.Impl.Curve25519.Fields.Core.as_nat", "Vale.Curve25519.Fast_defs.prime", "FStar.Math.Lemmas.lemma_mod_add_distr", "Prims.op_Minus", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len}) let as_nat_is_as_nat (b:lbuffer uint64 4ul) (h:HS.mem): Lemma (ensures (FA.as_nat b h == F64.as_nat h b)) [ SMTPat (as_nat h b) ] = () let _: squash (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) = assert_norm (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) // This one only goes through in a reasonable amount of rlimit thanks to // ``as_nat_is_as_nat`` and ``buffer_is_buffer`` above. [@ CInline] let add_scalar out f1 f2 = if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2 // Spec discrepancy. Need to call the right lemma from FStar.Math.Lemmas. #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 400" [@ CInline] let fadd out f1 f2 = let h0 = ST.get () in let aux () : Lemma (P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { FStar.Math.Lemmas.modulo_distributivity (as_nat h0 f1) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a1; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fadd out f1 f2 else Vale.Wrapper.X64.Fadd.fadd_e out f1 f2 #pop-options
false
true
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsub: fsub_t M64 p
[]
Hacl.Impl.Curve25519.Field64.Vale.fsub
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Curve25519.Fields.Core.fsub_t Hacl.Impl.Curve25519.Fields.Core.M64 Hacl.Impl.Curve25519.Field64.Vale.p
{ "end_col": 42, "end_line": 113, "start_col": 20, "start_line": 89 }
Prims.Tot
val fsqr2: fsqr2_t M64 p
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsqr2 out f tmp = let h0 = ST.get() in lemma_fmul_equiv h0 (gsub f 0ul 4ul) (gsub f 0ul 4ul); lemma_fmul_equiv h0 (gsub f 4ul 4ul) (gsub f 4ul 4ul); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fsqr_inline.fsqr2 out f tmp else Vale.Wrapper.X64.Fsqr.fsqr2_e tmp f out
val fsqr2: fsqr2_t M64 p let fsqr2 out f tmp =
false
null
false
let h0 = ST.get () in lemma_fmul_equiv h0 (gsub f 0ul 4ul) (gsub f 0ul 4ul); lemma_fmul_equiv h0 (gsub f 4ul 4ul) (gsub f 4ul 4ul); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fsqr_inline.fsqr2 out f tmp else Vale.Wrapper.X64.Fsqr.fsqr2_e tmp f out
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "total" ]
[ "Hacl.Impl.Curve25519.Fields.Core.felem2", "Hacl.Impl.Curve25519.Fields.Core.M64", "Hacl.Impl.Curve25519.Fields.Core.felem_wide2", "EverCrypt.TargetConfig.hacl_can_compile_inline_asm", "Vale.Inline.X64.Fsqr_inline.fsqr2", "Prims.unit", "Prims.bool", "Vale.Wrapper.X64.Fsqr.fsqr2_e", "Hacl.Impl.Curve25519.Field64.Vale.lemma_fmul_equiv", "Lib.Buffer.gsub", "Lib.Buffer.MUT", "Hacl.Impl.Curve25519.Fields.Core.limb", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Curve25519.Fields.Core.nlimb", "FStar.UInt32.__uint_to_t", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len}) let as_nat_is_as_nat (b:lbuffer uint64 4ul) (h:HS.mem): Lemma (ensures (FA.as_nat b h == F64.as_nat h b)) [ SMTPat (as_nat h b) ] = () let _: squash (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) = assert_norm (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) // This one only goes through in a reasonable amount of rlimit thanks to // ``as_nat_is_as_nat`` and ``buffer_is_buffer`` above. [@ CInline] let add_scalar out f1 f2 = if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2 // Spec discrepancy. Need to call the right lemma from FStar.Math.Lemmas. #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 400" [@ CInline] let fadd out f1 f2 = let h0 = ST.get () in let aux () : Lemma (P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { FStar.Math.Lemmas.modulo_distributivity (as_nat h0 f1) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a1; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fadd out f1 f2 else Vale.Wrapper.X64.Fadd.fadd_e out f1 f2 #pop-options [@ CInline] let fsub out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_sub_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (- as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fsub out f1 f2 else Vale.Wrapper.X64.Fsub.fsub_e out f1 f2 #push-options "--z3rlimit 200" let lemma_fmul_equiv (h0:HS.mem) (f1 f2:F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * (F64.as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime)) % Vale.Curve25519.Fast_defs.prime in let a2 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (F64.as_nat h0 f1 * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_r (F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } #pop-options [@ CInline] let fmul out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 f1 f2; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then ( assert (disjoint f1 (gsub tmp 0ul 8ul)); assert (disjoint f2 (gsub tmp 0ul 8ul)); Vale.Inline.X64.Fmul_inline.fmul out f1 f2 (sub tmp 0ul 8ul) ) else Vale.Wrapper.X64.Fmul.fmul_e (sub tmp 0ul 8ul) f1 out f2 #push-options "--z3rlimit 500" [@ CInline] let fmul2 out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 (gsub f1 0ul 4ul) (gsub f2 0ul 4ul); lemma_fmul_equiv h0 (gsub f1 4ul 4ul) (gsub f2 4ul 4ul); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul2 out f1 f2 tmp else Vale.Wrapper.X64.Fmul.fmul2_e tmp f1 out f2 #pop-options [@ CInline] let fmul_scalar out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fmul (F64.fevalh h0 f1) (v f2) == (FA.as_nat f1 h0 * v f2) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (v f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * v f2) % Vale.Curve25519.Fast_defs.prime in let a2 = (F64.as_nat h0 f1 * v f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * v f2) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (v f2) Vale.Curve25519.Fast_defs.prime } a2; == { } b; } in aux(); assert_norm (pow2 17 = 131072); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul_scalar out f1 f2 else Vale.Wrapper.X64.Fmul.fmul_scalar_e out f1 f2 [@ CInline] let fsqr out f1 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 f1 f1; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fsqr_inline.fsqr out f1 tmp else Vale.Wrapper.X64.Fsqr.fsqr_e tmp f1 out
false
true
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsqr2: fsqr2_t M64 p
[]
Hacl.Impl.Curve25519.Field64.Vale.fsqr2
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Curve25519.Fields.Core.fsqr2_t Hacl.Impl.Curve25519.Fields.Core.M64 Hacl.Impl.Curve25519.Field64.Vale.p
{ "end_col": 43, "end_line": 200, "start_col": 21, "start_line": 193 }
Prims.Tot
val fmul2: fmul2_t M64 p
[ { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": "F64" }, { "abbrev": true, "full_module": "Vale.Wrapper.X64.Fadd", "short_module": "FA" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul2 out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 (gsub f1 0ul 4ul) (gsub f2 0ul 4ul); lemma_fmul_equiv h0 (gsub f1 4ul 4ul) (gsub f2 4ul 4ul); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul2 out f1 f2 tmp else Vale.Wrapper.X64.Fmul.fmul2_e tmp f1 out f2
val fmul2: fmul2_t M64 p let fmul2 out f1 f2 tmp =
false
null
false
let h0 = ST.get () in lemma_fmul_equiv h0 (gsub f1 0ul 4ul) (gsub f2 0ul 4ul); lemma_fmul_equiv h0 (gsub f1 4ul 4ul) (gsub f2 4ul 4ul); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fmul_inline.fmul2 out f1 f2 tmp else Vale.Wrapper.X64.Fmul.fmul2_e tmp f1 out f2
{ "checked_file": "Hacl.Impl.Curve25519.Field64.Vale.fst.checked", "dependencies": [ "Vale.Wrapper.X64.Fswap.fsti.checked", "Vale.Wrapper.X64.Fsub.fsti.checked", "Vale.Wrapper.X64.Fsqr.fsti.checked", "Vale.Wrapper.X64.Fmul.fsti.checked", "Vale.Wrapper.X64.Fadd.fsti.checked", "Vale.Inline.X64.Fswap_inline.fsti.checked", "Vale.Inline.X64.Fsqr_inline.fsti.checked", "Vale.Inline.X64.Fmul_inline.fsti.checked", "Vale.Inline.X64.Fadd_inline.fsti.checked", "Vale.Curve25519.Fast_defs.fst.checked", "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Impl.Curve25519.Field64.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "EverCrypt.TargetConfig.fsti.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Curve25519.Field64.Vale.fst" }
[ "total" ]
[ "Hacl.Impl.Curve25519.Fields.Core.felem2", "Hacl.Impl.Curve25519.Fields.Core.M64", "Hacl.Impl.Curve25519.Fields.Core.felem_wide2", "EverCrypt.TargetConfig.hacl_can_compile_inline_asm", "Vale.Inline.X64.Fmul_inline.fmul2", "Prims.unit", "Prims.bool", "Vale.Wrapper.X64.Fmul.fmul2_e", "Hacl.Impl.Curve25519.Field64.Vale.lemma_fmul_equiv", "Lib.Buffer.gsub", "Lib.Buffer.MUT", "Hacl.Impl.Curve25519.Fields.Core.limb", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Curve25519.Fields.Core.nlimb", "FStar.UInt32.__uint_to_t", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get" ]
[]
module Hacl.Impl.Curve25519.Field64.Vale module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.Calc friend Lib.Buffer friend Lib.IntTypes open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.Sequence open Lib.IntTypes open Lib.Buffer module B = Lib.Buffer module S = Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module FA = Vale.Wrapper.X64.Fadd module F64 = Hacl.Impl.Curve25519.Field64 /// We are trying to connect HACL* abstractions with regular F* libraries, so in /// addition to ``friend``'ing ``Lib.*``, we also write a couple lemmas that we /// prove via normalization to facilitate the job of proving that calling the /// Vale interop signatures faithfully implements the required HACL* signature. #set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 300 --z3refresh" let buffer_is_buffer a len: Lemma (ensures (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len})) [ SMTPat (lbuffer a len) ] = assert_norm (lbuffer a len == b:B.buffer a{B.length b == UInt32.v len}) let as_nat_is_as_nat (b:lbuffer uint64 4ul) (h:HS.mem): Lemma (ensures (FA.as_nat b h == F64.as_nat h b)) [ SMTPat (as_nat h b) ] = () let _: squash (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) = assert_norm (Vale.Curve25519.Fast_defs.prime = Spec.Curve25519.prime) // This one only goes through in a reasonable amount of rlimit thanks to // ``as_nat_is_as_nat`` and ``buffer_is_buffer`` above. [@ CInline] let add_scalar out f1 f2 = if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.add_scalar out f1 f2 else Vale.Wrapper.X64.Fadd.add_scalar_e out f1 f2 // Spec discrepancy. Need to call the right lemma from FStar.Math.Lemmas. #push-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 400" [@ CInline] let fadd out f1 f2 = let h0 = ST.get () in let aux () : Lemma (P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fadd (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 + as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 + FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { FStar.Math.Lemmas.modulo_distributivity (as_nat h0 f1) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a1; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fadd out f1 f2 else Vale.Wrapper.X64.Fadd.fadd_e out f1 f2 #pop-options [@ CInline] let fsub out f1 f2 = let h0 = ST.get() in let aux () : Lemma (P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fsub (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime) % Vale.Curve25519.Fast_defs.prime in let a2 = (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (as_nat h0 f1 - as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 - FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_sub_distr (as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_add_distr (- as_nat h0 f2) (as_nat h0 f1) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } in aux(); if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then Vale.Inline.X64.Fadd_inline.fsub out f1 f2 else Vale.Wrapper.X64.Fsub.fsub_e out f1 f2 #push-options "--z3rlimit 200" let lemma_fmul_equiv (h0:HS.mem) (f1 f2:F64.u256) : Lemma (P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) == (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime) = let a = P.fmul (F64.fevalh h0 f1) (F64.fevalh h0 f2) in let a1 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * (F64.as_nat h0 f2 % Vale.Curve25519.Fast_defs.prime)) % Vale.Curve25519.Fast_defs.prime in let a2 = ((F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let a3 = (F64.as_nat h0 f1 * F64.as_nat h0 f2) % Vale.Curve25519.Fast_defs.prime in let b = (FA.as_nat f1 h0 * FA.as_nat f2 h0) % Vale.Curve25519.Fast_defs.prime in calc (==) { a; == { } a1; == { FStar.Math.Lemmas.lemma_mod_mul_distr_r (F64.as_nat h0 f1 % Vale.Curve25519.Fast_defs.prime) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a2; == { FStar.Math.Lemmas.lemma_mod_mul_distr_l (F64.as_nat h0 f1) (F64.as_nat h0 f2) Vale.Curve25519.Fast_defs.prime } a3; == { } b; } #pop-options [@ CInline] let fmul out f1 f2 tmp = let h0 = ST.get() in lemma_fmul_equiv h0 f1 f2; if EverCrypt.TargetConfig.hacl_can_compile_inline_asm then ( assert (disjoint f1 (gsub tmp 0ul 8ul)); assert (disjoint f2 (gsub tmp 0ul 8ul)); Vale.Inline.X64.Fmul_inline.fmul out f1 f2 (sub tmp 0ul 8ul) ) else Vale.Wrapper.X64.Fmul.fmul_e (sub tmp 0ul 8ul) f1 out f2 #push-options "--z3rlimit 500"
