effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
FStar.HyperStack.ST.Stack
val crypto_kem_enc_ss: a:FP.frodo_alg -> k:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> Stack unit (requires fun h -> live h k /\ live h ct /\ live h ss /\ disjoint ct ss /\ disjoint k ct /\ disjoint k ss) (ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\ as_seq h1 ss == S.crypto_kem_enc_ss a (as_seq h0 k) (as_seq h0 ct))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let crypto_kem_enc_ss a k ct ss = push_frame (); let ss_init_len = crypto_ciphertextbytes a +! crypto_bytes a in let shake_input_ss = create ss_init_len (u8 0) in concat2 (crypto_ciphertextbytes a) ct (crypto_bytes a) k shake_input_ss; frodo_shake a ss_init_len shake_input_ss (crypto_bytes a) ss; clear_words_u8 shake_input_ss; pop_frame ()
val crypto_kem_enc_ss: a:FP.frodo_alg -> k:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> Stack unit (requires fun h -> live h k /\ live h ct /\ live h ss /\ disjoint ct ss /\ disjoint k ct /\ disjoint k ss) (ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\ as_seq h1 ss == S.crypto_kem_enc_ss a (as_seq h0 k) (as_seq h0 ct)) let crypto_kem_enc_ss a k ct ss =
true
null
false
push_frame (); let ss_init_len = crypto_ciphertextbytes a +! crypto_bytes a in let shake_input_ss = create ss_init_len (u8 0) in concat2 (crypto_ciphertextbytes a) ct (crypto_bytes a) k shake_input_ss; frodo_shake a ss_init_len shake_input_ss (crypto_bytes a) ss; clear_words_u8 shake_input_ss; pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Frodo.KEM.clear_words_u8", "Hacl.Impl.Frodo.Params.frodo_shake", "Lib.Buffer.concat2", "Lib.Buffer.MUT", "Lib.IntTypes.uint8", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.Buffer.lbuffer", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.op_Plus_Bang", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct = let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct) inline_for_extraction noextract val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1) let clear_matrix3 a sp_matrix ep_matrix epp_matrix = clear_matrix sp_matrix; clear_matrix ep_matrix; clear_matrix epp_matrix inline_for_extraction noextract val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct a gen_a mu pk seed_se ct = push_frame (); let h0 = ST.get () in FP.expand_crypto_publickeybytes a; let seed_a = sub pk 0ul bytes_seed_a in let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in let sp_matrix = matrix_create params_nbar (params_n a) in let ep_matrix = matrix_create params_nbar (params_n a) in let epp_matrix = matrix_create params_nbar params_nbar in get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix; crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct; clear_matrix3 a sp_matrix ep_matrix epp_matrix; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 ct) (S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)); pop_frame () #pop-options inline_for_extraction noextract val crypto_kem_enc_ss: a:FP.frodo_alg -> k:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> Stack unit (requires fun h -> live h k /\ live h ct /\ live h ss /\ disjoint ct ss /\ disjoint k ct /\ disjoint k ss) (ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\ as_seq h1 ss == S.crypto_kem_enc_ss a (as_seq h0 k) (as_seq h0 ct))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val crypto_kem_enc_ss: a:FP.frodo_alg -> k:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> Stack unit (requires fun h -> live h k /\ live h ct /\ live h ss /\ disjoint ct ss /\ disjoint k ct /\ disjoint k ss) (ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\ as_seq h1 ss == S.crypto_kem_enc_ss a (as_seq h0 k) (as_seq h0 ct))
[]
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ss
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> k: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> ct: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_ciphertextbytes a) -> ss: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 304, "start_col": 2, "start_line": 298 }
FStar.HyperStack.ST.Stack
val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame ()
val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix =
true
null
false
push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_seed_a", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Frodo.Params.params_n", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Matrix.matrix_add", "Hacl.Impl.Matrix.matrix_mul", "Hacl.Impl.Frodo.Params.frodo_gen_matrix", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Matrix.matrix_create", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
[]
Hacl.Impl.Frodo.KEM.Encaps.frodo_mul_add_sa_plus_e
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> seed_a: Hacl.Impl.Matrix.lbytes Hacl.Impl.Frodo.Params.bytes_seed_a -> sp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> ep_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> bp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 53, "start_col": 2, "start_line": 48 }
FStar.HyperStack.ST.Stack
val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame ()
val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix =
true
null
false
push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.publicmatrixbytes_len", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Frodo.Params.params_n", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Matrix.matrix_add", "Hacl.Impl.Matrix.matrix_mul", "Hacl.Impl.Frodo.Pack.frodo_unpack", "Hacl.Impl.Frodo.Params.params_logq", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Matrix.matrix_create", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
[]
Hacl.Impl.Frodo.KEM.Encaps.frodo_mul_add_sb_plus_e
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> b: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.publicmatrixbytes_len a) -> sp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> epp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar Hacl.Impl.Frodo.Params.params_nbar -> v_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar Hacl.Impl.Frodo.Params.params_nbar -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 101, "start_col": 2, "start_line": 96 }
FStar.HyperStack.ST.Stack
val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame ()
val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 =
true
null
false
push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_seed_a", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Frodo.Params.params_n", "Hacl.Impl.Frodo.Params.ct1bytes_len", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Frodo.Pack.frodo_pack", "Hacl.Impl.Frodo.Params.params_logq", "Hacl.Impl.Frodo.KEM.Encaps.frodo_mul_add_sa_plus_e", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Matrix.matrix_create", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
[]
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c1
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> seed_a: Hacl.Impl.Matrix.lbytes Hacl.Impl.Frodo.Params.bytes_seed_a -> sp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> ep_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> c1: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.ct1bytes_len a) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 77, "start_col": 2, "start_line": 73 }
FStar.HyperStack.ST.Stack
val crypto_kem_enc_seed_se_k: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se_k /\ disjoint seed_se_k mu /\ disjoint seed_se_k pk) (ensures fun h0 _ h1 -> modifies (loc seed_se_k) h0 h1 /\ as_seq h1 seed_se_k == S.crypto_kem_enc_seed_se_k a (as_seq h0 mu) (as_seq h0 pk))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let crypto_kem_enc_seed_se_k a mu pk seed_se_k = push_frame (); let pkh_mu = create (bytes_pkhash a +! bytes_mu a) (u8 0) in let h0 = ST.get () in update_sub_f h0 pkh_mu 0ul (bytes_pkhash a) (fun h -> FP.frodo_shake a (v (crypto_publickeybytes a)) (as_seq h0 pk) (v (bytes_pkhash a))) (fun _ -> frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) (sub pkh_mu 0ul (bytes_pkhash a))); let h1 = ST.get () in update_sub pkh_mu (bytes_pkhash a) (bytes_mu a) mu; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 pkh_mu) 0 (v (bytes_pkhash a))) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))); LSeq.lemma_concat2 (v (bytes_pkhash a)) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))) (v (bytes_mu a)) (as_seq h0 mu) (as_seq h2 pkh_mu); //concat2 (bytes_pkhash a) pkh (bytes_mu a) mu pkh_mu; frodo_shake a (bytes_pkhash a +! bytes_mu a) pkh_mu (2ul *! crypto_bytes a) seed_se_k; pop_frame ()
val crypto_kem_enc_seed_se_k: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se_k /\ disjoint seed_se_k mu /\ disjoint seed_se_k pk) (ensures fun h0 _ h1 -> modifies (loc seed_se_k) h0 h1 /\ as_seq h1 seed_se_k == S.crypto_kem_enc_seed_se_k a (as_seq h0 mu) (as_seq h0 pk)) let crypto_kem_enc_seed_se_k a mu pk seed_se_k =
true
null
false
push_frame (); let pkh_mu = create (bytes_pkhash a +! bytes_mu a) (u8 0) in let h0 = ST.get () in update_sub_f h0 pkh_mu 0ul (bytes_pkhash a) (fun h -> FP.frodo_shake a (v (crypto_publickeybytes a)) (as_seq h0 pk) (v (bytes_pkhash a))) (fun _ -> frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) (sub pkh_mu 0ul (bytes_pkhash a))); let h1 = ST.get () in update_sub pkh_mu (bytes_pkhash a) (bytes_mu a) mu; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 pkh_mu) 0 (v (bytes_pkhash a))) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))); LSeq.lemma_concat2 (v (bytes_pkhash a)) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))) (v (bytes_mu a)) (as_seq h0 mu) (as_seq h2 pkh_mu); frodo_shake a (bytes_pkhash a +! bytes_mu a) pkh_mu (2ul *! crypto_bytes a) seed_se_k; pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_mu", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Frodo.Params.crypto_bytes", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Frodo.Params.frodo_shake", "Lib.IntTypes.op_Plus_Bang", "Hacl.Impl.Frodo.Params.bytes_pkhash", "Lib.Sequence.lemma_concat2", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.v", "Lib.Sequence.sub", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Lib.IntTypes.uint8", "Lib.Sequence.eq_intro", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.update_sub", "Lib.Buffer.update_sub_f", "Spec.Frodo.Params.frodo_shake", "Lib.Sequence.lseq", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.Buffer.sub", "Lib.IntTypes.add", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct = let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct) inline_for_extraction noextract val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1) let clear_matrix3 a sp_matrix ep_matrix epp_matrix = clear_matrix sp_matrix; clear_matrix ep_matrix; clear_matrix epp_matrix inline_for_extraction noextract val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct a gen_a mu pk seed_se ct = push_frame (); let h0 = ST.get () in FP.expand_crypto_publickeybytes a; let seed_a = sub pk 0ul bytes_seed_a in let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in let sp_matrix = matrix_create params_nbar (params_n a) in let ep_matrix = matrix_create params_nbar (params_n a) in let epp_matrix = matrix_create params_nbar params_nbar in get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix; crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct; clear_matrix3 a sp_matrix ep_matrix epp_matrix; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 ct) (S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)); pop_frame () #pop-options inline_for_extraction noextract val crypto_kem_enc_ss: a:FP.frodo_alg -> k:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> Stack unit (requires fun h -> live h k /\ live h ct /\ live h ss /\ disjoint ct ss /\ disjoint k ct /\ disjoint k ss) (ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\ as_seq h1 ss == S.crypto_kem_enc_ss a (as_seq h0 k) (as_seq h0 ct)) let crypto_kem_enc_ss a k ct ss = push_frame (); let ss_init_len = crypto_ciphertextbytes a +! crypto_bytes a in let shake_input_ss = create ss_init_len (u8 0) in concat2 (crypto_ciphertextbytes a) ct (crypto_bytes a) k shake_input_ss; frodo_shake a ss_init_len shake_input_ss (crypto_bytes a) ss; clear_words_u8 shake_input_ss; pop_frame () inline_for_extraction noextract val crypto_kem_enc_seed_se_k: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se_k /\ disjoint seed_se_k mu /\ disjoint seed_se_k pk) (ensures fun h0 _ h1 -> modifies (loc seed_se_k) h0 h1 /\ as_seq h1 seed_se_k == S.crypto_kem_enc_seed_se_k a (as_seq h0 mu) (as_seq h0 pk))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val crypto_kem_enc_seed_se_k: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se_k /\ disjoint seed_se_k mu /\ disjoint seed_se_k pk) (ensures fun h0 _ h1 -> modifies (loc seed_se_k) h0 h1 /\ as_seq h1 seed_se_k == S.crypto_kem_enc_seed_se_k a (as_seq h0 mu) (as_seq h0 pk))
[]
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_seed_se_k
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) -> pk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_publickeybytes a) -> seed_se_k: Hacl.Impl.Matrix.lbytes (2ul *! Hacl.Impl.Frodo.Params.crypto_bytes a) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 339, "start_col": 2, "start_line": 321 }
FStar.HyperStack.ST.Stack
val crypto_kem_enc_ct_ss: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h seed_se_k /\ live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint seed_se_k ct /\ disjoint seed_se_k ss) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (let seed_se = LSeq.sub (as_seq h0 seed_se_k) 0 (v (crypto_bytes a)) in let k = LSeq.sub (as_seq h0 seed_se_k) (v (crypto_bytes a)) (v (crypto_bytes a)) in as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) seed_se /\ as_seq h1 ss == S.crypto_kem_enc_ss a k (as_seq h1 ct)))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk = let seed_se = sub seed_se_k 0ul (crypto_bytes a) in let k = sub seed_se_k (crypto_bytes a) (crypto_bytes a) in crypto_kem_enc_ct a gen_a mu pk seed_se ct; crypto_kem_enc_ss a k ct ss
val crypto_kem_enc_ct_ss: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h seed_se_k /\ live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint seed_se_k ct /\ disjoint seed_se_k ss) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (let seed_se = LSeq.sub (as_seq h0 seed_se_k) 0 (v (crypto_bytes a)) in let k = LSeq.sub (as_seq h0 seed_se_k) (v (crypto_bytes a)) (v (crypto_bytes a)) in as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) seed_se /\ as_seq h1 ss == S.crypto_kem_enc_ss a k (as_seq h1 ct))) let crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk =
true
null
false
let seed_se = sub seed_se_k 0ul (crypto_bytes a) in let k = sub seed_se_k (crypto_bytes a) (crypto_bytes a) in crypto_kem_enc_ct a gen_a mu pk seed_se ct; crypto_kem_enc_ss a k ct ss
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.bytes_mu", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ss", "Prims.unit", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.sub", "Lib.IntTypes.uint8" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct = let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct) inline_for_extraction noextract val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1) let clear_matrix3 a sp_matrix ep_matrix epp_matrix = clear_matrix sp_matrix; clear_matrix ep_matrix; clear_matrix epp_matrix inline_for_extraction noextract val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct a gen_a mu pk seed_se ct = push_frame (); let h0 = ST.get () in FP.expand_crypto_publickeybytes a; let seed_a = sub pk 0ul bytes_seed_a in let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in let sp_matrix = matrix_create params_nbar (params_n a) in let ep_matrix = matrix_create params_nbar (params_n a) in let epp_matrix = matrix_create params_nbar params_nbar in get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix; crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct; clear_matrix3 a sp_matrix ep_matrix epp_matrix; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 ct) (S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)); pop_frame () #pop-options inline_for_extraction noextract val crypto_kem_enc_ss: a:FP.frodo_alg -> k:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> Stack unit (requires fun h -> live h k /\ live h ct /\ live h ss /\ disjoint ct ss /\ disjoint k ct /\ disjoint k ss) (ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\ as_seq h1 ss == S.crypto_kem_enc_ss a (as_seq h0 k) (as_seq h0 ct)) let crypto_kem_enc_ss a k ct ss = push_frame (); let ss_init_len = crypto_ciphertextbytes a +! crypto_bytes a in let shake_input_ss = create ss_init_len (u8 0) in concat2 (crypto_ciphertextbytes a) ct (crypto_bytes a) k shake_input_ss; frodo_shake a ss_init_len shake_input_ss (crypto_bytes a) ss; clear_words_u8 shake_input_ss; pop_frame () inline_for_extraction noextract val crypto_kem_enc_seed_se_k: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se_k /\ disjoint seed_se_k mu /\ disjoint seed_se_k pk) (ensures fun h0 _ h1 -> modifies (loc seed_se_k) h0 h1 /\ as_seq h1 seed_se_k == S.crypto_kem_enc_seed_se_k a (as_seq h0 mu) (as_seq h0 pk)) let crypto_kem_enc_seed_se_k a mu pk seed_se_k = push_frame (); let pkh_mu = create (bytes_pkhash a +! bytes_mu a) (u8 0) in let h0 = ST.get () in update_sub_f h0 pkh_mu 0ul (bytes_pkhash a) (fun h -> FP.frodo_shake a (v (crypto_publickeybytes a)) (as_seq h0 pk) (v (bytes_pkhash a))) (fun _ -> frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) (sub pkh_mu 0ul (bytes_pkhash a))); let h1 = ST.get () in update_sub pkh_mu (bytes_pkhash a) (bytes_mu a) mu; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 pkh_mu) 0 (v (bytes_pkhash a))) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))); LSeq.lemma_concat2 (v (bytes_pkhash a)) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))) (v (bytes_mu a)) (as_seq h0 mu) (as_seq h2 pkh_mu); //concat2 (bytes_pkhash a) pkh (bytes_mu a) mu pkh_mu; frodo_shake a (bytes_pkhash a +! bytes_mu a) pkh_mu (2ul *! crypto_bytes a) seed_se_k; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_ss: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h seed_se_k /\ live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint seed_se_k ct /\ disjoint seed_se_k ss) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (let seed_se = LSeq.sub (as_seq h0 seed_se_k) 0 (v (crypto_bytes a)) in let k = LSeq.sub (as_seq h0 seed_se_k) (v (crypto_bytes a)) (v (crypto_bytes a)) in as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) seed_se /\ as_seq h1 ss == S.crypto_kem_enc_ss a k (as_seq h1 ct)))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val crypto_kem_enc_ct_ss: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h seed_se_k /\ live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint seed_se_k ct /\ disjoint seed_se_k ss) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (let seed_se = LSeq.sub (as_seq h0 seed_se_k) 0 (v (crypto_bytes a)) in let k = LSeq.sub (as_seq h0 seed_se_k) (v (crypto_bytes a)) (v (crypto_bytes a)) in as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) seed_se /\ as_seq h1 ss == S.crypto_kem_enc_ss a k (as_seq h1 ct)))
[]
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_ss
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> seed_se_k: Hacl.Impl.Matrix.lbytes (2ul *! Hacl.Impl.Frodo.Params.crypto_bytes a) -> mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) -> ct: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_ciphertextbytes a) -> ss: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> pk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_publickeybytes a) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 29, "end_line": 366, "start_col": 56, "start_line": 362 }
FStar.HyperStack.ST.Stack
val crypto_kem_enc_: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint mu pk) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let crypto_kem_enc_ a gen_a mu ct ss pk = push_frame (); let seed_se_k = create (2ul *! crypto_bytes a) (u8 0) in crypto_kem_enc0 a gen_a mu ct ss pk seed_se_k; clear_words_u8 seed_se_k; pop_frame ()
val crypto_kem_enc_: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint mu pk) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk)) let crypto_kem_enc_ a gen_a mu ct ss pk =
true
null
false
push_frame (); let seed_se_k = create (2ul *! crypto_bytes a) (u8 0) in crypto_kem_enc0 a gen_a mu ct ss pk seed_se_k; clear_words_u8 seed_se_k; pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_mu", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Frodo.KEM.clear_words_u8", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc0", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "Lib.IntTypes.uint8", "Lib.IntTypes.u8", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct = let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct) inline_for_extraction noextract val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1) let clear_matrix3 a sp_matrix ep_matrix epp_matrix = clear_matrix sp_matrix; clear_matrix ep_matrix; clear_matrix epp_matrix inline_for_extraction noextract val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct a gen_a mu pk seed_se ct = push_frame (); let h0 = ST.get () in FP.expand_crypto_publickeybytes a; let seed_a = sub pk 0ul bytes_seed_a in let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in let sp_matrix = matrix_create params_nbar (params_n a) in let ep_matrix = matrix_create params_nbar (params_n a) in let epp_matrix = matrix_create params_nbar params_nbar in get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix; crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct; clear_matrix3 a sp_matrix ep_matrix epp_matrix; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 ct) (S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)); pop_frame () #pop-options inline_for_extraction noextract val crypto_kem_enc_ss: a:FP.frodo_alg -> k:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> Stack unit (requires fun h -> live h k /\ live h ct /\ live h ss /\ disjoint ct ss /\ disjoint k ct /\ disjoint k ss) (ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\ as_seq h1 ss == S.crypto_kem_enc_ss a (as_seq h0 k) (as_seq h0 ct)) let crypto_kem_enc_ss a k ct ss = push_frame (); let ss_init_len = crypto_ciphertextbytes a +! crypto_bytes a in let shake_input_ss = create ss_init_len (u8 0) in concat2 (crypto_ciphertextbytes a) ct (crypto_bytes a) k shake_input_ss; frodo_shake a ss_init_len shake_input_ss (crypto_bytes a) ss; clear_words_u8 shake_input_ss; pop_frame () inline_for_extraction noextract val crypto_kem_enc_seed_se_k: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se_k /\ disjoint seed_se_k mu /\ disjoint seed_se_k pk) (ensures fun h0 _ h1 -> modifies (loc seed_se_k) h0 h1 /\ as_seq h1 seed_se_k == S.crypto_kem_enc_seed_se_k a (as_seq h0 mu) (as_seq h0 pk)) let crypto_kem_enc_seed_se_k a mu pk seed_se_k = push_frame (); let pkh_mu = create (bytes_pkhash a +! bytes_mu a) (u8 0) in let h0 = ST.get () in update_sub_f h0 pkh_mu 0ul (bytes_pkhash a) (fun h -> FP.frodo_shake a (v (crypto_publickeybytes a)) (as_seq h0 pk) (v (bytes_pkhash a))) (fun _ -> frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) (sub pkh_mu 0ul (bytes_pkhash a))); let h1 = ST.get () in update_sub pkh_mu (bytes_pkhash a) (bytes_mu a) mu; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 pkh_mu) 0 (v (bytes_pkhash a))) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))); LSeq.lemma_concat2 (v (bytes_pkhash a)) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))) (v (bytes_mu a)) (as_seq h0 mu) (as_seq h2 pkh_mu); //concat2 (bytes_pkhash a) pkh (bytes_mu a) mu pkh_mu; frodo_shake a (bytes_pkhash a +! bytes_mu a) pkh_mu (2ul *! crypto_bytes a) seed_se_k; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_ss: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h seed_se_k /\ live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint seed_se_k ct /\ disjoint seed_se_k ss) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (let seed_se = LSeq.sub (as_seq h0 seed_se_k) 0 (v (crypto_bytes a)) in let k = LSeq.sub (as_seq h0 seed_se_k) (v (crypto_bytes a)) (v (crypto_bytes a)) in as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) seed_se /\ as_seq h1 ss == S.crypto_kem_enc_ss a k (as_seq h1 ct))) let crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk = let seed_se = sub seed_se_k 0ul (crypto_bytes a) in let k = sub seed_se_k (crypto_bytes a) (crypto_bytes a) in crypto_kem_enc_ct a gen_a mu pk seed_se ct; crypto_kem_enc_ss a k ct ss inline_for_extraction noextract val crypto_kem_enc0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ live h seed_se_k /\ loc_pairwise_disjoint [loc mu; loc ct; loc ss; loc pk; loc seed_se_k]) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss |+| loc seed_se_k) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk)) #push-options "--z3rlimit 200" let crypto_kem_enc0 a gen_a mu ct ss pk seed_se_k = crypto_kem_enc_seed_se_k a mu pk seed_se_k; crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk #pop-options inline_for_extraction noextract val crypto_kem_enc_: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint mu pk) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val crypto_kem_enc_: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint mu pk) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk))
[]
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) -> ct: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_ciphertextbytes a) -> ss: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> pk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_publickeybytes a) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 412, "start_col": 2, "start_line": 408 }
FStar.HyperStack.ST.Stack
val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame ()
val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix =
true
null
false
push_frame (); [@@ inline_let ]let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Frodo.Params.params_n", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Frodo.Sample.frodo_sample_matrix", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.IntTypes.uint8", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.op_Star_Bang", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Frodo.KEM.KeyGen.frodo_shake_r", "Lib.IntTypes.u8", "Lib.IntTypes.add", "Lib.Buffer.create", "Lib.Buffer.lbuffer", "Hacl.Impl.Frodo.Params.secretmatrixbytes_len", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se))
[]
Hacl.Impl.Frodo.KEM.Encaps.get_sp_ep_epp_matrices
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> seed_se: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> sp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> ep_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> epp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar Hacl.Impl.Frodo.Params.params_nbar -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 186, "start_col": 2, "start_line": 179 }
FStar.HyperStack.ST.Stack
val crypto_kem_enc: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack uint32 (requires fun h -> disjoint state ct /\ disjoint state ss /\ disjoint state pk /\ live h ct /\ live h ss /\ live h pk /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk) (ensures fun h0 _ h1 -> modifies (loc state |+| (loc ct |+| loc ss)) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc a gen_a (as_seq h0 state) (as_seq h0 pk))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let crypto_kem_enc a gen_a ct ss pk = recall state; push_frame (); let coins = create (bytes_mu a) (u8 0) in recall state; randombytes_ (bytes_mu a) coins; crypto_kem_enc_ a gen_a coins ct ss pk; clear_words_u8 coins; pop_frame (); u32 0
val crypto_kem_enc: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack uint32 (requires fun h -> disjoint state ct /\ disjoint state ss /\ disjoint state pk /\ live h ct /\ live h ss /\ live h pk /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk) (ensures fun h0 _ h1 -> modifies (loc state |+| (loc ct |+| loc ss)) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc a gen_a (as_seq h0 state) (as_seq h0 pk)) let crypto_kem_enc a gen_a ct ss pk =
true
null
false
recall state; push_frame (); let coins = create (bytes_mu a) (u8 0) in recall state; randombytes_ (bytes_mu a) coins; crypto_kem_enc_ a gen_a coins ct ss pk; clear_words_u8 coins; pop_frame (); u32 0
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "Lib.IntTypes.u32", "Lib.IntTypes.uint32", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.Frodo.KEM.clear_words_u8", "Hacl.Impl.Frodo.Params.bytes_mu", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_", "Hacl.Frodo.Random.randombytes_", "Lib.Buffer.recall", "Lib.Buffer.MUT", "Lib.IntTypes.uint8", "FStar.UInt32.__uint_to_t", "Hacl.Frodo.Random.state", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct = let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct) inline_for_extraction noextract val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1) let clear_matrix3 a sp_matrix ep_matrix epp_matrix = clear_matrix sp_matrix; clear_matrix ep_matrix; clear_matrix epp_matrix inline_for_extraction noextract val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct a gen_a mu pk seed_se ct = push_frame (); let h0 = ST.get () in FP.expand_crypto_publickeybytes a; let seed_a = sub pk 0ul bytes_seed_a in let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in let sp_matrix = matrix_create params_nbar (params_n a) in let ep_matrix = matrix_create params_nbar (params_n a) in let epp_matrix = matrix_create params_nbar params_nbar in get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix; crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct; clear_matrix3 a sp_matrix ep_matrix epp_matrix; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 ct) (S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)); pop_frame () #pop-options inline_for_extraction noextract val crypto_kem_enc_ss: a:FP.frodo_alg -> k:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> Stack unit (requires fun h -> live h k /\ live h ct /\ live h ss /\ disjoint ct ss /\ disjoint k ct /\ disjoint k ss) (ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\ as_seq h1 ss == S.crypto_kem_enc_ss a (as_seq h0 k) (as_seq h0 ct)) let crypto_kem_enc_ss a k ct ss = push_frame (); let ss_init_len = crypto_ciphertextbytes a +! crypto_bytes a in let shake_input_ss = create ss_init_len (u8 0) in concat2 (crypto_ciphertextbytes a) ct (crypto_bytes a) k shake_input_ss; frodo_shake a ss_init_len shake_input_ss (crypto_bytes a) ss; clear_words_u8 shake_input_ss; pop_frame () inline_for_extraction noextract val crypto_kem_enc_seed_se_k: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se_k /\ disjoint seed_se_k mu /\ disjoint seed_se_k pk) (ensures fun h0 _ h1 -> modifies (loc seed_se_k) h0 h1 /\ as_seq h1 seed_se_k == S.crypto_kem_enc_seed_se_k a (as_seq h0 mu) (as_seq h0 pk)) let crypto_kem_enc_seed_se_k a mu pk seed_se_k = push_frame (); let pkh_mu = create (bytes_pkhash a +! bytes_mu a) (u8 0) in let h0 = ST.get () in update_sub_f h0 pkh_mu 0ul (bytes_pkhash a) (fun h -> FP.frodo_shake a (v (crypto_publickeybytes a)) (as_seq h0 pk) (v (bytes_pkhash a))) (fun _ -> frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) (sub pkh_mu 0ul (bytes_pkhash a))); let h1 = ST.get () in update_sub pkh_mu (bytes_pkhash a) (bytes_mu a) mu; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 pkh_mu) 0 (v (bytes_pkhash a))) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))); LSeq.lemma_concat2 (v (bytes_pkhash a)) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))) (v (bytes_mu a)) (as_seq h0 mu) (as_seq h2 pkh_mu); //concat2 (bytes_pkhash a) pkh (bytes_mu a) mu pkh_mu; frodo_shake a (bytes_pkhash a +! bytes_mu a) pkh_mu (2ul *! crypto_bytes a) seed_se_k; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_ss: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h seed_se_k /\ live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint seed_se_k ct /\ disjoint seed_se_k ss) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (let seed_se = LSeq.sub (as_seq h0 seed_se_k) 0 (v (crypto_bytes a)) in let k = LSeq.sub (as_seq h0 seed_se_k) (v (crypto_bytes a)) (v (crypto_bytes a)) in as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) seed_se /\ as_seq h1 ss == S.crypto_kem_enc_ss a k (as_seq h1 ct))) let crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk = let seed_se = sub seed_se_k 0ul (crypto_bytes a) in let k = sub seed_se_k (crypto_bytes a) (crypto_bytes a) in crypto_kem_enc_ct a gen_a mu pk seed_se ct; crypto_kem_enc_ss a k ct ss inline_for_extraction noextract val crypto_kem_enc0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ live h seed_se_k /\ loc_pairwise_disjoint [loc mu; loc ct; loc ss; loc pk; loc seed_se_k]) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss |+| loc seed_se_k) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk)) #push-options "--z3rlimit 200" let crypto_kem_enc0 a gen_a mu ct ss pk seed_se_k = crypto_kem_enc_seed_se_k a mu pk seed_se_k; crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk #pop-options inline_for_extraction noextract val crypto_kem_enc_: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint mu pk) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk)) let crypto_kem_enc_ a gen_a mu ct ss pk = push_frame (); let seed_se_k = create (2ul *! crypto_bytes a) (u8 0) in crypto_kem_enc0 a gen_a mu ct ss pk seed_se_k; clear_words_u8 seed_se_k; pop_frame () inline_for_extraction noextract val crypto_kem_enc: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack uint32 (requires fun h -> disjoint state ct /\ disjoint state ss /\ disjoint state pk /\ live h ct /\ live h ss /\ live h pk /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk) (ensures fun h0 _ h1 -> modifies (loc state |+| (loc ct |+| loc ss)) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc a gen_a (as_seq h0 state) (as_seq h0 pk))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val crypto_kem_enc: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack uint32 (requires fun h -> disjoint state ct /\ disjoint state ss /\ disjoint state pk /\ live h ct /\ live h ss /\ live h pk /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk) (ensures fun h0 _ h1 -> modifies (loc state |+| (loc ct |+| loc ss)) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc a gen_a (as_seq h0 state) (as_seq h0 pk))
[]
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> ct: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_ciphertextbytes a) -> ss: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> pk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_publickeybytes a) -> FStar.HyperStack.ST.Stack Lib.IntTypes.uint32
{ "end_col": 7, "end_line": 439, "start_col": 2, "start_line": 431 }
FStar.HyperStack.ST.Stack
val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame ()
val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix =
true
null
false
push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_mu", "Hacl.Impl.Frodo.Params.publicmatrixbytes_len", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Frodo.Params.params_n", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Frodo.KEM.clear_matrix", "Hacl.Impl.Matrix.matrix_add", "Hacl.Impl.Frodo.Encode.frodo_key_encode", "Hacl.Impl.Frodo.Params.params_logq", "Hacl.Impl.Frodo.Params.params_extracted_bits", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Matrix.matrix_create", "Hacl.Impl.Frodo.KEM.Encaps.frodo_mul_add_sb_plus_e", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
[]
Hacl.Impl.Frodo.KEM.Encaps.frodo_mul_add_sb_plus_e_plus_mu
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) -> b: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.publicmatrixbytes_len a) -> sp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> epp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar Hacl.Impl.Frodo.Params.params_nbar -> v_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar Hacl.Impl.Frodo.Params.params_nbar -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 129, "start_col": 2, "start_line": 123 }
FStar.HyperStack.ST.Stack
val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct = let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct)
val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct =
true
null
false
let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct)
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_seed_a", "Hacl.Impl.Frodo.Params.publicmatrixbytes_len", "Hacl.Impl.Frodo.Params.bytes_mu", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Frodo.Params.params_n", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes", "Lib.Sequence.lemma_concat2", "Lib.IntTypes.uint8", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Frodo.Params.ct1bytes_len", "Lib.Sequence.sub", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Impl.Frodo.Params.ct2bytes_len", "Prims.unit", "Lib.Sequence.eq_intro", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c2", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c1", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.sub", "FStar.UInt32.__uint_to_t" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2))
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2))
[]
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct0
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> seed_a: Hacl.Impl.Matrix.lbytes Hacl.Impl.Frodo.Params.bytes_seed_a -> b: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.publicmatrixbytes_len a) -> mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) -> sp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> ep_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> epp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar Hacl.Impl.Frodo.Params.params_nbar -> ct: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_ciphertextbytes a) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 107, "end_line": 225, "start_col": 78, "start_line": 212 }
FStar.HyperStack.ST.Stack
val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame ()
val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 =
true
null
false
push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_mu", "Hacl.Impl.Frodo.Params.publicmatrixbytes_len", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Frodo.Params.params_n", "Hacl.Impl.Frodo.Params.ct2bytes_len", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Frodo.KEM.clear_matrix", "Hacl.Impl.Frodo.Pack.frodo_pack", "Hacl.Impl.Frodo.Params.params_logq", "Hacl.Impl.Frodo.KEM.Encaps.frodo_mul_add_sb_plus_e_plus_mu", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Matrix.matrix_create", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200"
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
[]
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c2
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) -> b: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.publicmatrixbytes_len a) -> sp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar (Hacl.Impl.Frodo.Params.params_n a) -> epp_matrix: Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar Hacl.Impl.Frodo.Params.params_nbar -> c2: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.ct2bytes_len a) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 157, "start_col": 2, "start_line": 152 }
FStar.HyperStack.ST.Stack
val crypto_kem_enc0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ live h seed_se_k /\ loc_pairwise_disjoint [loc mu; loc ct; loc ss; loc pk; loc seed_se_k]) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss |+| loc seed_se_k) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let crypto_kem_enc0 a gen_a mu ct ss pk seed_se_k = crypto_kem_enc_seed_se_k a mu pk seed_se_k; crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk
val crypto_kem_enc0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ live h seed_se_k /\ loc_pairwise_disjoint [loc mu; loc ct; loc ss; loc pk; loc seed_se_k]) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss |+| loc seed_se_k) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk)) let crypto_kem_enc0 a gen_a mu ct ss pk seed_se_k =
true
null
false
crypto_kem_enc_seed_se_k a mu pk seed_se_k; crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_mu", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_ss", "Prims.unit", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_seed_se_k" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct = let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct) inline_for_extraction noextract val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1) let clear_matrix3 a sp_matrix ep_matrix epp_matrix = clear_matrix sp_matrix; clear_matrix ep_matrix; clear_matrix epp_matrix inline_for_extraction noextract val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct a gen_a mu pk seed_se ct = push_frame (); let h0 = ST.get () in FP.expand_crypto_publickeybytes a; let seed_a = sub pk 0ul bytes_seed_a in let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in let sp_matrix = matrix_create params_nbar (params_n a) in let ep_matrix = matrix_create params_nbar (params_n a) in let epp_matrix = matrix_create params_nbar params_nbar in get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix; crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct; clear_matrix3 a sp_matrix ep_matrix epp_matrix; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 ct) (S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)); pop_frame () #pop-options inline_for_extraction noextract val crypto_kem_enc_ss: a:FP.frodo_alg -> k:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> Stack unit (requires fun h -> live h k /\ live h ct /\ live h ss /\ disjoint ct ss /\ disjoint k ct /\ disjoint k ss) (ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\ as_seq h1 ss == S.crypto_kem_enc_ss a (as_seq h0 k) (as_seq h0 ct)) let crypto_kem_enc_ss a k ct ss = push_frame (); let ss_init_len = crypto_ciphertextbytes a +! crypto_bytes a in let shake_input_ss = create ss_init_len (u8 0) in concat2 (crypto_ciphertextbytes a) ct (crypto_bytes a) k shake_input_ss; frodo_shake a ss_init_len shake_input_ss (crypto_bytes a) ss; clear_words_u8 shake_input_ss; pop_frame () inline_for_extraction noextract val crypto_kem_enc_seed_se_k: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se_k /\ disjoint seed_se_k mu /\ disjoint seed_se_k pk) (ensures fun h0 _ h1 -> modifies (loc seed_se_k) h0 h1 /\ as_seq h1 seed_se_k == S.crypto_kem_enc_seed_se_k a (as_seq h0 mu) (as_seq h0 pk)) let crypto_kem_enc_seed_se_k a mu pk seed_se_k = push_frame (); let pkh_mu = create (bytes_pkhash a +! bytes_mu a) (u8 0) in let h0 = ST.get () in update_sub_f h0 pkh_mu 0ul (bytes_pkhash a) (fun h -> FP.frodo_shake a (v (crypto_publickeybytes a)) (as_seq h0 pk) (v (bytes_pkhash a))) (fun _ -> frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) (sub pkh_mu 0ul (bytes_pkhash a))); let h1 = ST.get () in update_sub pkh_mu (bytes_pkhash a) (bytes_mu a) mu; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 pkh_mu) 0 (v (bytes_pkhash a))) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))); LSeq.lemma_concat2 (v (bytes_pkhash a)) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))) (v (bytes_mu a)) (as_seq h0 mu) (as_seq h2 pkh_mu); //concat2 (bytes_pkhash a) pkh (bytes_mu a) mu pkh_mu; frodo_shake a (bytes_pkhash a +! bytes_mu a) pkh_mu (2ul *! crypto_bytes a) seed_se_k; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_ss: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h seed_se_k /\ live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint seed_se_k ct /\ disjoint seed_se_k ss) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (let seed_se = LSeq.sub (as_seq h0 seed_se_k) 0 (v (crypto_bytes a)) in let k = LSeq.sub (as_seq h0 seed_se_k) (v (crypto_bytes a)) (v (crypto_bytes a)) in as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) seed_se /\ as_seq h1 ss == S.crypto_kem_enc_ss a k (as_seq h1 ct))) let crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk = let seed_se = sub seed_se_k 0ul (crypto_bytes a) in let k = sub seed_se_k (crypto_bytes a) (crypto_bytes a) in crypto_kem_enc_ct a gen_a mu pk seed_se ct; crypto_kem_enc_ss a k ct ss inline_for_extraction noextract val crypto_kem_enc0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ live h seed_se_k /\ loc_pairwise_disjoint [loc mu; loc ct; loc ss; loc pk; loc seed_se_k]) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss |+| loc seed_se_k) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk)) #push-options "--z3rlimit 200"
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val crypto_kem_enc0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ live h seed_se_k /\ loc_pairwise_disjoint [loc mu; loc ct; loc ss; loc pk; loc seed_se_k]) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss |+| loc seed_se_k) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk))
[]
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc0
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) -> ct: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_ciphertextbytes a) -> ss: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> pk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_publickeybytes a) -> seed_se_k: Hacl.Impl.Matrix.lbytes (2ul *! Hacl.Impl.Frodo.Params.crypto_bytes a) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 52, "end_line": 388, "start_col": 2, "start_line": 387 }
FStar.HyperStack.ST.Stack
val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se))
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let crypto_kem_enc_ct a gen_a mu pk seed_se ct = push_frame (); let h0 = ST.get () in FP.expand_crypto_publickeybytes a; let seed_a = sub pk 0ul bytes_seed_a in let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in let sp_matrix = matrix_create params_nbar (params_n a) in let ep_matrix = matrix_create params_nbar (params_n a) in let epp_matrix = matrix_create params_nbar params_nbar in get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix; crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct; clear_matrix3 a sp_matrix ep_matrix epp_matrix; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 ct) (S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)); pop_frame ()
val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) let crypto_kem_enc_ct a gen_a mu pk seed_se ct =
true
null
false
push_frame (); let h0 = ST.get () in FP.expand_crypto_publickeybytes a; let seed_a = sub pk 0ul bytes_seed_a in let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in let sp_matrix = matrix_create params_nbar (params_n a) in let ep_matrix = matrix_create params_nbar (params_n a) in let epp_matrix = matrix_create params_nbar params_nbar in get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix; crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct; clear_matrix3 a sp_matrix ep_matrix epp_matrix; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 ct) (S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)); pop_frame ()
{ "checked_file": "Hacl.Impl.Frodo.KEM.Encaps.fst.checked", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_mu", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.Sequence.eq_intro", "Lib.IntTypes.uint8", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Spec.Frodo.KEM.Encaps.crypto_kem_enc_ct", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.Frodo.KEM.Encaps.clear_matrix3", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct0", "Hacl.Impl.Frodo.KEM.Encaps.get_sp_ep_epp_matrices", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Matrix.matrix_create", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_n", "Lib.IntTypes.U8", "Hacl.Impl.Frodo.Params.publicmatrixbytes_len", "Lib.Buffer.sub", "Hacl.Impl.Frodo.Params.bytes_seed_a", "FStar.UInt32.__uint_to_t", "Spec.Frodo.Params.expand_crypto_publickeybytes", "FStar.HyperStack.ST.push_frame" ]
[]
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct = let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct) inline_for_extraction noextract val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1) let clear_matrix3 a sp_matrix ep_matrix epp_matrix = clear_matrix sp_matrix; clear_matrix ep_matrix; clear_matrix epp_matrix inline_for_extraction noextract val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) #push-options "--z3rlimit 200"
false
false
Hacl.Impl.Frodo.KEM.Encaps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se))
[]
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) -> pk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_publickeybytes a) -> seed_se: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> ct: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_ciphertextbytes a) -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 14, "end_line": 281, "start_col": 2, "start_line": 264 }
Prims.Tot
val uint128_to_uint64: a:U128.t -> b:U64.t{U64.v b == U128.v a % pow2 64}
[ { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint128_to_uint64 a = U128.uint128_to_uint64 a
val uint128_to_uint64: a:U128.t -> b:U64.t{U64.v b == U128.v a % pow2 64} let uint128_to_uint64 a =
false
null
false
U128.uint128_to_uint64 a
{ "checked_file": "FStar.Int.Cast.Full.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.Cast.fst.checked" ], "interface_file": false, "source_file": "FStar.Int.Cast.Full.fst" }
[ "total" ]
[ "FStar.UInt128.t", "FStar.UInt128.uint128_to_uint64", "FStar.UInt64.t", "Prims.eq2", "Prims.int", "FStar.UInt64.v", "Prims.op_Modulus", "FStar.UInt128.v", "Prims.pow2" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int.Cast.Full include FStar.Int.Cast module U64 = FStar.UInt64 module U128 = FStar.UInt128 inline_for_extraction noextract val uint64_to_uint128: a:U64.t -> b:U128.t{U128.v b == U64.v a} inline_for_extraction noextract let uint64_to_uint128 a = U128.uint64_to_uint128 a inline_for_extraction noextract val uint128_to_uint64: a:U128.t -> b:U64.t{U64.v b == U128.v a % pow2 64}
false
false
FStar.Int.Cast.Full.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint128_to_uint64: a:U128.t -> b:U64.t{U64.v b == U128.v a % pow2 64}
[]
FStar.Int.Cast.Full.uint128_to_uint64
{ "file_name": "ulib/FStar.Int.Cast.Full.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt128.t -> b: FStar.UInt64.t{FStar.UInt64.v b == FStar.UInt128.v a % Prims.pow2 64}
{ "end_col": 50, "end_line": 31, "start_col": 26, "start_line": 31 }
Prims.Tot
val uint64_to_uint128: a:U64.t -> b:U128.t{U128.v b == U64.v a}
[ { "abbrev": true, "full_module": "FStar.UInt128", "short_module": "U128" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint64_to_uint128 a = U128.uint64_to_uint128 a
val uint64_to_uint128: a:U64.t -> b:U128.t{U128.v b == U64.v a} let uint64_to_uint128 a =
false
null
false
U128.uint64_to_uint128 a
{ "checked_file": "FStar.Int.Cast.Full.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt128.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Int.Cast.fst.checked" ], "interface_file": false, "source_file": "FStar.Int.Cast.Full.fst" }
[ "total" ]
[ "FStar.UInt64.t", "FStar.UInt128.uint64_to_uint128", "FStar.UInt128.t", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt128.n", "FStar.UInt64.n", "FStar.UInt128.v", "FStar.UInt64.v" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int.Cast.Full include FStar.Int.Cast module U64 = FStar.UInt64 module U128 = FStar.UInt128 inline_for_extraction noextract val uint64_to_uint128: a:U64.t -> b:U128.t{U128.v b == U64.v a}
false
false
FStar.Int.Cast.Full.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint64_to_uint128: a:U64.t -> b:U128.t{U128.v b == U64.v a}
[]
FStar.Int.Cast.Full.uint64_to_uint128
{ "file_name": "ulib/FStar.Int.Cast.Full.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt64.t -> b: FStar.UInt128.t{FStar.UInt128.v b == FStar.UInt64.v a}
{ "end_col": 50, "end_line": 26, "start_col": 26, "start_line": 26 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let auto_squash (p: Type) = squash p
let auto_squash (p: Type) =
false
null
false
squash p
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.squash" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier.
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val auto_squash : p: Type -> Type0
[]
Prims.auto_squash
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: Type -> Type0
{ "end_col": 36, "end_line": 109, "start_col": 28, "start_line": 109 }
Prims.Tot
val l_False:logical
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let l_False:logical = squash empty
val l_False:logical let l_False:logical =
false
null
false
squash empty
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.squash", "Prims.empty" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *)
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val l_False:logical
[]
Prims.l_False
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Prims.logical
{ "end_col": 34, "end_line": 138, "start_col": 22, "start_line": 138 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0
let pure_post' (a pre: Type) =
false
null
false
_: a{pre} -> GTot Type0
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pure_post' : a: Type -> pre: Type -> Type
[]
Prims.pure_post'
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> pre: Type -> Type
{ "end_col": 54, "end_line": 294, "start_col": 31, "start_line": 294 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pure_wp_monotonic = pure_wp_monotonic0
let pure_wp_monotonic =
false
null
false
pure_wp_monotonic0
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.pure_wp_monotonic0" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q)
false
false
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pure_wp_monotonic : a: Type -> wp: Prims.pure_wp' a -> Prims.logical
[]
Prims.pure_wp_monotonic
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> wp: Prims.pure_wp' a -> Prims.logical
{ "end_col": 42, "end_line": 316, "start_col": 24, "start_line": 316 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let purewp_id (a: Type) (wp: pure_wp a) = wp
let purewp_id (a: Type) (wp: pure_wp a) =
false
null
false
wp
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.pure_wp" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *) unfold let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p (** Closing a PURE WP under a binder for [b] Clients should not use it directly, instead use FStar.Pervasives.pure_close_wp *) unfold let pure_close_wp0 (a b: Type) (wp: (b -> GTot (pure_wp a))) : pure_wp a = fun (p: pure_post a) -> forall (b: b). wp b p (** Trivial WP for PURE: Prove the WP with the trivial postcondition *) unfold let pure_trivial (a: Type) (wp: pure_wp a) = wp (fun (trivial_result: a) -> True) (** Introduces the PURE effect. The definition of the PURE effect is fixed. NO USER SHOULD EVER CHANGE THIS. *) total new_effect { PURE : a: Type -> wp: pure_wp a -> Effect with return_wp = pure_return0 ; bind_wp = pure_bind_wp0 ; if_then_else = pure_if_then_else0 ; ite_wp = pure_ite_wp0 ; stronger = pure_stronger ; close_wp = pure_close_wp0 ; trivial = pure_trivial } (** [Pure] is a Hoare-style counterpart of [PURE] Note the type of post, which allows to assume the precondition for the well-formedness of the postcondition. c.f. #57 *) effect Pure (a: Type) (pre: pure_pre) (post: pure_post' a pre) = PURE a (fun (p: pure_post a) -> pre /\ (forall (pure_result: a). post pure_result ==> p pure_result)) (** [Admit] is an effect abbreviation for a computation that disregards the verification condition of its continuation *) effect Admit (a: Type) = PURE a (fun (p: pure_post a) -> True) (** The primitive effect [Tot] is definitionally equal to an instance of [PURE] *) (** Clients should not use it directly, instead use FStar.Pervasives.pure_null_wp *) unfold let pure_null_wp0 (a: Type) : pure_wp a = fun (p: pure_post a) -> forall (any_result: a). p any_result (** [Tot]: From here on, we have [Tot] as a defined symbol in F*. *) effect Tot (a: Type) = PURE a (pure_null_wp0 a) (** Clients should not use it directly, instead use FStar.Pervasives.pure_assert_wp *) [@@ "opaque_to_smt"] unfold let pure_assert_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p /\ post () (** Clients should not use it directly, instead use FStar.Pervasives.pure_assume_wp *) [@@ "opaque_to_smt"] unfold let pure_assume_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p ==> post () (**** The [GHOST] effect *) (** [GHOST] is logically equivalent to [PURE], but distinguished from it nominally so that specific, computationally irrelevant operations, are provided only in [GHOST] and are erased during extraction *) total new_effect GHOST = PURE
false
false
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val purewp_id : a: Type -> wp: Prims.pure_wp a -> Prims.pure_wp a
[]
Prims.purewp_id
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> wp: Prims.pure_wp a -> Prims.pure_wp a
{ "end_col": 44, "end_line": 455, "start_col": 42, "start_line": 455 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pure_post (a: Type) = pure_post' a True
let pure_post (a: Type) =
false
null
false
pure_post' a True
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.pure_post'", "Prims.l_True" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *)
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pure_post : a: Type -> Type
[]
Prims.pure_post
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> Type
{ "end_col": 43, "end_line": 295, "start_col": 26, "start_line": 295 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p
let pure_stronger (a: Type) (wp1 wp2: pure_wp a) =
false
null
false
forall (p: pure_post a). wp1 p ==> wp2 p
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.pure_wp", "Prims.l_Forall", "Prims.pure_post", "Prims.l_imp", "Prims.logical" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *)
false
false
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pure_stronger : a: Type -> wp1: Prims.pure_wp a -> wp2: Prims.pure_wp a -> Prims.logical
[]
Prims.pure_stronger
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> wp1: Prims.pure_wp a -> wp2: Prims.pure_wp a -> Prims.logical
{ "end_col": 91, "end_line": 385, "start_col": 51, "start_line": 385 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pure_wp' (a: Type) = pure_post a -> GTot pure_pre
let pure_wp' (a: Type) =
false
null
false
pure_post a -> GTot pure_pre
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.pure_post", "Prims.pure_pre" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type,
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pure_wp' : a: Type -> Type
[]
Prims.pure_wp'
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> Type
{ "end_col": 53, "end_line": 304, "start_col": 25, "start_line": 304 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pure_trivial (a: Type) (wp: pure_wp a) = wp (fun (trivial_result: a) -> True)
let pure_trivial (a: Type) (wp: pure_wp a) =
false
null
false
wp (fun (trivial_result: a) -> True)
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.pure_wp", "Prims.l_True", "Prims.pure_pre" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *) unfold let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p (** Closing a PURE WP under a binder for [b] Clients should not use it directly, instead use FStar.Pervasives.pure_close_wp *) unfold let pure_close_wp0 (a b: Type) (wp: (b -> GTot (pure_wp a))) : pure_wp a = fun (p: pure_post a) -> forall (b: b). wp b p (** Trivial WP for PURE: Prove the WP with the trivial postcondition *)
false
false
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pure_trivial : a: Type -> wp: Prims.pure_wp a -> Prims.pure_pre
[]
Prims.pure_trivial
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> wp: Prims.pure_wp a -> Prims.pure_pre
{ "end_col": 81, "end_line": 396, "start_col": 45, "start_line": 396 }
Prims.Tot
val returnM (a: Type) (x: a) : M a
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let returnM (a: Type) (x: a) : M a = x
val returnM (a: Type) (x: a) : M a let returnM (a: Type) (x: a) : M a =
false
null
false
x
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *) unfold let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p (** Closing a PURE WP under a binder for [b] Clients should not use it directly, instead use FStar.Pervasives.pure_close_wp *) unfold let pure_close_wp0 (a b: Type) (wp: (b -> GTot (pure_wp a))) : pure_wp a = fun (p: pure_post a) -> forall (b: b). wp b p (** Trivial WP for PURE: Prove the WP with the trivial postcondition *) unfold let pure_trivial (a: Type) (wp: pure_wp a) = wp (fun (trivial_result: a) -> True) (** Introduces the PURE effect. The definition of the PURE effect is fixed. NO USER SHOULD EVER CHANGE THIS. *) total new_effect { PURE : a: Type -> wp: pure_wp a -> Effect with return_wp = pure_return0 ; bind_wp = pure_bind_wp0 ; if_then_else = pure_if_then_else0 ; ite_wp = pure_ite_wp0 ; stronger = pure_stronger ; close_wp = pure_close_wp0 ; trivial = pure_trivial } (** [Pure] is a Hoare-style counterpart of [PURE] Note the type of post, which allows to assume the precondition for the well-formedness of the postcondition. c.f. #57 *) effect Pure (a: Type) (pre: pure_pre) (post: pure_post' a pre) = PURE a (fun (p: pure_post a) -> pre /\ (forall (pure_result: a). post pure_result ==> p pure_result)) (** [Admit] is an effect abbreviation for a computation that disregards the verification condition of its continuation *) effect Admit (a: Type) = PURE a (fun (p: pure_post a) -> True) (** The primitive effect [Tot] is definitionally equal to an instance of [PURE] *) (** Clients should not use it directly, instead use FStar.Pervasives.pure_null_wp *) unfold let pure_null_wp0 (a: Type) : pure_wp a = fun (p: pure_post a) -> forall (any_result: a). p any_result (** [Tot]: From here on, we have [Tot] as a defined symbol in F*. *) effect Tot (a: Type) = PURE a (pure_null_wp0 a) (** Clients should not use it directly, instead use FStar.Pervasives.pure_assert_wp *) [@@ "opaque_to_smt"] unfold let pure_assert_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p /\ post () (** Clients should not use it directly, instead use FStar.Pervasives.pure_assume_wp *) [@@ "opaque_to_smt"] unfold let pure_assume_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p ==> post () (**** The [GHOST] effect *) (** [GHOST] is logically equivalent to [PURE], but distinguished from it nominally so that specific, computationally irrelevant operations, are provided only in [GHOST] and are erased during extraction *) total new_effect GHOST = PURE unfold let purewp_id (a: Type) (wp: pure_wp a) = wp (** [PURE] computations can be lifted to the [GHOST] effect (but not vice versa) using just the identity lifting on pure wps *) sub_effect PURE ~> GHOST { lift_wp = purewp_id } (** [Ghost] is a the Hoare-style counterpart of [GHOST] *) effect Ghost (a: Type) (pre: Type) (post: pure_post' a pre) = GHOST a (fun (p: pure_post a) -> pre /\ (forall (ghost_result: a). post ghost_result ==> p ghost_result) ) (** As with [Tot], the primitive effect [GTot] is definitionally equal to an instance of GHOST *) effect GTot (a: Type) = GHOST a (pure_null_wp0 a) (***** End trusted primitives *****) (** This point onward, F* fully verifies all the definitions *) (** [===] heterogeneous equality *) let ( === ) (#a #b: Type) (x: a) (y: b) : logical = a == b /\ x == y (** Dependent pairs [dtuple2] in concrete syntax is [x:a & b x]. Its values can be constructed with the concrete syntax [(| x, y |)] *) unopteq type dtuple2 (a: Type) (b: (a -> GTot Type)) = | Mkdtuple2 : _1: a -> _2: b _1 -> dtuple2 a b (** Squashed existential quantification, or dependent sums, are written [exists (x:a). p x] : specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Exists (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a & p x) (** Primitive type of mathematical integers, mapped to zarith in OCaml extraction and to the SMT sort of integers *) assume new type int : eqtype (**** Basic operators on booleans and integers *) (** [&&] boolean conjunction *) [@@ smt_theory_symbol] assume val op_AmpAmp: bool -> bool -> Tot bool (** [||] boolean disjunction *) [@@ smt_theory_symbol] assume val op_BarBar: bool -> bool -> Tot bool (** [not] boolean negation *) [@@ smt_theory_symbol] assume val op_Negation: bool -> Tot bool (** Integer multiplication, no special symbol. See FStar.Mul *) [@@ smt_theory_symbol] assume val op_Multiply: int -> int -> Tot int (** [-] integer subtraction *) [@@ smt_theory_symbol] assume val op_Subtraction: int -> int -> Tot int (** [+] integer addition *) [@@ smt_theory_symbol] assume val op_Addition: int -> int -> Tot int (** [-] prefix unary integer negation *) [@@ smt_theory_symbol] assume val op_Minus: int -> Tot int (** [<=] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThanOrEqual: int -> int -> Tot bool (** [>] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThan: int -> int -> Tot bool (** [>=] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThanOrEqual: int -> int -> Tot bool (** [<] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThan: int -> int -> Tot bool (** [=] decidable equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_Equality: #a: eqtype -> a -> a -> Tot bool (** [<>] decidable dis-equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_disEquality: #a: eqtype -> a -> a -> Tot bool (** The extensible open inductive type of exceptions *) assume new type exn : Type0 (** [array]: TODO: should be removed. See FStar.Seq, LowStar.Buffer, etc. *) assume new type array : Type -> Type0 (** String concatenation and its abbreviation as [^]. TODO, both should be removed in favor of what is present in FStar.String *) assume val strcat: string -> string -> Tot string inline_for_extraction unfold let op_Hat s1 s2 = strcat s1 s2 (** The inductive type of polymorphic lists *) type list (a: Type) = | Nil : list a | Cons : hd: a -> tl: list a -> list a (** The [M] marker is interpreted by the Dijkstra Monads for Free construction. It has a "double meaning", either as an alias for reasoning about the direct definitions, or as a marker for places where a CPS transformation should happen. *) effect M (a: Type) = Tot a (attributes cps)
false
false
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val returnM (a: Type) (x: a) : M a
[]
Prims.returnM
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> x: a -> Prims.M a
{ "end_col": 38, "end_line": 604, "start_col": 37, "start_line": 604 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q)
let pure_wp_monotonic0 (a: Type) (wp: pure_wp' a) =
false
null
false
forall (p: pure_post a) (q: pure_post a). (forall (x: a). p x ==> q x) ==> (wp p ==> wp q)
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.pure_wp'", "Prims.l_Forall", "Prims.pure_post", "Prims.l_imp", "Prims.logical" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *)
false
false
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pure_wp_monotonic0 : a: Type -> wp: Prims.pure_wp' a -> Prims.logical
[]
Prims.pure_wp_monotonic0
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> wp: Prims.pure_wp' a -> Prims.logical
{ "end_col": 75, "end_line": 313, "start_col": 2, "start_line": 313 }
Prims.Tot
val l_True:logical
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let l_True:logical = squash trivial
val l_True:logical let l_True:logical =
false
null
false
squash trivial
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.squash", "Prims.trivial" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *)
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val l_True:logical
[]
Prims.l_True
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Prims.logical
{ "end_col": 35, "end_line": 132, "start_col": 21, "start_line": 132 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Hat s1 s2 = strcat s1 s2
let op_Hat s1 s2 =
false
null
false
strcat s1 s2
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.string", "Prims.strcat" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *) unfold let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p (** Closing a PURE WP under a binder for [b] Clients should not use it directly, instead use FStar.Pervasives.pure_close_wp *) unfold let pure_close_wp0 (a b: Type) (wp: (b -> GTot (pure_wp a))) : pure_wp a = fun (p: pure_post a) -> forall (b: b). wp b p (** Trivial WP for PURE: Prove the WP with the trivial postcondition *) unfold let pure_trivial (a: Type) (wp: pure_wp a) = wp (fun (trivial_result: a) -> True) (** Introduces the PURE effect. The definition of the PURE effect is fixed. NO USER SHOULD EVER CHANGE THIS. *) total new_effect { PURE : a: Type -> wp: pure_wp a -> Effect with return_wp = pure_return0 ; bind_wp = pure_bind_wp0 ; if_then_else = pure_if_then_else0 ; ite_wp = pure_ite_wp0 ; stronger = pure_stronger ; close_wp = pure_close_wp0 ; trivial = pure_trivial } (** [Pure] is a Hoare-style counterpart of [PURE] Note the type of post, which allows to assume the precondition for the well-formedness of the postcondition. c.f. #57 *) effect Pure (a: Type) (pre: pure_pre) (post: pure_post' a pre) = PURE a (fun (p: pure_post a) -> pre /\ (forall (pure_result: a). post pure_result ==> p pure_result)) (** [Admit] is an effect abbreviation for a computation that disregards the verification condition of its continuation *) effect Admit (a: Type) = PURE a (fun (p: pure_post a) -> True) (** The primitive effect [Tot] is definitionally equal to an instance of [PURE] *) (** Clients should not use it directly, instead use FStar.Pervasives.pure_null_wp *) unfold let pure_null_wp0 (a: Type) : pure_wp a = fun (p: pure_post a) -> forall (any_result: a). p any_result (** [Tot]: From here on, we have [Tot] as a defined symbol in F*. *) effect Tot (a: Type) = PURE a (pure_null_wp0 a) (** Clients should not use it directly, instead use FStar.Pervasives.pure_assert_wp *) [@@ "opaque_to_smt"] unfold let pure_assert_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p /\ post () (** Clients should not use it directly, instead use FStar.Pervasives.pure_assume_wp *) [@@ "opaque_to_smt"] unfold let pure_assume_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p ==> post () (**** The [GHOST] effect *) (** [GHOST] is logically equivalent to [PURE], but distinguished from it nominally so that specific, computationally irrelevant operations, are provided only in [GHOST] and are erased during extraction *) total new_effect GHOST = PURE unfold let purewp_id (a: Type) (wp: pure_wp a) = wp (** [PURE] computations can be lifted to the [GHOST] effect (but not vice versa) using just the identity lifting on pure wps *) sub_effect PURE ~> GHOST { lift_wp = purewp_id } (** [Ghost] is a the Hoare-style counterpart of [GHOST] *) effect Ghost (a: Type) (pre: Type) (post: pure_post' a pre) = GHOST a (fun (p: pure_post a) -> pre /\ (forall (ghost_result: a). post ghost_result ==> p ghost_result) ) (** As with [Tot], the primitive effect [GTot] is definitionally equal to an instance of GHOST *) effect GTot (a: Type) = GHOST a (pure_null_wp0 a) (***** End trusted primitives *****) (** This point onward, F* fully verifies all the definitions *) (** [===] heterogeneous equality *) let ( === ) (#a #b: Type) (x: a) (y: b) : logical = a == b /\ x == y (** Dependent pairs [dtuple2] in concrete syntax is [x:a & b x]. Its values can be constructed with the concrete syntax [(| x, y |)] *) unopteq type dtuple2 (a: Type) (b: (a -> GTot Type)) = | Mkdtuple2 : _1: a -> _2: b _1 -> dtuple2 a b (** Squashed existential quantification, or dependent sums, are written [exists (x:a). p x] : specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Exists (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a & p x) (** Primitive type of mathematical integers, mapped to zarith in OCaml extraction and to the SMT sort of integers *) assume new type int : eqtype (**** Basic operators on booleans and integers *) (** [&&] boolean conjunction *) [@@ smt_theory_symbol] assume val op_AmpAmp: bool -> bool -> Tot bool (** [||] boolean disjunction *) [@@ smt_theory_symbol] assume val op_BarBar: bool -> bool -> Tot bool (** [not] boolean negation *) [@@ smt_theory_symbol] assume val op_Negation: bool -> Tot bool (** Integer multiplication, no special symbol. See FStar.Mul *) [@@ smt_theory_symbol] assume val op_Multiply: int -> int -> Tot int (** [-] integer subtraction *) [@@ smt_theory_symbol] assume val op_Subtraction: int -> int -> Tot int (** [+] integer addition *) [@@ smt_theory_symbol] assume val op_Addition: int -> int -> Tot int (** [-] prefix unary integer negation *) [@@ smt_theory_symbol] assume val op_Minus: int -> Tot int (** [<=] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThanOrEqual: int -> int -> Tot bool (** [>] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThan: int -> int -> Tot bool (** [>=] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThanOrEqual: int -> int -> Tot bool (** [<] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThan: int -> int -> Tot bool (** [=] decidable equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_Equality: #a: eqtype -> a -> a -> Tot bool (** [<>] decidable dis-equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_disEquality: #a: eqtype -> a -> a -> Tot bool (** The extensible open inductive type of exceptions *) assume new type exn : Type0 (** [array]: TODO: should be removed. See FStar.Seq, LowStar.Buffer, etc. *) assume new type array : Type -> Type0 (** String concatenation and its abbreviation as [^]. TODO, both should be removed in favor of what is present in FStar.String *) assume val strcat: string -> string -> Tot string
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Hat : s1: Prims.string -> s2: Prims.string -> Prims.string
[]
Prims.op_Hat
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s1: Prims.string -> s2: Prims.string -> Prims.string
{ "end_col": 31, "end_line": 590, "start_col": 19, "start_line": 590 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp}
let pure_wp (a: Type) =
false
null
false
wp: pure_wp' a {pure_wp_monotonic a wp}
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.pure_wp'", "Prims.pure_wp_monotonic" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pure_wp : a: Type -> Type
[]
Prims.pure_wp
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> Type
{ "end_col": 61, "end_line": 318, "start_col": 24, "start_line": 318 }
Prims.Tot
val abs (x: int) : Tot int
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let abs (x: int) : Tot int = if x >= 0 then x else - x
val abs (x: int) : Tot int let abs (x: int) : Tot int =
false
null
false
if x >= 0 then x else - x
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.int", "Prims.op_GreaterThanOrEqual", "Prims.bool", "Prims.op_Minus" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *) unfold let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p (** Closing a PURE WP under a binder for [b] Clients should not use it directly, instead use FStar.Pervasives.pure_close_wp *) unfold let pure_close_wp0 (a b: Type) (wp: (b -> GTot (pure_wp a))) : pure_wp a = fun (p: pure_post a) -> forall (b: b). wp b p (** Trivial WP for PURE: Prove the WP with the trivial postcondition *) unfold let pure_trivial (a: Type) (wp: pure_wp a) = wp (fun (trivial_result: a) -> True) (** Introduces the PURE effect. The definition of the PURE effect is fixed. NO USER SHOULD EVER CHANGE THIS. *) total new_effect { PURE : a: Type -> wp: pure_wp a -> Effect with return_wp = pure_return0 ; bind_wp = pure_bind_wp0 ; if_then_else = pure_if_then_else0 ; ite_wp = pure_ite_wp0 ; stronger = pure_stronger ; close_wp = pure_close_wp0 ; trivial = pure_trivial } (** [Pure] is a Hoare-style counterpart of [PURE] Note the type of post, which allows to assume the precondition for the well-formedness of the postcondition. c.f. #57 *) effect Pure (a: Type) (pre: pure_pre) (post: pure_post' a pre) = PURE a (fun (p: pure_post a) -> pre /\ (forall (pure_result: a). post pure_result ==> p pure_result)) (** [Admit] is an effect abbreviation for a computation that disregards the verification condition of its continuation *) effect Admit (a: Type) = PURE a (fun (p: pure_post a) -> True) (** The primitive effect [Tot] is definitionally equal to an instance of [PURE] *) (** Clients should not use it directly, instead use FStar.Pervasives.pure_null_wp *) unfold let pure_null_wp0 (a: Type) : pure_wp a = fun (p: pure_post a) -> forall (any_result: a). p any_result (** [Tot]: From here on, we have [Tot] as a defined symbol in F*. *) effect Tot (a: Type) = PURE a (pure_null_wp0 a) (** Clients should not use it directly, instead use FStar.Pervasives.pure_assert_wp *) [@@ "opaque_to_smt"] unfold let pure_assert_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p /\ post () (** Clients should not use it directly, instead use FStar.Pervasives.pure_assume_wp *) [@@ "opaque_to_smt"] unfold let pure_assume_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p ==> post () (**** The [GHOST] effect *) (** [GHOST] is logically equivalent to [PURE], but distinguished from it nominally so that specific, computationally irrelevant operations, are provided only in [GHOST] and are erased during extraction *) total new_effect GHOST = PURE unfold let purewp_id (a: Type) (wp: pure_wp a) = wp (** [PURE] computations can be lifted to the [GHOST] effect (but not vice versa) using just the identity lifting on pure wps *) sub_effect PURE ~> GHOST { lift_wp = purewp_id } (** [Ghost] is a the Hoare-style counterpart of [GHOST] *) effect Ghost (a: Type) (pre: Type) (post: pure_post' a pre) = GHOST a (fun (p: pure_post a) -> pre /\ (forall (ghost_result: a). post ghost_result ==> p ghost_result) ) (** As with [Tot], the primitive effect [GTot] is definitionally equal to an instance of GHOST *) effect GTot (a: Type) = GHOST a (pure_null_wp0 a) (***** End trusted primitives *****) (** This point onward, F* fully verifies all the definitions *) (** [===] heterogeneous equality *) let ( === ) (#a #b: Type) (x: a) (y: b) : logical = a == b /\ x == y (** Dependent pairs [dtuple2] in concrete syntax is [x:a & b x]. Its values can be constructed with the concrete syntax [(| x, y |)] *) unopteq type dtuple2 (a: Type) (b: (a -> GTot Type)) = | Mkdtuple2 : _1: a -> _2: b _1 -> dtuple2 a b (** Squashed existential quantification, or dependent sums, are written [exists (x:a). p x] : specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Exists (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a & p x) (** Primitive type of mathematical integers, mapped to zarith in OCaml extraction and to the SMT sort of integers *) assume new type int : eqtype (**** Basic operators on booleans and integers *) (** [&&] boolean conjunction *) [@@ smt_theory_symbol] assume val op_AmpAmp: bool -> bool -> Tot bool (** [||] boolean disjunction *) [@@ smt_theory_symbol] assume val op_BarBar: bool -> bool -> Tot bool (** [not] boolean negation *) [@@ smt_theory_symbol] assume val op_Negation: bool -> Tot bool (** Integer multiplication, no special symbol. See FStar.Mul *) [@@ smt_theory_symbol] assume val op_Multiply: int -> int -> Tot int (** [-] integer subtraction *) [@@ smt_theory_symbol] assume val op_Subtraction: int -> int -> Tot int (** [+] integer addition *) [@@ smt_theory_symbol] assume val op_Addition: int -> int -> Tot int (** [-] prefix unary integer negation *) [@@ smt_theory_symbol] assume val op_Minus: int -> Tot int (** [<=] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThanOrEqual: int -> int -> Tot bool (** [>] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThan: int -> int -> Tot bool (** [>=] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThanOrEqual: int -> int -> Tot bool (** [<] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThan: int -> int -> Tot bool (** [=] decidable equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_Equality: #a: eqtype -> a -> a -> Tot bool (** [<>] decidable dis-equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_disEquality: #a: eqtype -> a -> a -> Tot bool (** The extensible open inductive type of exceptions *) assume new type exn : Type0 (** [array]: TODO: should be removed. See FStar.Seq, LowStar.Buffer, etc. *) assume new type array : Type -> Type0 (** String concatenation and its abbreviation as [^]. TODO, both should be removed in favor of what is present in FStar.String *) assume val strcat: string -> string -> Tot string inline_for_extraction unfold let op_Hat s1 s2 = strcat s1 s2 (** The inductive type of polymorphic lists *) type list (a: Type) = | Nil : list a | Cons : hd: a -> tl: list a -> list a (** The [M] marker is interpreted by the Dijkstra Monads for Free construction. It has a "double meaning", either as an alias for reasoning about the direct definitions, or as a marker for places where a CPS transformation should happen. *) effect M (a: Type) = Tot a (attributes cps) (** Returning a value into the [M] effect *) let returnM (a: Type) (x: a) : M a = x (** [as_requires] turns a WP into a precondition, by applying it to a trivial postcondition *) unfold let as_requires (#a: Type) (wp: pure_wp a) : pure_pre = wp (fun x -> True) (** [as_ensures] turns a WP into a postcondition, relying on a kind of double negation translation. *) unfold let as_ensures (#a: Type) (wp: pure_wp a) : pure_post a = fun (x:a) -> ~(wp (fun y -> (y =!= x))) (** The keyword term-level keyword [assume] is desugared to [_assume]. It explicitly provides an escape hatch to assume a given property [p]. *) [@@ warn_on_use "Uses an axiom"] assume val _assume (p: Type) : Pure unit (requires (True)) (ensures (fun x -> p)) (** [admit] is another escape hatch: It discards the continuation and returns a value of any type *) [@@ warn_on_use "Uses an axiom"] assume val admit: #a: Type -> unit -> Admit a (** [magic] is another escape hatch: It retains the continuation but returns a value of any type *) [@@ warn_on_use "Uses an axiom"] assume val magic: #a: Type -> unit -> Tot a (** [unsafe_coerce] is another escape hatch: It coerces an [a] to a [b]. *) [@@ warn_on_use "Uses an axiom"] irreducible let unsafe_coerce (#a #b: Type) (x: a) : b = admit (); x (** [admitP]: TODO: Unused ... remove? *) [@@ warn_on_use "Uses an axiom"] assume val admitP (p: Type) : Pure unit True (fun x -> p) (** The keyword term-level keyword [assert] is desugared to [_assert]. It force a proof of a property [p], then assuming [p] for the continuation. *) val _assert (p: Type) : Pure unit (requires p) (ensures (fun x -> p)) let _assert p = () (** Logically equivalent to assert; TODO remove? *) val cut (p: Type) : Pure unit (requires p) (fun x -> p) let cut p = () (** The type of non-negative integers *) type nat = i: int{i >= 0} (** The type of positive integers *) type pos = i: int{i > 0} (** The type of non-zero integers *) type nonzero = i: int{i <> 0} /// Arbitrary precision ints are compiled to zarith (big_ints) in /// OCaml and to .NET BigInteger in F#. Both the modulus and division /// operations are Euclidean and are mapped to the corresponding /// theory symbols in the SMT encoding (** Euclidean modulus *) [@@ smt_theory_symbol] assume val op_Modulus: int -> nonzero -> Tot int (** Euclidean division, written [/] *) [@@ smt_theory_symbol] assume val op_Division: int -> nonzero -> Tot int (** [pow2 x] is [2^x]: TODO: maybe move this to FStar.Int *) let rec pow2 (x: nat) : Tot pos = match x with | 0 -> 1 | _ -> 2 `op_Multiply` (pow2 (x - 1)) (** [min] computes the minimum of two [int]s *) let min x y = if x <= y then x else y
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val abs (x: int) : Tot int
[]
Prims.abs
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: Prims.int -> Prims.int
{ "end_col": 54, "end_line": 696, "start_col": 29, "start_line": 696 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let pure_pre = Type0
let pure_pre =
false
null
false
Type0
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *)
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pure_pre : Type
[]
Prims.pure_pre
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Type
{ "end_col": 20, "end_line": 288, "start_col": 15, "start_line": 288 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let __cache_version_number__ = 62
let __cache_version_number__ =
false
null
false
62
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *) unfold let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p (** Closing a PURE WP under a binder for [b] Clients should not use it directly, instead use FStar.Pervasives.pure_close_wp *) unfold let pure_close_wp0 (a b: Type) (wp: (b -> GTot (pure_wp a))) : pure_wp a = fun (p: pure_post a) -> forall (b: b). wp b p (** Trivial WP for PURE: Prove the WP with the trivial postcondition *) unfold let pure_trivial (a: Type) (wp: pure_wp a) = wp (fun (trivial_result: a) -> True) (** Introduces the PURE effect. The definition of the PURE effect is fixed. NO USER SHOULD EVER CHANGE THIS. *) total new_effect { PURE : a: Type -> wp: pure_wp a -> Effect with return_wp = pure_return0 ; bind_wp = pure_bind_wp0 ; if_then_else = pure_if_then_else0 ; ite_wp = pure_ite_wp0 ; stronger = pure_stronger ; close_wp = pure_close_wp0 ; trivial = pure_trivial } (** [Pure] is a Hoare-style counterpart of [PURE] Note the type of post, which allows to assume the precondition for the well-formedness of the postcondition. c.f. #57 *) effect Pure (a: Type) (pre: pure_pre) (post: pure_post' a pre) = PURE a (fun (p: pure_post a) -> pre /\ (forall (pure_result: a). post pure_result ==> p pure_result)) (** [Admit] is an effect abbreviation for a computation that disregards the verification condition of its continuation *) effect Admit (a: Type) = PURE a (fun (p: pure_post a) -> True) (** The primitive effect [Tot] is definitionally equal to an instance of [PURE] *) (** Clients should not use it directly, instead use FStar.Pervasives.pure_null_wp *) unfold let pure_null_wp0 (a: Type) : pure_wp a = fun (p: pure_post a) -> forall (any_result: a). p any_result (** [Tot]: From here on, we have [Tot] as a defined symbol in F*. *) effect Tot (a: Type) = PURE a (pure_null_wp0 a) (** Clients should not use it directly, instead use FStar.Pervasives.pure_assert_wp *) [@@ "opaque_to_smt"] unfold let pure_assert_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p /\ post () (** Clients should not use it directly, instead use FStar.Pervasives.pure_assume_wp *) [@@ "opaque_to_smt"] unfold let pure_assume_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p ==> post () (**** The [GHOST] effect *) (** [GHOST] is logically equivalent to [PURE], but distinguished from it nominally so that specific, computationally irrelevant operations, are provided only in [GHOST] and are erased during extraction *) total new_effect GHOST = PURE unfold let purewp_id (a: Type) (wp: pure_wp a) = wp (** [PURE] computations can be lifted to the [GHOST] effect (but not vice versa) using just the identity lifting on pure wps *) sub_effect PURE ~> GHOST { lift_wp = purewp_id } (** [Ghost] is a the Hoare-style counterpart of [GHOST] *) effect Ghost (a: Type) (pre: Type) (post: pure_post' a pre) = GHOST a (fun (p: pure_post a) -> pre /\ (forall (ghost_result: a). post ghost_result ==> p ghost_result) ) (** As with [Tot], the primitive effect [GTot] is definitionally equal to an instance of GHOST *) effect GTot (a: Type) = GHOST a (pure_null_wp0 a) (***** End trusted primitives *****) (** This point onward, F* fully verifies all the definitions *) (** [===] heterogeneous equality *) let ( === ) (#a #b: Type) (x: a) (y: b) : logical = a == b /\ x == y (** Dependent pairs [dtuple2] in concrete syntax is [x:a & b x]. Its values can be constructed with the concrete syntax [(| x, y |)] *) unopteq type dtuple2 (a: Type) (b: (a -> GTot Type)) = | Mkdtuple2 : _1: a -> _2: b _1 -> dtuple2 a b (** Squashed existential quantification, or dependent sums, are written [exists (x:a). p x] : specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Exists (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a & p x) (** Primitive type of mathematical integers, mapped to zarith in OCaml extraction and to the SMT sort of integers *) assume new type int : eqtype (**** Basic operators on booleans and integers *) (** [&&] boolean conjunction *) [@@ smt_theory_symbol] assume val op_AmpAmp: bool -> bool -> Tot bool (** [||] boolean disjunction *) [@@ smt_theory_symbol] assume val op_BarBar: bool -> bool -> Tot bool (** [not] boolean negation *) [@@ smt_theory_symbol] assume val op_Negation: bool -> Tot bool (** Integer multiplication, no special symbol. See FStar.Mul *) [@@ smt_theory_symbol] assume val op_Multiply: int -> int -> Tot int (** [-] integer subtraction *) [@@ smt_theory_symbol] assume val op_Subtraction: int -> int -> Tot int (** [+] integer addition *) [@@ smt_theory_symbol] assume val op_Addition: int -> int -> Tot int (** [-] prefix unary integer negation *) [@@ smt_theory_symbol] assume val op_Minus: int -> Tot int (** [<=] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThanOrEqual: int -> int -> Tot bool (** [>] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThan: int -> int -> Tot bool (** [>=] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThanOrEqual: int -> int -> Tot bool (** [<] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThan: int -> int -> Tot bool (** [=] decidable equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_Equality: #a: eqtype -> a -> a -> Tot bool (** [<>] decidable dis-equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_disEquality: #a: eqtype -> a -> a -> Tot bool (** The extensible open inductive type of exceptions *) assume new type exn : Type0 (** [array]: TODO: should be removed. See FStar.Seq, LowStar.Buffer, etc. *) assume new type array : Type -> Type0 (** String concatenation and its abbreviation as [^]. TODO, both should be removed in favor of what is present in FStar.String *) assume val strcat: string -> string -> Tot string inline_for_extraction unfold let op_Hat s1 s2 = strcat s1 s2 (** The inductive type of polymorphic lists *) type list (a: Type) = | Nil : list a | Cons : hd: a -> tl: list a -> list a (** The [M] marker is interpreted by the Dijkstra Monads for Free construction. It has a "double meaning", either as an alias for reasoning about the direct definitions, or as a marker for places where a CPS transformation should happen. *) effect M (a: Type) = Tot a (attributes cps) (** Returning a value into the [M] effect *) let returnM (a: Type) (x: a) : M a = x (** [as_requires] turns a WP into a precondition, by applying it to a trivial postcondition *) unfold let as_requires (#a: Type) (wp: pure_wp a) : pure_pre = wp (fun x -> True) (** [as_ensures] turns a WP into a postcondition, relying on a kind of double negation translation. *) unfold let as_ensures (#a: Type) (wp: pure_wp a) : pure_post a = fun (x:a) -> ~(wp (fun y -> (y =!= x))) (** The keyword term-level keyword [assume] is desugared to [_assume]. It explicitly provides an escape hatch to assume a given property [p]. *) [@@ warn_on_use "Uses an axiom"] assume val _assume (p: Type) : Pure unit (requires (True)) (ensures (fun x -> p)) (** [admit] is another escape hatch: It discards the continuation and returns a value of any type *) [@@ warn_on_use "Uses an axiom"] assume val admit: #a: Type -> unit -> Admit a (** [magic] is another escape hatch: It retains the continuation but returns a value of any type *) [@@ warn_on_use "Uses an axiom"] assume val magic: #a: Type -> unit -> Tot a (** [unsafe_coerce] is another escape hatch: It coerces an [a] to a [b]. *) [@@ warn_on_use "Uses an axiom"] irreducible let unsafe_coerce (#a #b: Type) (x: a) : b = admit (); x (** [admitP]: TODO: Unused ... remove? *) [@@ warn_on_use "Uses an axiom"] assume val admitP (p: Type) : Pure unit True (fun x -> p) (** The keyword term-level keyword [assert] is desugared to [_assert]. It force a proof of a property [p], then assuming [p] for the continuation. *) val _assert (p: Type) : Pure unit (requires p) (ensures (fun x -> p)) let _assert p = () (** Logically equivalent to assert; TODO remove? *) val cut (p: Type) : Pure unit (requires p) (fun x -> p) let cut p = () (** The type of non-negative integers *) type nat = i: int{i >= 0} (** The type of positive integers *) type pos = i: int{i > 0} (** The type of non-zero integers *) type nonzero = i: int{i <> 0} /// Arbitrary precision ints are compiled to zarith (big_ints) in /// OCaml and to .NET BigInteger in F#. Both the modulus and division /// operations are Euclidean and are mapped to the corresponding /// theory symbols in the SMT encoding (** Euclidean modulus *) [@@ smt_theory_symbol] assume val op_Modulus: int -> nonzero -> Tot int (** Euclidean division, written [/] *) [@@ smt_theory_symbol] assume val op_Division: int -> nonzero -> Tot int (** [pow2 x] is [2^x]: TODO: maybe move this to FStar.Int *) let rec pow2 (x: nat) : Tot pos = match x with | 0 -> 1 | _ -> 2 `op_Multiply` (pow2 (x - 1)) (** [min] computes the minimum of two [int]s *) let min x y = if x <= y then x else y (** [abs] computes the absolute value of an [int] *) let abs (x: int) : Tot int = if x >= 0 then x else - x (** A primitive printer for booleans: TODO: unnecessary, this could easily be defined *) assume val string_of_bool: bool -> Tot string (** A primitive printer for [int] *) assume val string_of_int: int -> Tot string (** THIS IS MEANT TO BE KEPT IN SYNC WITH FStar.CheckedFiles.fs Incrementing this forces all .checked files to be invalidated *)