false
true
Hacl.Impl.Curve25519.Field64.Vale.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": true, "z3rlimit": 500, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul2: fmul2_t M64 p
[]
Hacl.Impl.Curve25519.Field64.Vale.fmul2
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Field64.Vale.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Impl.Curve25519.Fields.Core.fmul2_t Hacl.Impl.Curve25519.Fields.Core.M64 Hacl.Impl.Curve25519.Field64.Vale.p
{ "end_col": 47, "end_line": 156, "start_col": 25, "start_line": 149 }
Prims.Tot
val compute_merge_total (f0:fuel) (fM:fuel) : fuel
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM
val compute_merge_total (f0:fuel) (fM:fuel) : fuel let compute_merge_total (f0 fM: fuel) =
false
null
false
if f0 > fM then f0 else fM
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "total" ]
[ "Vale.X64.Lemmas.fuel", "Prims.op_GreaterThan", "Prims.bool" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = ()
false
true
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val compute_merge_total (f0:fuel) (fM:fuel) : fuel
[]
Vale.X64.Lemmas.compute_merge_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f0: Vale.X64.Lemmas.fuel -> fM: Vale.X64.Lemmas.fuel -> Vale.X64.Lemmas.fuel
{ "end_col": 28, "end_line": 348, "start_col": 2, "start_line": 348 }
Prims.Tot
val eval_code_ts (g: bool) (c: code) (s0: machine_state) (f0: fuel) (s1: machine_state) : Type0
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1)
val eval_code_ts (g: bool) (c: code) (s0: machine_state) (f0: fuel) (s1: machine_state) : Type0 let eval_code_ts (g: bool) (c: code) (s0: machine_state) (f0: fuel) (s1: machine_state) : Type0 =
false
null
false
state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1)
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "total" ]
[ "Prims.bool", "Vale.X64.StateLemmas.code", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Lemmas.fuel", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_code", "FStar.Pervasives.Native.Some", "Vale.X64.Machine_Semantics_s.machine_state" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2
false
true
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_code_ts (g: bool) (c: code) (s0: machine_state) (f0: fuel) (s1: machine_state) : Type0
[]
Vale.X64.Lemmas.eval_code_ts
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
g: Prims.bool -> c: Vale.X64.StateLemmas.code -> s0: Vale.X64.StateLemmas.machine_state -> f0: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> Type0
{ "end_col": 57, "end_line": 296, "start_col": 2, "start_line": 296 }
Prims.Tot
val eval_while_inv (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_while_inv (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = eval_while_inv_temp c s0 fW sW
val eval_while_inv (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 let eval_while_inv (c: code) (s0: vale_state) (fW: fuel) (sW: vale_state) : Type0 =
false
null
false
eval_while_inv_temp c s0 fW sW
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "total" ]
[ "Vale.X64.StateLemmas.code", "Vale.X64.State.vale_state", "Vale.X64.Lemmas.fuel", "Vale.X64.Lemmas.eval_while_inv_temp" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0) let lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) = (eval_ocmp s0 ifb, {s0 with vs_flags = havoc_flags}, s0, 0) let lemma_havoc_flags : squash (Flags.to_fun havoc_flags == BS.havoc_flags) = assert (FStar.FunctionalExtensionality.feq (Flags.to_fun havoc_flags) BS.havoc_flags) let lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_ifElseFalse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let eval_while_inv_temp (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = forall (f:nat).{:pattern BS.machine_eval_code c f (state_to_S sW)} Some? (BS.machine_eval_code c f (state_to_S sW)) ==> state_eq_opt (code_modifies_ghost c) (BS.machine_eval_code c (f + fW) (state_to_S s0)) (BS.machine_eval_code c f (state_to_S sW))
false
true
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_while_inv (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0
[]
Vale.X64.Lemmas.eval_while_inv
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c: Vale.X64.StateLemmas.code -> s0: Vale.X64.State.vale_state -> fW: Vale.X64.Lemmas.fuel -> sW: Vale.X64.State.vale_state -> Type0
{ "end_col": 32, "end_line": 380, "start_col": 2, "start_line": 380 }
FStar.Pervasives.Lemma
val eval_codes_eq_t (cs: codes) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2
val eval_codes_eq_t (cs: codes) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] let eval_codes_eq_t (cs: codes) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] =
false
null
true
eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Lemmas.codes", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Lemmas.eval_codes_eq_core", "Prims.unit", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_codes", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.Nil" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)]
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_codes_eq_t (cs: codes) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)]
[]
Vale.X64.Lemmas.eval_codes_eq_t
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cs: Vale.X64.Lemmas.codes -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt true (Vale.X64.Machine_Semantics_s.machine_eval_codes cs f s1) (Vale.X64.Machine_Semantics_s.machine_eval_codes cs f s2)) [ SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_codes cs f s1); SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_codes cs f s2) ]
{ "end_col": 66, "end_line": 286, "start_col": 2, "start_line": 286 }
FStar.Pervasives.Lemma
val eval_code_eq_f (c: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2
val eval_code_eq_f (c: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] let eval_code_eq_f (c: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] =
false
null
true
eval_code_eq_core false c f s1; eval_code_eq_core false c f s2
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.StateLemmas.code", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Lemmas.eval_code_eq_core", "Prims.unit", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.Nil" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)]
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_code_eq_f (c: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)]
[]
Vale.X64.Lemmas.eval_code_eq_f
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c: Vale.X64.StateLemmas.code -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.state_eq_S false s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt false (Vale.X64.Machine_Semantics_s.machine_eval_code c f s1) (Vale.X64.Machine_Semantics_s.machine_eval_code c f s2)) [ SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_code c f s1); SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_code c f s2) ]
{ "end_col": 64, "end_line": 258, "start_col": 2, "start_line": 258 }
Prims.Ghost
val lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) : Ghost (bool & vale_state & vale_state & fuel) (requires True) (ensures (fun (cond, sM, sN, f0) -> cond == eval_ocmp s0 ifb /\ sM == {s0 with vs_flags = havoc_flags} ))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) = (eval_ocmp s0 ifb, {s0 with vs_flags = havoc_flags}, s0, 0)
val lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) : Ghost (bool & vale_state & vale_state & fuel) (requires True) (ensures (fun (cond, sM, sN, f0) -> cond == eval_ocmp s0 ifb /\ sM == {s0 with vs_flags = havoc_flags} )) let lemma_ifElse_total (ifb: ocmp) (ct cf: code) (s0: vale_state) =
false
null
false
(eval_ocmp s0 ifb, { s0 with vs_flags = havoc_flags }, s0, 0)
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[]
[ "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.StateLemmas.code", "Vale.X64.State.vale_state", "FStar.Pervasives.Native.Mktuple4", "Prims.bool", "Vale.X64.Lemmas.fuel", "Vale.X64.Lemmas.eval_ocmp", "Vale.X64.State.Mkvale_state", "Vale.X64.State.__proj__Mkvale_state__item__vs_ok", "Vale.X64.State.__proj__Mkvale_state__item__vs_regs", "Vale.X64.Lemmas.havoc_flags", "Vale.X64.State.__proj__Mkvale_state__item__vs_heap", "Vale.X64.State.__proj__Mkvale_state__item__vs_stack", "Vale.X64.State.__proj__Mkvale_state__item__vs_stackTaint", "FStar.Pervasives.Native.tuple4" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0)
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) : Ghost (bool & vale_state & vale_state & fuel) (requires True) (ensures (fun (cond, sM, sN, f0) -> cond == eval_ocmp s0 ifb /\ sM == {s0 with vs_flags = havoc_flags} ))
[]
Vale.X64.Lemmas.lemma_ifElse_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ifb: Vale.X64.Bytes_Code_s.ocmp -> ct: Vale.X64.StateLemmas.code -> cf: Vale.X64.StateLemmas.code -> s0: Vale.X64.State.vale_state -> Prims.Ghost (((Prims.bool * Vale.X64.State.vale_state) * Vale.X64.State.vale_state) * Vale.X64.Lemmas.fuel)
{ "end_col": 61, "end_line": 359, "start_col": 2, "start_line": 359 }
FStar.Pervasives.Lemma
val eval_code_eq_t (c: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2
val eval_code_eq_t (c: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] let eval_code_eq_t (c: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] =
false
null
true
eval_code_eq_core true c f s1; eval_code_eq_core true c f s2
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.StateLemmas.code", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Lemmas.eval_code_eq_core", "Prims.unit", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.Nil" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)]
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_code_eq_t (c: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)]
[]
Vale.X64.Lemmas.eval_code_eq_t
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c: Vale.X64.StateLemmas.code -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt true (Vale.X64.Machine_Semantics_s.machine_eval_code c f s1) (Vale.X64.Machine_Semantics_s.machine_eval_code c f s2)) [ SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_code c f s1); SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_code c f s2) ]
{ "end_col": 62, "end_line": 279, "start_col": 2, "start_line": 279 }
FStar.Pervasives.Lemma
val eval_while_eq_t (cond: ocmp) (body: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2
val eval_while_eq_t (cond: ocmp) (body: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] let eval_while_eq_t (cond: ocmp) (body: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] =
false
null
true
eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.StateLemmas.code", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Lemmas.eval_while_eq_core", "Prims.unit", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_while", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.Nil" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)]
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_while_eq_t (cond: ocmp) (body: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)]
[]
Vale.X64.Lemmas.eval_while_eq_t
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cond: Vale.X64.Bytes_Code_s.ocmp -> body: Vale.X64.StateLemmas.code -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt true (Vale.X64.Machine_Semantics_s.machine_eval_while cond body f s1) (Vale.X64.Machine_Semantics_s.machine_eval_while cond body f s2)) [ SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_while cond body f s1); SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_while cond body f s2) ]
{ "end_col": 80, "end_line": 293, "start_col": 2, "start_line": 293 }
Prims.Ghost
val lemma_empty_total (s0:vale_state) (bN:codes) : Ghost (vale_state & fuel) (requires True) (ensures (fun (sM, fM) -> s0 == sM /\ eval_code (Block []) s0 fM sM ))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0)
val lemma_empty_total (s0:vale_state) (bN:codes) : Ghost (vale_state & fuel) (requires True) (ensures (fun (sM, fM) -> s0 == sM /\ eval_code (Block []) s0 fM sM )) let lemma_empty_total (s0: vale_state) (bN: codes) =
false
null
false
(s0, 0)
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[]
[ "Vale.X64.State.vale_state", "Vale.X64.Lemmas.codes", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Lemmas.fuel", "FStar.Pervasives.Native.tuple2" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_empty_total (s0:vale_state) (bN:codes) : Ghost (vale_state & fuel) (requires True) (ensures (fun (sM, fM) -> s0 == sM /\ eval_code (Block []) s0 fM sM ))
[]
Vale.X64.Lemmas.lemma_empty_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s0: Vale.X64.State.vale_state -> bN: Vale.X64.Lemmas.codes -> Prims.Ghost (Vale.X64.State.vale_state * Vale.X64.Lemmas.fuel)
{ "end_col": 9, "end_line": 356, "start_col": 2, "start_line": 356 }
Prims.Ghost
val lemma_while_total (b:ocmp) (c:code) (s0:vale_state) : Ghost (vale_state & fuel) (requires True) (ensures fun (s1, f1) -> s1 == s0 /\ eval_while_inv (While b c) s1 f1 s1 )
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_while_total (b:ocmp) (c:code) (s0:vale_state) = (s0, 0)
val lemma_while_total (b:ocmp) (c:code) (s0:vale_state) : Ghost (vale_state & fuel) (requires True) (ensures fun (s1, f1) -> s1 == s0 /\ eval_while_inv (While b c) s1 f1 s1 ) let lemma_while_total (b: ocmp) (c: code) (s0: vale_state) =
false
null
false
(s0, 0)
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[]
[ "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.StateLemmas.code", "Vale.X64.State.vale_state", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Lemmas.fuel", "FStar.Pervasives.Native.tuple2" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0) let lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) = (eval_ocmp s0 ifb, {s0 with vs_flags = havoc_flags}, s0, 0) let lemma_havoc_flags : squash (Flags.to_fun havoc_flags == BS.havoc_flags) = assert (FStar.FunctionalExtensionality.feq (Flags.to_fun havoc_flags) BS.havoc_flags) let lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_ifElseFalse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let eval_while_inv_temp (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = forall (f:nat).{:pattern BS.machine_eval_code c f (state_to_S sW)} Some? (BS.machine_eval_code c f (state_to_S sW)) ==> state_eq_opt (code_modifies_ghost c) (BS.machine_eval_code c (f + fW) (state_to_S s0)) (BS.machine_eval_code c f (state_to_S sW)) let eval_while_inv (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = eval_while_inv_temp c s0 fW sW
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_while_total (b:ocmp) (c:code) (s0:vale_state) : Ghost (vale_state & fuel) (requires True) (ensures fun (s1, f1) -> s1 == s0 /\ eval_while_inv (While b c) s1 f1 s1 )
[]
Vale.X64.Lemmas.lemma_while_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.X64.Bytes_Code_s.ocmp -> c: Vale.X64.StateLemmas.code -> s0: Vale.X64.State.vale_state -> Prims.Ghost (Vale.X64.State.vale_state * Vale.X64.Lemmas.fuel)
{ "end_col": 9, "end_line": 383, "start_col": 2, "start_line": 383 }
FStar.Pervasives.Lemma
val eval_code_eq_instr (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []})
val eval_code_eq_instr (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) let eval_code_eq_instr (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) =
false
null
true
reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({ s1 with BS.ms_trace = [] }) ({ s2 with BS.ms_trace = [] })
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Lemmas.eval_ins_eq_instr", "Vale.X64.Machine_Semantics_s.Mkmachine_state", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_ok", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_regs", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_flags", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stack", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stackTaint", "Prims.Nil", "Vale.X64.Machine_s.observation", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_eval_code_ins", "Prims.l_and", "Prims.b2t", "Vale.X64.Bytes_Code_s.uu___is_Instr", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Vale.X64.Machine_s.Ins", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Bytes_Code_s.ocmp", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_code_eq_instr (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
[]
Vale.X64.Lemmas.eval_code_eq_instr
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
inst: Vale.X64.Machine_Semantics_s.ins -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Instr? inst /\ Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt true (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins inst) f s1) (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins inst) f s2))
{ "end_col": 82, "end_line": 141, "start_col": 2, "start_line": 140 }
FStar.Pervasives.Lemma
val eval_codes_eq_f (cs: codes) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2
val eval_codes_eq_f (cs: codes) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] let eval_codes_eq_f (cs: codes) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] =
false
null
true
eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Lemmas.codes", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Lemmas.eval_codes_eq_core", "Prims.unit", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_codes", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.Nil" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)]
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_codes_eq_f (cs: codes) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)]
[]
Vale.X64.Lemmas.eval_codes_eq_f
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cs: Vale.X64.Lemmas.codes -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.state_eq_S false s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt false (Vale.X64.Machine_Semantics_s.machine_eval_codes cs f s1) (Vale.X64.Machine_Semantics_s.machine_eval_codes cs f s2)) [ SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_codes cs f s1); SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_codes cs f s2) ]
{ "end_col": 68, "end_line": 265, "start_col": 2, "start_line": 265 }
FStar.Pervasives.Lemma
val eval_while_eq_f (cond: ocmp) (body: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2
val eval_while_eq_f (cond: ocmp) (body: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] let eval_while_eq_f (cond: ocmp) (body: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] =
false
null
true
eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.StateLemmas.code", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Lemmas.eval_while_eq_core", "Prims.unit", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_while", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_state", "Prims.Nil" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)]
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_while_eq_f (cond: ocmp) (body: code) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)]
[]
Vale.X64.Lemmas.eval_while_eq_f
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
cond: Vale.X64.Bytes_Code_s.ocmp -> body: Vale.X64.StateLemmas.code -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.state_eq_S false s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt false (Vale.X64.Machine_Semantics_s.machine_eval_while cond body f s1) (Vale.X64.Machine_Semantics_s.machine_eval_while cond body f s2)) [ SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_while cond body f s1); SMTPat (Vale.X64.Machine_Semantics_s.machine_eval_while cond body f s2) ]
{ "end_col": 82, "end_line": 272, "start_col": 2, "start_line": 272 }
Prims.Ghost
val lemma_whileTrue_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) : Ghost (vale_state & fuel) (requires eval_ocmp sW b) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ f1 == fW)
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_whileTrue_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) = ({sW with vs_flags = havoc_flags}, fW)
val lemma_whileTrue_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) : Ghost (vale_state & fuel) (requires eval_ocmp sW b) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ f1 == fW) let lemma_whileTrue_total (b: ocmp) (c: code) (s0 sW: vale_state) (fW: fuel) =
false
null
false
({ sW with vs_flags = havoc_flags }, fW)
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[]
[ "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.StateLemmas.code", "Vale.X64.State.vale_state", "Vale.X64.Lemmas.fuel", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.State.Mkvale_state", "Vale.X64.State.__proj__Mkvale_state__item__vs_ok", "Vale.X64.State.__proj__Mkvale_state__item__vs_regs", "Vale.X64.Lemmas.havoc_flags", "Vale.X64.State.__proj__Mkvale_state__item__vs_heap", "Vale.X64.State.__proj__Mkvale_state__item__vs_stack", "Vale.X64.State.__proj__Mkvale_state__item__vs_stackTaint", "FStar.Pervasives.Native.tuple2" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0) let lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) = (eval_ocmp s0 ifb, {s0 with vs_flags = havoc_flags}, s0, 0) let lemma_havoc_flags : squash (Flags.to_fun havoc_flags == BS.havoc_flags) = assert (FStar.FunctionalExtensionality.feq (Flags.to_fun havoc_flags) BS.havoc_flags) let lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_ifElseFalse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let eval_while_inv_temp (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = forall (f:nat).{:pattern BS.machine_eval_code c f (state_to_S sW)} Some? (BS.machine_eval_code c f (state_to_S sW)) ==> state_eq_opt (code_modifies_ghost c) (BS.machine_eval_code c (f + fW) (state_to_S s0)) (BS.machine_eval_code c f (state_to_S sW)) let eval_while_inv (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = eval_while_inv_temp c s0 fW sW let lemma_while_total (b:ocmp) (c:code) (s0:vale_state) = (s0, 0)
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_whileTrue_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) : Ghost (vale_state & fuel) (requires eval_ocmp sW b) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ f1 == fW)
[]
Vale.X64.Lemmas.lemma_whileTrue_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.X64.Bytes_Code_s.ocmp -> c: Vale.X64.StateLemmas.code -> s0: Vale.X64.State.vale_state -> sW: Vale.X64.State.vale_state -> fW: Vale.X64.Lemmas.fuel -> Prims.Ghost (Vale.X64.State.vale_state * Vale.X64.Lemmas.fuel)
{ "end_col": 40, "end_line": 386, "start_col": 2, "start_line": 386 }
FStar.Pervasives.Lemma
val eval_code_eq_alloc (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr
val eval_code_eq_alloc (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) let eval_code_eq_alloc (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) =
false
null
true
reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "FStar.Pervasives.allow_inversion", "Vale.X64.Machine_s.tmaddr", "Prims.unit", "Vale.Arch.HeapLemmas.lemma_heap_ignore_ghost_machine", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.X64.StateLemmas.use_machine_state_equal", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_eval_code_ins", "Prims.l_and", "Prims.b2t", "Vale.X64.Bytes_Code_s.uu___is_Alloc", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Vale.X64.Machine_s.Ins", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Bytes_Code_s.ocmp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_code_eq_alloc (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
[]
Vale.X64.Lemmas.eval_code_eq_alloc
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
inst: Vale.X64.Machine_Semantics_s.ins -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Alloc? inst /\ Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt true (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins inst) f s1) (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins inst) f s2))
{ "end_col": 24, "end_line": 159, "start_col": 2, "start_line": 156 }
Prims.Tot
val eval_while_inv_temp (c: code) (s0: vale_state) (fW: fuel) (sW: vale_state) : Type0
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_while_inv_temp (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = forall (f:nat).{:pattern BS.machine_eval_code c f (state_to_S sW)} Some? (BS.machine_eval_code c f (state_to_S sW)) ==> state_eq_opt (code_modifies_ghost c) (BS.machine_eval_code c (f + fW) (state_to_S s0)) (BS.machine_eval_code c f (state_to_S sW))