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val __cache_version_number__ : Prims.int
[]
Prims.__cache_version_number__
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
Prims.int
{ "end_col": 33, "end_line": 711, "start_col": 31, "start_line": 711 }
Prims.Tot
val as_requires (#a: Type) (wp: pure_wp a) : pure_pre
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_requires (#a: Type) (wp: pure_wp a) : pure_pre = wp (fun x -> True)
val as_requires (#a: Type) (wp: pure_wp a) : pure_pre let as_requires (#a: Type) (wp: pure_wp a) : pure_pre =
false
null
false
wp (fun x -> True)
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.pure_wp", "Prims.l_True", "Prims.pure_pre" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *) unfold let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p (** Closing a PURE WP under a binder for [b] Clients should not use it directly, instead use FStar.Pervasives.pure_close_wp *) unfold let pure_close_wp0 (a b: Type) (wp: (b -> GTot (pure_wp a))) : pure_wp a = fun (p: pure_post a) -> forall (b: b). wp b p (** Trivial WP for PURE: Prove the WP with the trivial postcondition *) unfold let pure_trivial (a: Type) (wp: pure_wp a) = wp (fun (trivial_result: a) -> True) (** Introduces the PURE effect. The definition of the PURE effect is fixed. NO USER SHOULD EVER CHANGE THIS. *) total new_effect { PURE : a: Type -> wp: pure_wp a -> Effect with return_wp = pure_return0 ; bind_wp = pure_bind_wp0 ; if_then_else = pure_if_then_else0 ; ite_wp = pure_ite_wp0 ; stronger = pure_stronger ; close_wp = pure_close_wp0 ; trivial = pure_trivial } (** [Pure] is a Hoare-style counterpart of [PURE] Note the type of post, which allows to assume the precondition for the well-formedness of the postcondition. c.f. #57 *) effect Pure (a: Type) (pre: pure_pre) (post: pure_post' a pre) = PURE a (fun (p: pure_post a) -> pre /\ (forall (pure_result: a). post pure_result ==> p pure_result)) (** [Admit] is an effect abbreviation for a computation that disregards the verification condition of its continuation *) effect Admit (a: Type) = PURE a (fun (p: pure_post a) -> True) (** The primitive effect [Tot] is definitionally equal to an instance of [PURE] *) (** Clients should not use it directly, instead use FStar.Pervasives.pure_null_wp *) unfold let pure_null_wp0 (a: Type) : pure_wp a = fun (p: pure_post a) -> forall (any_result: a). p any_result (** [Tot]: From here on, we have [Tot] as a defined symbol in F*. *) effect Tot (a: Type) = PURE a (pure_null_wp0 a) (** Clients should not use it directly, instead use FStar.Pervasives.pure_assert_wp *) [@@ "opaque_to_smt"] unfold let pure_assert_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p /\ post () (** Clients should not use it directly, instead use FStar.Pervasives.pure_assume_wp *) [@@ "opaque_to_smt"] unfold let pure_assume_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p ==> post () (**** The [GHOST] effect *) (** [GHOST] is logically equivalent to [PURE], but distinguished from it nominally so that specific, computationally irrelevant operations, are provided only in [GHOST] and are erased during extraction *) total new_effect GHOST = PURE unfold let purewp_id (a: Type) (wp: pure_wp a) = wp (** [PURE] computations can be lifted to the [GHOST] effect (but not vice versa) using just the identity lifting on pure wps *) sub_effect PURE ~> GHOST { lift_wp = purewp_id } (** [Ghost] is a the Hoare-style counterpart of [GHOST] *) effect Ghost (a: Type) (pre: Type) (post: pure_post' a pre) = GHOST a (fun (p: pure_post a) -> pre /\ (forall (ghost_result: a). post ghost_result ==> p ghost_result) ) (** As with [Tot], the primitive effect [GTot] is definitionally equal to an instance of GHOST *) effect GTot (a: Type) = GHOST a (pure_null_wp0 a) (***** End trusted primitives *****) (** This point onward, F* fully verifies all the definitions *) (** [===] heterogeneous equality *) let ( === ) (#a #b: Type) (x: a) (y: b) : logical = a == b /\ x == y (** Dependent pairs [dtuple2] in concrete syntax is [x:a & b x]. Its values can be constructed with the concrete syntax [(| x, y |)] *) unopteq type dtuple2 (a: Type) (b: (a -> GTot Type)) = | Mkdtuple2 : _1: a -> _2: b _1 -> dtuple2 a b (** Squashed existential quantification, or dependent sums, are written [exists (x:a). p x] : specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Exists (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a & p x) (** Primitive type of mathematical integers, mapped to zarith in OCaml extraction and to the SMT sort of integers *) assume new type int : eqtype (**** Basic operators on booleans and integers *) (** [&&] boolean conjunction *) [@@ smt_theory_symbol] assume val op_AmpAmp: bool -> bool -> Tot bool (** [||] boolean disjunction *) [@@ smt_theory_symbol] assume val op_BarBar: bool -> bool -> Tot bool (** [not] boolean negation *) [@@ smt_theory_symbol] assume val op_Negation: bool -> Tot bool (** Integer multiplication, no special symbol. See FStar.Mul *) [@@ smt_theory_symbol] assume val op_Multiply: int -> int -> Tot int (** [-] integer subtraction *) [@@ smt_theory_symbol] assume val op_Subtraction: int -> int -> Tot int (** [+] integer addition *) [@@ smt_theory_symbol] assume val op_Addition: int -> int -> Tot int (** [-] prefix unary integer negation *) [@@ smt_theory_symbol] assume val op_Minus: int -> Tot int (** [<=] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThanOrEqual: int -> int -> Tot bool (** [>] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThan: int -> int -> Tot bool (** [>=] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThanOrEqual: int -> int -> Tot bool (** [<] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThan: int -> int -> Tot bool (** [=] decidable equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_Equality: #a: eqtype -> a -> a -> Tot bool (** [<>] decidable dis-equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_disEquality: #a: eqtype -> a -> a -> Tot bool (** The extensible open inductive type of exceptions *) assume new type exn : Type0 (** [array]: TODO: should be removed. See FStar.Seq, LowStar.Buffer, etc. *) assume new type array : Type -> Type0 (** String concatenation and its abbreviation as [^]. TODO, both should be removed in favor of what is present in FStar.String *) assume val strcat: string -> string -> Tot string inline_for_extraction unfold let op_Hat s1 s2 = strcat s1 s2 (** The inductive type of polymorphic lists *) type list (a: Type) = | Nil : list a | Cons : hd: a -> tl: list a -> list a (** The [M] marker is interpreted by the Dijkstra Monads for Free construction. It has a "double meaning", either as an alias for reasoning about the direct definitions, or as a marker for places where a CPS transformation should happen. *) effect M (a: Type) = Tot a (attributes cps) (** Returning a value into the [M] effect *) let returnM (a: Type) (x: a) : M a = x (** [as_requires] turns a WP into a precondition, by applying it to a trivial postcondition *)
false
false
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_requires (#a: Type) (wp: pure_wp a) : pure_pre
[]
Prims.as_requires
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
wp: Prims.pure_wp a -> Prims.pure_pre
{ "end_col": 74, "end_line": 609, "start_col": 56, "start_line": 609 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2
let subtype_of (p1 p2: Type) =
false
null
false
forall (x: p1). has_type x p2
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.l_Forall", "Prims.has_type", "Prims.logical" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val subtype_of : p1: Type -> p2: Type -> Prims.logical
[]
Prims.subtype_of
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p1: Type -> p2: Type -> Prims.logical
{ "end_col": 60, "end_line": 270, "start_col": 31, "start_line": 270 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let min x y = if x <= y then x else y
let min x y =
false
null
false
if x <= y then x else y
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.int", "Prims.op_LessThanOrEqual", "Prims.bool" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *) unfold let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p (** Closing a PURE WP under a binder for [b] Clients should not use it directly, instead use FStar.Pervasives.pure_close_wp *) unfold let pure_close_wp0 (a b: Type) (wp: (b -> GTot (pure_wp a))) : pure_wp a = fun (p: pure_post a) -> forall (b: b). wp b p (** Trivial WP for PURE: Prove the WP with the trivial postcondition *) unfold let pure_trivial (a: Type) (wp: pure_wp a) = wp (fun (trivial_result: a) -> True) (** Introduces the PURE effect. The definition of the PURE effect is fixed. NO USER SHOULD EVER CHANGE THIS. *) total new_effect { PURE : a: Type -> wp: pure_wp a -> Effect with return_wp = pure_return0 ; bind_wp = pure_bind_wp0 ; if_then_else = pure_if_then_else0 ; ite_wp = pure_ite_wp0 ; stronger = pure_stronger ; close_wp = pure_close_wp0 ; trivial = pure_trivial } (** [Pure] is a Hoare-style counterpart of [PURE] Note the type of post, which allows to assume the precondition for the well-formedness of the postcondition. c.f. #57 *) effect Pure (a: Type) (pre: pure_pre) (post: pure_post' a pre) = PURE a (fun (p: pure_post a) -> pre /\ (forall (pure_result: a). post pure_result ==> p pure_result)) (** [Admit] is an effect abbreviation for a computation that disregards the verification condition of its continuation *) effect Admit (a: Type) = PURE a (fun (p: pure_post a) -> True) (** The primitive effect [Tot] is definitionally equal to an instance of [PURE] *) (** Clients should not use it directly, instead use FStar.Pervasives.pure_null_wp *) unfold let pure_null_wp0 (a: Type) : pure_wp a = fun (p: pure_post a) -> forall (any_result: a). p any_result (** [Tot]: From here on, we have [Tot] as a defined symbol in F*. *) effect Tot (a: Type) = PURE a (pure_null_wp0 a) (** Clients should not use it directly, instead use FStar.Pervasives.pure_assert_wp *) [@@ "opaque_to_smt"] unfold let pure_assert_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p /\ post () (** Clients should not use it directly, instead use FStar.Pervasives.pure_assume_wp *) [@@ "opaque_to_smt"] unfold let pure_assume_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p ==> post () (**** The [GHOST] effect *) (** [GHOST] is logically equivalent to [PURE], but distinguished from it nominally so that specific, computationally irrelevant operations, are provided only in [GHOST] and are erased during extraction *) total new_effect GHOST = PURE unfold let purewp_id (a: Type) (wp: pure_wp a) = wp (** [PURE] computations can be lifted to the [GHOST] effect (but not vice versa) using just the identity lifting on pure wps *) sub_effect PURE ~> GHOST { lift_wp = purewp_id } (** [Ghost] is a the Hoare-style counterpart of [GHOST] *) effect Ghost (a: Type) (pre: Type) (post: pure_post' a pre) = GHOST a (fun (p: pure_post a) -> pre /\ (forall (ghost_result: a). post ghost_result ==> p ghost_result) ) (** As with [Tot], the primitive effect [GTot] is definitionally equal to an instance of GHOST *) effect GTot (a: Type) = GHOST a (pure_null_wp0 a) (***** End trusted primitives *****) (** This point onward, F* fully verifies all the definitions *) (** [===] heterogeneous equality *) let ( === ) (#a #b: Type) (x: a) (y: b) : logical = a == b /\ x == y (** Dependent pairs [dtuple2] in concrete syntax is [x:a & b x]. Its values can be constructed with the concrete syntax [(| x, y |)] *) unopteq type dtuple2 (a: Type) (b: (a -> GTot Type)) = | Mkdtuple2 : _1: a -> _2: b _1 -> dtuple2 a b (** Squashed existential quantification, or dependent sums, are written [exists (x:a). p x] : specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Exists (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a & p x) (** Primitive type of mathematical integers, mapped to zarith in OCaml extraction and to the SMT sort of integers *) assume new type int : eqtype (**** Basic operators on booleans and integers *) (** [&&] boolean conjunction *) [@@ smt_theory_symbol] assume val op_AmpAmp: bool -> bool -> Tot bool (** [||] boolean disjunction *) [@@ smt_theory_symbol] assume val op_BarBar: bool -> bool -> Tot bool (** [not] boolean negation *) [@@ smt_theory_symbol] assume val op_Negation: bool -> Tot bool (** Integer multiplication, no special symbol. See FStar.Mul *) [@@ smt_theory_symbol] assume val op_Multiply: int -> int -> Tot int (** [-] integer subtraction *) [@@ smt_theory_symbol] assume val op_Subtraction: int -> int -> Tot int (** [+] integer addition *) [@@ smt_theory_symbol] assume val op_Addition: int -> int -> Tot int (** [-] prefix unary integer negation *) [@@ smt_theory_symbol] assume val op_Minus: int -> Tot int (** [<=] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThanOrEqual: int -> int -> Tot bool (** [>] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThan: int -> int -> Tot bool (** [>=] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThanOrEqual: int -> int -> Tot bool (** [<] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThan: int -> int -> Tot bool (** [=] decidable equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_Equality: #a: eqtype -> a -> a -> Tot bool (** [<>] decidable dis-equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_disEquality: #a: eqtype -> a -> a -> Tot bool (** The extensible open inductive type of exceptions *) assume new type exn : Type0 (** [array]: TODO: should be removed. See FStar.Seq, LowStar.Buffer, etc. *) assume new type array : Type -> Type0 (** String concatenation and its abbreviation as [^]. TODO, both should be removed in favor of what is present in FStar.String *) assume val strcat: string -> string -> Tot string inline_for_extraction unfold let op_Hat s1 s2 = strcat s1 s2 (** The inductive type of polymorphic lists *) type list (a: Type) = | Nil : list a | Cons : hd: a -> tl: list a -> list a (** The [M] marker is interpreted by the Dijkstra Monads for Free construction. It has a "double meaning", either as an alias for reasoning about the direct definitions, or as a marker for places where a CPS transformation should happen. *) effect M (a: Type) = Tot a (attributes cps) (** Returning a value into the [M] effect *) let returnM (a: Type) (x: a) : M a = x (** [as_requires] turns a WP into a precondition, by applying it to a trivial postcondition *) unfold let as_requires (#a: Type) (wp: pure_wp a) : pure_pre = wp (fun x -> True) (** [as_ensures] turns a WP into a postcondition, relying on a kind of double negation translation. *) unfold let as_ensures (#a: Type) (wp: pure_wp a) : pure_post a = fun (x:a) -> ~(wp (fun y -> (y =!= x))) (** The keyword term-level keyword [assume] is desugared to [_assume]. It explicitly provides an escape hatch to assume a given property [p]. *) [@@ warn_on_use "Uses an axiom"] assume val _assume (p: Type) : Pure unit (requires (True)) (ensures (fun x -> p)) (** [admit] is another escape hatch: It discards the continuation and returns a value of any type *) [@@ warn_on_use "Uses an axiom"] assume val admit: #a: Type -> unit -> Admit a (** [magic] is another escape hatch: It retains the continuation but returns a value of any type *) [@@ warn_on_use "Uses an axiom"] assume val magic: #a: Type -> unit -> Tot a (** [unsafe_coerce] is another escape hatch: It coerces an [a] to a [b]. *) [@@ warn_on_use "Uses an axiom"] irreducible let unsafe_coerce (#a #b: Type) (x: a) : b = admit (); x (** [admitP]: TODO: Unused ... remove? *) [@@ warn_on_use "Uses an axiom"] assume val admitP (p: Type) : Pure unit True (fun x -> p) (** The keyword term-level keyword [assert] is desugared to [_assert]. It force a proof of a property [p], then assuming [p] for the continuation. *) val _assert (p: Type) : Pure unit (requires p) (ensures (fun x -> p)) let _assert p = () (** Logically equivalent to assert; TODO remove? *) val cut (p: Type) : Pure unit (requires p) (fun x -> p) let cut p = () (** The type of non-negative integers *) type nat = i: int{i >= 0} (** The type of positive integers *) type pos = i: int{i > 0} (** The type of non-zero integers *) type nonzero = i: int{i <> 0} /// Arbitrary precision ints are compiled to zarith (big_ints) in /// OCaml and to .NET BigInteger in F#. Both the modulus and division /// operations are Euclidean and are mapped to the corresponding /// theory symbols in the SMT encoding (** Euclidean modulus *) [@@ smt_theory_symbol] assume val op_Modulus: int -> nonzero -> Tot int (** Euclidean division, written [/] *) [@@ smt_theory_symbol] assume val op_Division: int -> nonzero -> Tot int (** [pow2 x] is [2^x]: TODO: maybe move this to FStar.Int *) let rec pow2 (x: nat) : Tot pos = match x with | 0 -> 1 | _ -> 2 `op_Multiply` (pow2 (x - 1))
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val min : x: Prims.int -> y: Prims.int -> Prims.int
[]
Prims.min
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: Prims.int -> y: Prims.int -> Prims.int
{ "end_col": 37, "end_line": 693, "start_col": 14, "start_line": 693 }
Prims.Tot
val as_ensures (#a: Type) (wp: pure_wp a) : pure_post a
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_ensures (#a: Type) (wp: pure_wp a) : pure_post a = fun (x:a) -> ~(wp (fun y -> (y =!= x)))
val as_ensures (#a: Type) (wp: pure_wp a) : pure_post a let as_ensures (#a: Type) (wp: pure_wp a) : pure_post a =
false
null
false
fun (x: a) -> ~(wp (fun y -> (y =!= x)))
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.pure_wp", "Prims.l_not", "Prims.l_True", "Prims.eq2", "Prims.pure_post" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *) unfold let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p (** Closing a PURE WP under a binder for [b] Clients should not use it directly, instead use FStar.Pervasives.pure_close_wp *) unfold let pure_close_wp0 (a b: Type) (wp: (b -> GTot (pure_wp a))) : pure_wp a = fun (p: pure_post a) -> forall (b: b). wp b p (** Trivial WP for PURE: Prove the WP with the trivial postcondition *) unfold let pure_trivial (a: Type) (wp: pure_wp a) = wp (fun (trivial_result: a) -> True) (** Introduces the PURE effect. The definition of the PURE effect is fixed. NO USER SHOULD EVER CHANGE THIS. *) total new_effect { PURE : a: Type -> wp: pure_wp a -> Effect with return_wp = pure_return0 ; bind_wp = pure_bind_wp0 ; if_then_else = pure_if_then_else0 ; ite_wp = pure_ite_wp0 ; stronger = pure_stronger ; close_wp = pure_close_wp0 ; trivial = pure_trivial } (** [Pure] is a Hoare-style counterpart of [PURE] Note the type of post, which allows to assume the precondition for the well-formedness of the postcondition. c.f. #57 *) effect Pure (a: Type) (pre: pure_pre) (post: pure_post' a pre) = PURE a (fun (p: pure_post a) -> pre /\ (forall (pure_result: a). post pure_result ==> p pure_result)) (** [Admit] is an effect abbreviation for a computation that disregards the verification condition of its continuation *) effect Admit (a: Type) = PURE a (fun (p: pure_post a) -> True) (** The primitive effect [Tot] is definitionally equal to an instance of [PURE] *) (** Clients should not use it directly, instead use FStar.Pervasives.pure_null_wp *) unfold let pure_null_wp0 (a: Type) : pure_wp a = fun (p: pure_post a) -> forall (any_result: a). p any_result (** [Tot]: From here on, we have [Tot] as a defined symbol in F*. *) effect Tot (a: Type) = PURE a (pure_null_wp0 a) (** Clients should not use it directly, instead use FStar.Pervasives.pure_assert_wp *) [@@ "opaque_to_smt"] unfold let pure_assert_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p /\ post () (** Clients should not use it directly, instead use FStar.Pervasives.pure_assume_wp *) [@@ "opaque_to_smt"] unfold let pure_assume_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p ==> post () (**** The [GHOST] effect *) (** [GHOST] is logically equivalent to [PURE], but distinguished from it nominally so that specific, computationally irrelevant operations, are provided only in [GHOST] and are erased during extraction *) total new_effect GHOST = PURE unfold let purewp_id (a: Type) (wp: pure_wp a) = wp (** [PURE] computations can be lifted to the [GHOST] effect (but not vice versa) using just the identity lifting on pure wps *) sub_effect PURE ~> GHOST { lift_wp = purewp_id } (** [Ghost] is a the Hoare-style counterpart of [GHOST] *) effect Ghost (a: Type) (pre: Type) (post: pure_post' a pre) = GHOST a (fun (p: pure_post a) -> pre /\ (forall (ghost_result: a). post ghost_result ==> p ghost_result) ) (** As with [Tot], the primitive effect [GTot] is definitionally equal to an instance of GHOST *) effect GTot (a: Type) = GHOST a (pure_null_wp0 a) (***** End trusted primitives *****) (** This point onward, F* fully verifies all the definitions *) (** [===] heterogeneous equality *) let ( === ) (#a #b: Type) (x: a) (y: b) : logical = a == b /\ x == y (** Dependent pairs [dtuple2] in concrete syntax is [x:a & b x]. Its values can be constructed with the concrete syntax [(| x, y |)] *) unopteq type dtuple2 (a: Type) (b: (a -> GTot Type)) = | Mkdtuple2 : _1: a -> _2: b _1 -> dtuple2 a b (** Squashed existential quantification, or dependent sums, are written [exists (x:a). p x] : specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Exists (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a & p x) (** Primitive type of mathematical integers, mapped to zarith in OCaml extraction and to the SMT sort of integers *) assume new type int : eqtype (**** Basic operators on booleans and integers *) (** [&&] boolean conjunction *) [@@ smt_theory_symbol] assume val op_AmpAmp: bool -> bool -> Tot bool (** [||] boolean disjunction *) [@@ smt_theory_symbol] assume val op_BarBar: bool -> bool -> Tot bool (** [not] boolean negation *) [@@ smt_theory_symbol] assume val op_Negation: bool -> Tot bool (** Integer multiplication, no special symbol. See FStar.Mul *) [@@ smt_theory_symbol] assume val op_Multiply: int -> int -> Tot int (** [-] integer subtraction *) [@@ smt_theory_symbol] assume val op_Subtraction: int -> int -> Tot int (** [+] integer addition *) [@@ smt_theory_symbol] assume val op_Addition: int -> int -> Tot int (** [-] prefix unary integer negation *) [@@ smt_theory_symbol] assume val op_Minus: int -> Tot int (** [<=] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThanOrEqual: int -> int -> Tot bool (** [>] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThan: int -> int -> Tot bool (** [>=] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThanOrEqual: int -> int -> Tot bool (** [<] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThan: int -> int -> Tot bool (** [=] decidable equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_Equality: #a: eqtype -> a -> a -> Tot bool (** [<>] decidable dis-equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_disEquality: #a: eqtype -> a -> a -> Tot bool (** The extensible open inductive type of exceptions *) assume new type exn : Type0 (** [array]: TODO: should be removed. See FStar.Seq, LowStar.Buffer, etc. *) assume new type array : Type -> Type0 (** String concatenation and its abbreviation as [^]. TODO, both should be removed in favor of what is present in FStar.String *) assume val strcat: string -> string -> Tot string inline_for_extraction unfold let op_Hat s1 s2 = strcat s1 s2 (** The inductive type of polymorphic lists *) type list (a: Type) = | Nil : list a | Cons : hd: a -> tl: list a -> list a (** The [M] marker is interpreted by the Dijkstra Monads for Free construction. It has a "double meaning", either as an alias for reasoning about the direct definitions, or as a marker for places where a CPS transformation should happen. *) effect M (a: Type) = Tot a (attributes cps) (** Returning a value into the [M] effect *) let returnM (a: Type) (x: a) : M a = x (** [as_requires] turns a WP into a precondition, by applying it to a trivial postcondition *) unfold let as_requires (#a: Type) (wp: pure_wp a) : pure_pre = wp (fun x -> True) (** [as_ensures] turns a WP into a postcondition, relying on a kind of double negation translation. *)
false
false
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_ensures (#a: Type) (wp: pure_wp a) : pure_post a
[]
Prims.as_ensures
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
wp: Prims.pure_wp a -> Prims.pure_post a
{ "end_col": 97, "end_line": 614, "start_col": 58, "start_line": 614 }
Prims.Tot
val pow2 (x: nat) : Tot pos
[ { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec pow2 (x: nat) : Tot pos = match x with | 0 -> 1 | _ -> 2 `op_Multiply` (pow2 (x - 1))
val pow2 (x: nat) : Tot pos let rec pow2 (x: nat) : Tot pos =
false
null
false
match x with | 0 -> 1 | _ -> 2 `op_Multiply` (pow2 (x - 1))
{ "checked_file": "prims.fst.checked", "dependencies": [], "interface_file": false, "source_file": "prims.fst" }
[ "total" ]
[ "Prims.nat", "Prims.int", "Prims.op_Multiply", "Prims.pow2", "Prims.op_Subtraction", "Prims.pos" ]
[]
(* Copyright 2008-2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Prims /// This module is implicitly opened in the scope of all other modules. /// /// It provides the very basic primitives on which F* is /// built, including the definition of total functions, the basic /// logical connectives, the PURE and GHOST effects and the like. /// /// While some of the primitives have logical significance, others are /// define various conveniences in the language, e.g., type of /// attributes. (***** Begin trusted primitives *****) (** Primitives up to the definition of the GTot effect are trusted Beyond that all definitions are fully verified *) (** Type of attributes *) assume new type attribute : Type0 (** An attribute indicating that some definition must be processed by the Dijkstra monads for free construction *) assume val cps:attribute (** A predicate to express when a type supports decidable equality The type-checker emits axioms for [hasEq] for each inductive type *) assume type hasEq : Type -> GTot Type0 (** A convenient abbreviation, [eqtype] is the type of types in universe 0 which support decidable equality *) type eqtype = a: Type0{hasEq a} (** [bool] is a two element type with elements [true] and [false]. We assume it is primitive, for convenient interop with other languages, although it could easily be defined as an inductive type with two cases, [BTrue | BFalse] *) assume new type bool : eqtype (** [empty] is the empty inductive type. The type with no inhabitants represents logical falsehood. Note, [empty] is seldom used directly in F*. We instead use its "squashed" variant, [False], see below. *) type empty = (** [trivial] is the singleton inductive type---it is trivially inhabited. Like [empty], [trivial] is seldom used. We instead use its "squashed" variants, [True] *) type trivial = | T (** [unit]: another singleton type, with its only inhabitant written [()] we assume it is primitive, for convenient interop with other languages *) assume new type unit : eqtype (** [squash p] is a central type in F*---[squash p] is the proof irrelevant analog of [p] and is represented as a unit refinement. Squashed proofs are typically discharged using an SMT solver, without any proof terms explicitly reconstructed. As such, one way to think of [squash p] is as the type of properties proven using classical axioms without building proof terms. Note, [squash p] is just a unit refinement, it resides in universe 0, lowering the universe of [p]. From this perspective, one may also see [squash] as a coercion down to universe 0. The type is marked [tac_opaque] to indicate to Meta-F* that instances of [squash] should not be unfolded when evaluating tactics (since many optimizations in F*'s SMT encoding rely specifically on occurrences of [squash]. See FStar.Squash for various ways of manipulating squashed types. *) [@@ "tac_opaque"] type squash (p: Type) : Type0 = x: unit{p} (** [auto_squash] is equivalent to [squash]. However, F* will automatically insert `auto_squash` when simplifying terms, converting terms of the form `p /\ True` to `auto_squash p`. We distinguish these automatically inserted squashes from explicit, user-written squashes. A user should not have to manipulate [auto_squash] at all, except in rare circumstances when writing tactics to process proofs that have already been partially simplified by F*'s simplifier. *) let auto_squash (p: Type) = squash p (** The [logical] type is transitionary. It is just an abbreviation for [Type0], but is used to classify uses of the basic squashed logical connectives that follow. Some day, we plan to remove the [logical] type, replacing it with [prop] (also defined below). The type is marked [private] to intentionally prevent user code from referencing this type, hopefully easing the removal of [logical] in the future. *) private type logical = Type0 (** An attribute indicating that a symbol is an smt theory symbol and hence may not be used in smt patterns. The typechecker warns if such symbols are used in patterns *) assume val smt_theory_symbol:attribute (** [l_True] has a special bit of syntactic sugar. It is written just as "True" and rendered in the ide as [True]. It is a squashed version of constructive truth, [trivial]. *) [@@ "tac_opaque"; smt_theory_symbol] let l_True:logical = squash trivial (** [l_False] has a special bit of syntactic sugar. It is written just as "False" and rendered in the ide as [Falsee]. It is a squashed version of constructive falsehood, the empty type. *) [@@ "tac_opaque"; smt_theory_symbol] let l_False:logical = squash empty (** The type of provable equalities, defined as the usual inductive type with a single constructor for reflexivity. As with the other connectives, we often work instead with the squashed version of equality, below. *) type equals (#a: Type) (x: a) : a -> Type = | Refl : equals x x (** [eq2] is the squashed version of [equals]. It's a proof irrelevant, homogeneous equality in Type#0 and is written with an infix binary [==]. TODO: instead of hard-wiring the == syntax, we should just rename eq2 to op_Equals_Equals *) [@@ "tac_opaque"; smt_theory_symbol] type eq2 (#a: Type) (x: a) (y: a) : logical = squash (equals x y) (** bool-to-type coercion: This is often automatically inserted type, when using a boolean in context expecting a type. But, occasionally, one may have to write [b2t] explicitly *) type b2t (b: bool) : logical = (b == true) (** constructive conjunction *) type pair (p: Type) (q: Type) = | Pair : _1:p -> _2:q -> pair p q (** squashed conjunction, specialized to [Type0], written with an infix binary [/\] *) [@@ "tac_opaque"; smt_theory_symbol] type l_and (p: logical) (q: logical) : logical = squash (pair p q) (** constructive disjunction *) type sum (p: Type) (q: Type) = | Left : v:p -> sum p q | Right : v:q -> sum p q (** squashed disjunction, specialized to [Type0], written with an infix binary [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_or (p: logical) (q: logical) : logical = squash (sum p q) (** squashed (non-dependent) implication, specialized to [Type0], written with an infix binary [==>]. Note, [==>] binds weaker than [/\] and [\/] *) [@@ "tac_opaque"; smt_theory_symbol] type l_imp (p: logical) (q: logical) : logical = squash (p -> GTot q) (* ^^^ NB: The GTot effect is primitive; *) (* elaborated using GHOST a few lines below *) (** squashed double implication, infix binary [<==>] *) [@@ smt_theory_symbol] type l_iff (p: logical) (q: logical) : logical = (p ==> q) /\ (q ==> p) (** squashed negation, prefix unary [~] *) [@@ smt_theory_symbol] type l_not (p: logical) : logical = l_imp p False (** l_ITE is a weak form of if-then-else at the level of logical formulae. It's not much used. TODO: Can we remove it *) unfold type l_ITE (p: logical) (q: logical) (r: logical) : logical = (p ==> q) /\ (~p ==> r) (** One of the main axioms provided by prims is [precedes], a built-in well-founded partial order over all terms. It's typically written with an infix binary [<<]. The [<<] order includes: * The [<] ordering on natural numbers * The subterm ordering on inductive types * [f x << D f] for data constructors D of an inductive t whose arguments include a ghost or total function returning a t *) assume type precedes : #a: Type -> #b: Type -> a -> b -> Type0 (** The type of primitive strings of characters; See FStar.String *) assume new type string : eqtype (** This attribute can be added to the declaration or definition of any top-level symbol. It causes F* to report a warning on any use of that symbol, printing the [msg] argument. This is used, for instance to: - tag every escape hatch, e.g., [assume], [admit], etc Reports for uses of symbols tagged with this attribute are controlled using the `--report_assumes` option and warning number 334. See tests/micro-benchmarks/WarnOnUse.fst *) assume val warn_on_use (msg: string) : Tot unit (** The [deprecated "s"] attribute: "s" is an alternative function that should be printed in the warning it can be omitted if the use case has no such function *) assume val deprecated (s: string) : Tot unit (** Within the SMT encoding, we have a relation [(HasType e t)] asserting that (the encoding of) [e] has a type corresponding to (the encoding of) [t]. It is sometimes convenient, e.g., when writing triggers for quantifiers, to have access to this relation at the source level. The [has_type] predicate below reflects the SMT encodings [HasType] relation. We also use it to define the type [prop] or proof irrelevant propositions, below. Note, unless you have a really good reason, you probably don't want to use this [has_type] predicate. F*'s type theory certainly does not internalize its own typing judgment *) [@@deprecated "'has_type' is intended for internal use and debugging purposes only; \ do not rely on it for your proofs"] assume type has_type : #a: Type -> a -> Type -> Type0 (** Squashed universal quantification, or dependent products, written [forall (x:a). p x], specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Forall (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a -> GTot (p x)) #push-options "--warn_error -288" (** [p1 `subtype_of` p2] when every element of [p1] is also an element of [p2]. *) let subtype_of (p1 p2: Type) = forall (x: p1). has_type x p2 #pop-options (** The type of squashed types. Note, the [prop] type is a work in progress in F*. In particular, we would like in the future to more systematically use [prop] for proof-irrelevant propositions throughout the libraries. However, we still use [Type0] in many places. See https://github.com/FStarLang/FStar/issues/1048 for more details and the current status of the work. *) type prop = a: Type0{a `subtype_of` unit} (**** The PURE effect *) (** The type of pure preconditions *) let pure_pre = Type0 (** Pure postconditions, predicates on [a], on which the precondition [pre] is also valid. This provides a way for postcondition formula to be typed in a context where they can assume the validity of the precondition. This is discussed extensively in Issue #57 *) let pure_post' (a pre: Type) = _: a{pre} -> GTot Type0 let pure_post (a: Type) = pure_post' a True (** A pure weakest precondition transforms postconditions on [a]-typed results to pure preconditions We require the weakest preconditions to satisfy the monotonicity property over the postconditions To enforce it, we first define a vanilla wp type, and then refine it with the monotonicity condition *) let pure_wp' (a: Type) = pure_post a -> GTot pure_pre (** The monotonicity predicate is marked opaque_to_smt, meaning that its definition is hidden from the SMT solver, and if required, will need to be explicitly revealed This has the advantage that clients that do not need to work with it directly, don't have the (quantified) definition in their solver context *) let pure_wp_monotonic0 (a:Type) (wp:pure_wp' a) = forall (p q:pure_post a). (forall (x:a). p x ==> q x) ==> (wp p ==> wp q) [@@ "opaque_to_smt"] let pure_wp_monotonic = pure_wp_monotonic0 let pure_wp (a: Type) = wp:pure_wp' a{pure_wp_monotonic a wp} (** This predicate is an internal detail, used to optimize the encoding of some quantifiers to SMT by omitting their typing guards. This is safe to use only when the quantifier serves to introduce a local macro---use with caution. *) assume type guard_free : Type0 -> Type0 (** The return combinator for the PURE effect requires proving the postcondition only on [x] Clients should not use it directly, instead use FStar.Pervasives.pure_return *) unfold let pure_return0 (a: Type) (x: a) : pure_wp a = fun (p: pure_post a) -> forall (return_val: a). return_val == x ==> p return_val (** Sequential composition for the PURE effect Clients should not use it directly, instead use FStar.Pervasives.pure_bind_wp *) unfold let pure_bind_wp0 (a b: Type) (wp1: pure_wp a) (wp2: (a -> GTot (pure_wp b))) : pure_wp b = fun (p: pure_post b) -> wp1 (fun (bind_result_1: a) -> wp2 bind_result_1 p) (** Conditional composition for the PURE effect The combinator is optimized to make use of how the typechecker generates VC for conditionals. The more intuitive form of the combinator would have been: [(p ==> wp_then post) /\ (~p ==> wp_else post)] However, the way the typechecker constructs the VC, [wp_then] is already weakened with [p]. Hence, here we only weaken [wp_else] Clients should not use it directly, instead use FStar.Pervasives.pure_if_then_else *) unfold let pure_if_then_else0 (a p: Type) (wp_then wp_else: pure_wp a) : pure_wp a = fun (post: pure_post a) -> wp_then post /\ (~p ==> wp_else post) (** Conditional composition for the PURE effect, while trying to avoid duplicating the postcondition by giving it a local name [k]. Note the use of [guard_free] here: [k] is just meant to be a macro for [post]. Clients should not use it directly, instead use FStar.Pervasives.pure_ite_wp *) unfold let pure_ite_wp0 (a: Type) (wp: pure_wp a) : pure_wp a = fun (post: pure_post a) -> forall (k: pure_post a). (forall (x: a). {:pattern (guard_free (k x))} post x ==> k x) ==> wp k (** Subsumption for the PURE effect *) unfold let pure_stronger (a: Type) (wp1 wp2: pure_wp a) = forall (p: pure_post a). wp1 p ==> wp2 p (** Closing a PURE WP under a binder for [b] Clients should not use it directly, instead use FStar.Pervasives.pure_close_wp *) unfold let pure_close_wp0 (a b: Type) (wp: (b -> GTot (pure_wp a))) : pure_wp a = fun (p: pure_post a) -> forall (b: b). wp b p (** Trivial WP for PURE: Prove the WP with the trivial postcondition *) unfold let pure_trivial (a: Type) (wp: pure_wp a) = wp (fun (trivial_result: a) -> True) (** Introduces the PURE effect. The definition of the PURE effect is fixed. NO USER SHOULD EVER CHANGE THIS. *) total new_effect { PURE : a: Type -> wp: pure_wp a -> Effect with return_wp = pure_return0 ; bind_wp = pure_bind_wp0 ; if_then_else = pure_if_then_else0 ; ite_wp = pure_ite_wp0 ; stronger = pure_stronger ; close_wp = pure_close_wp0 ; trivial = pure_trivial } (** [Pure] is a Hoare-style counterpart of [PURE] Note the type of post, which allows to assume the precondition for the well-formedness of the postcondition. c.f. #57 *) effect Pure (a: Type) (pre: pure_pre) (post: pure_post' a pre) = PURE a (fun (p: pure_post a) -> pre /\ (forall (pure_result: a). post pure_result ==> p pure_result)) (** [Admit] is an effect abbreviation for a computation that disregards the verification condition of its continuation *) effect Admit (a: Type) = PURE a (fun (p: pure_post a) -> True) (** The primitive effect [Tot] is definitionally equal to an instance of [PURE] *) (** Clients should not use it directly, instead use FStar.Pervasives.pure_null_wp *) unfold let pure_null_wp0 (a: Type) : pure_wp a = fun (p: pure_post a) -> forall (any_result: a). p any_result (** [Tot]: From here on, we have [Tot] as a defined symbol in F*. *) effect Tot (a: Type) = PURE a (pure_null_wp0 a) (** Clients should not use it directly, instead use FStar.Pervasives.pure_assert_wp *) [@@ "opaque_to_smt"] unfold let pure_assert_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p /\ post () (** Clients should not use it directly, instead use FStar.Pervasives.pure_assume_wp *) [@@ "opaque_to_smt"] unfold let pure_assume_wp0 (p: Type) : pure_wp unit = fun (post: pure_post unit) -> p ==> post () (**** The [GHOST] effect *) (** [GHOST] is logically equivalent to [PURE], but distinguished from it nominally so that specific, computationally irrelevant operations, are provided only in [GHOST] and are erased during extraction *) total new_effect GHOST = PURE unfold let purewp_id (a: Type) (wp: pure_wp a) = wp (** [PURE] computations can be lifted to the [GHOST] effect (but not vice versa) using just the identity lifting on pure wps *) sub_effect PURE ~> GHOST { lift_wp = purewp_id } (** [Ghost] is a the Hoare-style counterpart of [GHOST] *) effect Ghost (a: Type) (pre: Type) (post: pure_post' a pre) = GHOST a (fun (p: pure_post a) -> pre /\ (forall (ghost_result: a). post ghost_result ==> p ghost_result) ) (** As with [Tot], the primitive effect [GTot] is definitionally equal to an instance of GHOST *) effect GTot (a: Type) = GHOST a (pure_null_wp0 a) (***** End trusted primitives *****) (** This point onward, F* fully verifies all the definitions *) (** [===] heterogeneous equality *) let ( === ) (#a #b: Type) (x: a) (y: b) : logical = a == b /\ x == y (** Dependent pairs [dtuple2] in concrete syntax is [x:a & b x]. Its values can be constructed with the concrete syntax [(| x, y |)] *) unopteq type dtuple2 (a: Type) (b: (a -> GTot Type)) = | Mkdtuple2 : _1: a -> _2: b _1 -> dtuple2 a b (** Squashed existential quantification, or dependent sums, are written [exists (x:a). p x] : specialized to Type0 *) [@@ "tac_opaque"; smt_theory_symbol] type l_Exists (#a: Type) (p: (a -> GTot Type0)) : logical = squash (x: a & p x) (** Primitive type of mathematical integers, mapped to zarith in OCaml extraction and to the SMT sort of integers *) assume new type int : eqtype (**** Basic operators on booleans and integers *) (** [&&] boolean conjunction *) [@@ smt_theory_symbol] assume val op_AmpAmp: bool -> bool -> Tot bool (** [||] boolean disjunction *) [@@ smt_theory_symbol] assume val op_BarBar: bool -> bool -> Tot bool (** [not] boolean negation *) [@@ smt_theory_symbol] assume val op_Negation: bool -> Tot bool (** Integer multiplication, no special symbol. See FStar.Mul *) [@@ smt_theory_symbol] assume val op_Multiply: int -> int -> Tot int (** [-] integer subtraction *) [@@ smt_theory_symbol] assume val op_Subtraction: int -> int -> Tot int (** [+] integer addition *) [@@ smt_theory_symbol] assume val op_Addition: int -> int -> Tot int (** [-] prefix unary integer negation *) [@@ smt_theory_symbol] assume val op_Minus: int -> Tot int (** [<=] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThanOrEqual: int -> int -> Tot bool (** [>] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThan: int -> int -> Tot bool (** [>=] integer comparison *) [@@ smt_theory_symbol] assume val op_GreaterThanOrEqual: int -> int -> Tot bool (** [<] integer comparison *) [@@ smt_theory_symbol] assume val op_LessThan: int -> int -> Tot bool (** [=] decidable equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_Equality: #a: eqtype -> a -> a -> Tot bool (** [<>] decidable dis-equality on [eqtype] *) [@@ smt_theory_symbol] assume val op_disEquality: #a: eqtype -> a -> a -> Tot bool (** The extensible open inductive type of exceptions *) assume new type exn : Type0 (** [array]: TODO: should be removed. See FStar.Seq, LowStar.Buffer, etc. *) assume new type array : Type -> Type0 (** String concatenation and its abbreviation as [^]. TODO, both should be removed in favor of what is present in FStar.String *) assume val strcat: string -> string -> Tot string inline_for_extraction unfold let op_Hat s1 s2 = strcat s1 s2 (** The inductive type of polymorphic lists *) type list (a: Type) = | Nil : list a | Cons : hd: a -> tl: list a -> list a (** The [M] marker is interpreted by the Dijkstra Monads for Free construction. It has a "double meaning", either as an alias for reasoning about the direct definitions, or as a marker for places where a CPS transformation should happen. *) effect M (a: Type) = Tot a (attributes cps) (** Returning a value into the [M] effect *) let returnM (a: Type) (x: a) : M a = x (** [as_requires] turns a WP into a precondition, by applying it to a trivial postcondition *) unfold let as_requires (#a: Type) (wp: pure_wp a) : pure_pre = wp (fun x -> True) (** [as_ensures] turns a WP into a postcondition, relying on a kind of double negation translation. *) unfold let as_ensures (#a: Type) (wp: pure_wp a) : pure_post a = fun (x:a) -> ~(wp (fun y -> (y =!= x))) (** The keyword term-level keyword [assume] is desugared to [_assume]. It explicitly provides an escape hatch to assume a given property [p]. *) [@@ warn_on_use "Uses an axiom"] assume val _assume (p: Type) : Pure unit (requires (True)) (ensures (fun x -> p)) (** [admit] is another escape hatch: It discards the continuation and returns a value of any type *) [@@ warn_on_use "Uses an axiom"] assume val admit: #a: Type -> unit -> Admit a (** [magic] is another escape hatch: It retains the continuation but returns a value of any type *) [@@ warn_on_use "Uses an axiom"] assume val magic: #a: Type -> unit -> Tot a (** [unsafe_coerce] is another escape hatch: It coerces an [a] to a [b]. *) [@@ warn_on_use "Uses an axiom"] irreducible let unsafe_coerce (#a #b: Type) (x: a) : b = admit (); x (** [admitP]: TODO: Unused ... remove? *) [@@ warn_on_use "Uses an axiom"] assume val admitP (p: Type) : Pure unit True (fun x -> p) (** The keyword term-level keyword [assert] is desugared to [_assert]. It force a proof of a property [p], then assuming [p] for the continuation. *) val _assert (p: Type) : Pure unit (requires p) (ensures (fun x -> p)) let _assert p = () (** Logically equivalent to assert; TODO remove? *) val cut (p: Type) : Pure unit (requires p) (fun x -> p) let cut p = () (** The type of non-negative integers *) type nat = i: int{i >= 0} (** The type of positive integers *) type pos = i: int{i > 0} (** The type of non-zero integers *) type nonzero = i: int{i <> 0} /// Arbitrary precision ints are compiled to zarith (big_ints) in /// OCaml and to .NET BigInteger in F#. Both the modulus and division /// operations are Euclidean and are mapped to the corresponding /// theory symbols in the SMT encoding (** Euclidean modulus *) [@@ smt_theory_symbol] assume val op_Modulus: int -> nonzero -> Tot int (** Euclidean division, written [/] *) [@@ smt_theory_symbol] assume val op_Division: int -> nonzero -> Tot int (** [pow2 x] is [2^x]: TODO: maybe move this to FStar.Int *)
false
true
prims.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val pow2 (x: nat) : Tot pos
[ "recursion" ]
Prims.pow2
{ "file_name": "ulib/prims.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: Prims.nat -> Prims.pos
{ "end_col": 39, "end_line": 690, "start_col": 2, "start_line": 688 }
Prims.Tot
[ { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind_req (a:Type) (req_f: pure_pre) (ens_f: pure_post a) (pr:a -> prop) (req_g: a -> pure_pre) = req_f /\ (forall (x:a). ens_f x ==> pr x /\ req_g x)
let bind_req (a: Type) (req_f: pure_pre) (ens_f: pure_post a) (pr: (a -> prop)) (req_g: (a -> pure_pre)) =
false
null
false
req_f /\ (forall (x: a). ens_f x ==> pr x /\ req_g x)
{ "checked_file": "Steel.ST.Effect.fsti.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Effect.fsti" }
[ "total" ]
[ "Prims.pure_pre", "Prims.pure_post", "Prims.prop", "Prims.l_and", "Prims.l_Forall", "Prims.l_imp", "Prims.logical" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Effect (** This module provides an effect ST, a specialization of Steel.Effect.Steel removing selectors from the requires and ensures indexes *) open Steel.Memory open FStar.Ghost module Mem = Steel.Memory module T = FStar.Tactics include Steel.Effect.Common #set-options "--warn_error -330" //turn off the experimental feature warning #set-options "--ide_id_info_off" val repr (a:Type) (framed:bool) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) : Type u#2 val return_ (a:Type) (x:a) (#[@@@ framing_implicit] p:a -> vprop) : repr a true (return_pre (p x)) p True (fun v -> v == x) unfold let bind_req (a:Type) (req_f: pure_pre) (ens_f: pure_post a) (pr:a -> prop)
false
false
Steel.ST.Effect.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind_req : a: Type -> req_f: Prims.pure_pre -> ens_f: Prims.pure_post a -> pr: (_: a -> Prims.prop) -> req_g: (_: a -> Prims.pure_pre) -> Prims.logical
[]
Steel.ST.Effect.bind_req
{ "file_name": "lib/steel/Steel.ST.Effect.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Type -> req_f: Prims.pure_pre -> ens_f: Prims.pure_post a -> pr: (_: a -> Prims.prop) -> req_g: (_: a -> Prims.pure_pre) -> Prims.logical
{ "end_col": 56, "end_line": 50, "start_col": 4, "start_line": 50 }
Prims.Tot
[ { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind_ens (a:Type) (b:Type) (ens_f: pure_post a) (ens_g: a -> pure_post b) = fun (y:b) -> exists (x:a). ens_f x /\ ens_g x y
let bind_ens (a b: Type) (ens_f: pure_post a) (ens_g: (a -> pure_post b)) =
false
null
false
fun (y: b) -> exists (x: a). ens_f x /\ ens_g x y
{ "checked_file": "Steel.ST.Effect.fsti.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Effect.fsti" }
[ "total" ]
[ "Prims.pure_post", "Prims.l_Exists", "Prims.l_and", "Prims.logical" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Effect (** This module provides an effect ST, a specialization of Steel.Effect.Steel removing selectors from the requires and ensures indexes *) open Steel.Memory open FStar.Ghost module Mem = Steel.Memory module T = FStar.Tactics include Steel.Effect.Common #set-options "--warn_error -330" //turn off the experimental feature warning #set-options "--ide_id_info_off" val repr (a:Type) (framed:bool) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) : Type u#2 val return_ (a:Type) (x:a) (#[@@@ framing_implicit] p:a -> vprop) : repr a true (return_pre (p x)) p True (fun v -> v == x) unfold let bind_req (a:Type) (req_f: pure_pre) (ens_f: pure_post a) (pr:a -> prop) (req_g: a -> pure_pre) = req_f /\ (forall (x:a). ens_f x ==> pr x /\ req_g x) unfold let bind_ens (a:Type) (b:Type) (ens_f: pure_post a)
false
false
Steel.ST.Effect.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind_ens : a: Type -> b: Type -> ens_f: Prims.pure_post a -> ens_g: (_: a -> Prims.pure_post b) -> y: b -> Prims.logical
[]
Steel.ST.Effect.bind_ens
{ "file_name": "lib/steel/Steel.ST.Effect.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Type -> b: Type -> ens_f: Prims.pure_post a -> ens_g: (_: a -> Prims.pure_post b) -> y: b -> Prims.logical
{ "end_col": 51, "end_line": 57, "start_col": 4, "start_line": 57 }
Prims.Tot
val if_then_else_req (p: Type0) (req_then req_else: pure_pre) : pure_pre
[ { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let if_then_else_req (p:Type0) (req_then req_else:pure_pre) : pure_pre = (p ==> req_then) /\ ((~ p) ==> req_else)
val if_then_else_req (p: Type0) (req_then req_else: pure_pre) : pure_pre let if_then_else_req (p: Type0) (req_then req_else: pure_pre) : pure_pre =
false
null
false
(p ==> req_then) /\ ((~p) ==> req_else)
{ "checked_file": "Steel.ST.Effect.fsti.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Effect.fsti" }
[ "total" ]
[ "Prims.pure_pre", "Prims.l_and", "Prims.l_imp", "Prims.l_not" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Effect (** This module provides an effect ST, a specialization of Steel.Effect.Steel removing selectors from the requires and ensures indexes *) open Steel.Memory open FStar.Ghost module Mem = Steel.Memory module T = FStar.Tactics include Steel.Effect.Common #set-options "--warn_error -330" //turn off the experimental feature warning #set-options "--ide_id_info_off" val repr (a:Type) (framed:bool) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) : Type u#2 val return_ (a:Type) (x:a) (#[@@@ framing_implicit] p:a -> vprop) : repr a true (return_pre (p x)) p True (fun v -> v == x) unfold let bind_req (a:Type) (req_f: pure_pre) (ens_f: pure_post a) (pr:a -> prop) (req_g: a -> pure_pre) = req_f /\ (forall (x:a). ens_f x ==> pr x /\ req_g x) unfold let bind_ens (a:Type) (b:Type) (ens_f: pure_post a) (ens_g: a -> pure_post b) = fun (y:b) -> exists (x:a). ens_f x /\ ens_g x y val bind (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:pure_pre) (#[@@@ framing_implicit] ens_f:pure_post a) (#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:a -> post_t b) (#[@@@ framing_implicit] req_g:a -> pure_pre) (#[@@@ framing_implicit] ens_g:(a -> pure_post b)) (#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:a -> vprop) (#[@@@ framing_implicit] post:post_t b) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame_f)) (#[@@@ framing_implicit] _ : squash (maybe_emp_dep framed_g frame_g)) (#[@@@ framing_implicit] pr:a -> prop) (#[@@@ framing_implicit] p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#[@@@ framing_implicit] p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req a req_f ens_f pr req_g) (bind_ens a b ens_f ens_g) val subcomp (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:pure_pre) (#[@@@ framing_implicit] ens_f:pure_post a) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:pure_pre) (#[@@@ framing_implicit] ens_g:pure_post a) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires req_g ==> (req_f /\ (forall x. ens_f x ==> ens_g x))) (ensures fun _ -> True) /// Logical precondition for the if_then_else combinator unfold let if_then_else_req (p:Type0) (req_then req_else:pure_pre)
false
true
Steel.ST.Effect.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val if_then_else_req (p: Type0) (req_then req_else: pure_pre) : pure_pre
[]
Steel.ST.Effect.if_then_else_req
{ "file_name": "lib/steel/Steel.ST.Effect.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
p: Type0 -> req_then: Prims.pure_pre -> req_else: Prims.pure_pre -> Prims.pure_pre
{ "end_col": 25, "end_line": 117, "start_col": 5, "start_line": 116 }
Prims.Tot
val if_then_else_ens (a: Type) (p: Type0) (ens_then ens_else: pure_post a) : pure_post a
[ { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let if_then_else_ens (a:Type) (p:Type0) (ens_then ens_else : pure_post a) : pure_post a = fun (x:a) -> (p ==> ens_then x) /\ (~p ==> ens_else x)
val if_then_else_ens (a: Type) (p: Type0) (ens_then ens_else: pure_post a) : pure_post a let if_then_else_ens (a: Type) (p: Type0) (ens_then ens_else: pure_post a) : pure_post a =
false
null
false
fun (x: a) -> (p ==> ens_then x) /\ (~p ==> ens_else x)
{ "checked_file": "Steel.ST.Effect.fsti.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Effect.fsti" }
[ "total" ]
[ "Prims.pure_post", "Prims.l_and", "Prims.l_imp", "Prims.l_not" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Effect (** This module provides an effect ST, a specialization of Steel.Effect.Steel removing selectors from the requires and ensures indexes *) open Steel.Memory open FStar.Ghost module Mem = Steel.Memory module T = FStar.Tactics include Steel.Effect.Common #set-options "--warn_error -330" //turn off the experimental feature warning #set-options "--ide_id_info_off" val repr (a:Type) (framed:bool) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) : Type u#2 val return_ (a:Type) (x:a) (#[@@@ framing_implicit] p:a -> vprop) : repr a true (return_pre (p x)) p True (fun v -> v == x) unfold let bind_req (a:Type) (req_f: pure_pre) (ens_f: pure_post a) (pr:a -> prop) (req_g: a -> pure_pre) = req_f /\ (forall (x:a). ens_f x ==> pr x /\ req_g x) unfold let bind_ens (a:Type) (b:Type) (ens_f: pure_post a) (ens_g: a -> pure_post b) = fun (y:b) -> exists (x:a). ens_f x /\ ens_g x y val bind (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:pure_pre) (#[@@@ framing_implicit] ens_f:pure_post a) (#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:a -> post_t b) (#[@@@ framing_implicit] req_g:a -> pure_pre) (#[@@@ framing_implicit] ens_g:(a -> pure_post b)) (#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:a -> vprop) (#[@@@ framing_implicit] post:post_t b) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame_f)) (#[@@@ framing_implicit] _ : squash (maybe_emp_dep framed_g frame_g)) (#[@@@ framing_implicit] pr:a -> prop) (#[@@@ framing_implicit] p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#[@@@ framing_implicit] p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req a req_f ens_f pr req_g) (bind_ens a b ens_f ens_g) val subcomp (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:pure_pre) (#[@@@ framing_implicit] ens_f:pure_post a) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:pure_pre) (#[@@@ framing_implicit] ens_g:pure_post a) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires req_g ==> (req_f /\ (forall x. ens_f x ==> ens_g x))) (ensures fun _ -> True) /// Logical precondition for the if_then_else combinator unfold let if_then_else_req (p:Type0) (req_then req_else:pure_pre) : pure_pre = (p ==> req_then) /\ ((~ p) ==> req_else) /// Logical precondition for the if_then_else combinator unfold let if_then_else_ens (a:Type) (p:Type0) (ens_then ens_else : pure_post a)
false
false
Steel.ST.Effect.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val if_then_else_ens (a: Type) (p: Type0) (ens_then ens_else: pure_post a) : pure_post a
[]
Steel.ST.Effect.if_then_else_ens
{ "file_name": "lib/steel/Steel.ST.Effect.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
a: Type -> p: Type0 -> ens_then: Prims.pure_post a -> ens_else: Prims.pure_post a -> Prims.pure_post a
{ "end_col": 25, "end_line": 127, "start_col": 4, "start_line": 125 }
Prims.Tot
val bind_pure_st_req (#a: Type) (wp: pure_wp a) (req: (a -> pure_pre)) : pure_pre
[ { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind_pure_st_req (#a:Type) (wp:pure_wp a) (req:a -> pure_pre) : pure_pre = wp req
val bind_pure_st_req (#a: Type) (wp: pure_wp a) (req: (a -> pure_pre)) : pure_pre let bind_pure_st_req (#a: Type) (wp: pure_wp a) (req: (a -> pure_pre)) : pure_pre =
false
null
false
wp req
{ "checked_file": "Steel.ST.Effect.fsti.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Effect.fsti" }
[ "total" ]
[ "Prims.pure_wp", "Prims.pure_pre" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Effect (** This module provides an effect ST, a specialization of Steel.Effect.Steel removing selectors from the requires and ensures indexes *) open Steel.Memory open FStar.Ghost module Mem = Steel.Memory module T = FStar.Tactics include Steel.Effect.Common #set-options "--warn_error -330" //turn off the experimental feature warning #set-options "--ide_id_info_off" val repr (a:Type) (framed:bool) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) : Type u#2 val return_ (a:Type) (x:a) (#[@@@ framing_implicit] p:a -> vprop) : repr a true (return_pre (p x)) p True (fun v -> v == x) unfold let bind_req (a:Type) (req_f: pure_pre) (ens_f: pure_post a) (pr:a -> prop) (req_g: a -> pure_pre) = req_f /\ (forall (x:a). ens_f x ==> pr x /\ req_g x) unfold let bind_ens (a:Type) (b:Type) (ens_f: pure_post a) (ens_g: a -> pure_post b) = fun (y:b) -> exists (x:a). ens_f x /\ ens_g x y val bind (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:pure_pre) (#[@@@ framing_implicit] ens_f:pure_post a) (#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:a -> post_t b) (#[@@@ framing_implicit] req_g:a -> pure_pre) (#[@@@ framing_implicit] ens_g:(a -> pure_post b)) (#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:a -> vprop) (#[@@@ framing_implicit] post:post_t b) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame_f)) (#[@@@ framing_implicit] _ : squash (maybe_emp_dep framed_g frame_g)) (#[@@@ framing_implicit] pr:a -> prop) (#[@@@ framing_implicit] p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#[@@@ framing_implicit] p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req a req_f ens_f pr req_g) (bind_ens a b ens_f ens_g) val subcomp (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:pure_pre) (#[@@@ framing_implicit] ens_f:pure_post a) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:pure_pre) (#[@@@ framing_implicit] ens_g:pure_post a) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires req_g ==> (req_f /\ (forall x. ens_f x ==> ens_g x))) (ensures fun _ -> True) /// Logical precondition for the if_then_else combinator unfold let if_then_else_req (p:Type0) (req_then req_else:pure_pre) : pure_pre = (p ==> req_then) /\ ((~ p) ==> req_else) /// Logical precondition for the if_then_else combinator unfold let if_then_else_ens (a:Type) (p:Type0) (ens_then ens_else : pure_post a) : pure_post a = fun (x:a) -> (p ==> ens_then x) /\ (~p ==> ens_else x) let if_then_else (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_then:pure_pre) (#[@@@ framing_implicit] ens_then:pure_post a) (#[@@@ framing_implicit] req_else:pure_pre) (#[@@@ framing_implicit] ens_else:pure_post a) (#[@@@ framing_implicit] frame_f : vprop) (#[@@@ framing_implicit] frame_g : vprop) (#[@@@ framing_implicit] me1 : squash (maybe_emp framed_f frame_f)) (#[@@@ framing_implicit] me2 : squash (maybe_emp framed_g frame_g)) (#[@@@ framing_implicit] s_pre: squash (can_be_split (pre_f `star` frame_f) (pre_g `star` frame_g))) (#[@@@ framing_implicit] s_post: squash (equiv_forall (fun x -> post_f x `star` frame_f) (fun x -> post_g x `star` frame_g))) (f:repr a framed_f pre_f post_f req_then ens_then) (g:repr a framed_g pre_g post_g req_else ens_else) (p:bool) : Type = repr a true (pre_f `star` frame_f) (fun x -> post_f x `star` frame_f) (if_then_else_req p req_then req_else) (if_then_else_ens a p ens_then ens_else) /// Assembling the combinators defined above into an actual effect /// /// If the effect appears at the top-level, make sure it is constrained as per STTop [@@ ite_soundness_by ite_attr; top_level_effect "Steel.ST.Effect.STTop"; primitive_extraction ] reflectable effect { STBase (a:Type) (framed:bool) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) with { repr = repr; return = return_; bind = bind; subcomp = subcomp; if_then_else = if_then_else } } effect ST (a:Type) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) = STBase a false pre post req ens effect STF (a:Type) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) = STBase a true pre post req ens // // Trivial preconditions for top-level effect // effect STTop (a:Type) (framed:bool) (post:post_t a) (ens:pure_post a) = STBase a framed emp post True ens /// Logical precondition of a Pure and a Steel computation composition. /// The current state (memory) must satisfy the precondition of the Steel computation, /// and the wp of the PURE computation `as_requires wp` must also be satisfied unfold let bind_pure_st_req (#a:Type) (wp:pure_wp a) (req:a -> pure_pre)
false
false
Steel.ST.Effect.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind_pure_st_req (#a: Type) (wp: pure_wp a) (req: (a -> pure_pre)) : pure_pre
[]
Steel.ST.Effect.bind_pure_st_req
{ "file_name": "lib/steel/Steel.ST.Effect.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
wp: Prims.pure_wp a -> req: (_: a -> Prims.pure_pre) -> Prims.pure_pre
{ "end_col": 9, "end_line": 194, "start_col": 3, "start_line": 194 }
Prims.Tot
val bind_pure_st_ens (#a #b: Type) (wp: pure_wp a) (ens: (a -> pure_post b)) : pure_post b
[ { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bind_pure_st_ens (#a:Type) (#b:Type) (wp:pure_wp a) (ens: a -> pure_post b) : pure_post b = fun (r:b) -> as_requires wp /\ (exists (x:a). as_ensures wp x /\ ens x r)
val bind_pure_st_ens (#a #b: Type) (wp: pure_wp a) (ens: (a -> pure_post b)) : pure_post b let bind_pure_st_ens (#a #b: Type) (wp: pure_wp a) (ens: (a -> pure_post b)) : pure_post b =
false
null
false
fun (r: b) -> as_requires wp /\ (exists (x: a). as_ensures wp x /\ ens x r)
{ "checked_file": "Steel.ST.Effect.fsti.checked", "dependencies": [ "Steel.Memory.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.Tactics.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Effect.fsti" }
[ "total" ]
[ "Prims.pure_wp", "Prims.pure_post", "Prims.l_and", "Prims.as_requires", "Prims.l_Exists", "Prims.as_ensures" ]
[]
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Effect (** This module provides an effect ST, a specialization of Steel.Effect.Steel removing selectors from the requires and ensures indexes *) open Steel.Memory open FStar.Ghost module Mem = Steel.Memory module T = FStar.Tactics include Steel.Effect.Common #set-options "--warn_error -330" //turn off the experimental feature warning #set-options "--ide_id_info_off" val repr (a:Type) (framed:bool) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) : Type u#2 val return_ (a:Type) (x:a) (#[@@@ framing_implicit] p:a -> vprop) : repr a true (return_pre (p x)) p True (fun v -> v == x) unfold let bind_req (a:Type) (req_f: pure_pre) (ens_f: pure_post a) (pr:a -> prop) (req_g: a -> pure_pre) = req_f /\ (forall (x:a). ens_f x ==> pr x /\ req_g x) unfold let bind_ens (a:Type) (b:Type) (ens_f: pure_post a) (ens_g: a -> pure_post b) = fun (y:b) -> exists (x:a). ens_f x /\ ens_g x y val bind (a:Type) (b:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:pure_pre) (#[@@@ framing_implicit] ens_f:pure_post a) (#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:a -> post_t b) (#[@@@ framing_implicit] req_g:a -> pure_pre) (#[@@@ framing_implicit] ens_g:(a -> pure_post b)) (#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:a -> vprop) (#[@@@ framing_implicit] post:post_t b) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame_f)) (#[@@@ framing_implicit] _ : squash (maybe_emp_dep framed_g frame_g)) (#[@@@ framing_implicit] pr:a -> prop) (#[@@@ framing_implicit] p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#[@@@ framing_implicit] p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g (pre_g x) (post_g x) (req_g x) (ens_g x))) : repr b true (pre_f `star` frame_f) post (bind_req a req_f ens_f pr req_g) (bind_ens a b ens_f ens_g) val subcomp (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:pure_pre) (#[@@@ framing_implicit] ens_f:pure_post a) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:pure_pre) (#[@@@ framing_implicit] ens_g:pure_post a) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f pre_f post_f req_f ens_f) : Pure (repr a framed_g pre_g post_g req_g ens_g) (requires req_g ==> (req_f /\ (forall x. ens_f x ==> ens_g x))) (ensures fun _ -> True) /// Logical precondition for the if_then_else combinator unfold let if_then_else_req (p:Type0) (req_then req_else:pure_pre) : pure_pre = (p ==> req_then) /\ ((~ p) ==> req_else) /// Logical precondition for the if_then_else combinator unfold let if_then_else_ens (a:Type) (p:Type0) (ens_then ens_else : pure_post a) : pure_post a = fun (x:a) -> (p ==> ens_then x) /\ (~p ==> ens_else x) let if_then_else (a:Type) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_then:pure_pre) (#[@@@ framing_implicit] ens_then:pure_post a) (#[@@@ framing_implicit] req_else:pure_pre) (#[@@@ framing_implicit] ens_else:pure_post a) (#[@@@ framing_implicit] frame_f : vprop) (#[@@@ framing_implicit] frame_g : vprop) (#[@@@ framing_implicit] me1 : squash (maybe_emp framed_f frame_f)) (#[@@@ framing_implicit] me2 : squash (maybe_emp framed_g frame_g)) (#[@@@ framing_implicit] s_pre: squash (can_be_split (pre_f `star` frame_f) (pre_g `star` frame_g))) (#[@@@ framing_implicit] s_post: squash (equiv_forall (fun x -> post_f x `star` frame_f) (fun x -> post_g x `star` frame_g))) (f:repr a framed_f pre_f post_f req_then ens_then) (g:repr a framed_g pre_g post_g req_else ens_else) (p:bool) : Type = repr a true (pre_f `star` frame_f) (fun x -> post_f x `star` frame_f) (if_then_else_req p req_then req_else) (if_then_else_ens a p ens_then ens_else) /// Assembling the combinators defined above into an actual effect /// /// If the effect appears at the top-level, make sure it is constrained as per STTop [@@ ite_soundness_by ite_attr; top_level_effect "Steel.ST.Effect.STTop"; primitive_extraction ] reflectable effect { STBase (a:Type) (framed:bool) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) with { repr = repr; return = return_; bind = bind; subcomp = subcomp; if_then_else = if_then_else } } effect ST (a:Type) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) = STBase a false pre post req ens effect STF (a:Type) (pre:pre_t) (post:post_t a) (req:pure_pre) (ens:pure_post a) = STBase a true pre post req ens // // Trivial preconditions for top-level effect // effect STTop (a:Type) (framed:bool) (post:post_t a) (ens:pure_post a) = STBase a framed emp post True ens /// Logical precondition of a Pure and a Steel computation composition. /// The current state (memory) must satisfy the precondition of the Steel computation, /// and the wp of the PURE computation `as_requires wp` must also be satisfied unfold let bind_pure_st_req (#a:Type) (wp:pure_wp a) (req:a -> pure_pre) : pure_pre = wp req /// Logical postcondition of a Pure and a Steel composition. /// There exists an intermediate value (the output of the Pure computation) such that /// the postcondition of the pure computation is satisfied. unfold let bind_pure_st_ens (#a:Type) (#b:Type) (wp:pure_wp a) (ens: a -> pure_post b)
false
false
Steel.ST.Effect.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bind_pure_st_ens (#a #b: Type) (wp: pure_wp a) (ens: (a -> pure_post b)) : pure_post b
[]
Steel.ST.Effect.bind_pure_st_ens
{ "file_name": "lib/steel/Steel.ST.Effect.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
wp: Prims.pure_wp a -> ens: (_: a -> Prims.pure_post b) -> Prims.pure_post b
{ "end_col": 79, "end_line": 205, "start_col": 6, "start_line": 205 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let zero_free (s: Seq.seq C.char) = forall (i: nat). {:pattern (Seq.index s i)} i < Seq.length s - 1 ==> Seq.index s i <> C.char_of_uint8 0uy
let zero_free (s: Seq.seq C.char) =
false
null
false
forall (i: nat). {:pattern (Seq.index s i)} i < Seq.length s - 1 ==> Seq.index s i <> C.char_of_uint8 0uy