val eval_while_inv_temp (c: code) (s0: vale_state) (fW: fuel) (sW: vale_state) : Type0 let eval_while_inv_temp (c: code) (s0: vale_state) (fW: fuel) (sW: vale_state) : Type0 =
false
null
false
forall (f: nat). {:pattern BS.machine_eval_code c f (state_to_S sW)} Some? (BS.machine_eval_code c f (state_to_S sW)) ==> state_eq_opt (code_modifies_ghost c) (BS.machine_eval_code c (f + fW) (state_to_S s0)) (BS.machine_eval_code c f (state_to_S sW))
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "total" ]
[ "Vale.X64.StateLemmas.code", "Vale.X64.State.vale_state", "Vale.X64.Lemmas.fuel", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Vale.X64.StateLemmas.state_to_S", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Lemmas.code_modifies_ghost", "Prims.op_Addition" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0) let lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) = (eval_ocmp s0 ifb, {s0 with vs_flags = havoc_flags}, s0, 0) let lemma_havoc_flags : squash (Flags.to_fun havoc_flags == BS.havoc_flags) = assert (FStar.FunctionalExtensionality.feq (Flags.to_fun havoc_flags) BS.havoc_flags) let lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_ifElseFalse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
false
true
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_while_inv_temp (c: code) (s0: vale_state) (fW: fuel) (sW: vale_state) : Type0
[]
Vale.X64.Lemmas.eval_while_inv_temp
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c: Vale.X64.StateLemmas.code -> s0: Vale.X64.State.vale_state -> fW: Vale.X64.Lemmas.fuel -> sW: Vale.X64.State.vale_state -> Type0
{ "end_col": 48, "end_line": 377, "start_col": 2, "start_line": 373 }
FStar.Pervasives.Lemma
val lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) : Lemma (requires valid_ocmp ifb s0 /\ eval_ocmp s0 ifb /\ eval_code ct ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
val lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) : Lemma (requires valid_ocmp ifb s0 /\ eval_ocmp s0 ifb /\ eval_code ct ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM ) let lemma_ifElseTrue_total (ifb: ocmp) (ct cf: code) (s0: vale_state) (f0: fuel) (sM: vale_state) =
false
null
true
reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.StateLemmas.code", "Vale.X64.State.vale_state", "Vale.X64.Lemmas.fuel", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.ocmp", "Prims.bool", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Prims.unit", "Vale.X64.Machine_Semantics_s.valid_ocmp_opaque" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0) let lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) = (eval_ocmp s0 ifb, {s0 with vs_flags = havoc_flags}, s0, 0) let lemma_havoc_flags : squash (Flags.to_fun havoc_flags == BS.havoc_flags) = assert (FStar.FunctionalExtensionality.feq (Flags.to_fun havoc_flags) BS.havoc_flags)
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) : Lemma (requires valid_ocmp ifb s0 /\ eval_ocmp s0 ifb /\ eval_code ct ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
[]
Vale.X64.Lemmas.lemma_ifElseTrue_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ifb: Vale.X64.Bytes_Code_s.ocmp -> ct: Vale.X64.StateLemmas.code -> cf: Vale.X64.StateLemmas.code -> s0: Vale.X64.State.vale_state -> f0: Vale.X64.Lemmas.fuel -> sM: Vale.X64.State.vale_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.valid_ocmp ifb s0 /\ Vale.X64.Lemmas.eval_ocmp s0 ifb /\ Vale.X64.Lemmas.eval_code ct (Vale.X64.State.Mkvale_state (Mkvale_state?.vs_ok s0) (Mkvale_state?.vs_regs s0) Vale.X64.Lemmas.havoc_flags (Mkvale_state?.vs_heap s0) (Mkvale_state?.vs_stack s0) (Mkvale_state?.vs_stackTaint s0)) f0 sM) (ensures Vale.X64.Lemmas.eval_code (Vale.X64.Machine_s.IfElse ifb ct cf) s0 f0 sM)
{ "end_col": 59, "end_line": 366, "start_col": 2, "start_line": 365 }
Prims.Tot
val lemma_havoc_flags:squash (Flags.to_fun havoc_flags == BS.havoc_flags)
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_havoc_flags : squash (Flags.to_fun havoc_flags == BS.havoc_flags) = assert (FStar.FunctionalExtensionality.feq (Flags.to_fun havoc_flags) BS.havoc_flags)
val lemma_havoc_flags:squash (Flags.to_fun havoc_flags == BS.havoc_flags) let lemma_havoc_flags:squash (Flags.to_fun havoc_flags == BS.havoc_flags) =
false
null
true
assert (FStar.FunctionalExtensionality.feq (Flags.to_fun havoc_flags) BS.havoc_flags)
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "total" ]
[ "Prims._assert", "FStar.FunctionalExtensionality.feq", "Vale.X64.Machine_s.flag", "Vale.X64.Flags.flag_val_t", "Vale.X64.Flags.to_fun", "Vale.X64.Lemmas.havoc_flags", "Vale.X64.Machine_Semantics_s.havoc_flags" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0) let lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) = (eval_ocmp s0 ifb, {s0 with vs_flags = havoc_flags}, s0, 0)
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_havoc_flags:squash (Flags.to_fun havoc_flags == BS.havoc_flags)
[]
Vale.X64.Lemmas.lemma_havoc_flags
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.squash (Vale.X64.Flags.to_fun Vale.X64.Lemmas.havoc_flags == Vale.X64.Machine_Semantics_s.havoc_flags)
{ "end_col": 87, "end_line": 362, "start_col": 2, "start_line": 362 }
FStar.Pervasives.Lemma
val eval_code_eq_dealloc (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr
val eval_code_eq_dealloc (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) let eval_code_eq_dealloc (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) =
false
null
true
reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "FStar.Pervasives.allow_inversion", "Vale.X64.Machine_s.tmaddr", "Prims.unit", "Vale.Arch.HeapLemmas.lemma_heap_ignore_ghost_machine", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.X64.StateLemmas.use_machine_state_equal", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_eval_code_ins", "Prims.l_and", "Prims.b2t", "Vale.X64.Bytes_Code_s.uu___is_Dealloc", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Vale.X64.Machine_s.Ins", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Bytes_Code_s.ocmp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_code_eq_dealloc (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
[]
Vale.X64.Lemmas.eval_code_eq_dealloc
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
inst: Vale.X64.Machine_Semantics_s.ins -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Dealloc? inst /\ Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt true (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins inst) f s1) (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins inst) f s2))
{ "end_col": 24, "end_line": 150, "start_col": 2, "start_line": 147 }
FStar.Pervasives.Lemma
val lemma_ifElseFalse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) : Lemma (requires valid_ocmp ifb s0 /\ not (eval_ocmp s0 ifb) /\ eval_code cf ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_ifElseFalse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
val lemma_ifElseFalse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) : Lemma (requires valid_ocmp ifb s0 /\ not (eval_ocmp s0 ifb) /\ eval_code cf ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM ) let lemma_ifElseFalse_total (ifb: ocmp) (ct cf: code) (s0: vale_state) (f0: fuel) (sM: vale_state) =
false
null
true
reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.StateLemmas.code", "Vale.X64.State.vale_state", "Vale.X64.Lemmas.fuel", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.ocmp", "Prims.bool", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Prims.unit", "Vale.X64.Machine_Semantics_s.valid_ocmp_opaque" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0) let lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) = (eval_ocmp s0 ifb, {s0 with vs_flags = havoc_flags}, s0, 0) let lemma_havoc_flags : squash (Flags.to_fun havoc_flags == BS.havoc_flags) = assert (FStar.FunctionalExtensionality.feq (Flags.to_fun havoc_flags) BS.havoc_flags) let lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_ifElseFalse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) : Lemma (requires valid_ocmp ifb s0 /\ not (eval_ocmp s0 ifb) /\ eval_code cf ({s0 with vs_flags = havoc_flags}) f0 sM ) (ensures eval_code (IfElse ifb ct cf) s0 f0 sM )
[]
Vale.X64.Lemmas.lemma_ifElseFalse_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
ifb: Vale.X64.Bytes_Code_s.ocmp -> ct: Vale.X64.StateLemmas.code -> cf: Vale.X64.StateLemmas.code -> s0: Vale.X64.State.vale_state -> f0: Vale.X64.Lemmas.fuel -> sM: Vale.X64.State.vale_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.valid_ocmp ifb s0 /\ Prims.op_Negation (Vale.X64.Lemmas.eval_ocmp s0 ifb) /\ Vale.X64.Lemmas.eval_code cf (Vale.X64.State.Mkvale_state (Mkvale_state?.vs_ok s0) (Mkvale_state?.vs_regs s0) Vale.X64.Lemmas.havoc_flags (Mkvale_state?.vs_heap s0) (Mkvale_state?.vs_stack s0) (Mkvale_state?.vs_stackTaint s0)) f0 sM) (ensures Vale.X64.Lemmas.eval_code (Vale.X64.Machine_s.IfElse ifb ct cf) s0 f0 sM)
{ "end_col": 59, "end_line": 370, "start_col": 2, "start_line": 369 }
Prims.Ghost
val lemma_whileFalse_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) : Ghost (vale_state & fuel) (requires valid_ocmp b sW /\ not (eval_ocmp sW b) /\ eval_while_inv (While b c) s0 fW sW ) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ eval_code (While b c) s0 f1 s1 )
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_whileFalse_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; let f1 = fW + 1 in let s1 = {sW with vs_flags = havoc_flags} in assert (state_eq_opt (code_modifies_ghost c) (BS.machine_eval_code (While b c) f1 (state_to_S s0)) (BS.machine_eval_code (While b c) 1 (state_to_S sW))); assert (eval_code (While b c) s0 f1 s1); (s1, f1)
val lemma_whileFalse_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) : Ghost (vale_state & fuel) (requires valid_ocmp b sW /\ not (eval_ocmp sW b) /\ eval_while_inv (While b c) s0 fW sW ) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ eval_code (While b c) s0 f1 s1 ) let lemma_whileFalse_total (b: ocmp) (c: code) (s0 sW: vale_state) (fW: fuel) =
false
null
false
reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; let f1 = fW + 1 in let s1 = { sW with vs_flags = havoc_flags } in assert (state_eq_opt (code_modifies_ghost c) (BS.machine_eval_code (While b c) f1 (state_to_S s0)) (BS.machine_eval_code (While b c) 1 (state_to_S sW))); assert (eval_code (While b c) s0 f1 s1); (s1, f1)
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[]
[ "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.StateLemmas.code", "Vale.X64.State.vale_state", "Vale.X64.Lemmas.fuel", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Prims._assert", "Vale.X64.Lemmas.eval_code", "Vale.X64.Machine_s.While", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Lemmas.code_modifies_ghost", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Vale.X64.StateLemmas.state_to_S", "Vale.X64.State.Mkvale_state", "Vale.X64.State.__proj__Mkvale_state__item__vs_ok", "Vale.X64.State.__proj__Mkvale_state__item__vs_regs", "Vale.X64.Lemmas.havoc_flags", "Vale.X64.State.__proj__Mkvale_state__item__vs_heap", "Vale.X64.State.__proj__Mkvale_state__item__vs_stack", "Vale.X64.State.__proj__Mkvale_state__item__vs_stackTaint", "Prims.int", "Prims.op_Addition", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.ocmp", "Prims.bool", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Vale.X64.Machine_Semantics_s.valid_ocmp_opaque", "FStar.Pervasives.Native.tuple2" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0) let lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) = (eval_ocmp s0 ifb, {s0 with vs_flags = havoc_flags}, s0, 0) let lemma_havoc_flags : squash (Flags.to_fun havoc_flags == BS.havoc_flags) = assert (FStar.FunctionalExtensionality.feq (Flags.to_fun havoc_flags) BS.havoc_flags) let lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_ifElseFalse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let eval_while_inv_temp (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = forall (f:nat).{:pattern BS.machine_eval_code c f (state_to_S sW)} Some? (BS.machine_eval_code c f (state_to_S sW)) ==> state_eq_opt (code_modifies_ghost c) (BS.machine_eval_code c (f + fW) (state_to_S s0)) (BS.machine_eval_code c f (state_to_S sW)) let eval_while_inv (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = eval_while_inv_temp c s0 fW sW let lemma_while_total (b:ocmp) (c:code) (s0:vale_state) = (s0, 0) let lemma_whileTrue_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) = ({sW with vs_flags = havoc_flags}, fW)
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_whileFalse_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) : Ghost (vale_state & fuel) (requires valid_ocmp b sW /\ not (eval_ocmp sW b) /\ eval_while_inv (While b c) s0 fW sW ) (ensures fun (s1, f1) -> s1 == {sW with vs_flags = havoc_flags} /\ eval_code (While b c) s0 f1 s1 )
[]
Vale.X64.Lemmas.lemma_whileFalse_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.X64.Bytes_Code_s.ocmp -> c: Vale.X64.StateLemmas.code -> s0: Vale.X64.State.vale_state -> sW: Vale.X64.State.vale_state -> fW: Vale.X64.Lemmas.fuel -> Prims.Ghost (Vale.X64.State.vale_state * Vale.X64.Lemmas.fuel)
{ "end_col": 10, "end_line": 395, "start_col": 2, "start_line": 389 }
FStar.Pervasives.Lemma
val eval_code_eq_ins (i: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2
val eval_code_eq_ins (i: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) let eval_code_eq_ins (i: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) =
false
null
true
match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Instruction_s.instr_t_record", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Lemmas.eval_code_eq_instr", "Vale.X64.Machine_s.nat64", "Vale.X64.Lemmas.eval_code_eq_dealloc", "Vale.X64.Lemmas.eval_code_eq_alloc", "Vale.X64.Machine_s.operand64", "Vale.Arch.HeapTypes_s.taint", "Vale.X64.Lemmas.eval_code_eq_push", "Vale.X64.Lemmas.eval_code_eq_pop", "Prims.unit", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Vale.X64.Machine_s.Ins", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Bytes_Code_s.ocmp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2))
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_code_eq_ins (i: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2))
[]
Vale.X64.Lemmas.eval_code_eq_ins
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
i: Vale.X64.Machine_Semantics_s.ins -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt true (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins i) f s1) (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins i) f s2))
{ "end_col": 42, "end_line": 188, "start_col": 2, "start_line": 183 }
FStar.Pervasives.Lemma
val lemma_cmp_lt (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OLt o1 o2) <==> eval_operand o1 s < eval_operand o2 s) [SMTPat (eval_ocmp s (OLt o1 o2))]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
val lemma_cmp_lt (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OLt o1 o2) <==> eval_operand o1 s < eval_operand o2 s) [SMTPat (eval_ocmp s (OLt o1 o2))] let lemma_cmp_lt s o1 o2 =
false
null
true
reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.State.vale_state", "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.ocmp", "Prims.bool", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Prims.unit" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_cmp_lt (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OLt o1 o2) <==> eval_operand o1 s < eval_operand o2 s) [SMTPat (eval_ocmp s (OLt o1 o2))]
[]
Vale.X64.Lemmas.lemma_cmp_lt
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Vale.X64.State.vale_state -> o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> FStar.Pervasives.Lemma (ensures Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.OLt o1 o2) <==> Vale.X64.State.eval_operand o1 s < Vale.X64.State.eval_operand o2 s) [SMTPat (Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.OLt o1 o2))]
{ "end_col": 84, "end_line": 337, "start_col": 27, "start_line": 337 }
FStar.Pervasives.Lemma
val lemma_cmp_eq (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OEq o1 o2) <==> eval_operand o1 s == eval_operand o2 s) [SMTPat (eval_ocmp s (OEq o1 o2))]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
val lemma_cmp_eq (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OEq o1 o2) <==> eval_operand o1 s == eval_operand o2 s) [SMTPat (eval_ocmp s (OEq o1 o2))] let lemma_cmp_eq s o1 o2 =
false
null
true
reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.State.vale_state", "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.ocmp", "Prims.bool", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Prims.unit" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN )
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_cmp_eq (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OEq o1 o2) <==> eval_operand o1 s == eval_operand o2 s) [SMTPat (eval_ocmp s (OEq o1 o2))]
[]
Vale.X64.Lemmas.lemma_cmp_eq
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Vale.X64.State.vale_state -> o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> FStar.Pervasives.Lemma (ensures Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.OEq o1 o2) <==> Vale.X64.State.eval_operand o1 s == Vale.X64.State.eval_operand o2 s) [SMTPat (Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.OEq o1 o2))]
{ "end_col": 84, "end_line": 333, "start_col": 27, "start_line": 333 }
FStar.Pervasives.Lemma
val lemma_cmp_ne (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (ONe o1 o2) <==> eval_operand o1 s <> eval_operand o2 s) [SMTPat (eval_ocmp s (ONe o1 o2))]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
val lemma_cmp_ne (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (ONe o1 o2) <==> eval_operand o1 s <> eval_operand o2 s) [SMTPat (eval_ocmp s (ONe o1 o2))] let lemma_cmp_ne s o1 o2 =
false
null
true
reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.State.vale_state", "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.ocmp", "Prims.bool", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Prims.unit" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN )
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_cmp_ne (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (ONe o1 o2) <==> eval_operand o1 s <> eval_operand o2 s) [SMTPat (eval_ocmp s (ONe o1 o2))]
[]
Vale.X64.Lemmas.lemma_cmp_ne
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Vale.X64.State.vale_state -> o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> FStar.Pervasives.Lemma (ensures Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.ONe o1 o2) <==> Vale.X64.State.eval_operand o1 s <> Vale.X64.State.eval_operand o2 s) [SMTPat (Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.ONe o1 o2))]
{ "end_col": 84, "end_line": 334, "start_col": 27, "start_line": 334 }
FStar.Pervasives.Lemma
val lemma_cmp_le (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OLe o1 o2) <==> eval_operand o1 s <= eval_operand o2 s) [SMTPat (eval_ocmp s (OLe o1 o2))]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
val lemma_cmp_le (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OLe o1 o2) <==> eval_operand o1 s <= eval_operand o2 s) [SMTPat (eval_ocmp s (OLe o1 o2))] let lemma_cmp_le s o1 o2 =
false
null
true
reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.State.vale_state", "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.ocmp", "Prims.bool", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Prims.unit" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_cmp_le (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OLe o1 o2) <==> eval_operand o1 s <= eval_operand o2 s) [SMTPat (eval_ocmp s (OLe o1 o2))]
[]
Vale.X64.Lemmas.lemma_cmp_le
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Vale.X64.State.vale_state -> o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> FStar.Pervasives.Lemma (ensures Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.OLe o1 o2) <==> Vale.X64.State.eval_operand o1 s <= Vale.X64.State.eval_operand o2 s) [SMTPat (Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.OLe o1 o2))]
{ "end_col": 84, "end_line": 335, "start_col": 27, "start_line": 335 }
FStar.Pervasives.Lemma
val eval_ins_eq_instr (inst: BS.ins) (s1 s2: machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2'
val eval_ins_eq_instr (inst: BS.ins) (s1 s2: machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) let eval_ins_eq_instr (inst: BS.ins) (s1 s2: machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) =
false
null
true
let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> { s with ms_flags = havoc_flags } | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2'
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Instruction_s.instr_t_record", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args", "Vale.X64.Machine_Semantics_s.instr_annotation", "Prims.list", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.flag_havoc", "Vale.X64.Instruction_s.instr_t", "Vale.X64.Instruction_s.instr_ret_t", "Vale.X64.Lemmas.lemma_eq_instr_write_outputs", "Prims.unit", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.Mkmachine_state", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_ok", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_regs", "Vale.X64.Machine_Semantics_s.havoc_flags", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stack", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stackTaint", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_trace", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.instr_apply_eval", "Vale.X64.Instruction_s.instr_eval", "Vale.X64.Lemmas.lemma_eq_instr_apply_eval_inouts", "Prims.l_and", "Prims.b2t", "Vale.X64.Bytes_Code_s.uu___is_Instr", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Machine_Semantics_s.machine_eval_ins", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2))
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_ins_eq_instr (inst: BS.ins) (s1 s2: machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2))
[]
Vale.X64.Lemmas.eval_ins_eq_instr
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
inst: Vale.X64.Machine_Semantics_s.ins -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Instr? inst /\ Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_S true (Vale.X64.Machine_Semantics_s.machine_eval_ins inst s1) (Vale.X64.Machine_Semantics_s.machine_eval_ins inst s2))
{ "end_col": 77, "end_line": 134, "start_col": 2, "start_line": 120 }
FStar.Pervasives.Lemma
val lemma_cmp_gt (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OGt o1 o2) <==> eval_operand o1 s > eval_operand o2 s) [SMTPat (eval_ocmp s (OGt o1 o2))]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
val lemma_cmp_gt (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OGt o1 o2) <==> eval_operand o1 s > eval_operand o2 s) [SMTPat (eval_ocmp s (OGt o1 o2))] let lemma_cmp_gt s o1 o2 =
false
null
true
reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.State.vale_state", "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.ocmp", "Prims.bool", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Prims.unit" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_cmp_gt (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OGt o1 o2) <==> eval_operand o1 s > eval_operand o2 s) [SMTPat (eval_ocmp s (OGt o1 o2))]
[]
Vale.X64.Lemmas.lemma_cmp_gt
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Vale.X64.State.vale_state -> o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> FStar.Pervasives.Lemma (ensures Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.OGt o1 o2) <==> Vale.X64.State.eval_operand o1 s > Vale.X64.State.eval_operand o2 s) [SMTPat (Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.OGt o1 o2))]
{ "end_col": 84, "end_line": 338, "start_col": 27, "start_line": 338 }
FStar.Pervasives.Lemma
val lemma_cmp_ge (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OGe o1 o2) <==> eval_operand o1 s >= eval_operand o2 s) [SMTPat (eval_ocmp s (OGe o1 o2))]
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
val lemma_cmp_ge (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OGe o1 o2) <==> eval_operand o1 s >= eval_operand o2 s) [SMTPat (eval_ocmp s (OGe o1 o2))] let lemma_cmp_ge s o1 o2 =
false
null
true
reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.State.vale_state", "Vale.X64.Machine_s.operand64", "Prims.b2t", "Prims.op_Negation", "Prims.op_BarBar", "Vale.X64.Machine_s.uu___is_OMem", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Vale.X64.Machine_s.uu___is_OStack", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.ocmp", "Prims.bool", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Prims.unit" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_cmp_ge (s:vale_state) (o1:operand64{not (OMem? o1 || OStack? o1)}) (o2:operand64{not (OMem? o2 || OStack? o2)}) : Lemma (ensures eval_ocmp s (OGe o1 o2) <==> eval_operand o1 s >= eval_operand o2 s) [SMTPat (eval_ocmp s (OGe o1 o2))]