{ "checked_file": "C.String.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "C.fst.checked" ], "interface_file": false, "source_file": "C.String.fsti" }
[ "total" ]
[ "FStar.Seq.Base.seq", "C.char", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Seq.Base.length", "Prims.op_disEquality", "FStar.Seq.Base.index", "C.char_of_uint8", "FStar.UInt8.__uint_to_t", "Prims.logical" ]
[]
module C.String module U8 = FStar.UInt8 module U32 = FStar.UInt32 module B = LowStar.Buffer module M = LowStar.Modifies open FStar.HyperStack.ST
false
true
C.String.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val zero_free : s: FStar.Seq.Base.seq C.char -> Prims.logical
[]
C.String.zero_free
{ "file_name": "krmllib/C.String.fsti", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
s: FStar.Seq.Base.seq C.char -> Prims.logical
{ "end_col": 65, "end_line": 13, "start_col": 2, "start_line": 12 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "LowStar.Modifies", "short_module": "M" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "C", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let well_formed (s:Seq.seq C.char) = let l = Seq.length s in l <= FStar.UInt.max_int 32 /\ l >= 1 /\ Seq.index s (l - 1) = C.char_of_uint8 0uy /\ zero_free s
let well_formed (s: Seq.seq C.char) =
false
null
false
let l = Seq.length s in l <= FStar.UInt.max_int 32 /\ l >= 1 /\ Seq.index s (l - 1) = C.char_of_uint8 0uy /\ zero_free s
{ "checked_file": "C.String.fsti.checked", "dependencies": [ "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "C.fst.checked" ], "interface_file": false, "source_file": "C.String.fsti" }
[ "total" ]
[ "FStar.Seq.Base.seq", "C.char", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt.max_int", "Prims.op_GreaterThanOrEqual", "Prims.op_Equality", "FStar.Seq.Base.index", "Prims.op_Subtraction", "C.char_of_uint8", "FStar.UInt8.__uint_to_t", "C.String.zero_free", "Prims.nat", "FStar.Seq.Base.length", "Prims.logical" ]
[]
module C.String module U8 = FStar.UInt8 module U32 = FStar.UInt32 module B = LowStar.Buffer module M = LowStar.Modifies open FStar.HyperStack.ST let zero_free (s: Seq.seq C.char) = forall (i: nat). {:pattern (Seq.index s i)} i < Seq.length s - 1 ==> Seq.index s i <> C.char_of_uint8 0uy
false
true
C.String.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val well_formed : s: FStar.Seq.Base.seq C.char -> Prims.logical
[]
C.String.well_formed
{ "file_name": "krmllib/C.String.fsti", "git_rev": "a7be2a7c43eca637ceb57fe8f3ffd16fc6627ebd", "git_url": "https://github.com/FStarLang/karamel.git", "project_name": "karamel" }
s: FStar.Seq.Base.seq C.char -> Prims.logical
{ "end_col": 13, "end_line": 20, "start_col": 36, "start_line": 15 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op64 = IOpEx IOp64
let op64 =
false
null
false
IOpEx IOp64
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Instruction_s.IOpEx", "Vale.X64.Instruction_s.IOp64" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o)
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op64 : Vale.X64.Instruction_s.instr_operand
[]
Vale.X64.Instruction_s.op64
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.X64.Instruction_s.instr_operand
{ "end_col": 43, "end_line": 42, "start_col": 32, "start_line": 42 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let opXmm = IOpEx IOpXmm
let opXmm =
false
null
false
IOpEx IOpXmm
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Instruction_s.IOpEx", "Vale.X64.Instruction_s.IOpXmm" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o)
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val opXmm : Vale.X64.Instruction_s.instr_operand
[]
Vale.X64.Instruction_s.opXmm
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.X64.Instruction_s.instr_operand
{ "end_col": 45, "end_line": 43, "start_col": 33, "start_line": 43 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let opFlagsCf = IOpIm IOpFlagsCf
let opFlagsCf =
false
null
false
IOpIm IOpFlagsCf
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Instruction_s.IOpIm", "Vale.X64.Instruction_s.IOpFlagsCf" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r))
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val opFlagsCf : Vale.X64.Instruction_s.instr_operand
[]
Vale.X64.Instruction_s.opFlagsCf
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.X64.Instruction_s.instr_operand
{ "end_col": 53, "end_line": 47, "start_col": 37, "start_line": 47 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let opFlagsOf = IOpIm IOpFlagsOf
let opFlagsOf =
false
null
false
IOpIm IOpFlagsOf
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Instruction_s.IOpIm", "Vale.X64.Instruction_s.IOpFlagsOf" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r)) [@instr_attr] unfold let oneXmm (o:operand128) = IOpIm (IOpXmmOne o)
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val opFlagsOf : Vale.X64.Instruction_s.instr_operand
[]
Vale.X64.Instruction_s.opFlagsOf
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Vale.X64.Instruction_s.instr_operand
{ "end_col": 53, "end_line": 48, "start_col": 37, "start_line": 48 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let oneXmm (o:operand128) = IOpIm (IOpXmmOne o)
let oneXmm (o: operand128) =
false
null
false
IOpIm (IOpXmmOne o)
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Machine_s.operand128", "Vale.X64.Instruction_s.IOpIm", "Vale.X64.Instruction_s.IOpXmmOne", "Vale.X64.Instruction_s.instr_operand" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o)
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val oneXmm : o: Vale.X64.Machine_s.operand128 -> Vale.X64.Instruction_s.instr_operand
[]
Vale.X64.Instruction_s.oneXmm
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o: Vale.X64.Machine_s.operand128 -> Vale.X64.Instruction_s.instr_operand
{ "end_col": 68, "end_line": 46, "start_col": 49, "start_line": 46 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let out (o:instr_operand) = (Out, o)
let out (o: instr_operand) =
false
null
false
(Out, o)
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Instruction_s.instr_operand", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Instruction_s.instr_operand_inout", "Vale.X64.Instruction_s.Out", "FStar.Pervasives.Native.tuple2" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val out : o: Vale.X64.Instruction_s.instr_operand -> Vale.X64.Instruction_s.instr_operand_inout * Vale.X64.Instruction_s.instr_operand
[]
Vale.X64.Instruction_s.out
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o: Vale.X64.Instruction_s.instr_operand -> Vale.X64.Instruction_s.instr_operand_inout * Vale.X64.Instruction_s.instr_operand
{ "end_col": 57, "end_line": 41, "start_col": 49, "start_line": 41 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let inOut (o:instr_operand) = (InOut, o)
let inOut (o: instr_operand) =
false
null
false
(InOut, o)
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Instruction_s.instr_operand", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Instruction_s.instr_operand_inout", "Vale.X64.Instruction_s.InOut", "FStar.Pervasives.Native.tuple2" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val inOut : o: Vale.X64.Instruction_s.instr_operand -> Vale.X64.Instruction_s.instr_operand_inout * Vale.X64.Instruction_s.instr_operand
[]
Vale.X64.Instruction_s.inOut
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o: Vale.X64.Instruction_s.instr_operand -> Vale.X64.Instruction_s.instr_operand_inout * Vale.X64.Instruction_s.instr_operand
{ "end_col": 61, "end_line": 40, "start_col": 51, "start_line": 40 }
Prims.Tot
val instr_eval_t (outs: list instr_out) (args: list instr_operand) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let instr_eval_t (outs:list instr_out) (args:list instr_operand) : Type0 = instr_inouts_t outs outs args
val instr_eval_t (outs: list instr_out) (args: list instr_operand) : Type0 let instr_eval_t (outs: list instr_out) (args: list instr_operand) : Type0 =
false
null
false
instr_inouts_t outs outs args
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Prims.list", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.instr_inouts_t" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r)) [@instr_attr] unfold let oneXmm (o:operand128) = IOpIm (IOpXmmOne o) [@instr_attr] unfold let opFlagsCf = IOpIm IOpFlagsCf [@instr_attr] unfold let opFlagsOf = IOpIm IOpFlagsOf [@instr_attr] let instr_val_t (o:instr_operand) : Type0 = match o with | IOpEx IOp64 | IOpIm (IOp64One _) -> nat64 | IOpEx IOpXmm | IOpIm (IOpXmmOne _) -> quad32 | IOpIm IOpFlagsCf -> bool | IOpIm IOpFlagsOf -> bool [@instr_attr] let rec instr_ret_t (outs:list instr_out) : Type0 = match outs with | [] -> unit | [(_, o)] -> instr_val_t o | (_, o)::outs -> instr_val_t o & instr_ret_t outs [@instr_attr] let rec instr_args_t (outs:list instr_out) (args:list instr_operand) : Type0 = match args with | [] -> option (instr_ret_t outs) | i::args -> arrow (instr_val_t i) (instr_args_t outs args) [@instr_attr] let rec instr_inouts_t (outs inouts:list instr_out) (args:list instr_operand) : Type0 = match inouts with | [] -> instr_args_t outs args | (Out, _)::inouts -> instr_inouts_t outs inouts args | (InOut, i)::inouts -> arrow (instr_val_t i) (instr_inouts_t outs inouts args) (* An instr evaluator is a function of type: in_outs1 ... -> in_outsi -> args1 -> ...> argsj -> (outs1 & (... & outsk) ...) where in_outs = [(b, o) in outs | b = InOut] *) [@instr_attr]
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val instr_eval_t (outs: list instr_out) (args: list instr_operand) : Type0
[]
Vale.X64.Instruction_s.instr_eval_t
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
outs: Prims.list Vale.X64.Instruction_s.instr_out -> args: Prims.list Vale.X64.Instruction_s.instr_operand -> Type0
{ "end_col": 31, "end_line": 85, "start_col": 2, "start_line": 85 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let arrow (a b:Type) = a -> b
let arrow (a b: Type) =
false
null
false
a -> b
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val arrow : a: Type -> b: Type -> Type
[]
Vale.X64.Instruction_s.arrow
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Type -> b: Type -> Type
{ "end_col": 29, "end_line": 37, "start_col": 23, "start_line": 37 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let instr_out = instr_operand_inout & instr_operand
let instr_out =
false
null
false
instr_operand_inout & instr_operand
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple2", "Vale.X64.Instruction_s.instr_operand_inout", "Vale.X64.Instruction_s.instr_operand" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val instr_out : Type0
[]
Vale.X64.Instruction_s.instr_out
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 51, "end_line": 32, "start_col": 16, "start_line": 32 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let one64 (o:operand64) = IOpIm (IOp64One o)
let one64 (o: operand64) =
false
null
false
IOpIm (IOp64One o)
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Machine_s.operand64", "Vale.X64.Instruction_s.IOpIm", "Vale.X64.Instruction_s.IOp64One", "Vale.X64.Instruction_s.instr_operand" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val one64 : o: Vale.X64.Machine_s.operand64 -> Vale.X64.Instruction_s.instr_operand
[]
Vale.X64.Instruction_s.one64
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o: Vale.X64.Machine_s.operand64 -> Vale.X64.Instruction_s.instr_operand
{ "end_col": 65, "end_line": 44, "start_col": 47, "start_line": 44 }
Prims.Tot
val normal (#a: Type) (x: a) : a
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x
val normal (#a: Type) (x: a) : a let normal (#a: Type) (x: a) : a =
false
null
false
norm [zeta; iota; delta_attr [`%instr_attr]] x
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand
false
false
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val normal (#a: Type) (x: a) : a
[]
Vale.X64.Instruction_s.normal
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: a -> a
{ "end_col": 86, "end_line": 35, "start_col": 40, "start_line": 35 }
Prims.Tot
val coerce (#b #a: Type) (x: a{a == b}) : b
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let coerce (#b #a:Type) (x:a{a == b}) : b = x
val coerce (#b #a: Type) (x: a{a == b}) : b let coerce (#b #a: Type) (x: a{a == b}) : b =
false
null
false
x
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Prims.eq2" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x
false
false
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val coerce (#b #a: Type) (x: a{a == b}) : b
[]
Vale.X64.Instruction_s.coerce
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: a{a == b} -> b
{ "end_col": 66, "end_line": 38, "start_col": 65, "start_line": 38 }
Prims.Tot
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r))
let one64Reg (r: reg_64) =
false
null
false
IOpIm (IOp64One (OReg r))
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Machine_s.reg_64", "Vale.X64.Instruction_s.IOpIm", "Vale.X64.Instruction_s.IOp64One", "Vale.X64.Machine_s.OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Instruction_s.instr_operand" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val one64Reg : r: Vale.X64.Machine_s.reg_64 -> Vale.X64.Instruction_s.instr_operand
[]
Vale.X64.Instruction_s.one64Reg
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
r: Vale.X64.Machine_s.reg_64 -> Vale.X64.Instruction_s.instr_operand
{ "end_col": 72, "end_line": 45, "start_col": 47, "start_line": 45 }
Prims.Tot
val instr_operand_t (arg: instr_operand_explicit) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let instr_operand_t (arg:instr_operand_explicit) : Type0 = match arg with | IOp64 -> operand64 | IOpXmm -> operand128
val instr_operand_t (arg: instr_operand_explicit) : Type0 let instr_operand_t (arg: instr_operand_explicit) : Type0 =
false
null
false
match arg with | IOp64 -> operand64 | IOpXmm -> operand128
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Instruction_s.instr_operand_explicit", "Vale.X64.Machine_s.operand64", "Vale.X64.Machine_s.operand128" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r)) [@instr_attr] unfold let oneXmm (o:operand128) = IOpIm (IOpXmmOne o) [@instr_attr] unfold let opFlagsCf = IOpIm IOpFlagsCf [@instr_attr] unfold let opFlagsOf = IOpIm IOpFlagsOf [@instr_attr] let instr_val_t (o:instr_operand) : Type0 = match o with | IOpEx IOp64 | IOpIm (IOp64One _) -> nat64 | IOpEx IOpXmm | IOpIm (IOpXmmOne _) -> quad32 | IOpIm IOpFlagsCf -> bool | IOpIm IOpFlagsOf -> bool [@instr_attr] let rec instr_ret_t (outs:list instr_out) : Type0 = match outs with | [] -> unit | [(_, o)] -> instr_val_t o | (_, o)::outs -> instr_val_t o & instr_ret_t outs [@instr_attr] let rec instr_args_t (outs:list instr_out) (args:list instr_operand) : Type0 = match args with | [] -> option (instr_ret_t outs) | i::args -> arrow (instr_val_t i) (instr_args_t outs args) [@instr_attr] let rec instr_inouts_t (outs inouts:list instr_out) (args:list instr_operand) : Type0 = match inouts with | [] -> instr_args_t outs args | (Out, _)::inouts -> instr_inouts_t outs inouts args | (InOut, i)::inouts -> arrow (instr_val_t i) (instr_inouts_t outs inouts args) (* An instr evaluator is a function of type: in_outs1 ... -> in_outsi -> args1 -> ...> argsj -> (outs1 & (... & outsk) ...) where in_outs = [(b, o) in outs | b = InOut] *) [@instr_attr] let instr_eval_t (outs:list instr_out) (args:list instr_operand) : Type0 = instr_inouts_t outs outs args [@instr_attr]
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val instr_operand_t (arg: instr_operand_explicit) : Type0
[]
Vale.X64.Instruction_s.instr_operand_t
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
arg: Vale.X64.Instruction_s.instr_operand_explicit -> Type0
{ "end_col": 24, "end_line": 91, "start_col": 2, "start_line": 89 }
Prims.Tot
val instr_args_t (outs: list instr_out) (args: list instr_operand) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec instr_args_t (outs:list instr_out) (args:list instr_operand) : Type0 = match args with | [] -> option (instr_ret_t outs) | i::args -> arrow (instr_val_t i) (instr_args_t outs args)
val instr_args_t (outs: list instr_out) (args: list instr_operand) : Type0 let rec instr_args_t (outs: list instr_out) (args: list instr_operand) : Type0 =
false
null
false
match args with | [] -> option (instr_ret_t outs) | i :: args -> arrow (instr_val_t i) (instr_args_t outs args)
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Prims.list", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "FStar.Pervasives.Native.option", "Vale.X64.Instruction_s.instr_ret_t", "Vale.X64.Instruction_s.arrow", "Vale.X64.Instruction_s.instr_val_t", "Vale.X64.Instruction_s.instr_args_t" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r)) [@instr_attr] unfold let oneXmm (o:operand128) = IOpIm (IOpXmmOne o) [@instr_attr] unfold let opFlagsCf = IOpIm IOpFlagsCf [@instr_attr] unfold let opFlagsOf = IOpIm IOpFlagsOf [@instr_attr] let instr_val_t (o:instr_operand) : Type0 = match o with | IOpEx IOp64 | IOpIm (IOp64One _) -> nat64 | IOpEx IOpXmm | IOpIm (IOpXmmOne _) -> quad32 | IOpIm IOpFlagsCf -> bool | IOpIm IOpFlagsOf -> bool [@instr_attr] let rec instr_ret_t (outs:list instr_out) : Type0 = match outs with | [] -> unit | [(_, o)] -> instr_val_t o | (_, o)::outs -> instr_val_t o & instr_ret_t outs [@instr_attr]
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val instr_args_t (outs: list instr_out) (args: list instr_operand) : Type0
[ "recursion" ]
Vale.X64.Instruction_s.instr_args_t
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
outs: Prims.list Vale.X64.Instruction_s.instr_out -> args: Prims.list Vale.X64.Instruction_s.instr_operand -> Type0
{ "end_col": 61, "end_line": 69, "start_col": 2, "start_line": 67 }
Prims.Tot
val instr_operands_t (outs: list instr_out) (args: list instr_operand) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec instr_operands_t (outs:list instr_out) (args:list instr_operand) : Type0 = match outs with | [] -> instr_operands_t_args args | (_, IOpEx i)::outs -> instr_operand_t i & instr_operands_t outs args | (_, IOpIm _)::outs -> instr_operands_t outs args
val instr_operands_t (outs: list instr_out) (args: list instr_operand) : Type0 let rec instr_operands_t (outs: list instr_out) (args: list instr_operand) : Type0 =
false
null
false
match outs with | [] -> instr_operands_t_args args | (_, IOpEx i) :: outs -> instr_operand_t i & instr_operands_t outs args | (_, IOpIm _) :: outs -> instr_operands_t outs args
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Prims.list", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.instr_operands_t_args", "Vale.X64.Instruction_s.instr_operand_inout", "Vale.X64.Instruction_s.instr_operand_explicit", "FStar.Pervasives.Native.tuple2", "Vale.X64.Instruction_s.instr_operand_t", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.Instruction_s.instr_operand_implicit" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r)) [@instr_attr] unfold let oneXmm (o:operand128) = IOpIm (IOpXmmOne o) [@instr_attr] unfold let opFlagsCf = IOpIm IOpFlagsCf [@instr_attr] unfold let opFlagsOf = IOpIm IOpFlagsOf [@instr_attr] let instr_val_t (o:instr_operand) : Type0 = match o with | IOpEx IOp64 | IOpIm (IOp64One _) -> nat64 | IOpEx IOpXmm | IOpIm (IOpXmmOne _) -> quad32 | IOpIm IOpFlagsCf -> bool | IOpIm IOpFlagsOf -> bool [@instr_attr] let rec instr_ret_t (outs:list instr_out) : Type0 = match outs with | [] -> unit | [(_, o)] -> instr_val_t o | (_, o)::outs -> instr_val_t o & instr_ret_t outs [@instr_attr] let rec instr_args_t (outs:list instr_out) (args:list instr_operand) : Type0 = match args with | [] -> option (instr_ret_t outs) | i::args -> arrow (instr_val_t i) (instr_args_t outs args) [@instr_attr] let rec instr_inouts_t (outs inouts:list instr_out) (args:list instr_operand) : Type0 = match inouts with | [] -> instr_args_t outs args | (Out, _)::inouts -> instr_inouts_t outs inouts args | (InOut, i)::inouts -> arrow (instr_val_t i) (instr_inouts_t outs inouts args) (* An instr evaluator is a function of type: in_outs1 ... -> in_outsi -> args1 -> ...> argsj -> (outs1 & (... & outsk) ...) where in_outs = [(b, o) in outs | b = InOut] *) [@instr_attr] let instr_eval_t (outs:list instr_out) (args:list instr_operand) : Type0 = instr_inouts_t outs outs args [@instr_attr] let instr_operand_t (arg:instr_operand_explicit) : Type0 = match arg with | IOp64 -> operand64 | IOpXmm -> operand128 [@instr_attr] let rec instr_operands_t_args (args:list instr_operand) : Type0 = match args with | [] -> unit | (IOpEx i)::args -> instr_operand_t i & instr_operands_t_args args | (IOpIm _)::args -> instr_operands_t_args args [@instr_attr]
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val instr_operands_t (outs: list instr_out) (args: list instr_operand) : Type0
[ "recursion" ]
Vale.X64.Instruction_s.instr_operands_t
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
outs: Prims.list Vale.X64.Instruction_s.instr_out -> args: Prims.list Vale.X64.Instruction_s.instr_operand -> Type0
{ "end_col": 52, "end_line": 105, "start_col": 2, "start_line": 102 }
Prims.Tot
val instr_val_t (o: instr_operand) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let instr_val_t (o:instr_operand) : Type0 = match o with | IOpEx IOp64 | IOpIm (IOp64One _) -> nat64 | IOpEx IOpXmm | IOpIm (IOpXmmOne _) -> quad32 | IOpIm IOpFlagsCf -> bool | IOpIm IOpFlagsOf -> bool
val instr_val_t (o: instr_operand) : Type0 let instr_val_t (o: instr_operand) : Type0 =
false
null
false
match o with | IOpEx IOp64 | IOpIm (IOp64One _) -> nat64 | IOpEx IOpXmm | IOpIm (IOpXmmOne _) -> quad32 | IOpIm IOpFlagsCf -> bool | IOpIm IOpFlagsOf -> bool
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.operand64", "Vale.X64.Machine_s.quad32", "Vale.X64.Machine_s.operand128", "Prims.bool" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r)) [@instr_attr] unfold let oneXmm (o:operand128) = IOpIm (IOpXmmOne o) [@instr_attr] unfold let opFlagsCf = IOpIm IOpFlagsCf [@instr_attr] unfold let opFlagsOf = IOpIm IOpFlagsOf [@instr_attr]
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val instr_val_t (o: instr_operand) : Type0
[]
Vale.X64.Instruction_s.instr_val_t
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
o: Vale.X64.Instruction_s.instr_operand -> Type0
{ "end_col": 28, "end_line": 56, "start_col": 2, "start_line": 52 }
Prims.Tot
val instr_ret_t (outs: list instr_out) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec instr_ret_t (outs:list instr_out) : Type0 = match outs with | [] -> unit | [(_, o)] -> instr_val_t o | (_, o)::outs -> instr_val_t o & instr_ret_t outs
val instr_ret_t (outs: list instr_out) : Type0 let rec instr_ret_t (outs: list instr_out) : Type0 =
false
null
false
match outs with | [] -> unit | [_, o] -> instr_val_t o | (_, o) :: outs -> instr_val_t o & instr_ret_t outs
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Prims.list", "Vale.X64.Instruction_s.instr_out", "Prims.unit", "Vale.X64.Instruction_s.instr_operand_inout", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.instr_val_t", "FStar.Pervasives.Native.tuple2", "Vale.X64.Instruction_s.instr_ret_t" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r)) [@instr_attr] unfold let oneXmm (o:operand128) = IOpIm (IOpXmmOne o) [@instr_attr] unfold let opFlagsCf = IOpIm IOpFlagsCf [@instr_attr] unfold let opFlagsOf = IOpIm IOpFlagsOf [@instr_attr] let instr_val_t (o:instr_operand) : Type0 = match o with | IOpEx IOp64 | IOpIm (IOp64One _) -> nat64 | IOpEx IOpXmm | IOpIm (IOpXmmOne _) -> quad32 | IOpIm IOpFlagsCf -> bool | IOpIm IOpFlagsOf -> bool [@instr_attr]
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val instr_ret_t (outs: list instr_out) : Type0
[ "recursion" ]
Vale.X64.Instruction_s.instr_ret_t
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
outs: Prims.list Vale.X64.Instruction_s.instr_out -> Type0
{ "end_col": 52, "end_line": 63, "start_col": 2, "start_line": 60 }
Prims.Tot
val instr_inouts_t (outs inouts: list instr_out) (args: list instr_operand) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec instr_inouts_t (outs inouts:list instr_out) (args:list instr_operand) : Type0 = match inouts with | [] -> instr_args_t outs args | (Out, _)::inouts -> instr_inouts_t outs inouts args | (InOut, i)::inouts -> arrow (instr_val_t i) (instr_inouts_t outs inouts args)
val instr_inouts_t (outs inouts: list instr_out) (args: list instr_operand) : Type0 let rec instr_inouts_t (outs inouts: list instr_out) (args: list instr_operand) : Type0 =
false
null
false
match inouts with | [] -> instr_args_t outs args | (Out, _) :: inouts -> instr_inouts_t outs inouts args | (InOut, i) :: inouts -> arrow (instr_val_t i) (instr_inouts_t outs inouts args)
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Prims.list", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.instr_args_t", "Vale.X64.Instruction_s.instr_inouts_t", "Vale.X64.Instruction_s.arrow", "Vale.X64.Instruction_s.instr_val_t" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r)) [@instr_attr] unfold let oneXmm (o:operand128) = IOpIm (IOpXmmOne o) [@instr_attr] unfold let opFlagsCf = IOpIm IOpFlagsCf [@instr_attr] unfold let opFlagsOf = IOpIm IOpFlagsOf [@instr_attr] let instr_val_t (o:instr_operand) : Type0 = match o with | IOpEx IOp64 | IOpIm (IOp64One _) -> nat64 | IOpEx IOpXmm | IOpIm (IOpXmmOne _) -> quad32 | IOpIm IOpFlagsCf -> bool | IOpIm IOpFlagsOf -> bool [@instr_attr] let rec instr_ret_t (outs:list instr_out) : Type0 = match outs with | [] -> unit | [(_, o)] -> instr_val_t o | (_, o)::outs -> instr_val_t o & instr_ret_t outs [@instr_attr] let rec instr_args_t (outs:list instr_out) (args:list instr_operand) : Type0 = match args with | [] -> option (instr_ret_t outs) | i::args -> arrow (instr_val_t i) (instr_args_t outs args) [@instr_attr]
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val instr_inouts_t (outs inouts: list instr_out) (args: list instr_operand) : Type0
[ "recursion" ]
Vale.X64.Instruction_s.instr_inouts_t
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
outs: Prims.list Vale.X64.Instruction_s.instr_out -> inouts: Prims.list Vale.X64.Instruction_s.instr_out -> args: Prims.list Vale.X64.Instruction_s.instr_operand -> Type0
{ "end_col": 81, "end_line": 76, "start_col": 2, "start_line": 73 }
Prims.Tot
val instr_operands_t_args (args: list instr_operand) : Type0
[ { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec instr_operands_t_args (args:list instr_operand) : Type0 = match args with | [] -> unit | (IOpEx i)::args -> instr_operand_t i & instr_operands_t_args args | (IOpIm _)::args -> instr_operands_t_args args
val instr_operands_t_args (args: list instr_operand) : Type0 let rec instr_operands_t_args (args: list instr_operand) : Type0 =
false
null
false
match args with | [] -> unit | IOpEx i :: args -> instr_operand_t i & instr_operands_t_args args | IOpIm _ :: args -> instr_operands_t_args args
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Prims.list", "Vale.X64.Instruction_s.instr_operand", "Prims.unit", "Vale.X64.Instruction_s.instr_operand_explicit", "FStar.Pervasives.Native.tuple2", "Vale.X64.Instruction_s.instr_operand_t", "Vale.X64.Instruction_s.instr_operands_t_args", "Vale.X64.Instruction_s.instr_operand_implicit" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r)) [@instr_attr] unfold let oneXmm (o:operand128) = IOpIm (IOpXmmOne o) [@instr_attr] unfold let opFlagsCf = IOpIm IOpFlagsCf [@instr_attr] unfold let opFlagsOf = IOpIm IOpFlagsOf [@instr_attr] let instr_val_t (o:instr_operand) : Type0 = match o with | IOpEx IOp64 | IOpIm (IOp64One _) -> nat64 | IOpEx IOpXmm | IOpIm (IOpXmmOne _) -> quad32 | IOpIm IOpFlagsCf -> bool | IOpIm IOpFlagsOf -> bool [@instr_attr] let rec instr_ret_t (outs:list instr_out) : Type0 = match outs with | [] -> unit | [(_, o)] -> instr_val_t o | (_, o)::outs -> instr_val_t o & instr_ret_t outs [@instr_attr] let rec instr_args_t (outs:list instr_out) (args:list instr_operand) : Type0 = match args with | [] -> option (instr_ret_t outs) | i::args -> arrow (instr_val_t i) (instr_args_t outs args) [@instr_attr] let rec instr_inouts_t (outs inouts:list instr_out) (args:list instr_operand) : Type0 = match inouts with | [] -> instr_args_t outs args | (Out, _)::inouts -> instr_inouts_t outs inouts args | (InOut, i)::inouts -> arrow (instr_val_t i) (instr_inouts_t outs inouts args) (* An instr evaluator is a function of type: in_outs1 ... -> in_outsi -> args1 -> ...> argsj -> (outs1 & (... & outsk) ...) where in_outs = [(b, o) in outs | b = InOut] *) [@instr_attr] let instr_eval_t (outs:list instr_out) (args:list instr_operand) : Type0 = instr_inouts_t outs outs args [@instr_attr] let instr_operand_t (arg:instr_operand_explicit) : Type0 = match arg with | IOp64 -> operand64 | IOpXmm -> operand128 [@instr_attr]
false
true
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val instr_operands_t_args (args: list instr_operand) : Type0
[ "recursion" ]
Vale.X64.Instruction_s.instr_operands_t_args
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
args: Prims.list Vale.X64.Instruction_s.instr_operand -> Type0
{ "end_col": 49, "end_line": 98, "start_col": 2, "start_line": 95 }
Prims.Tot
val instr_dep (outs: list instr_out) (args: list instr_operand) (havoc_flags: flag_havoc) (f: normal (instr_eval_t outs args)) : Type0
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let instr_dep (outs:list instr_out) (args:list instr_operand) (havoc_flags:flag_havoc) (f:normal (instr_eval_t outs args)) : Type0 = i:(instr_t outs args havoc_flags){instr_eval i == f}
val instr_dep (outs: list instr_out) (args: list instr_operand) (havoc_flags: flag_havoc) (f: normal (instr_eval_t outs args)) : Type0 let instr_dep (outs: list instr_out) (args: list instr_operand) (havoc_flags: flag_havoc) (f: normal (instr_eval_t outs args)) : Type0 =
false
null
false
i: (instr_t outs args havoc_flags){instr_eval i == f}
{ "checked_file": "Vale.X64.Instruction_s.fsti.checked", "dependencies": [ "Vale.X64.Machine_s.fst.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.Instruction_s.fsti" }
[ "total" ]
[ "Prims.list", "Vale.X64.Instruction_s.instr_out", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.flag_havoc", "Vale.X64.Instruction_s.normal", "Vale.X64.Instruction_s.instr_eval_t", "Vale.X64.Instruction_s.instr_t", "Prims.eq2", "Vale.X64.Instruction_s.instr_args_t", "Vale.X64.Instruction_s.instr_inouts_t", "Vale.X64.Instruction_s.arrow", "Vale.X64.Instruction_s.instr_val_t", "Vale.X64.Instruction_s.instr_eval" ]
[]
module Vale.X64.Instruction_s open FStar.Mul open Vale.Def.Words_s open Vale.Def.Types_s open Vale.X64.Machine_s (* An generic instruction has: - zero or more input operands - zero or more output operands or input/output operands - a possible effect on the status flags Some of the operands may be hard-coded to a particular register; other operands are flexible. For example, the Intel 64-bit MUL instruction, which executes "(RDX:RAX) := RAX * src" has: - one hard-coded input/output operand, the flags - note: the instruction can havoc the flags in addition to or instead of specifying a flags operand - one hard-coded output operand, RDX - one hard-coded input/output operand, RAX - one flexible input operand (src) *) type instr_operand_inout = | InOut | Out type instr_operand_explicit = // flexible operand | IOp64 : instr_operand_explicit | IOpXmm : instr_operand_explicit type instr_operand_implicit = // hard-coded operand | IOp64One : o:operand64 -> instr_operand_implicit | IOpXmmOne : o:operand128 -> instr_operand_implicit | IOpFlagsCf : instr_operand_implicit | IOpFlagsOf : instr_operand_implicit type instr_operand = | IOpEx : instr_operand_explicit -> instr_operand | IOpIm : instr_operand_implicit -> instr_operand let instr_out = instr_operand_inout & instr_operand irreducible let instr_attr = () unfold let normal (#a:Type) (x:a) : a = norm [zeta; iota; delta_attr [`%instr_attr]] x let arrow (a b:Type) = a -> b [@instr_attr] unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x [@instr_attr] unfold let inOut (o:instr_operand) = (InOut, o) [@instr_attr] unfold let out (o:instr_operand) = (Out, o) [@instr_attr] unfold let op64 = IOpEx IOp64 [@instr_attr] unfold let opXmm = IOpEx IOpXmm [@instr_attr] unfold let one64 (o:operand64) = IOpIm (IOp64One o) [@instr_attr] unfold let one64Reg (r:reg_64) = IOpIm (IOp64One (OReg r)) [@instr_attr] unfold let oneXmm (o:operand128) = IOpIm (IOpXmmOne o) [@instr_attr] unfold let opFlagsCf = IOpIm IOpFlagsCf [@instr_attr] unfold let opFlagsOf = IOpIm IOpFlagsOf [@instr_attr] let instr_val_t (o:instr_operand) : Type0 = match o with | IOpEx IOp64 | IOpIm (IOp64One _) -> nat64 | IOpEx IOpXmm | IOpIm (IOpXmmOne _) -> quad32 | IOpIm IOpFlagsCf -> bool | IOpIm IOpFlagsOf -> bool [@instr_attr] let rec instr_ret_t (outs:list instr_out) : Type0 = match outs with | [] -> unit | [(_, o)] -> instr_val_t o | (_, o)::outs -> instr_val_t o & instr_ret_t outs [@instr_attr] let rec instr_args_t (outs:list instr_out) (args:list instr_operand) : Type0 = match args with | [] -> option (instr_ret_t outs) | i::args -> arrow (instr_val_t i) (instr_args_t outs args) [@instr_attr] let rec instr_inouts_t (outs inouts:list instr_out) (args:list instr_operand) : Type0 = match inouts with | [] -> instr_args_t outs args | (Out, _)::inouts -> instr_inouts_t outs inouts args | (InOut, i)::inouts -> arrow (instr_val_t i) (instr_inouts_t outs inouts args) (* An instr evaluator is a function of type: in_outs1 ... -> in_outsi -> args1 -> ...> argsj -> (outs1 & (... & outsk) ...) where in_outs = [(b, o) in outs | b = InOut] *) [@instr_attr] let instr_eval_t (outs:list instr_out) (args:list instr_operand) : Type0 = instr_inouts_t outs outs args [@instr_attr] let instr_operand_t (arg:instr_operand_explicit) : Type0 = match arg with | IOp64 -> operand64 | IOpXmm -> operand128 [@instr_attr] let rec instr_operands_t_args (args:list instr_operand) : Type0 = match args with | [] -> unit | (IOpEx i)::args -> instr_operand_t i & instr_operands_t_args args | (IOpIm _)::args -> instr_operands_t_args args [@instr_attr] let rec instr_operands_t (outs:list instr_out) (args:list instr_operand) : Type0 = match outs with | [] -> instr_operands_t_args args | (_, IOpEx i)::outs -> instr_operand_t i & instr_operands_t outs args | (_, IOpIm _)::outs -> instr_operands_t outs args (* The printed syntax may be different from the underlying semantics, so we have a separate data type to represent operand syntax. The print operands are listed in Intel/MASM order (destination operand listed first). *) type instr_print_operand = | P8 : operand64 -> instr_print_operand | P16 : operand64 -> instr_print_operand | P32 : operand64 -> instr_print_operand | P64 : operand64 -> instr_print_operand | PXmm : operand128 -> instr_print_operand | PImm : int -> instr_print_operand | PShift : operand64 -> instr_print_operand type instr_print_kind = | POpcode | PSuffix // add suffix character to opcode for GCC/ATT syntax | PrintPSha256rnds2 type instr_print = | Print : string -> instr_print_kind -> list instr_print_operand -> instr_print type flag_havoc = | HavocFlags | PreserveFlags (* This type is abstract so that untrusted code can't invent nonexistent instruction semantics out of thin air. (Only trusted instruction definitions can create new values of this type.) The arguments (outs, args, havoc_flags), together with a function instr_eval, determine the semantics. *) val instr_t (outs:list instr_out) (args:list instr_operand) (havoc_flags:flag_havoc) : Type0 noeq type instr_t_record = | InstrTypeRecord : #outs:list instr_out -> #args:list instr_operand -> #havoc_flags:flag_havoc -> i:instr_t outs args havoc_flags -> instr_t_record val instr_eval (#outs:list instr_out) (#args:list instr_operand) (#havoc_flags:flag_havoc) (i:instr_t outs args havoc_flags) // : normal (instr_eval_t outs args) : norm [zeta; iota; delta_attr [`%instr_attr]] (instr_eval_t outs args) val instr_printer (#outs:list instr_out) (#args:list instr_operand) (#havoc_flags:flag_havoc) (i:instr_t outs args havoc_flags) (oprs:normal (instr_operands_t outs args)) : instr_print let instr_dep (outs:list instr_out) (args:list instr_operand) (havoc_flags:flag_havoc) (f:normal (instr_eval_t outs args))
false
false
Vale.X64.Instruction_s.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val instr_dep (outs: list instr_out) (args: list instr_operand) (havoc_flags: flag_havoc) (f: normal (instr_eval_t outs args)) : Type0
[]
Vale.X64.Instruction_s.instr_dep
{ "file_name": "vale/specs/hardware/Vale.X64.Instruction_s.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
outs: Prims.list Vale.X64.Instruction_s.instr_out -> args: Prims.list Vale.X64.Instruction_s.instr_operand -> havoc_flags: Vale.X64.Instruction_s.flag_havoc -> f: Vale.X64.Instruction_s.normal (Vale.X64.Instruction_s.instr_eval_t outs args) -> Type0
{ "end_col": 54, "end_line": 160, "start_col": 2, "start_line": 160 }
Prims.Tot
val as_vale_stack (st: BS.machine_stack) : SI.vale_stack
[ { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView", "short_module": "BV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let as_vale_stack (st:BS.machine_stack) : SI.vale_stack = IB.coerce st