[]
Vale.X64.Lemmas.lemma_cmp_ge
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Vale.X64.State.vale_state -> o1: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o1 || OStack? o1)} -> o2: Vale.X64.Machine_s.operand64{Prims.op_Negation (OMem? o2 || OStack? o2)} -> FStar.Pervasives.Lemma (ensures Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.OGe o1 o2) <==> Vale.X64.State.eval_operand o1 s >= Vale.X64.State.eval_operand o2 s) [SMTPat (Vale.X64.Lemmas.eval_ocmp s (Vale.X64.Bytes_Code_s.OGe o1 o2))]
{ "end_col": 84, "end_line": 336, "start_col": 27, "start_line": 336 }
FStar.Pervasives.Lemma
val eval_code_eq_push (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr
val eval_code_eq_push (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) let eval_code_eq_push (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) =
false
null
true
reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "FStar.Pervasives.allow_inversion", "Vale.X64.Machine_s.tmaddr", "Prims.unit", "Vale.Arch.HeapLemmas.lemma_heap_ignore_ghost_machine", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.X64.StateLemmas.use_machine_state_equal", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_eval_code_ins", "Prims.l_and", "Prims.b2t", "Vale.X64.Bytes_Code_s.uu___is_Push", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Vale.X64.Machine_s.Ins", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Bytes_Code_s.ocmp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_code_eq_push (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
[]
Vale.X64.Lemmas.eval_code_eq_push
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
inst: Vale.X64.Machine_Semantics_s.ins -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Push? inst /\ Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt true (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins inst) f s1) (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins inst) f s2))
{ "end_col": 24, "end_line": 168, "start_col": 2, "start_line": 165 }
FStar.Pervasives.Lemma
val lemma_eq_instr_apply_eval_args (outs: list instr_out) (args: list instr_operand) (f: instr_args_t outs args) (oprs: instr_operands_t_args args) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2 )
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 )
val lemma_eq_instr_apply_eval_args (outs: list instr_out) (args: list instr_operand) (f: instr_args_t outs args) (oprs: instr_operands_t_args args) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2 ) let rec lemma_eq_instr_apply_eval_args (outs: list instr_out) (args: list instr_operand) (f: instr_args_t outs args) (oprs: instr_operands_t_args args) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2 ) =
false
null
true
let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i :: args -> (let v, oprs:option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2)
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Prims.list", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.instr_args_t", "Vale.X64.Instruction_s.instr_operands_t_args", "Vale.X64.StateLemmas.machine_state", "FStar.Pervasives.Native.option", "Vale.X64.Instruction_s.instr_val_t", "Vale.X64.Lemmas.lemma_eq_instr_apply_eval_args", "Prims.unit", "Vale.X64.Instruction_s.arrow", "Vale.X64.Instruction_s.coerce", "FStar.Pervasives.Native.tuple2", "Vale.X64.Instruction_s.instr_operand_explicit", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Machine_Semantics_s.instr_eval_operand_explicit", "FStar.Pervasives.Native.fst", "Vale.X64.Instruction_s.instr_operand_t", "FStar.Pervasives.Native.snd", "Vale.X64.Instruction_s.instr_operand_implicit", "Vale.X64.Machine_Semantics_s.instr_eval_operand_implicit", "Vale.Arch.HeapLemmas.lemma_heap_ignore_ghost_machine", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Prims.eq2", "Vale.X64.Instruction_s.instr_ret_t", "Vale.X64.Machine_Semantics_s.instr_apply_eval_args", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2)
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_eq_instr_apply_eval_args (outs: list instr_out) (args: list instr_operand) (f: instr_args_t outs args) (oprs: instr_operands_t_args args) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2 )
[ "recursion" ]
Vale.X64.Lemmas.lemma_eq_instr_apply_eval_args
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
outs: Prims.list Vale.X64.Instruction_s.instr_out -> args: Prims.list Vale.X64.Instruction_s.instr_operand -> f: Vale.X64.Instruction_s.instr_args_t outs args -> oprs: Vale.X64.Instruction_s.instr_operands_t_args args -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Machine_Semantics_s.instr_apply_eval_args outs args f oprs s1 == Vale.X64.Machine_Semantics_s.instr_apply_eval_args outs args f oprs s2)
{ "end_col": 5, "end_line": 38, "start_col": 2, "start_line": 23 }
FStar.Pervasives.Lemma
val eval_ocmp_eq_core (g: bool) (cond: ocmp) (s: machine_state) : Lemma (ensures (let s1, b1 = BS.machine_eval_ocmp s cond in let s2, b2 = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; ()
val eval_ocmp_eq_core (g: bool) (cond: ocmp) (s: machine_state) : Lemma (ensures (let s1, b1 = BS.machine_eval_ocmp s cond in let s2, b2 = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2)) let eval_ocmp_eq_core (g: bool) (cond: ocmp) (s: machine_state) : Lemma (ensures (let s1, b1 = BS.machine_eval_ocmp s cond in let s2, b2 = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2)) =
false
null
true
reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; ()
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Prims.bool", "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.StateLemmas.machine_state", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.ocmp", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Vale.X64.Machine_Semantics_s.valid_ocmp_opaque", "Prims.l_True", "Prims.squash", "Prims.l_and", "Vale.X64.Lemmas.state_eq_S", "Prims.eq2", "FStar.Pervasives.Native.tuple2", "Vale.X64.Machine_Semantics_s.machine_eval_ocmp", "Vale.X64.Lemmas.core_state", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 ))
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_ocmp_eq_core (g: bool) (cond: ocmp) (s: machine_state) : Lemma (ensures (let s1, b1 = BS.machine_eval_ocmp s cond in let s2, b2 = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2))
[]
Vale.X64.Lemmas.eval_ocmp_eq_core
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
g: Prims.bool -> cond: Vale.X64.Bytes_Code_s.ocmp -> s: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (ensures (let _ = Vale.X64.Machine_Semantics_s.machine_eval_ocmp s cond in (let FStar.Pervasives.Native.Mktuple2 #_ #_ s1 b1 = _ in let _ = Vale.X64.Machine_Semantics_s.machine_eval_ocmp (Vale.X64.Lemmas.core_state g s) cond in (let FStar.Pervasives.Native.Mktuple2 #_ #_ s2 b2 = _ in Vale.X64.Lemmas.state_eq_S g s1 s2 /\ b1 == b2) <: Type0) <: Type0))
{ "end_col": 4, "end_line": 201, "start_col": 2, "start_line": 199 }
FStar.Pervasives.Lemma
val lemma_eq_instr_apply_eval_inouts (outs inouts: list instr_out) (args: list instr_operand) (f: instr_inouts_t outs inouts args) (oprs: instr_operands_t inouts args) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2)
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 )
val lemma_eq_instr_apply_eval_inouts (outs inouts: list instr_out) (args: list instr_operand) (f: instr_inouts_t outs inouts args) (oprs: instr_operands_t inouts args) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) let rec lemma_eq_instr_apply_eval_inouts (outs inouts: list instr_out) (args: list instr_operand) (f: instr_inouts_t outs inouts args) (oprs: instr_operands_t inouts args) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) =
false
null
true
let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i) :: inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i) :: inouts -> (let v, oprs:option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2)
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Prims.list", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.instr_inouts_t", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Lemmas.lemma_eq_instr_apply_eval_args", "Vale.X64.Lemmas.lemma_eq_instr_apply_eval_inouts", "Vale.X64.Instruction_s.coerce", "Vale.X64.Instruction_s.instr_operand_explicit", "FStar.Pervasives.Native.snd", "Vale.X64.Instruction_s.instr_operand_t", "FStar.Pervasives.Native.tuple2", "Vale.X64.Instruction_s.instr_operand_implicit", "FStar.Pervasives.Native.option", "Vale.X64.Instruction_s.instr_val_t", "Prims.unit", "Vale.X64.Instruction_s.arrow", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Machine_Semantics_s.instr_eval_operand_explicit", "FStar.Pervasives.Native.fst", "Vale.X64.Machine_Semantics_s.instr_eval_operand_implicit", "Vale.Arch.HeapLemmas.lemma_heap_ignore_ghost_machine", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Prims.eq2", "Vale.X64.Instruction_s.instr_ret_t", "Vale.X64.Machine_Semantics_s.instr_apply_eval_inouts", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2)
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_eq_instr_apply_eval_inouts (outs inouts: list instr_out) (args: list instr_operand) (f: instr_inouts_t outs inouts args) (oprs: instr_operands_t inouts args) (s1 s2: machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2)
[ "recursion" ]
Vale.X64.Lemmas.lemma_eq_instr_apply_eval_inouts
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
outs: Prims.list Vale.X64.Instruction_s.instr_out -> inouts: Prims.list Vale.X64.Instruction_s.instr_out -> args: Prims.list Vale.X64.Instruction_s.instr_operand -> f: Vale.X64.Instruction_s.instr_inouts_t outs inouts args -> oprs: Vale.X64.Instruction_s.instr_operands_t inouts args -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Machine_Semantics_s.instr_apply_eval_inouts outs inouts args f oprs s1 == Vale.X64.Machine_Semantics_s.instr_apply_eval_inouts outs inouts args f oprs s2)
{ "end_col": 5, "end_line": 72, "start_col": 2, "start_line": 50 }
FStar.Pervasives.Lemma
val lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) : Lemma (requires Cons? b0 /\ eval_code (Cons?.hd b0) s0 f0 sM /\ eval_code (Block (Cons?.tl b0)) sM fM sN ) (ensures eval_code (Block b0) s0 (compute_merge_total f0 fM) sN)
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f
val lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) : Lemma (requires Cons? b0 /\ eval_code (Cons?.hd b0) s0 f0 sM /\ eval_code (Block (Cons?.tl b0)) sM fM sN ) (ensures eval_code (Block b0) s0 (compute_merge_total f0 fM) sN) let lemma_merge_total (b0: codes) (s0: vale_state) (f0: fuel) (sM: vale_state) (fM: fuel) (sN: vale_state) =
false
null
true
let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Lemmas.codes", "Vale.X64.State.vale_state", "Vale.X64.Lemmas.fuel", "Vale.X64.Lemmas.increase_fuel", "Vale.X64.Lemmas.codes_modifies_ghost", "Vale.X64.Machine_s.Block", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Bytes_Code_s.ocmp", "Prims.__proj__Cons__item__tl", "Vale.X64.Bytes_Code_s.code_t", "Vale.X64.StateLemmas.state_to_S", "Prims.unit", "Prims.__proj__Cons__item__hd", "Prims.nat", "Prims.op_GreaterThan", "Prims.bool" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) : Lemma (requires Cons? b0 /\ eval_code (Cons?.hd b0) s0 f0 sM /\ eval_code (Block (Cons?.tl b0)) sM fM sN ) (ensures eval_code (Block b0) s0 (compute_merge_total f0 fM) sN)
[]
Vale.X64.Lemmas.lemma_merge_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b0: Vale.X64.Lemmas.codes -> s0: Vale.X64.State.vale_state -> f0: Vale.X64.Lemmas.fuel -> sM: Vale.X64.State.vale_state -> fM: Vale.X64.Lemmas.fuel -> sN: Vale.X64.State.vale_state -> FStar.Pervasives.Lemma (requires Cons? b0 /\ Vale.X64.Lemmas.eval_code (Cons?.hd b0) s0 f0 sM /\ Vale.X64.Lemmas.eval_code (Vale.X64.Machine_s.Block (Cons?.tl b0)) sM fM sN) (ensures Vale.X64.Lemmas.eval_code (Vale.X64.Machine_s.Block b0) s0 (Vale.X64.Lemmas.compute_merge_total f0 fM) sN)
{ "end_col": 100, "end_line": 353, "start_col": 102, "start_line": 350 }
FStar.Pervasives.Lemma
val eval_code_eq_pop (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr
val eval_code_eq_pop (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) let eval_code_eq_pop (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) =
false
null
true
reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Lemmas.fuel", "Vale.X64.StateLemmas.machine_state", "FStar.Pervasives.allow_inversion", "Vale.X64.Machine_s.tmaddr", "Prims.unit", "Vale.Arch.HeapLemmas.lemma_heap_ignore_ghost_machine", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.X64.StateLemmas.use_machine_state_equal", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.machine_state", "FStar.Pervasives.Native.option", "Vale.X64.Machine_Semantics_s.machine_eval_code_ins", "Prims.l_and", "Prims.b2t", "Vale.X64.Bytes_Code_s.uu___is_Pop", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Vale.X64.Machine_s.Ins", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Bytes_Code_s.ocmp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val eval_code_eq_pop (inst: BS.ins) (f: fuel) (s1 s2: machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2))
[]
Vale.X64.Lemmas.eval_code_eq_pop
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
inst: Vale.X64.Machine_Semantics_s.ins -> f: Vale.X64.Lemmas.fuel -> s1: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Pop? inst /\ Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_opt true (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins inst) f s1) (Vale.X64.Machine_Semantics_s.machine_eval_code (Vale.X64.Machine_s.Ins inst) f s2))
{ "end_col": 24, "end_line": 177, "start_col": 2, "start_line": 174 }
Prims.Ghost
val lemma_whileMerge_total (c:code) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) : Ghost fuel (requires While? c /\ ( let cond = While?.whileCond c in sN.vs_ok /\ valid_ocmp cond sM /\ eval_ocmp sM cond /\ eval_while_inv c s0 f0 sM /\ eval_code (While?.whileBody c) ({sM with vs_flags = havoc_flags}) fM sN )) (ensures (fun fN -> eval_while_inv c s0 fN sN ))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_whileMerge_total (c:code) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; let fN:nat = f0 + fM + 1 in let g = code_modifies_ghost c in let fForall (f:nat) : Lemma (requires Some? (BS.machine_eval_code c f (state_to_S sN))) (ensures state_eq_opt g (BS.machine_eval_code c (f + fN) (state_to_S s0)) (BS.machine_eval_code c f (state_to_S sN))) [SMTPat (BS.machine_eval_code c f (state_to_S sN))] = let Some sZ = BS.machine_eval_code c f (state_to_S sN) in let fZ = if f > fM then f else fM in let sM' = {sM with vs_flags = havoc_flags} in increase_fuel (code_modifies_ghost c) (While?.whileBody c) (state_to_S sM') fM (state_to_S sN) fZ; increase_fuel (code_modifies_ghost c) c (state_to_S sN) f sZ fZ; assert (state_eq_opt g (BS.machine_eval_code c (fZ + 1) (state_to_S sM)) (Some sZ)); // via eval_code for While assert (state_eq_opt g (BS.machine_eval_code c (fZ + 1) (state_to_S sM)) (BS.machine_eval_code c (fZ + 1 + f0) (state_to_S s0))); // via eval_while_inv, choosing f = fZ + 1 // Two assertions above prove (BS.machine_eval_code c (fZ + 1 + f0) (state_to_S s0)) equals (Some sZ) // increase_fuel (code_modifies_ghost c) c s0 (fZ + 1 + f0) (state_of_S s0 sZ) (f + fN); increase_fuel (code_modifies_ghost c) c (state_to_S s0) (fZ + 1 + f0) sZ (f + fN); assert (state_eq_opt g (BS.machine_eval_code c (f + fN) (state_to_S s0)) (Some sZ)); () in fN
val lemma_whileMerge_total (c:code) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) : Ghost fuel (requires While? c /\ ( let cond = While?.whileCond c in sN.vs_ok /\ valid_ocmp cond sM /\ eval_ocmp sM cond /\ eval_while_inv c s0 f0 sM /\ eval_code (While?.whileBody c) ({sM with vs_flags = havoc_flags}) fM sN )) (ensures (fun fN -> eval_while_inv c s0 fN sN )) let lemma_whileMerge_total (c: code) (s0: vale_state) (f0: fuel) (sM: vale_state) (fM: fuel) (sN: vale_state) =
false
null
false
reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; let fN:nat = f0 + fM + 1 in let g = code_modifies_ghost c in let fForall (f: nat) : Lemma (requires Some? (BS.machine_eval_code c f (state_to_S sN))) (ensures state_eq_opt g (BS.machine_eval_code c (f + fN) (state_to_S s0)) (BS.machine_eval_code c f (state_to_S sN))) [SMTPat (BS.machine_eval_code c f (state_to_S sN))] = let Some sZ = BS.machine_eval_code c f (state_to_S sN) in let fZ = if f > fM then f else fM in let sM' = { sM with vs_flags = havoc_flags } in increase_fuel (code_modifies_ghost c) (While?.whileBody c) (state_to_S sM') fM (state_to_S sN) fZ; increase_fuel (code_modifies_ghost c) c (state_to_S sN) f sZ fZ; assert (state_eq_opt g (BS.machine_eval_code c (fZ + 1) (state_to_S sM)) (Some sZ)); assert (state_eq_opt g (BS.machine_eval_code c (fZ + 1) (state_to_S sM)) (BS.machine_eval_code c (fZ + 1 + f0) (state_to_S s0))); increase_fuel (code_modifies_ghost c) c (state_to_S s0) (fZ + 1 + f0) sZ (f + fN); assert (state_eq_opt g (BS.machine_eval_code c (f + fN) (state_to_S s0)) (Some sZ)); () in fN
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[]
[ "Vale.X64.StateLemmas.code", "Vale.X64.State.vale_state", "Vale.X64.Lemmas.fuel", "Prims.nat", "Prims.unit", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.machine_eval_code", "Vale.X64.StateLemmas.state_to_S", "Prims.squash", "Vale.X64.Lemmas.state_eq_opt", "Prims.op_Addition", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "FStar.Pervasives.Native.option", "Prims.Nil", "Prims._assert", "FStar.Pervasives.Native.Some", "Vale.X64.Lemmas.increase_fuel", "Vale.X64.Lemmas.code_modifies_ghost", "Vale.X64.Machine_s.__proj__While__item__whileBody", "Vale.X64.Bytes_Code_s.instruction_t", "Vale.X64.Machine_Semantics_s.instr_annotation", "Vale.X64.Bytes_Code_s.ocmp", "Vale.X64.State.Mkvale_state", "Vale.X64.State.__proj__Mkvale_state__item__vs_ok", "Vale.X64.State.__proj__Mkvale_state__item__vs_regs", "Vale.X64.Lemmas.havoc_flags", "Vale.X64.State.__proj__Mkvale_state__item__vs_heap", "Vale.X64.State.__proj__Mkvale_state__item__vs_stack", "Vale.X64.State.__proj__Mkvale_state__item__vs_stackTaint", "Prims.int", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "Prims.bool", "FStar.Pervasives.reveal_opaque", "Vale.X64.Machine_Semantics_s.ocmp", "Vale.X64.Machine_Semantics_s.eval_ocmp_opaque", "Vale.X64.Machine_Semantics_s.valid_ocmp_opaque" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 ) #pop-options #restart-solver let eval_ins_eq_instr (inst:BS.ins) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.machine_eval_ins inst s1) (BS.machine_eval_ins inst s2)) = let open BS in let Instr it oprs ann = inst in let InstrTypeRecord #outs #args #havoc_flags' i = it in lemma_eq_instr_apply_eval_inouts outs outs args (instr_eval i) oprs s1 s2; let vs = instr_apply_eval outs args (instr_eval i) oprs s1 in let hav s = match havoc_flags' with | HavocFlags -> {s with ms_flags = havoc_flags} | PreserveFlags -> s in let s1' = hav s1 in let s2' = hav s2 in match vs with | None -> () | Some vs -> lemma_eq_instr_write_outputs outs args vs oprs s1 s1' s2 s2' let eval_code_eq_instr (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Instr? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; eval_ins_eq_instr inst ({s1 with BS.ms_trace = []}) ({s2 with BS.ms_trace = []}) let eval_code_eq_dealloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Dealloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_alloc (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Alloc? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_push (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Push? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_pop (inst:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires Pop? inst /\ state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins inst) f s1) (BS.machine_eval_code (Ins inst) f s2)) = reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; allow_inversion tmaddr let eval_code_eq_ins (i:BS.ins) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code (Ins i) f s1) (BS.machine_eval_code (Ins i) f s2)) = match i with | Instr _ _ _ -> eval_code_eq_instr i f s1 s2 | Dealloc _ -> eval_code_eq_dealloc i f s1 s2 | Alloc _ -> eval_code_eq_alloc i f s1 s2 | Push _ _ -> eval_code_eq_push i f s1 s2 | Pop _ _ -> eval_code_eq_pop i f s1 s2 #reset-options "--fuel 2 --z3rlimit 30" let eval_ocmp_eq_core (g:bool) (cond:ocmp) (s:machine_state) : Lemma (ensures ( let (s1, b1) = BS.machine_eval_ocmp s cond in let (s2, b2) = BS.machine_eval_ocmp (core_state g s) cond in state_eq_S g s1 s2 /\ b1 == b2 )) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; () #restart-solver let rec eval_code_eq_core (g:bool) (c:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_code c f s) (BS.machine_eval_code c f (core_state g s))) (decreases %[f; c]) = match c with | Ins i -> reveal_opaque (`%BS.machine_eval_code_ins) BS.machine_eval_code_ins; if g then eval_code_eq_ins i f s (core_state g s) | Block cs -> eval_codes_eq_core g cs f s | IfElse cond ct cf -> eval_ocmp_eq_core g cond s; let (s', _) = BS.machine_eval_ocmp s cond in let (t', _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g ct f s'; eval_code_eq_core g ct f t'; eval_code_eq_core g cf f s'; eval_code_eq_core g cf f t'; () | While cond body -> eval_while_eq_core g cond body f s and eval_codes_eq_core (g:bool) (cs:codes) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_codes cs f s) (BS.machine_eval_codes cs f (core_state g s))) (decreases %[f; cs]) = match cs with | [] -> () | c'::cs' -> ( eval_code_eq_core g c' f s; match (machine_eval_code c' f s, machine_eval_code c' f (core_state g s)) with | (None, None) -> () | (Some s', Some t') -> eval_codes_eq_core g cs' f s'; eval_codes_eq_core g cs' f t' ) and eval_while_eq_core (g:bool) (cond:ocmp) (body:code) (f:fuel) (s:machine_state) : Lemma (ensures state_eq_opt g (BS.machine_eval_while cond body f s) (BS.machine_eval_while cond body f (core_state g s))) (decreases %[f; body]) = if f > 0 then ( eval_ocmp_eq_core g cond s; let (s1, _) = BS.machine_eval_ocmp s cond in let (t1, _) = BS.machine_eval_ocmp (core_state g s) cond in eval_code_eq_core g body (f - 1) s1; eval_code_eq_core g body (f - 1) t1; match (BS.machine_eval_code body (f - 1) s1, BS.machine_eval_code body (f - 1) t1) with | (None, None) -> () | (Some s2, Some t2) -> eval_while_eq_core g cond body (f - 1) s2; eval_while_eq_core g cond body (f - 1) t2; () ) let eval_code_eq_f (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core false c f s1; eval_code_eq_core false c f s2 let eval_codes_eq_f (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core false cs f s1; eval_codes_eq_core false cs f s2 let eval_while_eq_f (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S false s1 s2) (ensures state_eq_opt false (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core false cond body f s1; eval_while_eq_core false cond body f s2 let eval_code_eq_t (c:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_code c f s1) (BS.machine_eval_code c f s2)) [SMTPat (BS.machine_eval_code c f s1); SMTPat (BS.machine_eval_code c f s2)] = eval_code_eq_core true c f s1; eval_code_eq_core true c f s2 let eval_codes_eq_t (cs:codes) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_codes cs f s1) (BS.machine_eval_codes cs f s2)) [SMTPat (BS.machine_eval_codes cs f s1); SMTPat (BS.machine_eval_codes cs f s2)] = eval_codes_eq_core true cs f s1; eval_codes_eq_core true cs f s2 let eval_while_eq_t (cond:ocmp) (body:code) (f:fuel) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures state_eq_opt true (BS.machine_eval_while cond body f s1) (BS.machine_eval_while cond body f s2)) [SMTPat (BS.machine_eval_while cond body f s1); SMTPat (BS.machine_eval_while cond body f s2)] = eval_while_eq_core true cond body f s1; eval_while_eq_core true cond body f s2 let eval_code_ts (g:bool) (c:code) (s0:machine_state) (f0:fuel) (s1:machine_state) : Type0 = state_eq_opt g (BS.machine_eval_code c f0 s0) (Some s1) let rec increase_fuel (g:bool) (c:code) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g c s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g c s0 fN sN) (decreases %[f0; c]) = match c with | Ins ins -> () | Block l -> increase_fuels g l s0 f0 sN fN | IfElse cond t f -> let (s0, b0) = BS.machine_eval_ocmp s0 cond in if b0 then increase_fuel g t s0 f0 sN fN else increase_fuel g f s0 f0 sN fN | While cond c -> let (s1, b0) = BS.machine_eval_ocmp s0 cond in if b0 then ( match BS.machine_eval_code c (f0 - 1) s1 with | None -> () | Some s2 -> increase_fuel g c s1 (f0 - 1) s2 (fN - 1); if s2.BS.ms_ok then increase_fuel g (While cond c) s2 (f0 - 1) sN (fN - 1) else () ) and increase_fuels (g:bool) (c:codes) (s0:machine_state) (f0:fuel) (sN:machine_state) (fN:fuel) : Lemma (requires eval_code_ts g (Block c) s0 f0 sN /\ f0 <= fN) (ensures eval_code_ts g (Block c) s0 fN sN) (decreases %[f0; c]) = match c with | [] -> () | h::t -> ( let Some s1 = BS.machine_eval_code h f0 s0 in increase_fuel g h s0 f0 s1 fN; increase_fuels g t s1 f0 sN fN ) let lemma_cmp_eq s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ne s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_le s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_ge s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_lt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_cmp_gt s o1 o2 = reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_valid_cmp_eq s o1 o2 = () let lemma_valid_cmp_ne s o1 o2 = () let lemma_valid_cmp_le s o1 o2 = () let lemma_valid_cmp_ge s o1 o2 = () let lemma_valid_cmp_lt s o1 o2 = () let lemma_valid_cmp_gt s o1 o2 = () let compute_merge_total (f0:fuel) (fM:fuel) = if f0 > fM then f0 else fM let lemma_merge_total (b0:codes) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) = let f = if f0 > fM then f0 else fM in increase_fuel (codes_modifies_ghost b0) (Cons?.hd b0) (state_to_S s0) f0 (state_to_S sM) f; increase_fuel (codes_modifies_ghost b0) (Block (Cons?.tl b0)) (state_to_S sM) fM (state_to_S sN) f let lemma_empty_total (s0:vale_state) (bN:codes) = (s0, 0) let lemma_ifElse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) = (eval_ocmp s0 ifb, {s0 with vs_flags = havoc_flags}, s0, 0) let lemma_havoc_flags : squash (Flags.to_fun havoc_flags == BS.havoc_flags) = assert (FStar.FunctionalExtensionality.feq (Flags.to_fun havoc_flags) BS.havoc_flags) let lemma_ifElseTrue_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let lemma_ifElseFalse_total (ifb:ocmp) (ct:code) (cf:code) (s0:vale_state) (f0:fuel) (sM:vale_state) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque let eval_while_inv_temp (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = forall (f:nat).{:pattern BS.machine_eval_code c f (state_to_S sW)} Some? (BS.machine_eval_code c f (state_to_S sW)) ==> state_eq_opt (code_modifies_ghost c) (BS.machine_eval_code c (f + fW) (state_to_S s0)) (BS.machine_eval_code c f (state_to_S sW)) let eval_while_inv (c:code) (s0:vale_state) (fW:fuel) (sW:vale_state) : Type0 = eval_while_inv_temp c s0 fW sW let lemma_while_total (b:ocmp) (c:code) (s0:vale_state) = (s0, 0) let lemma_whileTrue_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) = ({sW with vs_flags = havoc_flags}, fW) let lemma_whileFalse_total (b:ocmp) (c:code) (s0:vale_state) (sW:vale_state) (fW:fuel) = reveal_opaque (`%BS.valid_ocmp_opaque) BS.valid_ocmp_opaque; reveal_opaque (`%BS.eval_ocmp_opaque) BS.eval_ocmp_opaque; let f1 = fW + 1 in let s1 = {sW with vs_flags = havoc_flags} in assert (state_eq_opt (code_modifies_ghost c) (BS.machine_eval_code (While b c) f1 (state_to_S s0)) (BS.machine_eval_code (While b c) 1 (state_to_S sW))); assert (eval_code (While b c) s0 f1 s1); (s1, f1) #restart-solver
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_whileMerge_total (c:code) (s0:vale_state) (f0:fuel) (sM:vale_state) (fM:fuel) (sN:vale_state) : Ghost fuel (requires While? c /\ ( let cond = While?.whileCond c in sN.vs_ok /\ valid_ocmp cond sM /\ eval_ocmp sM cond /\ eval_while_inv c s0 f0 sM /\ eval_code (While?.whileBody c) ({sM with vs_flags = havoc_flags}) fM sN )) (ensures (fun fN -> eval_while_inv c s0 fN sN ))
[]
Vale.X64.Lemmas.lemma_whileMerge_total
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c: Vale.X64.StateLemmas.code -> s0: Vale.X64.State.vale_state -> f0: Vale.X64.Lemmas.fuel -> sM: Vale.X64.State.vale_state -> fM: Vale.X64.Lemmas.fuel -> sN: Vale.X64.State.vale_state -> Prims.Ghost Vale.X64.Lemmas.fuel
{ "end_col": 4, "end_line": 423, "start_col": 2, "start_line": 399 }
FStar.Pervasives.Lemma
val lemma_eq_instr_write_outputs (outs: list instr_out) (args: list instr_operand) (vs: instr_ret_t outs) (oprs: instr_operands_t outs args) (s1_orig s1 s2_orig s2: machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2))
[ { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) = let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i)::outs -> ( let ((v:instr_val_t i), (vs:instr_ret_t outs)) = match outs with | [] -> (vs, ()) | _::_ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2 )
val lemma_eq_instr_write_outputs (outs: list instr_out) (args: list instr_operand) (vs: instr_ret_t outs) (oprs: instr_operands_t outs args) (s1_orig s1 s2_orig s2: machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) let rec lemma_eq_instr_write_outputs (outs: list instr_out) (args: list instr_operand) (vs: instr_ret_t outs) (oprs: instr_operands_t outs args) (s1_orig s1 s2_orig s2: machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2)) =
false
null
true
let open BS in use_machine_state_equal (); lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; lemma_heap_ignore_ghost_machine s1_orig.BS.ms_heap s2_orig.BS.ms_heap; allow_inversion tmaddr; match outs with | [] -> () | (_, i) :: outs -> (let (v: instr_val_t i), (vs: instr_ret_t outs) = match outs with | [] -> (vs, ()) | _ :: _ -> let vs = coerce vs in (fst vs, snd vs) in match i with | IOpEx i -> let oprs = coerce oprs in let s1 = instr_write_output_explicit i v (fst oprs) s1_orig s1 in let s2 = instr_write_output_explicit i v (fst oprs) s2_orig s2 in lemma_eq_instr_write_outputs outs args vs (snd oprs) s1_orig s1 s2_orig s2 | IOpIm i -> let s1 = instr_write_output_implicit i v s1_orig s1 in let s2 = instr_write_output_implicit i v s2_orig s2 in allow_inversion operand64; allow_inversion operand128; lemma_eq_instr_write_outputs outs args vs (coerce oprs) s1_orig s1 s2_orig s2)
{ "checked_file": "Vale.X64.Lemmas.fst.checked", "dependencies": [ "Vale.X64.StateLemmas.fsti.checked", "Vale.X64.State.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.FunctionalExtensionality.fsti.checked" ], "interface_file": true, "source_file": "Vale.X64.Lemmas.fst" }
[ "lemma" ]
[ "Prims.list", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.instr_ret_t", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.StateLemmas.machine_state", "Vale.X64.Instruction_s.instr_operand_inout", "Vale.X64.Instruction_s.instr_val_t", "Vale.X64.Instruction_s.instr_operand_explicit", "Vale.X64.Lemmas.lemma_eq_instr_write_outputs", "FStar.Pervasives.Native.snd", "Vale.X64.Instruction_s.instr_operand_t", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Machine_Semantics_s.instr_write_output_explicit", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.tuple2", "Vale.X64.Instruction_s.coerce", "Vale.X64.Instruction_s.instr_operand_implicit", "Prims.unit", "FStar.Pervasives.allow_inversion", "Vale.X64.Machine_s.operand128", "Vale.X64.Machine_s.operand64", "Vale.X64.Machine_Semantics_s.instr_write_output_implicit", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Machine_s.tmaddr", "Vale.Arch.HeapLemmas.lemma_heap_ignore_ghost_machine", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap", "Vale.X64.StateLemmas.use_machine_state_equal", "Prims.l_and", "Vale.X64.Lemmas.state_eq_S", "Prims.squash", "Vale.X64.Machine_Semantics_s.instr_write_outputs", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.X64.Lemmas open FStar.Mul open Vale.X64.Machine_s open Vale.X64.State open Vale.X64.StateLemmas open Vale.X64.Instruction_s open Vale.X64.Bytes_Code_s module BS = Vale.X64.Machine_Semantics_s module ME = Vale.X64.Memory #reset-options "--initial_fuel 1 --max_fuel 1 --z3rlimit 100" #restart-solver let rec lemma_eq_instr_apply_eval_args (outs:list instr_out) (args:list instr_operand) (f:instr_args_t outs args) (oprs:instr_operands_t_args args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_args outs args f oprs s1 == BS.instr_apply_eval_args outs args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match args with | [] -> () | i::args -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t_args args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_args_t outs args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_args outs args (f v) oprs s1 s2 ) #restart-solver let rec lemma_eq_instr_apply_eval_inouts (outs inouts:list instr_out) (args:list instr_operand) (f:instr_inouts_t outs inouts args) (oprs:instr_operands_t inouts args) (s1 s2:machine_state) : Lemma (requires state_eq_S true s1 s2) (ensures BS.instr_apply_eval_inouts outs inouts args f oprs s1 == BS.instr_apply_eval_inouts outs inouts args f oprs s2) = let open BS in lemma_heap_ignore_ghost_machine s1.BS.ms_heap s2.BS.ms_heap; match inouts with | [] -> lemma_eq_instr_apply_eval_args outs args f oprs s1 s2 | (Out, i)::inouts -> let oprs = match i with | IOpEx i -> snd #(instr_operand_t i) (coerce oprs) | IOpIm i -> coerce oprs in lemma_eq_instr_apply_eval_inouts outs inouts args (coerce f) oprs s1 s2 | (InOut, i)::inouts -> ( let (v, oprs) : option (instr_val_t i) & instr_operands_t inouts args = match i with | IOpEx i -> let oprs = coerce oprs in (instr_eval_operand_explicit i (fst oprs) s1, snd oprs) | IOpIm i -> (instr_eval_operand_implicit i s1, coerce oprs) in let f:arrow (instr_val_t i) (instr_inouts_t outs inouts args) = coerce f in match v with | None -> () | Some v -> lemma_eq_instr_apply_eval_inouts outs inouts args (f v) oprs s1 s2 ) #restart-solver #push-options "--z3rlimit_factor 2" let rec lemma_eq_instr_write_outputs (outs:list instr_out) (args:list instr_operand) (vs:instr_ret_t outs) (oprs:instr_operands_t outs args) (s1_orig s1 s2_orig s2:machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2))
false
false
Vale.X64.Lemmas.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 2, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_eq_instr_write_outputs (outs: list instr_out) (args: list instr_operand) (vs: instr_ret_t outs) (oprs: instr_operands_t outs args) (s1_orig s1 s2_orig s2: machine_state) : Lemma (requires state_eq_S true s1_orig s2_orig /\ state_eq_S true s1 s2) (ensures state_eq_S true (BS.instr_write_outputs outs args vs oprs s1_orig s1) (BS.instr_write_outputs outs args vs oprs s2_orig s2))
[ "recursion" ]
Vale.X64.Lemmas.lemma_eq_instr_write_outputs
{ "file_name": "vale/code/arch/x64/Vale.X64.Lemmas.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
outs: Prims.list Vale.X64.Instruction_s.instr_out -> args: Prims.list Vale.X64.Instruction_s.instr_operand -> vs: Vale.X64.Instruction_s.instr_ret_t outs -> oprs: Vale.X64.Instruction_s.instr_operands_t outs args -> s1_orig: Vale.X64.StateLemmas.machine_state -> s1: Vale.X64.StateLemmas.machine_state -> s2_orig: Vale.X64.StateLemmas.machine_state -> s2: Vale.X64.StateLemmas.machine_state -> FStar.Pervasives.Lemma (requires Vale.X64.Lemmas.state_eq_S true s1_orig s2_orig /\ Vale.X64.Lemmas.state_eq_S true s1 s2) (ensures Vale.X64.Lemmas.state_eq_S true (Vale.X64.Machine_Semantics_s.instr_write_outputs outs args vs oprs s1_orig s1) (Vale.X64.Machine_Semantics_s.instr_write_outputs outs args vs oprs s2_orig s2))
{ "end_col": 5, "end_line": 112, "start_col": 2, "start_line": 86 }
FStar.HyperStack.ST.Stack
val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1)
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let clear_matrix3 a sp_matrix ep_matrix epp_matrix = clear_matrix sp_matrix; clear_matrix ep_matrix; clear_matrix epp_matrix
val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1) let clear_matrix3 a sp_matrix ep_matrix epp_matrix =
true
null
false
clear_matrix sp_matrix; clear_matrix ep_matrix; clear_matrix epp_matrix
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Frodo.Params.params_n", "Hacl.Impl.Frodo.KEM.clear_matrix", "Prims.unit" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct = let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct) inline_for_extraction noextract val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1)
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1)
[]
Hacl.Impl.Frodo.KEM.Encaps.clear_matrix3
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> sp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> ep_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> epp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar Hacl.Impl.Frodo.Params.params_nbar -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 25, "end_line": 245, "start_col": 2, "start_line": 243 }