val as_vale_stack (st: BS.machine_stack) : SI.vale_stack let as_vale_stack (st: BS.machine_stack) : SI.vale_stack =
false
null
false
IB.coerce st
{ "checked_file": "Vale.X64.MemoryAdapters.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.MachineHeap_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.MemoryAdapters.fsti" }
[ "total" ]
[ "Vale.X64.Machine_Semantics_s.machine_stack", "Vale.Interop.Base.coerce", "Vale.X64.Stack_i.vale_stack" ]
[]
module Vale.X64.MemoryAdapters open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap open Vale.Arch.MachineHeap_s module BS = Vale.X64.Machine_Semantics_s module BV = LowStar.BufferView module HS = FStar.HyperStack module ME = Vale.X64.Memory module SI = Vale.X64.Stack_i module IB = Vale.Interop.Base module VS = Vale.X64.State module V = Vale.X64.Decls module Map16 = Vale.Lib.Map16 val as_vale_buffer (#src #t:base_typ) (i:IB.buf_t src t) : GTot (ME.buffer t) val as_vale_immbuffer (#src #t:base_typ) (i:IB.ibuf_t src t) : GTot (ME.buffer t) val stack_eq : squash (BS.machine_stack == SI.vale_stack) val as_mem (h:ME.vale_heap) : GTot IB.interop_heap unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x val lemma_heap_impl : squash (heap_impl == vale_full_heap) val create_initial_vale_heap (ih:IB.interop_heap) : GTot vale_heap val create_initial_vale_full_heap (ih:IB.interop_heap) (mt:memTaint_t) : Ghost vale_full_heap (requires True) (ensures fun h -> h == coerce (heap_create_impl ih mt) /\ ME.mem_inv h /\ ME.is_initial_heap h.vf_layout h.vf_heap /\ ME.get_heaplet_id h.vf_heap == None /\ h.vf_heap == create_initial_vale_heap ih ) unfold let as_vale_stack (st:BS.machine_stack)
false
true
Vale.X64.MemoryAdapters.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val as_vale_stack (st: BS.machine_stack) : SI.vale_stack
[]
Vale.X64.MemoryAdapters.as_vale_stack
{ "file_name": "vale/code/arch/x64/interop/Vale.X64.MemoryAdapters.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
st: Vale.X64.Machine_Semantics_s.machine_stack -> Vale.X64.Stack_i.vale_stack
{ "end_col": 16, "end_line": 44, "start_col": 4, "start_line": 44 }
Prims.Tot
val coerce (#b #a: Type) (x: a{a == b}) : b
[ { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": true, "full_module": "Vale.X64.State", "short_module": "VS" }, { "abbrev": true, "full_module": "Vale.Interop.Base", "short_module": "IB" }, { "abbrev": true, "full_module": "Vale.X64.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.X64.Memory", "short_module": "ME" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView", "short_module": "BV" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "BS" }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let coerce (#b #a:Type) (x:a{a == b}) : b = x
val coerce (#b #a: Type) (x: a{a == b}) : b let coerce (#b #a: Type) (x: a{a == b}) : b =
false
null
false
x
{ "checked_file": "Vale.X64.MemoryAdapters.fsti.checked", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Decls.fsti.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Interop.Base.fst.checked", "Vale.Arch.MachineHeap_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "LowStar.BufferView.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.X64.MemoryAdapters.fsti" }
[ "total" ]
[ "Prims.eq2" ]
[]
module Vale.X64.MemoryAdapters open FStar.Mul open Vale.Interop.Base open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap open Vale.Arch.MachineHeap_s module BS = Vale.X64.Machine_Semantics_s module BV = LowStar.BufferView module HS = FStar.HyperStack module ME = Vale.X64.Memory module SI = Vale.X64.Stack_i module IB = Vale.Interop.Base module VS = Vale.X64.State module V = Vale.X64.Decls module Map16 = Vale.Lib.Map16 val as_vale_buffer (#src #t:base_typ) (i:IB.buf_t src t) : GTot (ME.buffer t) val as_vale_immbuffer (#src #t:base_typ) (i:IB.ibuf_t src t) : GTot (ME.buffer t) val stack_eq : squash (BS.machine_stack == SI.vale_stack) val as_mem (h:ME.vale_heap) : GTot IB.interop_heap
false
false
Vale.X64.MemoryAdapters.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val coerce (#b #a: Type) (x: a{a == b}) : b
[]
Vale.X64.MemoryAdapters.coerce
{ "file_name": "vale/code/arch/x64/interop/Vale.X64.MemoryAdapters.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: a{a == b} -> b
{ "end_col": 52, "end_line": 25, "start_col": 51, "start_line": 25 }
Prims.GTot
val length_all: #t: _ -> #input_stream_inst t -> x: t -> GTot nat
[ { "abbrev": true, "full_module": "LowParse.Low.Base", "short_module": "LP" }, { "abbrev": true, "full_module": "EverParse3d.ErrorCode", "short_module": "LPE" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "EverParse3d.InputStream", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d.InputStream", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let length_all #t (#_: input_stream_inst t) (x: t) : GTot nat = U64.v (len_all x)
val length_all: #t: _ -> #input_stream_inst t -> x: t -> GTot nat let length_all #t (#_: input_stream_inst t) (x: t) : GTot nat =
false
null
false
U64.v (len_all x)
{ "checked_file": "EverParse3d.InputStream.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Low.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverParse3d.ErrorCode.fst.checked" ], "interface_file": false, "source_file": "EverParse3d.InputStream.Base.fst" }
[ "sometrivial" ]
[ "EverParse3d.InputStream.Base.input_stream_inst", "FStar.UInt64.v", "EverParse3d.InputStream.Base.len_all", "Prims.nat" ]
[]
module EverParse3d.InputStream.Base module U8 = FStar.UInt8 module U64 = FStar.UInt64 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module LPE = EverParse3d.ErrorCode module LP = LowParse.Low.Base noextract inline_for_extraction class input_stream_inst (t: Type) : Type = { live: t -> HS.mem -> Tot prop; footprint: (x: t) -> Ghost B.loc (requires True) (ensures (fun y -> B.address_liveness_insensitive_locs `B.loc_includes` y)); perm_footprint: (x: t) -> Ghost B.loc (requires True) (ensures (fun y -> footprint x `B.loc_includes` y)); live_not_unused_in: (x: t) -> (h: HS.mem) -> Lemma (requires (live x h)) (ensures (B.loc_not_unused_in h `B.loc_includes` footprint x)); len_all: (x: t) -> GTot LPE.pos_t; get_all: (x: t) -> Ghost (Seq.seq U8.t) (requires True) (ensures (fun y -> Seq.length y == U64.v (len_all x))); get_remaining: (x: t) -> (h: HS.mem) -> Ghost (Seq.seq U8.t) (requires (live x h)) (ensures (fun y -> Seq.length y <= U64.v (len_all x))); get_read: (x: t) -> (h: HS.mem) -> Ghost (Seq.seq U8.t) (requires (live x h)) (ensures (fun y -> get_all x `Seq.equal` (y `Seq.append` get_remaining x h))); preserved: (x: t) -> (l: B.loc) -> (h: HS.mem) -> (h' : HS.mem) -> Lemma (requires (live x h /\ B.modifies l h h' /\ B.loc_disjoint (footprint x) l)) (ensures ( live x h' /\ get_remaining x h' == get_remaining x h /\ get_read x h' == get_read x h )); tlen: t -> Type0; extra_t: Type0; has: (# [FStar.Tactics.Typeclasses.tcresolve () ] extra_t ) -> (x: t) -> (len: tlen x) -> (pos: LPE.pos_t) -> (n: U64.t) -> HST.Stack bool (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) )) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ (res == true <==> Seq.length (get_remaining x h) >= U64.v n) )); read: (# [FStar.Tactics.Typeclasses.tcresolve ()] extra_t ) -> (t': Type0) -> (k: LP.parser_kind) -> (p: LP.parser k t') -> (r: LP.leaf_reader p) -> (x: t) -> (pos: LPE.pos_t) -> (n: U64.t) -> HST.Stack t' (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) /\ k.LP.parser_kind_subkind == Some LP.ParserStrong /\ k.LP.parser_kind_high == Some k.LP.parser_kind_low /\ k.LP.parser_kind_low == U64.v n /\ U64.v n > 0 /\ U64.v n < 4294967296 /\ Some? (LP.parse p (get_remaining x h)) )) (ensures (fun h dst' h' -> let s = get_remaining x h in B.modifies (perm_footprint x) h h' /\ Seq.length s >= U64.v n /\ LP.parse p (Seq.slice s 0 (U64.v n)) == Some (dst', U64.v n) /\ LP.parse p s == Some (dst', U64.v n) /\ live x h' /\ get_remaining x h' `Seq.equal` Seq.slice s (U64.v n) (Seq.length s) )); skip: (# [FStar.Tactics.Typeclasses.tcresolve ()] extra_t ) -> (x: t) -> (pos: LPE.pos_t) -> (n: U64.t) -> HST.Stack unit (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) /\ Seq.length (get_remaining x h) >= U64.v n )) (ensures (fun h _ h' -> let s = get_remaining x h in B.modifies (perm_footprint x) h h' /\ live x h' /\ get_remaining x h' `Seq.equal` Seq.slice s (U64.v n) (Seq.length s) )); skip_if_success: (# [FStar.Tactics.Typeclasses.tcresolve ()] extra_t ) -> (x: t) -> (pos: LPE.pos_t) -> (res: U64.t) -> HST.Stack unit (requires (fun h -> live x h /\ (LPE.is_success res ==> ( U64.v pos == Seq.length (get_read x h)) /\ U64.v res >= U64.v pos /\ U64.v pos + Seq.length (get_remaining x h) >= U64.v res ))) (ensures (fun h _ h' -> let s = get_remaining x h in B.modifies (perm_footprint x) h h' /\ live x h' /\ get_remaining x h' == (if LPE.is_success res then Seq.slice s (U64.v res - U64.v pos) (Seq.length s) else get_remaining x h) )); empty: (# [FStar.Tactics.Typeclasses.tcresolve ()] extra_t ) -> (x: t) -> (len: tlen x) -> (pos: LPE.pos_t) -> HST.Stack LPE.pos_t (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) )) (ensures (fun h res h' -> B.modifies (perm_footprint x) h h' /\ live x h' /\ U64.v res == Seq.length (get_read x h') /\ get_remaining x h' `Seq.equal` Seq.empty )); is_prefix_of: (x: t) -> (y: t) -> Tot prop; get_suffix: (x: t) -> (y: t) -> Ghost (Seq.seq U8.t) (requires (x `is_prefix_of` y)) (ensures (fun _ -> True)); is_prefix_of_prop: (x: t) -> (y: t) -> (h: HS.mem) -> Lemma (requires ( live x h /\ x `is_prefix_of` y )) (ensures ( live y h /\ get_read y h `Seq.equal` get_read x h /\ get_remaining y h `Seq.equal` (get_remaining x h `Seq.append` get_suffix x y) )); truncate: (x: t) -> (pos: LPE.pos_t) -> (n: U64.t) -> HST.Stack t (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) /\ U64.v n <= Seq.length (get_remaining x h) )) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ res `is_prefix_of` x /\ footprint res == footprint x /\ perm_footprint res == perm_footprint x /\ live res h' /\ Seq.length (get_remaining res h') == U64.v n )); truncate_len: (x: t) -> (pos: LPE.pos_t) -> (n: U64.t) -> (res: t) -> HST.Stack (tlen res) (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) /\ U64.v n <= Seq.length (get_remaining x h) /\ res `is_prefix_of` x /\ footprint res == footprint x /\ perm_footprint res == perm_footprint x /\ live res h /\ Seq.length (get_remaining res h) == U64.v n )) (ensures (fun h res_len h' -> B.modifies B.loc_none h h' )); }
false
false
EverParse3d.InputStream.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val length_all: #t: _ -> #input_stream_inst t -> x: t -> GTot nat
[]
EverParse3d.InputStream.Base.length_all
{ "file_name": "src/3d/prelude/EverParse3d.InputStream.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
x: t -> Prims.GTot Prims.nat
{ "end_col": 81, "end_line": 232, "start_col": 64, "start_line": 232 }
FStar.Pervasives.Lemma
val preserved' (#t: Type) (#[FStar.Tactics.Typeclasses.tcresolve ()] inst: input_stream_inst t) (x: t) (l: B.loc) (h h': HS.mem) : Lemma (requires (live x h /\ B.modifies l h h' /\ B.loc_disjoint (footprint x) l)) (ensures (live x h' /\ get_remaining x h' == get_remaining x h /\ get_read x h' == get_read x h)) [ SMTPatOr [ [SMTPat (live x h); SMTPat (B.modifies l h h')]; [SMTPat (live x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h'); SMTPat (B.modifies l h h')] ] ]
[ { "abbrev": true, "full_module": "LowParse.Low.Base", "short_module": "LP" }, { "abbrev": true, "full_module": "EverParse3d.ErrorCode", "short_module": "LPE" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "EverParse3d.InputStream", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d.InputStream", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let preserved' (#t: Type) (# [FStar.Tactics.Typeclasses.tcresolve ()] inst : input_stream_inst t) (x: t) (l: B.loc) (h: HS.mem) (h' : HS.mem) : Lemma (requires (live x h /\ B.modifies l h h' /\ B.loc_disjoint (footprint x) l)) (ensures ( live x h' /\ get_remaining x h' == get_remaining x h /\ get_read x h' == get_read x h )) [SMTPatOr [ [SMTPat (live x h); SMTPat (B.modifies l h h')]; [SMTPat (live x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h'); SMTPat (B.modifies l h h')]; ]] = preserved x l h h'
val preserved' (#t: Type) (#[FStar.Tactics.Typeclasses.tcresolve ()] inst: input_stream_inst t) (x: t) (l: B.loc) (h h': HS.mem) : Lemma (requires (live x h /\ B.modifies l h h' /\ B.loc_disjoint (footprint x) l)) (ensures (live x h' /\ get_remaining x h' == get_remaining x h /\ get_read x h' == get_read x h)) [ SMTPatOr [ [SMTPat (live x h); SMTPat (B.modifies l h h')]; [SMTPat (live x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h'); SMTPat (B.modifies l h h')] ] ] let preserved' (#t: Type) (#[FStar.Tactics.Typeclasses.tcresolve ()] inst: input_stream_inst t) (x: t) (l: B.loc) (h h': HS.mem) : Lemma (requires (live x h /\ B.modifies l h h' /\ B.loc_disjoint (footprint x) l)) (ensures (live x h' /\ get_remaining x h' == get_remaining x h /\ get_read x h' == get_read x h)) [ SMTPatOr [ [SMTPat (live x h); SMTPat (B.modifies l h h')]; [SMTPat (live x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h'); SMTPat (B.modifies l h h')] ] ] =
false
null
true
preserved x l h h'
{ "checked_file": "EverParse3d.InputStream.Base.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "LowParse.Low.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "EverParse3d.ErrorCode.fst.checked" ], "interface_file": false, "source_file": "EverParse3d.InputStream.Base.fst" }
[ "lemma" ]
[ "EverParse3d.InputStream.Base.input_stream_inst", "LowStar.Monotonic.Buffer.loc", "FStar.Monotonic.HyperStack.mem", "EverParse3d.InputStream.Base.preserved", "Prims.unit", "Prims.l_and", "EverParse3d.InputStream.Base.live", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_disjoint", "EverParse3d.InputStream.Base.footprint", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.seq", "FStar.UInt8.t", "EverParse3d.InputStream.Base.get_remaining", "EverParse3d.InputStream.Base.get_read", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat_or", "Prims.list", "FStar.Pervasives.smt_pat", "Prims.prop", "Prims.Nil" ]
[]
module EverParse3d.InputStream.Base module U8 = FStar.UInt8 module U64 = FStar.UInt64 module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module B = LowStar.Buffer module LPE = EverParse3d.ErrorCode module LP = LowParse.Low.Base noextract inline_for_extraction class input_stream_inst (t: Type) : Type = { live: t -> HS.mem -> Tot prop; footprint: (x: t) -> Ghost B.loc (requires True) (ensures (fun y -> B.address_liveness_insensitive_locs `B.loc_includes` y)); perm_footprint: (x: t) -> Ghost B.loc (requires True) (ensures (fun y -> footprint x `B.loc_includes` y)); live_not_unused_in: (x: t) -> (h: HS.mem) -> Lemma (requires (live x h)) (ensures (B.loc_not_unused_in h `B.loc_includes` footprint x)); len_all: (x: t) -> GTot LPE.pos_t; get_all: (x: t) -> Ghost (Seq.seq U8.t) (requires True) (ensures (fun y -> Seq.length y == U64.v (len_all x))); get_remaining: (x: t) -> (h: HS.mem) -> Ghost (Seq.seq U8.t) (requires (live x h)) (ensures (fun y -> Seq.length y <= U64.v (len_all x))); get_read: (x: t) -> (h: HS.mem) -> Ghost (Seq.seq U8.t) (requires (live x h)) (ensures (fun y -> get_all x `Seq.equal` (y `Seq.append` get_remaining x h))); preserved: (x: t) -> (l: B.loc) -> (h: HS.mem) -> (h' : HS.mem) -> Lemma (requires (live x h /\ B.modifies l h h' /\ B.loc_disjoint (footprint x) l)) (ensures ( live x h' /\ get_remaining x h' == get_remaining x h /\ get_read x h' == get_read x h )); tlen: t -> Type0; extra_t: Type0; has: (# [FStar.Tactics.Typeclasses.tcresolve () ] extra_t ) -> (x: t) -> (len: tlen x) -> (pos: LPE.pos_t) -> (n: U64.t) -> HST.Stack bool (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) )) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ (res == true <==> Seq.length (get_remaining x h) >= U64.v n) )); read: (# [FStar.Tactics.Typeclasses.tcresolve ()] extra_t ) -> (t': Type0) -> (k: LP.parser_kind) -> (p: LP.parser k t') -> (r: LP.leaf_reader p) -> (x: t) -> (pos: LPE.pos_t) -> (n: U64.t) -> HST.Stack t' (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) /\ k.LP.parser_kind_subkind == Some LP.ParserStrong /\ k.LP.parser_kind_high == Some k.LP.parser_kind_low /\ k.LP.parser_kind_low == U64.v n /\ U64.v n > 0 /\ U64.v n < 4294967296 /\ Some? (LP.parse p (get_remaining x h)) )) (ensures (fun h dst' h' -> let s = get_remaining x h in B.modifies (perm_footprint x) h h' /\ Seq.length s >= U64.v n /\ LP.parse p (Seq.slice s 0 (U64.v n)) == Some (dst', U64.v n) /\ LP.parse p s == Some (dst', U64.v n) /\ live x h' /\ get_remaining x h' `Seq.equal` Seq.slice s (U64.v n) (Seq.length s) )); skip: (# [FStar.Tactics.Typeclasses.tcresolve ()] extra_t ) -> (x: t) -> (pos: LPE.pos_t) -> (n: U64.t) -> HST.Stack unit (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) /\ Seq.length (get_remaining x h) >= U64.v n )) (ensures (fun h _ h' -> let s = get_remaining x h in B.modifies (perm_footprint x) h h' /\ live x h' /\ get_remaining x h' `Seq.equal` Seq.slice s (U64.v n) (Seq.length s) )); skip_if_success: (# [FStar.Tactics.Typeclasses.tcresolve ()] extra_t ) -> (x: t) -> (pos: LPE.pos_t) -> (res: U64.t) -> HST.Stack unit (requires (fun h -> live x h /\ (LPE.is_success res ==> ( U64.v pos == Seq.length (get_read x h)) /\ U64.v res >= U64.v pos /\ U64.v pos + Seq.length (get_remaining x h) >= U64.v res ))) (ensures (fun h _ h' -> let s = get_remaining x h in B.modifies (perm_footprint x) h h' /\ live x h' /\ get_remaining x h' == (if LPE.is_success res then Seq.slice s (U64.v res - U64.v pos) (Seq.length s) else get_remaining x h) )); empty: (# [FStar.Tactics.Typeclasses.tcresolve ()] extra_t ) -> (x: t) -> (len: tlen x) -> (pos: LPE.pos_t) -> HST.Stack LPE.pos_t (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) )) (ensures (fun h res h' -> B.modifies (perm_footprint x) h h' /\ live x h' /\ U64.v res == Seq.length (get_read x h') /\ get_remaining x h' `Seq.equal` Seq.empty )); is_prefix_of: (x: t) -> (y: t) -> Tot prop; get_suffix: (x: t) -> (y: t) -> Ghost (Seq.seq U8.t) (requires (x `is_prefix_of` y)) (ensures (fun _ -> True)); is_prefix_of_prop: (x: t) -> (y: t) -> (h: HS.mem) -> Lemma (requires ( live x h /\ x `is_prefix_of` y )) (ensures ( live y h /\ get_read y h `Seq.equal` get_read x h /\ get_remaining y h `Seq.equal` (get_remaining x h `Seq.append` get_suffix x y) )); truncate: (x: t) -> (pos: LPE.pos_t) -> (n: U64.t) -> HST.Stack t (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) /\ U64.v n <= Seq.length (get_remaining x h) )) (ensures (fun h res h' -> B.modifies B.loc_none h h' /\ res `is_prefix_of` x /\ footprint res == footprint x /\ perm_footprint res == perm_footprint x /\ live res h' /\ Seq.length (get_remaining res h') == U64.v n )); truncate_len: (x: t) -> (pos: LPE.pos_t) -> (n: U64.t) -> (res: t) -> HST.Stack (tlen res) (requires (fun h -> live x h /\ U64.v pos == Seq.length (get_read x h) /\ U64.v n <= Seq.length (get_remaining x h) /\ res `is_prefix_of` x /\ footprint res == footprint x /\ perm_footprint res == perm_footprint x /\ live res h /\ Seq.length (get_remaining res h) == U64.v n )) (ensures (fun h res_len h' -> B.modifies B.loc_none h h' )); } let length_all #t (#_: input_stream_inst t) (x: t) : GTot nat = U64.v (len_all x) let preserved' (#t: Type) (# [FStar.Tactics.Typeclasses.tcresolve ()] inst : input_stream_inst t) (x: t) (l: B.loc) (h: HS.mem) (h' : HS.mem) : Lemma (requires (live x h /\ B.modifies l h h' /\ B.loc_disjoint (footprint x) l)) (ensures ( live x h' /\ get_remaining x h' == get_remaining x h /\ get_read x h' == get_read x h )) [SMTPatOr [ [SMTPat (live x h); SMTPat (B.modifies l h h')]; [SMTPat (live x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h'); SMTPat (B.modifies l h h')];
false
false
EverParse3d.InputStream.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val preserved' (#t: Type) (#[FStar.Tactics.Typeclasses.tcresolve ()] inst: input_stream_inst t) (x: t) (l: B.loc) (h h': HS.mem) : Lemma (requires (live x h /\ B.modifies l h h' /\ B.loc_disjoint (footprint x) l)) (ensures (live x h' /\ get_remaining x h' == get_remaining x h /\ get_read x h' == get_read x h)) [ SMTPatOr [ [SMTPat (live x h); SMTPat (B.modifies l h h')]; [SMTPat (live x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h); SMTPat (B.modifies l h h')]; [SMTPat (get_remaining x h'); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h); SMTPat (B.modifies l h h')]; [SMTPat (get_read x h'); SMTPat (B.modifies l h h')] ] ]
[]
EverParse3d.InputStream.Base.preserved'
{ "file_name": "src/3d/prelude/EverParse3d.InputStream.Base.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
x: t -> l: LowStar.Monotonic.Buffer.loc -> h: FStar.Monotonic.HyperStack.mem -> h': FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires EverParse3d.InputStream.Base.live x h /\ LowStar.Monotonic.Buffer.modifies l h h' /\ LowStar.Monotonic.Buffer.loc_disjoint (EverParse3d.InputStream.Base.footprint x) l) (ensures EverParse3d.InputStream.Base.live x h' /\ EverParse3d.InputStream.Base.get_remaining x h' == EverParse3d.InputStream.Base.get_remaining x h /\ EverParse3d.InputStream.Base.get_read x h' == EverParse3d.InputStream.Base.get_read x h) [ SMTPatOr [ [ SMTPat (EverParse3d.InputStream.Base.live x h); SMTPat (LowStar.Monotonic.Buffer.modifies l h h') ]; [ SMTPat (EverParse3d.InputStream.Base.live x h'); SMTPat (LowStar.Monotonic.Buffer.modifies l h h') ]; [ SMTPat (EverParse3d.InputStream.Base.get_remaining x h); SMTPat (LowStar.Monotonic.Buffer.modifies l h h') ]; [ SMTPat (EverParse3d.InputStream.Base.get_remaining x h'); SMTPat (LowStar.Monotonic.Buffer.modifies l h h') ]; [ SMTPat (EverParse3d.InputStream.Base.get_read x h); SMTPat (LowStar.Monotonic.Buffer.modifies l h h') ]; [ SMTPat (EverParse3d.InputStream.Base.get_read x h'); SMTPat (LowStar.Monotonic.Buffer.modifies l h h') ] ] ]
{ "end_col": 20, "end_line": 256, "start_col": 2, "start_line": 256 }
FStar.Pervasives.Lemma
val lemma_dv_equal (#src: Type) (#rel #rrel: MB.srel src) (#dst: Type) (view: DV.view src dst) (b: MB.mbuffer src rel rrel) (h0 h1: HS.mem) : Lemma (requires MB.as_seq h0 b == MB.as_seq h1 b) (ensures (let dv = DV.mk_buffer_view b view in DV.as_seq h0 dv == DV.as_seq h1 dv))
[ { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView", "short_module": "BV" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_dv_equal (#src:Type) (#rel #rrel:MB.srel src) (#dst:Type) (view:DV.view src dst) (b:MB.mbuffer src rel rrel) (h0 h1:HS.mem) : Lemma (requires MB.as_seq h0 b == MB.as_seq h1 b) (ensures (let dv = DV.mk_buffer_view b view in DV.as_seq h0 dv == DV.as_seq h1 dv)) = let dv = DV.mk_buffer_view b view in let s0 = DV.as_seq h0 dv in let s1 = DV.as_seq h1 dv in let aux (i:nat{i < DV.length dv}) : Lemma (Seq.index s0 i == Seq.index s1 i) = DV.as_seq_sel h0 dv i; DV.as_seq_sel h1 dv i; DV.get_sel h0 dv i; DV.get_sel h1 dv i in Classical.forall_intro aux; Seq.lemma_eq_intro s0 s1
val lemma_dv_equal (#src: Type) (#rel #rrel: MB.srel src) (#dst: Type) (view: DV.view src dst) (b: MB.mbuffer src rel rrel) (h0 h1: HS.mem) : Lemma (requires MB.as_seq h0 b == MB.as_seq h1 b) (ensures (let dv = DV.mk_buffer_view b view in DV.as_seq h0 dv == DV.as_seq h1 dv)) let lemma_dv_equal (#src: Type) (#rel #rrel: MB.srel src) (#dst: Type) (view: DV.view src dst) (b: MB.mbuffer src rel rrel) (h0 h1: HS.mem) : Lemma (requires MB.as_seq h0 b == MB.as_seq h1 b) (ensures (let dv = DV.mk_buffer_view b view in DV.as_seq h0 dv == DV.as_seq h1 dv)) =
false
null
true
let dv = DV.mk_buffer_view b view in let s0 = DV.as_seq h0 dv in let s1 = DV.as_seq h1 dv in let aux (i: nat{i < DV.length dv}) : Lemma (Seq.index s0 i == Seq.index s1 i) = DV.as_seq_sel h0 dv i; DV.as_seq_sel h1 dv i; DV.get_sel h0 dv i; DV.get_sel h1 dv i in Classical.forall_intro aux; Seq.lemma_eq_intro s0 s1
{ "checked_file": "Vale.Lib.BufferViewHelpers.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.ModifiesPat.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.BufferView.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Lib.BufferViewHelpers.fst" }
[ "lemma" ]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.BufferView.Down.view", "LowStar.Monotonic.Buffer.mbuffer", "FStar.Monotonic.HyperStack.mem", "FStar.Seq.Base.lemma_eq_intro", "Prims.unit", "FStar.Classical.forall_intro", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "LowStar.BufferView.Down.length", "Prims.eq2", "FStar.Seq.Base.index", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "LowStar.BufferView.Down.get_sel", "LowStar.BufferView.Down.as_seq_sel", "FStar.Seq.Properties.lseq", "LowStar.BufferView.Down.as_seq", "LowStar.BufferView.Down.buffer", "LowStar.BufferView.Down.mk_buffer_view", "FStar.Seq.Base.seq", "LowStar.Monotonic.Buffer.as_seq" ]
[]
module Vale.Lib.BufferViewHelpers open FStar.Mul module MB = LowStar.Monotonic.Buffer module BV = LowStar.BufferView module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.HyperStack.ST open LowStar.Modifies open LowStar.ModifiesPat let lemma_dv_equal (#src:Type) (#rel #rrel:MB.srel src) (#dst:Type) (view:DV.view src dst) (b:MB.mbuffer src rel rrel) (h0 h1:HS.mem) : Lemma (requires MB.as_seq h0 b == MB.as_seq h1 b)
false
false
Vale.Lib.BufferViewHelpers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_dv_equal (#src: Type) (#rel #rrel: MB.srel src) (#dst: Type) (view: DV.view src dst) (b: MB.mbuffer src rel rrel) (h0 h1: HS.mem) : Lemma (requires MB.as_seq h0 b == MB.as_seq h1 b) (ensures (let dv = DV.mk_buffer_view b view in DV.as_seq h0 dv == DV.as_seq h1 dv))
[]
Vale.Lib.BufferViewHelpers.lemma_dv_equal
{ "file_name": "vale/code/lib/util/Vale.Lib.BufferViewHelpers.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
view: LowStar.BufferView.Down.view src dst -> b: LowStar.Monotonic.Buffer.mbuffer src rel rrel -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.as_seq h0 b == LowStar.Monotonic.Buffer.as_seq h1 b) (ensures (let dv = LowStar.BufferView.Down.mk_buffer_view b view in LowStar.BufferView.Down.as_seq h0 dv == LowStar.BufferView.Down.as_seq h1 dv))
{ "end_col": 28, "end_line": 34, "start_col": 42, "start_line": 24 }
FStar.Pervasives.Lemma
val lemma_uv_equal (#src #dst: Type) (view: UV.view src dst) (b: DV.buffer src) (h0 h1: HS.mem) : Lemma (requires (DV.length b % UV.View?.n view == 0 /\ DV.as_seq h0 b == DV.as_seq h1 b)) (ensures (let bv = UV.mk_buffer b view in UV.as_seq h0 bv == UV.as_seq h1 bv)) [SMTPat (UV.as_seq h0 (UV.mk_buffer b view)); SMTPat (UV.as_seq h1 (UV.mk_buffer b view))]
[ { "abbrev": false, "full_module": "LowStar.ModifiesPat", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Modifies", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "LowStar.BufferView", "short_module": "BV" }, { "abbrev": true, "full_module": "LowStar.Monotonic.Buffer", "short_module": "MB" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_uv_equal (#src:Type) (#dst:Type) (view:UV.view src dst) (b:DV.buffer src) (h0 h1:HS.mem) :Lemma (requires (DV.length b % UV.View?.n view == 0 /\ DV.as_seq h0 b == DV.as_seq h1 b)) (ensures (let bv = UV.mk_buffer b view in UV.as_seq h0 bv == UV.as_seq h1 bv)) [SMTPat (UV.as_seq h0 (UV.mk_buffer b view)); SMTPat (UV.as_seq h1 (UV.mk_buffer b view))] = let uv = UV.mk_buffer b view in let s0 = UV.as_seq h0 uv in let s1 = UV.as_seq h1 uv in let aux (i:nat{i < UV.length uv}) : Lemma (Seq.index s0 i == Seq.index s1 i) = UV.as_seq_sel h0 uv i; UV.as_seq_sel h1 uv i; UV.get_sel h0 uv i; UV.get_sel h1 uv i in Classical.forall_intro aux; Seq.lemma_eq_intro s0 s1
val lemma_uv_equal (#src #dst: Type) (view: UV.view src dst) (b: DV.buffer src) (h0 h1: HS.mem) : Lemma (requires (DV.length b % UV.View?.n view == 0 /\ DV.as_seq h0 b == DV.as_seq h1 b)) (ensures (let bv = UV.mk_buffer b view in UV.as_seq h0 bv == UV.as_seq h1 bv)) [SMTPat (UV.as_seq h0 (UV.mk_buffer b view)); SMTPat (UV.as_seq h1 (UV.mk_buffer b view))] let lemma_uv_equal (#src #dst: Type) (view: UV.view src dst) (b: DV.buffer src) (h0 h1: HS.mem) : Lemma (requires (DV.length b % UV.View?.n view == 0 /\ DV.as_seq h0 b == DV.as_seq h1 b)) (ensures (let bv = UV.mk_buffer b view in UV.as_seq h0 bv == UV.as_seq h1 bv)) [SMTPat (UV.as_seq h0 (UV.mk_buffer b view)); SMTPat (UV.as_seq h1 (UV.mk_buffer b view))] =
false
null
true
let uv = UV.mk_buffer b view in let s0 = UV.as_seq h0 uv in let s1 = UV.as_seq h1 uv in let aux (i: nat{i < UV.length uv}) : Lemma (Seq.index s0 i == Seq.index s1 i) = UV.as_seq_sel h0 uv i; UV.as_seq_sel h1 uv i; UV.get_sel h0 uv i; UV.get_sel h1 uv i in Classical.forall_intro aux; Seq.lemma_eq_intro s0 s1
{ "checked_file": "Vale.Lib.BufferViewHelpers.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Monotonic.Buffer.fsti.checked", "LowStar.ModifiesPat.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.BufferView.Up.fsti.checked", "LowStar.BufferView.Down.fsti.checked", "LowStar.BufferView.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "Vale.Lib.BufferViewHelpers.fst" }
[ "lemma" ]
[ "LowStar.BufferView.Up.view", "LowStar.BufferView.Down.buffer", "FStar.Monotonic.HyperStack.mem", "FStar.Seq.Base.lemma_eq_intro", "Prims.unit", "FStar.Classical.forall_intro", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "LowStar.BufferView.Up.length", "Prims.eq2", "FStar.Seq.Base.index", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "LowStar.BufferView.Up.get_sel", "LowStar.BufferView.Up.as_seq_sel", "FStar.Seq.Properties.lseq", "LowStar.BufferView.Up.as_seq", "LowStar.BufferView.Up.buffer", "LowStar.BufferView.Up.mk_buffer", "Prims.l_and", "Prims.int", "Prims.op_Modulus", "LowStar.BufferView.Down.length", "LowStar.BufferView.Up.__proj__View__item__n", "LowStar.BufferView.Down.as_seq", "Prims.Cons", "FStar.Pervasives.smt_pat" ]
[]
module Vale.Lib.BufferViewHelpers open FStar.Mul module MB = LowStar.Monotonic.Buffer module BV = LowStar.BufferView module DV = LowStar.BufferView.Down module UV = LowStar.BufferView.Up module HS = FStar.HyperStack module ST = FStar.HyperStack.ST open FStar.HyperStack.ST open LowStar.Modifies open LowStar.ModifiesPat let lemma_dv_equal (#src:Type) (#rel #rrel:MB.srel src) (#dst:Type) (view:DV.view src dst) (b:MB.mbuffer src rel rrel) (h0 h1:HS.mem) : Lemma (requires MB.as_seq h0 b == MB.as_seq h1 b) (ensures (let dv = DV.mk_buffer_view b view in DV.as_seq h0 dv == DV.as_seq h1 dv)) = let dv = DV.mk_buffer_view b view in let s0 = DV.as_seq h0 dv in let s1 = DV.as_seq h1 dv in let aux (i:nat{i < DV.length dv}) : Lemma (Seq.index s0 i == Seq.index s1 i) = DV.as_seq_sel h0 dv i; DV.as_seq_sel h1 dv i; DV.get_sel h0 dv i; DV.get_sel h1 dv i in Classical.forall_intro aux; Seq.lemma_eq_intro s0 s1 let lemma_uv_equal (#src:Type) (#dst:Type) (view:UV.view src dst) (b:DV.buffer src) (h0 h1:HS.mem) :Lemma (requires (DV.length b % UV.View?.n view == 0 /\ DV.as_seq h0 b == DV.as_seq h1 b)) (ensures (let bv = UV.mk_buffer b view in UV.as_seq h0 bv == UV.as_seq h1 bv))
false
false
Vale.Lib.BufferViewHelpers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_uv_equal (#src #dst: Type) (view: UV.view src dst) (b: DV.buffer src) (h0 h1: HS.mem) : Lemma (requires (DV.length b % UV.View?.n view == 0 /\ DV.as_seq h0 b == DV.as_seq h1 b)) (ensures (let bv = UV.mk_buffer b view in UV.as_seq h0 bv == UV.as_seq h1 bv)) [SMTPat (UV.as_seq h0 (UV.mk_buffer b view)); SMTPat (UV.as_seq h1 (UV.mk_buffer b view))]
[]
Vale.Lib.BufferViewHelpers.lemma_uv_equal
{ "file_name": "vale/code/lib/util/Vale.Lib.BufferViewHelpers.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
view: LowStar.BufferView.Up.view src dst -> b: LowStar.BufferView.Down.buffer src -> h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.BufferView.Down.length b % View?.n view == 0 /\ LowStar.BufferView.Down.as_seq h0 b == LowStar.BufferView.Down.as_seq h1 b) (ensures (let bv = LowStar.BufferView.Up.mk_buffer b view in LowStar.BufferView.Up.as_seq h0 bv == LowStar.BufferView.Up.as_seq h1 bv)) [ SMTPat (LowStar.BufferView.Up.as_seq h0 (LowStar.BufferView.Up.mk_buffer b view)); SMTPat (LowStar.BufferView.Up.as_seq h1 (LowStar.BufferView.Up.mk_buffer b view)) ]
{ "end_col": 28, "end_line": 51, "start_col": 3, "start_line": 42 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lbytes len = lbuffer uint8 len
let lbytes len =
false
null
false
lbuffer uint8 len
{ "checked_file": "Hacl.K256.ECDSA.fsti.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.K256.ECDSA.fsti" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8" ]
[]
module Hacl.K256.ECDSA open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module S = Spec.K256 module BSeq = Lib.ByteSequence #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
false
true
Hacl.K256.ECDSA.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lbytes : len: Lib.IntTypes.size_t -> Type0
[]
Hacl.K256.ECDSA.lbytes
{ "file_name": "code/k256/Hacl.K256.ECDSA.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Lib.IntTypes.size_t -> Type0
{ "end_col": 34, "end_line": 16, "start_col": 17, "start_line": 16 }
Prims.Tot
val equality_equiv (a: Type) : equiv a
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let equality_equiv (a:Type) : equiv a = EQ (fun x y -> x == y) (fun x -> ()) (fun x y -> ()) (fun x y z -> ())
val equality_equiv (a: Type) : equiv a let equality_equiv (a: Type) : equiv a =
false
null
false
EQ (fun x y -> x == y) (fun x -> ()) (fun x y -> ()) (fun x y z -> ())
{ "checked_file": "FStar.Algebra.CommMonoid.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": false, "source_file": "FStar.Algebra.CommMonoid.Equiv.fst" }
[ "total" ]
[ "FStar.Algebra.CommMonoid.Equiv.EQ", "Prims.eq2", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.equiv" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Algebra.CommMonoid.Equiv open FStar.Mul unopteq type equiv (a:Type) = | EQ : eq:(a -> a -> Type0) -> reflexivity:(x:a -> Lemma (x `eq` x)) -> symmetry:(x:a -> y:a -> Lemma (requires (x `eq` y)) (ensures (y `eq` x))) -> transitivity:(x:a -> y:a -> z:a -> Lemma (requires (x `eq` y /\ y `eq` z)) (ensures (x `eq` z))) -> equiv a let elim_eq_laws #a (eq:equiv a) : Lemma ( (forall x.{:pattern (x `eq.eq` x)} x `eq.eq` x) /\ (forall x y.{:pattern (x `eq.eq` y)} x `eq.eq` y ==> y `eq.eq` x) /\ (forall x y z.{:pattern eq.eq x y; eq.eq y z} (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z) ) = introduce forall x. x `eq.eq` x with (eq.reflexivity x); introduce forall x y. x `eq.eq` y ==> y `eq.eq` x with (introduce _ ==> _ with _. eq.symmetry x y); introduce forall x y z. (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z with (introduce _ ==> _ with _. eq.transitivity x y z)
false
false
FStar.Algebra.CommMonoid.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val equality_equiv (a: Type) : equiv a
[]
FStar.Algebra.CommMonoid.Equiv.equality_equiv
{ "file_name": "ulib/FStar.Algebra.CommMonoid.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> FStar.Algebra.CommMonoid.Equiv.equiv a
{ "end_col": 72, "end_line": 47, "start_col": 2, "start_line": 47 }
Prims.Tot
val int_multiply_cm:cm int (equality_equiv int)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let int_multiply_cm : cm int (equality_equiv int) = CM 1 ( * ) (fun _ -> ()) (fun _ _ _ -> ()) (fun _ _ -> ()) (fun _ _ _ _ -> ())
val int_multiply_cm:cm int (equality_equiv int) let int_multiply_cm:cm int (equality_equiv int) =
false
null
false
CM 1 ( * ) (fun _ -> ()) (fun _ _ _ -> ()) (fun _ _ -> ()) (fun _ _ _ _ -> ())
{ "checked_file": "FStar.Algebra.CommMonoid.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": false, "source_file": "FStar.Algebra.CommMonoid.Equiv.fst" }
[ "total" ]
[ "FStar.Algebra.CommMonoid.Equiv.CM", "Prims.int", "FStar.Algebra.CommMonoid.Equiv.equality_equiv", "FStar.Mul.op_Star", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Algebra.CommMonoid.Equiv open FStar.Mul unopteq type equiv (a:Type) = | EQ : eq:(a -> a -> Type0) -> reflexivity:(x:a -> Lemma (x `eq` x)) -> symmetry:(x:a -> y:a -> Lemma (requires (x `eq` y)) (ensures (y `eq` x))) -> transitivity:(x:a -> y:a -> z:a -> Lemma (requires (x `eq` y /\ y `eq` z)) (ensures (x `eq` z))) -> equiv a let elim_eq_laws #a (eq:equiv a) : Lemma ( (forall x.{:pattern (x `eq.eq` x)} x `eq.eq` x) /\ (forall x y.{:pattern (x `eq.eq` y)} x `eq.eq` y ==> y `eq.eq` x) /\ (forall x y z.{:pattern eq.eq x y; eq.eq y z} (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z) ) = introduce forall x. x `eq.eq` x with (eq.reflexivity x); introduce forall x y. x `eq.eq` y ==> y `eq.eq` x with (introduce _ ==> _ with _. eq.symmetry x y); introduce forall x y z. (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z with (introduce _ ==> _ with _. eq.transitivity x y z) let equality_equiv (a:Type) : equiv a = EQ (fun x y -> x == y) (fun x -> ()) (fun x y -> ()) (fun x y z -> ()) unopteq type cm (a:Type) (eq:equiv a) = | CM : unit:a -> mult:(a -> a -> a) -> identity : (x:a -> Lemma ((unit `mult` x) `EQ?.eq eq` x)) -> associativity : (x:a -> y:a -> z:a -> Lemma ((x `mult` y `mult` z) `EQ?.eq eq` (x `mult` (y `mult` z)))) -> commutativity:(x:a -> y:a -> Lemma ((x `mult` y) `EQ?.eq eq` (y `mult` x))) -> congruence:(x:a -> y:a -> z:a -> w:a -> Lemma (requires (x `EQ?.eq eq` z /\ y `EQ?.eq eq` w)) (ensures ((mult x y) `EQ?.eq eq` (mult z w)))) -> cm a eq // temporarily fixing the universe of this lemma to u#1 because // otherwise tactics for LowStar.Resource canonicalization fails // by picking up an incorrect universe u#0 for resource type let right_identity (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (x:a) : Lemma (x `CM?.mult m` (CM?.unit m) `EQ?.eq eq` x) = CM?.commutativity m x (CM?.unit m); CM?.identity m x; EQ?.transitivity eq (x `CM?.mult m` (CM?.unit m)) ((CM?.unit m) `CM?.mult m` x) x let int_plus_cm : cm int (equality_equiv int) = CM 0 (+) (fun _ -> ()) (fun _ _ _ -> ()) (fun _ _ -> ()) (fun _ _ _ _ -> ())
false
true
FStar.Algebra.CommMonoid.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val int_multiply_cm:cm int (equality_equiv int)
[]
FStar.Algebra.CommMonoid.Equiv.int_multiply_cm
{ "file_name": "ulib/FStar.Algebra.CommMonoid.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Algebra.CommMonoid.Equiv.cm Prims.int (FStar.Algebra.CommMonoid.Equiv.equality_equiv Prims.int)
{ "end_col": 80, "end_line": 76, "start_col": 2, "start_line": 76 }
Prims.Tot
val int_plus_cm:cm int (equality_equiv int)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let int_plus_cm : cm int (equality_equiv int) = CM 0 (+) (fun _ -> ()) (fun _ _ _ -> ()) (fun _ _ -> ()) (fun _ _ _ _ -> ())
val int_plus_cm:cm int (equality_equiv int) let int_plus_cm:cm int (equality_equiv int) =
false
null
false
CM 0 ( + ) (fun _ -> ()) (fun _ _ _ -> ()) (fun _ _ -> ()) (fun _ _ _ _ -> ())
{ "checked_file": "FStar.Algebra.CommMonoid.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": false, "source_file": "FStar.Algebra.CommMonoid.Equiv.fst" }
[ "total" ]
[ "FStar.Algebra.CommMonoid.Equiv.CM", "Prims.int", "FStar.Algebra.CommMonoid.Equiv.equality_equiv", "Prims.op_Addition", "Prims.unit" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Algebra.CommMonoid.Equiv open FStar.Mul unopteq type equiv (a:Type) = | EQ : eq:(a -> a -> Type0) -> reflexivity:(x:a -> Lemma (x `eq` x)) -> symmetry:(x:a -> y:a -> Lemma (requires (x `eq` y)) (ensures (y `eq` x))) -> transitivity:(x:a -> y:a -> z:a -> Lemma (requires (x `eq` y /\ y `eq` z)) (ensures (x `eq` z))) -> equiv a let elim_eq_laws #a (eq:equiv a) : Lemma ( (forall x.{:pattern (x `eq.eq` x)} x `eq.eq` x) /\ (forall x y.{:pattern (x `eq.eq` y)} x `eq.eq` y ==> y `eq.eq` x) /\ (forall x y z.{:pattern eq.eq x y; eq.eq y z} (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z) ) = introduce forall x. x `eq.eq` x with (eq.reflexivity x); introduce forall x y. x `eq.eq` y ==> y `eq.eq` x with (introduce _ ==> _ with _. eq.symmetry x y); introduce forall x y z. (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z with (introduce _ ==> _ with _. eq.transitivity x y z) let equality_equiv (a:Type) : equiv a = EQ (fun x y -> x == y) (fun x -> ()) (fun x y -> ()) (fun x y z -> ()) unopteq type cm (a:Type) (eq:equiv a) = | CM : unit:a -> mult:(a -> a -> a) -> identity : (x:a -> Lemma ((unit `mult` x) `EQ?.eq eq` x)) -> associativity : (x:a -> y:a -> z:a -> Lemma ((x `mult` y `mult` z) `EQ?.eq eq` (x `mult` (y `mult` z)))) -> commutativity:(x:a -> y:a -> Lemma ((x `mult` y) `EQ?.eq eq` (y `mult` x))) -> congruence:(x:a -> y:a -> z:a -> w:a -> Lemma (requires (x `EQ?.eq eq` z /\ y `EQ?.eq eq` w)) (ensures ((mult x y) `EQ?.eq eq` (mult z w)))) -> cm a eq // temporarily fixing the universe of this lemma to u#1 because // otherwise tactics for LowStar.Resource canonicalization fails // by picking up an incorrect universe u#0 for resource type let right_identity (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (x:a) : Lemma (x `CM?.mult m` (CM?.unit m) `EQ?.eq eq` x) = CM?.commutativity m x (CM?.unit m); CM?.identity m x; EQ?.transitivity eq (x `CM?.mult m` (CM?.unit m)) ((CM?.unit m) `CM?.mult m` x) x
false
true
FStar.Algebra.CommMonoid.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val int_plus_cm:cm int (equality_equiv int)
[]
FStar.Algebra.CommMonoid.Equiv.int_plus_cm
{ "file_name": "ulib/FStar.Algebra.CommMonoid.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
FStar.Algebra.CommMonoid.Equiv.cm Prims.int (FStar.Algebra.CommMonoid.Equiv.equality_equiv Prims.int)
{ "end_col": 78, "end_line": 73, "start_col": 2, "start_line": 73 }
FStar.Pervasives.Lemma
val right_identity (#a: Type u#aa) (eq: equiv a) (m: cm a eq) (x: a) : Lemma (EQ?.eq eq (CM?.mult m x (CM?.unit m)) x)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let right_identity (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (x:a) : Lemma (x `CM?.mult m` (CM?.unit m) `EQ?.eq eq` x) = CM?.commutativity m x (CM?.unit m); CM?.identity m x; EQ?.transitivity eq (x `CM?.mult m` (CM?.unit m)) ((CM?.unit m) `CM?.mult m` x) x
val right_identity (#a: Type u#aa) (eq: equiv a) (m: cm a eq) (x: a) : Lemma (EQ?.eq eq (CM?.mult m x (CM?.unit m)) x) let right_identity (#a: Type u#aa) (eq: equiv a) (m: cm a eq) (x: a) : Lemma (EQ?.eq eq (CM?.mult m x (CM?.unit m)) x) =
false
null
true
CM?.commutativity m x (CM?.unit m); CM?.identity m x; EQ?.transitivity eq (CM?.mult m x (CM?.unit m)) (CM?.mult m (CM?.unit m) x) x
{ "checked_file": "FStar.Algebra.CommMonoid.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": false, "source_file": "FStar.Algebra.CommMonoid.Equiv.fst" }
[ "lemma" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__identity", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__commutativity", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Algebra.CommMonoid.Equiv open FStar.Mul unopteq type equiv (a:Type) = | EQ : eq:(a -> a -> Type0) -> reflexivity:(x:a -> Lemma (x `eq` x)) -> symmetry:(x:a -> y:a -> Lemma (requires (x `eq` y)) (ensures (y `eq` x))) -> transitivity:(x:a -> y:a -> z:a -> Lemma (requires (x `eq` y /\ y `eq` z)) (ensures (x `eq` z))) -> equiv a let elim_eq_laws #a (eq:equiv a) : Lemma ( (forall x.{:pattern (x `eq.eq` x)} x `eq.eq` x) /\ (forall x y.{:pattern (x `eq.eq` y)} x `eq.eq` y ==> y `eq.eq` x) /\ (forall x y z.{:pattern eq.eq x y; eq.eq y z} (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z) ) = introduce forall x. x `eq.eq` x with (eq.reflexivity x); introduce forall x y. x `eq.eq` y ==> y `eq.eq` x with (introduce _ ==> _ with _. eq.symmetry x y); introduce forall x y z. (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z with (introduce _ ==> _ with _. eq.transitivity x y z) let equality_equiv (a:Type) : equiv a = EQ (fun x y -> x == y) (fun x -> ()) (fun x y -> ()) (fun x y z -> ()) unopteq type cm (a:Type) (eq:equiv a) = | CM : unit:a -> mult:(a -> a -> a) -> identity : (x:a -> Lemma ((unit `mult` x) `EQ?.eq eq` x)) -> associativity : (x:a -> y:a -> z:a -> Lemma ((x `mult` y `mult` z) `EQ?.eq eq` (x `mult` (y `mult` z)))) -> commutativity:(x:a -> y:a -> Lemma ((x `mult` y) `EQ?.eq eq` (y `mult` x))) -> congruence:(x:a -> y:a -> z:a -> w:a -> Lemma (requires (x `EQ?.eq eq` z /\ y `EQ?.eq eq` w)) (ensures ((mult x y) `EQ?.eq eq` (mult z w)))) -> cm a eq // temporarily fixing the universe of this lemma to u#1 because // otherwise tactics for LowStar.Resource canonicalization fails // by picking up an incorrect universe u#0 for resource type let right_identity (#a:Type u#aa) (eq:equiv a) (m:cm a eq) (x:a)
false
false
FStar.Algebra.CommMonoid.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val right_identity (#a: Type u#aa) (eq: equiv a) (m: cm a eq) (x: a) : Lemma (EQ?.eq eq (CM?.mult m x (CM?.unit m)) x)
[]
FStar.Algebra.CommMonoid.Equiv.right_identity
{ "file_name": "ulib/FStar.Algebra.CommMonoid.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv a -> m: FStar.Algebra.CommMonoid.Equiv.cm a eq -> x: a -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (CM?.mult m x (CM?.unit m)) x)
{ "end_col": 83, "end_line": 70, "start_col": 2, "start_line": 68 }
FStar.Pervasives.Lemma
val elim_eq_laws (#a: _) (eq: equiv a) : Lemma ((forall x. {:pattern (x `eq.eq` x)} x `eq.eq` x) /\ (forall x y. {:pattern (x `eq.eq` y)} x `eq.eq` y ==> y `eq.eq` x) /\ (forall x y z. {:pattern eq.eq x y; eq.eq y z} (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.CommMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let elim_eq_laws #a (eq:equiv a) : Lemma ( (forall x.{:pattern (x `eq.eq` x)} x `eq.eq` x) /\ (forall x y.{:pattern (x `eq.eq` y)} x `eq.eq` y ==> y `eq.eq` x) /\ (forall x y z.{:pattern eq.eq x y; eq.eq y z} (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z) ) = introduce forall x. x `eq.eq` x with (eq.reflexivity x); introduce forall x y. x `eq.eq` y ==> y `eq.eq` x with (introduce _ ==> _ with _. eq.symmetry x y); introduce forall x y z. (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z with (introduce _ ==> _ with _. eq.transitivity x y z)
val elim_eq_laws (#a: _) (eq: equiv a) : Lemma ((forall x. {:pattern (x `eq.eq` x)} x `eq.eq` x) /\ (forall x y. {:pattern (x `eq.eq` y)} x `eq.eq` y ==> y `eq.eq` x) /\ (forall x y z. {:pattern eq.eq x y; eq.eq y z} (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z)) let elim_eq_laws #a (eq: equiv a) : Lemma ((forall x. {:pattern (x `eq.eq` x)} x `eq.eq` x) /\ (forall x y. {:pattern (x `eq.eq` y)} x `eq.eq` y ==> y `eq.eq` x) /\ (forall x y z. {:pattern eq.eq x y; eq.eq y z} (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z)) =
false
null
true
introduce forall x . x `eq.eq` x with (eq.reflexivity x); introduce forall x y . x `eq.eq` y ==> y `eq.eq` x with (introduce _ ==> _ with _. eq.symmetry x y); introduce forall x y z . (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z with (introduce _ ==> _ with _. eq.transitivity x y z)
{ "checked_file": "FStar.Algebra.CommMonoid.Equiv.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Classical.Sugar.fsti.checked" ], "interface_file": false, "source_file": "FStar.Algebra.CommMonoid.Equiv.fst" }
[ "lemma" ]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Classical.Sugar.forall_intro", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "Prims.l_True", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Algebra.CommMonoid.Equiv open FStar.Mul unopteq type equiv (a:Type) = | EQ : eq:(a -> a -> Type0) -> reflexivity:(x:a -> Lemma (x `eq` x)) -> symmetry:(x:a -> y:a -> Lemma (requires (x `eq` y)) (ensures (y `eq` x))) -> transitivity:(x:a -> y:a -> z:a -> Lemma (requires (x `eq` y /\ y `eq` z)) (ensures (x `eq` z))) -> equiv a let elim_eq_laws #a (eq:equiv a) : Lemma ( (forall x.{:pattern (x `eq.eq` x)} x `eq.eq` x) /\ (forall x y.{:pattern (x `eq.eq` y)} x `eq.eq` y ==> y `eq.eq` x) /\ (forall x y z.{:pattern eq.eq x y; eq.eq y z} (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z)
false
false
FStar.Algebra.CommMonoid.Equiv.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elim_eq_laws (#a: _) (eq: equiv a) : Lemma ((forall x. {:pattern (x `eq.eq` x)} x `eq.eq` x) /\ (forall x y. {:pattern (x `eq.eq` y)} x `eq.eq` y ==> y `eq.eq` x) /\ (forall x y z. {:pattern eq.eq x y; eq.eq y z} (x `eq.eq` y /\ y `eq.eq` z) ==> x `eq.eq` z))
[]
FStar.Algebra.CommMonoid.Equiv.elim_eq_laws
{ "file_name": "ulib/FStar.Algebra.CommMonoid.Equiv.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
eq: FStar.Algebra.CommMonoid.Equiv.equiv a -> FStar.Pervasives.Lemma (ensures (forall (x: a). {:pattern EQ?.eq eq x x} EQ?.eq eq x x) /\ (forall (x: a) (y: a). {:pattern EQ?.eq eq x y} EQ?.eq eq x y ==> EQ?.eq eq y x) /\ (forall (x: a) (y: a) (z: a). {:pattern EQ?.eq eq x y; EQ?.eq eq y z} EQ?.eq eq x y /\ EQ?.eq eq y z ==> EQ?.eq eq x z))
{ "end_col": 40, "end_line": 44, "start_col": 4, "start_line": 35 }
Prims.Tot
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_inv_t (f:felem5) = let (o0, o1, o2, o3, o4) = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1)
let mul_inv_t (f: felem5) =
false
null
false
let o0, o1, o2, o3, o4 = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Lib.IntTypes.uint64", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims.l_and", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Modulus", "Prims.bool", "Prims.logical" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
false
true
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_inv_t : f: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> Prims.logical
[]
Hacl.Spec.Curve25519.Field51.mul_inv_t
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> Prims.logical
{ "end_col": 36, "end_line": 241, "start_col": 26, "start_line": 237 }
Prims.Pure
val fsqr25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f1) /\ feval out2 == fmul (feval f2) (feval f2))
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsqr25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (o10, o11, o12, o13, o14) = fsqr_felem5 (f10, f11, f12, f13, f14) in let (o20, o21, o22, o23, o24) = fsqr_felem5 (f20, f21, f22, f23, f24) in let (o10, o11, o12, o13, o14) = carry_wide5 (o10, o11, o12, o13, o14) in let (o20, o21, o22, o23, o24) = carry_wide5 (o20, o21, o22, o23, o24) in ((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24))
val fsqr25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f1) /\ feval out2 == fmul (feval f2) (feval f2)) let fsqr25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
false
null
false
let o10, o11, o12, o13, o14 = fsqr_felem5 (f10, f11, f12, f13, f14) in let o20, o21, o22, o23, o24 = fsqr_felem5 (f20, f21, f22, f23, f24) in let o10, o11, o12, o13, o14 = carry_wide5 (o10, o11, o12, o13, o14) in let o20, o21, o22, o23, o24 = carry_wide5 (o20, o21, o22, o23, o24) in ((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24))
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.uint64", "Lib.IntTypes.uint128", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Curve25519.Field51.carry_wide5", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide5", "Hacl.Spec.Curve25519.Field51.fsqr_felem5" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) let mul_inv_t (f:felem5) = let (o0, o1, o2, o3, o4) = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1) #push-options "--ifuel 1" val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1)) let lemma_mul_inv f cin = assert_norm (pow51 = pow2 51) #pop-options #push-options "--z3rlimit 100" inline_for_extraction noextract val carry_wide5: inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == feval_wide inp) let carry_wide5 (i0, i1, i2, i3, i4) = assert_norm (6579 < pow2 13); assert_norm (pow2 13 < max51); let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in let tmp1, c1 = carry51_wide #4797 i1 c0 in let tmp2, c2 = carry51_wide #3340 i2 c1 in let tmp3, c3 = carry51_wide #1881 i3 c2 in let tmp4, c4 = carry51_wide #423 i4 c3 in lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5; (tmp0', tmp1', tmp2, tmp3, tmp4) #pop-options inline_for_extraction noextract val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f1) (feval f2)} let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) inline_for_extraction noextract val fmul25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f2) /\ feval out2 == fmul (feval f3) (feval f4)) let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) = let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) = mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in ((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24)) inline_for_extraction noextract val fmul15: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:uint64{felem_fits1 f2 1} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == (feval f1 * v f2) % prime) let fmul15 (f10, f11, f12, f13, f14) f2 = let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in [@inline_let] let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime; assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)); assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime); assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime); FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14)); assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime); res // inline_for_extraction noextract // val fsqr_felem5: // f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} // -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)} // let fsqr_felem5 (f0, f1, f2, f3, f4) = // let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162) // f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342) // f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423) // f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423) // f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in // (o0, o1, o2, o3, o4) inline_for_extraction noextract val mul64_wide_add3: #m0:scale64 -> #m1:scale64 -> #m2:scale64 -> #m3:scale64 -> #m4:scale64 -> #m5:scale64 -> a0:uint64{felem_fits1 a0 m0} -> a1:uint64{felem_fits1 a1 m1} -> b0:uint64{felem_fits1 b0 m2} -> b1:uint64{felem_fits1 b1 m3} -> c0:uint64{felem_fits1 c0 m4} -> c1:uint64{felem_fits1 c1 m5} -> Pure uint128 (requires m0 * m1 + m2 * m3 + m4 * m5 < 8192) (ensures fun res -> felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\ v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1) let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 = assert_norm (pow2 13 = 8192); mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1; mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1 inline_for_extraction noextract val fsqr_felem5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Pure felem_wide5 (requires True) (ensures fun out -> felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f) (feval f)) let fsqr_felem5 (f0, f1, f2, f3, f4) = assert_norm (pow2 13 = 8192); let d0 = u64 2 *! f0 in let d1 = u64 2 *! f1 in let d2 = u64 38 *! f2 in let d3 = u64 19 *! f3 in let d419 = u64 19 *! f4 in let d4 = u64 2 *! d419 in let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in lemma_fmul_fsqr5 (f0, f1, f2, f3, f4); (s0, s1, s2, s3, s4) inline_for_extraction noextract val fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)} let fsqr5 (f0, f1, f2, f3, f4) = let (o0, o1, o2, o3, o4) = fsqr_felem5 (f0, f1, f2, f3, f4) in carry_wide5 (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsqr25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f1) /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsqr25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f1) /\ feval out2 == fmul (feval f2) (feval f2))
[]
Hacl.Spec.Curve25519.Field51.fsqr25
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (9, 10, 9, 9, 9)} -> Prims.Pure (Hacl.Spec.Curve25519.Field51.Definition.felem5 * Hacl.Spec.Curve25519.Field51.Definition.felem5 )
{ "end_col": 56, "end_line": 434, "start_col": 64, "start_line": 429 }
Prims.Tot
val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f1) (feval f2)}
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f1) (feval f2)} let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
false
null
false
let tmp0, tmp1, tmp2, tmp3, tmp4 = precomp_r19 (f20, f21, f22, f23, f24) in let tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4 = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.uint64", "Lib.IntTypes.uint128", "Hacl.Spec.Curve25519.Field51.carry_wide5", "Prims.l_and", "Hacl.Spec.Curve25519.Field51.mul_inv_t", "Prims.eq2", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Field51.Definition.feval", "Spec.Curve25519.fmul", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide5", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5", "Hacl.Spec.Curve25519.Field51.Definition.feval_wide", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.mul_felem5", "Hacl.Spec.Curve25519.Field51.precomp_r19" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) let mul_inv_t (f:felem5) = let (o0, o1, o2, o3, o4) = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1) #push-options "--ifuel 1" val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1)) let lemma_mul_inv f cin = assert_norm (pow51 = pow2 51) #pop-options #push-options "--z3rlimit 100" inline_for_extraction noextract val carry_wide5: inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == feval_wide inp) let carry_wide5 (i0, i1, i2, i3, i4) = assert_norm (6579 < pow2 13); assert_norm (pow2 13 < max51); let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in let tmp1, c1 = carry51_wide #4797 i1 c0 in let tmp2, c2 = carry51_wide #3340 i2 c1 in let tmp3, c3 = carry51_wide #1881 i3 c2 in let tmp4, c4 = carry51_wide #423 i4 c3 in lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5; (tmp0', tmp1', tmp2, tmp3, tmp4) #pop-options inline_for_extraction noextract val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f1) (feval f2)}
[]
Hacl.Spec.Curve25519.Field51.fmul5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (9, 10, 9, 9, 9)} -> out: Hacl.Spec.Curve25519.Field51.Definition.felem5 { Hacl.Spec.Curve25519.Field51.mul_inv_t out /\ Hacl.Spec.Curve25519.Field51.Definition.feval out == Spec.Curve25519.fmul (Hacl.Spec.Curve25519.Field51.Definition.feval f1) (Hacl.Spec.Curve25519.Field51.Definition.feval f2) }
{ "end_col": 54, "end_line": 295, "start_col": 63, "start_line": 291 }
Prims.Tot
val fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)}
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsqr5 (f0, f1, f2, f3, f4) = let (o0, o1, o2, o3, o4) = fsqr_felem5 (f0, f1, f2, f3, f4) in carry_wide5 (o0, o1, o2, o3, o4)
val fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)} let fsqr5 (f0, f1, f2, f3, f4) =
false
null
false
let o0, o1, o2, o3, o4 = fsqr_felem5 (f0, f1, f2, f3, f4) in carry_wide5 (o0, o1, o2, o3, o4)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Lib.IntTypes.uint128", "Hacl.Spec.Curve25519.Field51.carry_wide5", "Prims.l_and", "Hacl.Spec.Curve25519.Field51.mul_inv_t", "Prims.eq2", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Field51.Definition.feval", "Spec.Curve25519.fmul", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide5", "Hacl.Spec.Curve25519.Field51.fsqr_felem5" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) let mul_inv_t (f:felem5) = let (o0, o1, o2, o3, o4) = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1) #push-options "--ifuel 1" val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1)) let lemma_mul_inv f cin = assert_norm (pow51 = pow2 51) #pop-options #push-options "--z3rlimit 100" inline_for_extraction noextract val carry_wide5: inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == feval_wide inp) let carry_wide5 (i0, i1, i2, i3, i4) = assert_norm (6579 < pow2 13); assert_norm (pow2 13 < max51); let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in let tmp1, c1 = carry51_wide #4797 i1 c0 in let tmp2, c2 = carry51_wide #3340 i2 c1 in let tmp3, c3 = carry51_wide #1881 i3 c2 in let tmp4, c4 = carry51_wide #423 i4 c3 in lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5; (tmp0', tmp1', tmp2, tmp3, tmp4) #pop-options inline_for_extraction noextract val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f1) (feval f2)} let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) inline_for_extraction noextract val fmul25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f2) /\ feval out2 == fmul (feval f3) (feval f4)) let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) = let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) = mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in ((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24)) inline_for_extraction noextract val fmul15: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:uint64{felem_fits1 f2 1} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == (feval f1 * v f2) % prime) let fmul15 (f10, f11, f12, f13, f14) f2 = let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in [@inline_let] let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime; assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)); assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime); assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime); FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14)); assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime); res // inline_for_extraction noextract // val fsqr_felem5: // f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} // -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)} // let fsqr_felem5 (f0, f1, f2, f3, f4) = // let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162) // f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342) // f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423) // f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423) // f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in // (o0, o1, o2, o3, o4) inline_for_extraction noextract val mul64_wide_add3: #m0:scale64 -> #m1:scale64 -> #m2:scale64 -> #m3:scale64 -> #m4:scale64 -> #m5:scale64 -> a0:uint64{felem_fits1 a0 m0} -> a1:uint64{felem_fits1 a1 m1} -> b0:uint64{felem_fits1 b0 m2} -> b1:uint64{felem_fits1 b1 m3} -> c0:uint64{felem_fits1 c0 m4} -> c1:uint64{felem_fits1 c1 m5} -> Pure uint128 (requires m0 * m1 + m2 * m3 + m4 * m5 < 8192) (ensures fun res -> felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\ v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1) let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 = assert_norm (pow2 13 = 8192); mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1; mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1 inline_for_extraction noextract val fsqr_felem5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Pure felem_wide5 (requires True) (ensures fun out -> felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f) (feval f)) let fsqr_felem5 (f0, f1, f2, f3, f4) = assert_norm (pow2 13 = 8192); let d0 = u64 2 *! f0 in let d1 = u64 2 *! f1 in let d2 = u64 38 *! f2 in let d3 = u64 19 *! f3 in let d419 = u64 19 *! f4 in let d4 = u64 2 *! d419 in let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in lemma_fmul_fsqr5 (f0, f1, f2, f3, f4); (s0, s1, s2, s3, s4) inline_for_extraction noextract val fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)}
[]
Hacl.Spec.Curve25519.Field51.fsqr5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (9, 10, 9, 9, 9)} -> out: Hacl.Spec.Curve25519.Field51.Definition.felem5 { Hacl.Spec.Curve25519.Field51.mul_inv_t out /\ Hacl.Spec.Curve25519.Field51.Definition.feval out == Spec.Curve25519.fmul (Hacl.Spec.Curve25519.Field51.Definition.feval f) (Hacl.Spec.Curve25519.Field51.Definition.feval f) }
{ "end_col": 34, "end_line": 416, "start_col": 32, "start_line": 414 }
Prims.Tot
val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194)
val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) =
false
null
false
[@@ inline_let ]let r190 = f20 *! u64 19 in [@@ inline_let ]let r191 = f21 *! u64 19 in [@@ inline_let ]let r192 = f22 *! u64 19 in [@@ inline_let ]let r193 = f23 *! u64 19 in [@@ inline_let ]let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.u64" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
[]
Hacl.Spec.Curve25519.Field51.precomp_r19
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f2: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r19 (171, 190, 171, 171, 171)}
{ "end_col": 32, "end_line": 186, "start_col": 2, "start_line": 176 }
Prims.Pure
val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul)
val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin =
false
null
false
let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[]
[ "Lib.IntTypes.uint64", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.Definition.mask51", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_carry51", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Bang", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
[]
Hacl.Spec.Curve25519.Field51.carry51
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
l: Lib.IntTypes.uint64 -> cin: Lib.IntTypes.uint64 -> Prims.Pure (Lib.IntTypes.uint64 * Lib.IntTypes.uint64)
{ "end_col": 29, "end_line": 220, "start_col": 19, "start_line": 217 }
Prims.Tot
val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)}
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out
val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
false
null
false
let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.uint64", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "Prims.op_Modulus", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Spec.Curve25519.prime", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Plus_Bang", "Prims.l_and", "Prims.eq2", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Field51.Definition.feval", "Spec.Curve25519.fadd" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)}
[]
Hacl.Spec.Curve25519.Field51.fadd5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (1, 2, 1, 1, 1)} -> out: Hacl.Spec.Curve25519.Field51.Definition.felem5 { Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (2, 4, 2, 2, 2) /\ Hacl.Spec.Curve25519.Field51.Definition.feval out == Spec.Curve25519.fadd (Hacl.Spec.Curve25519.Field51.Definition.feval f1) (Hacl.Spec.Curve25519.Field51.Definition.feval f2) }
{ "end_col": 5, "end_line": 30, "start_col": 63, "start_line": 19 }
Prims.Tot
val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)}
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4)
val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
false
null
false
let o0, o1, o2, o3, o4 = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let o0, o1, o2, o3, o4 = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let o0, o1, o2, o3, o4 = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let o0, o1, o2, o3, o4 = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let o0, o1, o2, o3, o4 = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Prims.l_and", "Prims.eq2", "Hacl.Spec.Curve25519.Field51.precomp_r19", "FStar.Pervasives.Native.Mktuple3", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.uint64", "Lib.IntTypes.uint128", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide5", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Field51.Definition.feval_wide", "Spec.Curve25519.fmul", "Hacl.Spec.Curve25519.Field51.Definition.feval", "Prims.int", "Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5", "Prims.op_Addition", "Lib.IntTypes.int_t", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Prims.op_Multiply", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Hacl.Spec.Curve25519.Field51.Definition.op_Plus_Star", "Hacl.Spec.Curve25519.Field51.Definition.op_Star_Hat", "Hacl.Spec.Curve25519.Field51.smul_add_felem5", "Hacl.Spec.Curve25519.Field51.smul_felem5" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)}
[]
Hacl.Spec.Curve25519.Field51.mul_felem5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} -> r: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r (9, 10, 9, 9, 9)} -> r19: Hacl.Spec.Curve25519.Field51.Definition.felem5 { Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == Hacl.Spec.Curve25519.Field51.precomp_r19 r } -> out: Hacl.Spec.Curve25519.Field51.Definition.felem_wide5 { Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ Hacl.Spec.Curve25519.Field51.Definition.feval_wide out == Spec.Curve25519.fmul (Hacl.Spec.Curve25519.Field51.Definition.feval f1) (Hacl.Spec.Curve25519.Field51.Definition.feval r) }
{ "end_col": 22, "end_line": 206, "start_col": 94, "start_line": 195 }
Prims.Pure
val fmul25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f2) /\ feval out2 == fmul (feval f3) (feval f4))
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) = let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) = mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in ((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24))
val fmul25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f2) /\ feval out2 == fmul (feval f3) (feval f4)) let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) =
false
null
false
let tmp10, tmp11, tmp12, tmp13, tmp14 = precomp_r19 (f20, f21, f22, f23, f24) in let tmp20, tmp21, tmp22, tmp23, tmp24 = precomp_r19 (f40, f41, f42, f43, f44) in let tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14 = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in let tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24 = mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in let o10, o11, o12, o13, o14 = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in let o20, o21, o22, o23, o24 = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in ((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24))
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "FStar.Pervasives.Native.Mktuple4", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.uint64", "Lib.IntTypes.uint128", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Curve25519.Field51.carry_wide5", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide5", "Prims.l_and", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5", "Prims.eq2", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Field51.Definition.feval_wide", "Spec.Curve25519.fmul", "Hacl.Spec.Curve25519.Field51.Definition.feval", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.mul_felem5", "Hacl.Spec.Curve25519.Field51.precomp_r19" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) let mul_inv_t (f:felem5) = let (o0, o1, o2, o3, o4) = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1) #push-options "--ifuel 1" val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1)) let lemma_mul_inv f cin = assert_norm (pow51 = pow2 51) #pop-options #push-options "--z3rlimit 100" inline_for_extraction noextract val carry_wide5: inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == feval_wide inp) let carry_wide5 (i0, i1, i2, i3, i4) = assert_norm (6579 < pow2 13); assert_norm (pow2 13 < max51); let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in let tmp1, c1 = carry51_wide #4797 i1 c0 in let tmp2, c2 = carry51_wide #3340 i2 c1 in let tmp3, c3 = carry51_wide #1881 i3 c2 in let tmp4, c4 = carry51_wide #423 i4 c3 in lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5; (tmp0', tmp1', tmp2, tmp3, tmp4) #pop-options inline_for_extraction noextract val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f1) (feval f2)} let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) inline_for_extraction noextract val fmul25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f2) /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f2) /\ feval out2 == fmul (feval f3) (feval f4))
[]
Hacl.Spec.Curve25519.Field51.fmul25
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f4 (9, 10, 9, 9, 9)} -> Prims.Pure (Hacl.Spec.Curve25519.Field51.Definition.felem5 * Hacl.Spec.Curve25519.Field51.Definition.felem5 )
{ "end_col": 48, "end_line": 318, "start_col": 116, "start_line": 309 }
Prims.Tot
val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1}
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4)
val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) =
false
null
false
let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_add_zero", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.u64", "Prims.l_and", "Prims.eq2", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Field51.Definition.feval" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1}
[]
Hacl.Spec.Curve25519.Field51.fadd_zero
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (1, 2, 1, 1, 1)} -> out: Hacl.Spec.Curve25519.Field51.Definition.felem5 { Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (9, 10, 9, 9, 9) /\ Hacl.Spec.Curve25519.Field51.Definition.feval out == Hacl.Spec.Curve25519.Field51.Definition.feval f1 }
{ "end_col": 22, "end_line": 44, "start_col": 41, "start_line": 37 }
Prims.Tot
val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y
val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} let mul_wide64 #m1 #m2 x y =
false
null
false
let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); paren_mul_right (m1 * max51) m2 max51; paren_mul_right m1 max51 m2; swap_mul max51 m2; paren_mul_right m1 m2 max51; paren_mul_right (m1 * m2) max51 max51; assert (v x * v y <= ((m1 * max51) * m2) * max51); assert (v x * v y <= ((m1 * m2) * max51) * max51); mul64_wide x y
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.scale64", "Lib.IntTypes.uint64", "Prims.b2t", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits1", "Prims.l_and", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.mul64_wide", "Prims.unit", "Prims._assert", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.Definition.max51", "FStar.Math.Lemmas.paren_mul_right", "FStar.Math.Lemmas.swap_mul", "FStar.Math.Lemmas.lemma_mult_le_right", "FStar.Math.Lemmas.lemma_mult_le_left", "Lib.IntTypes.uint128", "Prims.eq2", "Prims.int", "Lib.IntTypes.uint_v", "Lib.IntTypes.U128", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5"
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
[]
Hacl.Spec.Curve25519.Field51.mul_wide64
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 x m1} -> y: Lib.IntTypes.uint64 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z: Lib.IntTypes.uint128 { Lib.IntTypes.uint_v z == Lib.IntTypes.uint_v x * Lib.IntTypes.uint_v y /\ Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1 z (m1 * m2) }
{ "end_col": 16, "end_line": 100, "start_col": 2, "start_line": 90 }
Prims.Tot
val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2}
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out
val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
false
null
false
let m20, m21, m22, m23, m24 = m2 in [@@ inline_let ]let o0 = mul_wide64 #m1 #m20 u1 f20 in [@@ inline_let ]let o1 = mul_wide64 #m1 #m21 u1 f21 in [@@ inline_let ]let o2 = mul_wide64 #m1 #m22 u1 f22 in [@@ inline_let ]let o3 = mul_wide64 #m1 #m23 u1 f23 in [@@ inline_let ]let o4 = mul_wide64 #m1 #m24 u1 f24 in [@@ inline_let ]let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.scale64", "Hacl.Spec.Curve25519.Field51.Definition.scale64_5", "Lib.IntTypes.uint64", "Prims.b2t", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits1", "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Prims.l_and", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "Hacl.Spec.Curve25519.Field51.Definition.op_Less_Equals_Star", "Hacl.Spec.Curve25519.Field51.Definition.op_Star_Hat", "Hacl.Spec.Curve25519.Field51.Definition.s128x5", "Prims.nat", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_smul_felem5", "FStar.Pervasives.Native.Mktuple5", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Lib.IntTypes.uint128", "Prims.eq2", "Prims.int", "Lib.IntTypes.v", "Prims.op_Multiply", "Lib.IntTypes.U64", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1", "Hacl.Spec.Curve25519.Field51.mul_wide64", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide5", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5", "Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5", "FStar.Mul.op_Star", "Lib.IntTypes.uint_v", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2}
[]
Hacl.Spec.Curve25519.Field51.smul_felem5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
u1: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 u1 m1} -> f2: Hacl.Spec.Curve25519.Field51.Definition.felem5 { Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 m2 /\ m1 *^ m2 <=* Hacl.Spec.Curve25519.Field51.Definition.s128x5 67108864 } -> out: Hacl.Spec.Curve25519.Field51.Definition.felem_wide5 { Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5 out (m1 *^ m2) /\ Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5 out == Lib.IntTypes.uint_v u1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f2 }
{ "end_col": 5, "end_line": 126, "start_col": 54, "start_line": 111 }
Prims.Tot
val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)}
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out
val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
false
null
false
let t0, t1, t2, t3, t4 = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.uint64", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mod_sub_distr", "Prims.op_Modulus", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Spec.Curve25519.prime", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "Prims.op_Minus", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Subtraction_Bang", "Prims.l_and", "Prims.eq2", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Field51.Definition.feval", "Spec.Curve25519.fsub", "Hacl.Spec.Curve25519.Field51.fadd_zero" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)}
[]
Hacl.Spec.Curve25519.Field51.fsub5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (1, 2, 1, 1, 1)} -> out: Hacl.Spec.Curve25519.Field51.Definition.felem5 { Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (9, 10, 9, 9, 9) /\ Hacl.Spec.Curve25519.Field51.Definition.feval out == Spec.Curve25519.fsub (Hacl.Spec.Curve25519.Field51.Definition.feval f1) (Hacl.Spec.Curve25519.Field51.Definition.feval f2) }
{ "end_col": 5, "end_line": 65, "start_col": 63, "start_line": 52 }
Prims.Tot
val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y
val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z =
false
null
false
z +! mul_wide64 #m1 #m2 x y
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "total" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.scale64", "Hacl.Spec.Curve25519.Field51.Definition.scale128", "Lib.IntTypes.uint64", "Prims.b2t", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits1", "Lib.IntTypes.uint128", "Prims.l_and", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.mul_wide64", "Prims.eq2", "Prims.int", "Lib.IntTypes.uint_v", "Lib.IntTypes.U64" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
[]
Hacl.Spec.Curve25519.Field51.mul_add_wide128
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 x m1} -> y: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 y m2} -> z: Lib.IntTypes.uint128 {Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r: Lib.IntTypes.uint128 { Lib.IntTypes.uint_v r == Lib.IntTypes.uint_v z + Lib.IntTypes.uint_v x * Lib.IntTypes.uint_v y /\ Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1 r (m3 + m1 * m2) }
{ "end_col": 29, "end_line": 138, "start_col": 2, "start_line": 138 }
Prims.Pure
val subtract_p5: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> Pure felem5 (requires True) (ensures fun out -> as_nat5 out == feval f /\ felem_fits5 out (1, 1, 1, 1, 1) /\ as_nat5 out < prime)
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let subtract_p5 (f0, f1, f2, f3, f4) = let m0 = gte_mask f0 (u64 0x7ffffffffffed) in let m1 = eq_mask f1 (u64 0x7ffffffffffff) in let m2 = eq_mask f2 (u64 0x7ffffffffffff) in let m3 = eq_mask f3 (u64 0x7ffffffffffff) in let m4 = eq_mask f4 (u64 0x7ffffffffffff) in let mask = m0 &. m1 &. m2 &. m3 &. m4 in let f0' = f0 -. (mask &. u64 0x7ffffffffffed) in let f1' = f1 -. (mask &. u64 0x7ffffffffffff) in let f2' = f2 -. (mask &. u64 0x7ffffffffffff) in let f3' = f3 -. (mask &. u64 0x7ffffffffffff) in let f4' = f4 -. (mask &. u64 0x7ffffffffffff) in logand_lemma mask (u64 0x7ffffffffffed); logand_lemma mask (u64 0x7ffffffffffff); lemma_subtract_p (f0, f1, f2, f3, f4) (f0', f1', f2', f3', f4'); (f0', f1', f2', f3', f4')
val subtract_p5: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> Pure felem5 (requires True) (ensures fun out -> as_nat5 out == feval f /\ felem_fits5 out (1, 1, 1, 1, 1) /\ as_nat5 out < prime) let subtract_p5 (f0, f1, f2, f3, f4) =
false
null
false
let m0 = gte_mask f0 (u64 0x7ffffffffffed) in let m1 = eq_mask f1 (u64 0x7ffffffffffff) in let m2 = eq_mask f2 (u64 0x7ffffffffffff) in let m3 = eq_mask f3 (u64 0x7ffffffffffff) in let m4 = eq_mask f4 (u64 0x7ffffffffffff) in let mask = m0 &. m1 &. m2 &. m3 &. m4 in let f0' = f0 -. (mask &. u64 0x7ffffffffffed) in let f1' = f1 -. (mask &. u64 0x7ffffffffffff) in let f2' = f2 -. (mask &. u64 0x7ffffffffffff) in let f3' = f3 -. (mask &. u64 0x7ffffffffffff) in let f4' = f4 -. (mask &. u64 0x7ffffffffffff) in logand_lemma mask (u64 0x7ffffffffffed); logand_lemma mask (u64 0x7ffffffffffff); lemma_subtract_p (f0, f1, f2, f3, f4) (f0', f1', f2', f3', f4'); (f0', f1', f2', f3', f4')
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_subtract_p", "Lib.IntTypes.logand_lemma", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.u64", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.eq_mask", "Lib.IntTypes.gte_mask" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) let mul_inv_t (f:felem5) = let (o0, o1, o2, o3, o4) = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1) #push-options "--ifuel 1" val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1)) let lemma_mul_inv f cin = assert_norm (pow51 = pow2 51) #pop-options #push-options "--z3rlimit 100" inline_for_extraction noextract val carry_wide5: inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == feval_wide inp) let carry_wide5 (i0, i1, i2, i3, i4) = assert_norm (6579 < pow2 13); assert_norm (pow2 13 < max51); let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in let tmp1, c1 = carry51_wide #4797 i1 c0 in let tmp2, c2 = carry51_wide #3340 i2 c1 in let tmp3, c3 = carry51_wide #1881 i3 c2 in let tmp4, c4 = carry51_wide #423 i4 c3 in lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5; (tmp0', tmp1', tmp2, tmp3, tmp4) #pop-options inline_for_extraction noextract val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f1) (feval f2)} let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) inline_for_extraction noextract val fmul25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f2) /\ feval out2 == fmul (feval f3) (feval f4)) let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) = let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) = mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in ((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24)) inline_for_extraction noextract val fmul15: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:uint64{felem_fits1 f2 1} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == (feval f1 * v f2) % prime) let fmul15 (f10, f11, f12, f13, f14) f2 = let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in [@inline_let] let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime; assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)); assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime); assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime); FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14)); assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime); res // inline_for_extraction noextract // val fsqr_felem5: // f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} // -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)} // let fsqr_felem5 (f0, f1, f2, f3, f4) = // let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162) // f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342) // f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423) // f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423) // f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in // (o0, o1, o2, o3, o4) inline_for_extraction noextract val mul64_wide_add3: #m0:scale64 -> #m1:scale64 -> #m2:scale64 -> #m3:scale64 -> #m4:scale64 -> #m5:scale64 -> a0:uint64{felem_fits1 a0 m0} -> a1:uint64{felem_fits1 a1 m1} -> b0:uint64{felem_fits1 b0 m2} -> b1:uint64{felem_fits1 b1 m3} -> c0:uint64{felem_fits1 c0 m4} -> c1:uint64{felem_fits1 c1 m5} -> Pure uint128 (requires m0 * m1 + m2 * m3 + m4 * m5 < 8192) (ensures fun res -> felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\ v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1) let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 = assert_norm (pow2 13 = 8192); mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1; mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1 inline_for_extraction noextract val fsqr_felem5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Pure felem_wide5 (requires True) (ensures fun out -> felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f) (feval f)) let fsqr_felem5 (f0, f1, f2, f3, f4) = assert_norm (pow2 13 = 8192); let d0 = u64 2 *! f0 in let d1 = u64 2 *! f1 in let d2 = u64 38 *! f2 in let d3 = u64 19 *! f3 in let d419 = u64 19 *! f4 in let d4 = u64 2 *! d419 in let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in lemma_fmul_fsqr5 (f0, f1, f2, f3, f4); (s0, s1, s2, s3, s4) inline_for_extraction noextract val fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)} let fsqr5 (f0, f1, f2, f3, f4) = let (o0, o1, o2, o3, o4) = fsqr_felem5 (f0, f1, f2, f3, f4) in carry_wide5 (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsqr25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f1) /\ feval out2 == fmul (feval f2) (feval f2)) let fsqr25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (o10, o11, o12, o13, o14) = fsqr_felem5 (f10, f11, f12, f13, f14) in let (o20, o21, o22, o23, o24) = fsqr_felem5 (f20, f21, f22, f23, f24) in let (o10, o11, o12, o13, o14) = carry_wide5 (o10, o11, o12, o13, o14) in let (o20, o21, o22, o23, o24) = carry_wide5 (o20, o21, o22, o23, o24) in ((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24)) #set-options "--z3rlimit 100 --max_fuel 2" inline_for_extraction noextract val carry_felem5_full: inp:felem5{mul_inv_t inp} -> out:felem5{feval out == feval inp /\ felem_fits5 out (1, 1, 1, 1, 1)} let carry_felem5_full (f0, f1, f2, f3, f4) = assert_norm (pow51 = pow2 51); let tmp0, c0 = carry51 f0 (u64 0) in let tmp1, c1 = carry51 f1 c0 in assert (if v f1 < pow2 51 then v tmp1 < pow2 51 else v tmp1 < 8192); let tmp2, c2 = carry51 f2 c1 in let tmp3, c3 = carry51 f3 c2 in let tmp4, c4 = carry51 f4 c3 in lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; [@inline_let] let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in (tmp0', tmp1', tmp2, tmp3, tmp4) inline_for_extraction noextract val subtract_p5: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> Pure felem5 (requires True) (ensures fun out -> as_nat5 out == feval f /\ felem_fits5 out (1, 1, 1, 1, 1) /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val subtract_p5: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> Pure felem5 (requires True) (ensures fun out -> as_nat5 out == feval f /\ felem_fits5 out (1, 1, 1, 1, 1) /\ as_nat5 out < prime)
[]
Hacl.Spec.Curve25519.Field51.subtract_p5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1)} -> Prims.Pure Hacl.Spec.Curve25519.Field51.Definition.felem5
{ "end_col": 27, "end_line": 481, "start_col": 38, "start_line": 466 }
Prims.Pure
val fsqr_felem5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Pure felem_wide5 (requires True) (ensures fun out -> felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f) (feval f))
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsqr_felem5 (f0, f1, f2, f3, f4) = assert_norm (pow2 13 = 8192); let d0 = u64 2 *! f0 in let d1 = u64 2 *! f1 in let d2 = u64 38 *! f2 in let d3 = u64 19 *! f3 in let d419 = u64 19 *! f4 in let d4 = u64 2 *! d419 in let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in lemma_fmul_fsqr5 (f0, f1, f2, f3, f4); (s0, s1, s2, s3, s4)
val fsqr_felem5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Pure felem_wide5 (requires True) (ensures fun out -> felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f) (feval f)) let fsqr_felem5 (f0, f1, f2, f3, f4) =
false
null
false
assert_norm (pow2 13 = 8192); let d0 = u64 2 *! f0 in let d1 = u64 2 *! f1 in let d2 = u64 38 *! f2 in let d3 = u64 19 *! f3 in let d419 = u64 19 *! f4 in let d4 = u64 2 *! d419 in let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in lemma_fmul_fsqr5 (f0, f1, f2, f3, f4); (s0, s1, s2, s3, s4)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Lib.IntTypes.uint128", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul_fsqr5", "Lib.IntTypes.int_t", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field51.mul64_wide_add3", "Lib.IntTypes.U64", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.u64", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.pow2", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide5" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) let mul_inv_t (f:felem5) = let (o0, o1, o2, o3, o4) = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1) #push-options "--ifuel 1" val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1)) let lemma_mul_inv f cin = assert_norm (pow51 = pow2 51) #pop-options #push-options "--z3rlimit 100" inline_for_extraction noextract val carry_wide5: inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == feval_wide inp) let carry_wide5 (i0, i1, i2, i3, i4) = assert_norm (6579 < pow2 13); assert_norm (pow2 13 < max51); let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in let tmp1, c1 = carry51_wide #4797 i1 c0 in let tmp2, c2 = carry51_wide #3340 i2 c1 in let tmp3, c3 = carry51_wide #1881 i3 c2 in let tmp4, c4 = carry51_wide #423 i4 c3 in lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5; (tmp0', tmp1', tmp2, tmp3, tmp4) #pop-options inline_for_extraction noextract val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f1) (feval f2)} let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) inline_for_extraction noextract val fmul25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f2) /\ feval out2 == fmul (feval f3) (feval f4)) let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) = let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) = mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in ((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24)) inline_for_extraction noextract val fmul15: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:uint64{felem_fits1 f2 1} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == (feval f1 * v f2) % prime) let fmul15 (f10, f11, f12, f13, f14) f2 = let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in [@inline_let] let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime; assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)); assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime); assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime); FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14)); assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime); res // inline_for_extraction noextract // val fsqr_felem5: // f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} // -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)} // let fsqr_felem5 (f0, f1, f2, f3, f4) = // let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162) // f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342) // f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423) // f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423) // f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in // (o0, o1, o2, o3, o4) inline_for_extraction noextract val mul64_wide_add3: #m0:scale64 -> #m1:scale64 -> #m2:scale64 -> #m3:scale64 -> #m4:scale64 -> #m5:scale64 -> a0:uint64{felem_fits1 a0 m0} -> a1:uint64{felem_fits1 a1 m1} -> b0:uint64{felem_fits1 b0 m2} -> b1:uint64{felem_fits1 b1 m3} -> c0:uint64{felem_fits1 c0 m4} -> c1:uint64{felem_fits1 c1 m5} -> Pure uint128 (requires m0 * m1 + m2 * m3 + m4 * m5 < 8192) (ensures fun res -> felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\ v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1) let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 = assert_norm (pow2 13 = 8192); mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1; mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1 inline_for_extraction noextract val fsqr_felem5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Pure felem_wide5 (requires True) (ensures fun out -> felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f) (feval f))
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsqr_felem5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Pure felem_wide5 (requires True) (ensures fun out -> felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f) (feval f))
[]
Hacl.Spec.Curve25519.Field51.fsqr_felem5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (9, 10, 9, 9, 9)} -> Prims.Pure Hacl.Spec.Curve25519.Field51.Definition.felem_wide5
{ "end_col": 22, "end_line": 407, "start_col": 2, "start_line": 392 }
Prims.Pure
val fmul15: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:uint64{felem_fits1 f2 1} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == (feval f1 * v f2) % prime)
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul15 (f10, f11, f12, f13, f14) f2 = let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in [@inline_let] let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime; assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)); assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime); assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime); FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14)); assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime); res
val fmul15: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:uint64{felem_fits1 f2 1} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == (feval f1 * v f2) % prime) let fmul15 (f10, f11, f12, f13, f14) f2 =
false
null
false
let tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4 = smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in [@@ inline_let ]let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime; assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)); assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime); assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime); FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14)); assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime); res
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Prims.b2t", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits1", "Lib.IntTypes.uint128", "Prims.unit", "Prims._assert", "Prims.eq2", "Prims.int", "Hacl.Spec.Curve25519.Field51.Definition.feval", "Prims.op_Modulus", "FStar.Mul.op_Star", "Hacl.Spec.Curve25519.Field51.Definition.as_nat5", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Spec.Curve25519.prime", "FStar.Math.Lemmas.swap_mul", "Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Field51.Definition.feval_wide", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Lib.IntTypes.uint_v", "Hacl.Spec.Curve25519.Field51.carry_wide5", "FStar.Pervasives.Native.tuple5", "Lib.IntTypes.int_t", "Lib.IntTypes.U128", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide5", "Prims.l_and", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5", "Hacl.Spec.Curve25519.Field51.Definition.op_Star_Hat", "Prims.op_Multiply", "Hacl.Spec.Curve25519.Field51.smul_felem5" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) let mul_inv_t (f:felem5) = let (o0, o1, o2, o3, o4) = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1) #push-options "--ifuel 1" val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1)) let lemma_mul_inv f cin = assert_norm (pow51 = pow2 51) #pop-options #push-options "--z3rlimit 100" inline_for_extraction noextract val carry_wide5: inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == feval_wide inp) let carry_wide5 (i0, i1, i2, i3, i4) = assert_norm (6579 < pow2 13); assert_norm (pow2 13 < max51); let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in let tmp1, c1 = carry51_wide #4797 i1 c0 in let tmp2, c2 = carry51_wide #3340 i2 c1 in let tmp3, c3 = carry51_wide #1881 i3 c2 in let tmp4, c4 = carry51_wide #423 i4 c3 in lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5; (tmp0', tmp1', tmp2, tmp3, tmp4) #pop-options inline_for_extraction noextract val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f1) (feval f2)} let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) inline_for_extraction noextract val fmul25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f2) /\ feval out2 == fmul (feval f3) (feval f4)) let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) = let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) = mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in ((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24)) inline_for_extraction noextract val fmul15: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:uint64{felem_fits1 f2 1} -> Pure felem5 (requires True) (ensures fun out ->
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul15: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:uint64{felem_fits1 f2 1} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == (feval f1 * v f2) % prime)
[]
Hacl.Spec.Curve25519.Field51.fmul15
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f1: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 f2 1} -> Prims.Pure Hacl.Spec.Curve25519.Field51.Definition.felem5
{ "end_col": 5, "end_line": 342, "start_col": 41, "start_line": 328 }
Prims.Pure
val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin =
false
null
false
let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[]
[ "Hacl.Spec.Curve25519.Field51.Definition.scale64", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.uint128", "Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1", "Lib.IntTypes.uint64", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.to_u64", "Lib.IntTypes.U128", "Hacl.Spec.Curve25519.Field51.Definition.mask51", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_carry51_wide", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.to_u128", "FStar.Pervasives.Native.tuple2" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
[]
Hacl.Spec.Curve25519.Field51.carry51_wide
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
l: Lib.IntTypes.uint128{Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1 l m} -> cin: Lib.IntTypes.uint64 -> Prims.Pure (Lib.IntTypes.uint64 * Lib.IntTypes.uint64)
{ "end_col": 47, "end_line": 235, "start_col": 27, "start_line": 232 }
Prims.Pure
val store_felem5: f:felem5{mul_inv_t f} -> Pure (uint64 & uint64 & uint64 & uint64) (requires True) (ensures fun (o0, o1, o2, o3) -> feval f == v o0 + v o1 * pow2 64 + v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64)
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let store_felem5 (f0, f1, f2, f3, f4) = let (f0, f1, f2, f3, f4) = carry_felem5_full (f0, f1, f2, f3, f4) in let (f0, f1, f2, f3, f4) = subtract_p5 (f0, f1, f2, f3, f4) in let o0 = f0 |. (f1 <<. 51ul) in let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in lemma_store_felem (f0, f1, f2, f3, f4); (o0, o1, o2, o3)
val store_felem5: f:felem5{mul_inv_t f} -> Pure (uint64 & uint64 & uint64 & uint64) (requires True) (ensures fun (o0, o1, o2, o3) -> feval f == v o0 + v o1 * pow2 64 + v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64) let store_felem5 (f0, f1, f2, f3, f4) =
false
null
false
let f0, f1, f2, f3, f4 = carry_felem5_full (f0, f1, f2, f3, f4) in let f0, f1, f2, f3, f4 = subtract_p5 (f0, f1, f2, f3, f4) in let o0 = f0 |. (f1 <<. 51ul) in let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in lemma_store_felem (f0, f1, f2, f3, f4); (o0, o1, o2, o3)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.mul_inv_t", "Lib.IntTypes.uint64", "FStar.Pervasives.Native.Mktuple4", "Prims.unit", "Hacl.Spec.Curve25519.Field51.Lemmas.lemma_store_felem", "FStar.Pervasives.Native.Mktuple5", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Less_Less_Dot", "FStar.Pervasives.Native.tuple4", "Hacl.Spec.Curve25519.Field51.subtract_p5", "Prims.l_and", "Prims.eq2", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Field51.Definition.feval", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "Prims.nat", "Hacl.Spec.Curve25519.Field51.carry_felem5_full" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) let mul_inv_t (f:felem5) = let (o0, o1, o2, o3, o4) = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1) #push-options "--ifuel 1" val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1)) let lemma_mul_inv f cin = assert_norm (pow51 = pow2 51) #pop-options #push-options "--z3rlimit 100" inline_for_extraction noextract val carry_wide5: inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == feval_wide inp) let carry_wide5 (i0, i1, i2, i3, i4) = assert_norm (6579 < pow2 13); assert_norm (pow2 13 < max51); let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in let tmp1, c1 = carry51_wide #4797 i1 c0 in let tmp2, c2 = carry51_wide #3340 i2 c1 in let tmp3, c3 = carry51_wide #1881 i3 c2 in let tmp4, c4 = carry51_wide #423 i4 c3 in lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5; (tmp0', tmp1', tmp2, tmp3, tmp4) #pop-options inline_for_extraction noextract val fmul5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f1) (feval f2)} let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) inline_for_extraction noextract val fmul25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)} -> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f2) /\ feval out2 == fmul (feval f3) (feval f4)) let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) = let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) = mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) = mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in ((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24)) inline_for_extraction noextract val fmul15: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:uint64{felem_fits1 f2 1} -> Pure felem5 (requires True) (ensures fun out -> mul_inv_t out /\ feval out == (feval f1 * v f2) % prime) let fmul15 (f10, f11, f12, f13, f14) f2 = let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) = smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in [@inline_let] let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime; assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)); assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime); assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime); FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14)); assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime); res // inline_for_extraction noextract // val fsqr_felem5: // f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} // -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)} // let fsqr_felem5 (f0, f1, f2, f3, f4) = // let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162) // f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342) // f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423) // f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in // let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423) // f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in // (o0, o1, o2, o3, o4) inline_for_extraction noextract val mul64_wide_add3: #m0:scale64 -> #m1:scale64 -> #m2:scale64 -> #m3:scale64 -> #m4:scale64 -> #m5:scale64 -> a0:uint64{felem_fits1 a0 m0} -> a1:uint64{felem_fits1 a1 m1} -> b0:uint64{felem_fits1 b0 m2} -> b1:uint64{felem_fits1 b1 m3} -> c0:uint64{felem_fits1 c0 m4} -> c1:uint64{felem_fits1 c1 m5} -> Pure uint128 (requires m0 * m1 + m2 * m3 + m4 * m5 < 8192) (ensures fun res -> felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\ v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1) let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 = assert_norm (pow2 13 = 8192); mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1; mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1 inline_for_extraction noextract val fsqr_felem5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> Pure felem_wide5 (requires True) (ensures fun out -> felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f) (feval f)) let fsqr_felem5 (f0, f1, f2, f3, f4) = assert_norm (pow2 13 = 8192); let d0 = u64 2 *! f0 in let d1 = u64 2 *! f1 in let d2 = u64 38 *! f2 in let d3 = u64 19 *! f3 in let d419 = u64 19 *! f4 in let d4 = u64 2 *! d419 in let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in lemma_fmul_fsqr5 (f0, f1, f2, f3, f4); (s0, s1, s2, s3, s4) inline_for_extraction noextract val fsqr5: f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} -> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)} let fsqr5 (f0, f1, f2, f3, f4) = let (o0, o1, o2, o3, o4) = fsqr_felem5 (f0, f1, f2, f3, f4) in carry_wide5 (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsqr25: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> Pure (felem5 & felem5) (requires True) (ensures fun (out1, out2) -> mul_inv_t out1 /\ mul_inv_t out2 /\ feval out1 == fmul (feval f1) (feval f1) /\ feval out2 == fmul (feval f2) (feval f2)) let fsqr25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let (o10, o11, o12, o13, o14) = fsqr_felem5 (f10, f11, f12, f13, f14) in let (o20, o21, o22, o23, o24) = fsqr_felem5 (f20, f21, f22, f23, f24) in let (o10, o11, o12, o13, o14) = carry_wide5 (o10, o11, o12, o13, o14) in let (o20, o21, o22, o23, o24) = carry_wide5 (o20, o21, o22, o23, o24) in ((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24)) #set-options "--z3rlimit 100 --max_fuel 2" inline_for_extraction noextract val carry_felem5_full: inp:felem5{mul_inv_t inp} -> out:felem5{feval out == feval inp /\ felem_fits5 out (1, 1, 1, 1, 1)} let carry_felem5_full (f0, f1, f2, f3, f4) = assert_norm (pow51 = pow2 51); let tmp0, c0 = carry51 f0 (u64 0) in let tmp1, c1 = carry51 f1 c0 in assert (if v f1 < pow2 51 then v tmp1 < pow2 51 else v tmp1 < 8192); let tmp2, c2 = carry51 f2 c1 in let tmp3, c3 = carry51 f3 c2 in let tmp4, c4 = carry51 f4 c3 in lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4; [@inline_let] let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in [@inline_let] let tmp1' = tmp1 +! c5 in (tmp0', tmp1', tmp2, tmp3, tmp4) inline_for_extraction noextract val subtract_p5: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> Pure felem5 (requires True) (ensures fun out -> as_nat5 out == feval f /\ felem_fits5 out (1, 1, 1, 1, 1) /\ as_nat5 out < prime) let subtract_p5 (f0, f1, f2, f3, f4) = let m0 = gte_mask f0 (u64 0x7ffffffffffed) in let m1 = eq_mask f1 (u64 0x7ffffffffffff) in let m2 = eq_mask f2 (u64 0x7ffffffffffff) in let m3 = eq_mask f3 (u64 0x7ffffffffffff) in let m4 = eq_mask f4 (u64 0x7ffffffffffff) in let mask = m0 &. m1 &. m2 &. m3 &. m4 in let f0' = f0 -. (mask &. u64 0x7ffffffffffed) in let f1' = f1 -. (mask &. u64 0x7ffffffffffff) in let f2' = f2 -. (mask &. u64 0x7ffffffffffff) in let f3' = f3 -. (mask &. u64 0x7ffffffffffff) in let f4' = f4 -. (mask &. u64 0x7ffffffffffff) in logand_lemma mask (u64 0x7ffffffffffed); logand_lemma mask (u64 0x7ffffffffffff); lemma_subtract_p (f0, f1, f2, f3, f4) (f0', f1', f2', f3', f4'); (f0', f1', f2', f3', f4') inline_for_extraction noextract val store_felem5: f:felem5{mul_inv_t f} -> Pure (uint64 & uint64 & uint64 & uint64) (requires True) (ensures fun (o0, o1, o2, o3) -> feval f == v o0 + v o1 * pow2 64 +
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 2, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val store_felem5: f:felem5{mul_inv_t f} -> Pure (uint64 & uint64 & uint64 & uint64) (requires True) (ensures fun (o0, o1, o2, o3) -> feval f == v o0 + v o1 * pow2 64 + v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64)
[]
Hacl.Spec.Curve25519.Field51.store_felem5
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5{Hacl.Spec.Curve25519.Field51.mul_inv_t f} -> Prims.Pure (((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64)
{ "end_col": 18, "end_line": 500, "start_col": 39, "start_line": 491 }
FStar.Pervasives.Lemma
val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1))
[ { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field51.Definition", "short_module": null }, { "abbrev": false, "full_module": "Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_mul_inv f cin = assert_norm (pow51 = pow2 51)
val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1)) let lemma_mul_inv f cin =
false
null
true
assert_norm (pow51 = pow2 51)
{ "checked_file": "Hacl.Spec.Curve25519.Field51.fst.checked", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field51.Definition.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field51.fst" }
[ "lemma" ]
[ "Hacl.Spec.Curve25519.Field51.Definition.felem5", "Hacl.Spec.Curve25519.Field51.Definition.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Lib.IntTypes.uint64", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.pos", "Hacl.Spec.Curve25519.Field51.Definition.pow51", "Prims.unit" ]
[]
module Hacl.Spec.Curve25519.Field51 open Lib.Sequence open Lib.IntTypes open FStar.Mul open Spec.Curve25519 open Hacl.Spec.Curve25519.Field51.Definition open Hacl.Spec.Curve25519.Field51.Lemmas #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'" inline_for_extraction noextract val fadd5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ feval out == fadd (feval f1) (feval f2)} let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = let o0 = f10 +! f20 in let o1 = f11 +! f21 in let o2 = f12 +! f22 in let o3 = f13 +! f23 in let o4 = f14 +! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime; FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out inline_for_extraction noextract val fadd_zero: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == feval f1} let fadd_zero (f10, f11, f12, f13, f14) = let o0 = f10 +! u64 0x3fffffffffff68 in let o1 = f11 +! u64 0x3ffffffffffff8 in let o2 = f12 +! u64 0x3ffffffffffff8 in let o3 = f13 +! u64 0x3ffffffffffff8 in let o4 = f14 +! u64 0x3ffffffffffff8 in lemma_add_zero (f10, f11, f12, f13, f14); (o0, o1, o2, o3, o4) inline_for_extraction noextract val fsub5: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ feval out == fsub (feval f1) (feval f2)} let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) = //assert_norm (0x3fffffffffff68 == pow2 54 - 152); //assert_norm (0x3ffffffffffff8 == pow2 54 - 8); let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in let o0 = t0 -! f20 in let o1 = t1 -! f21 in let o2 = t2 -! f22 in let o3 = t3 -! f23 in let o4 = t4 -! f24 in let out = (o0, o1, o2, o3, o4) in FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime; lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime; out val lemma_fsub: f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)} -> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)} -> Lemma (let (f10, f11, f12, f13, f14) = f1 in let (f20, f21, f22, f23, f24) = f2 in let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in let out = (o0, o1, o2, o3, o4) in out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24)) let lemma_fsub f1 f2 = () inline_for_extraction noextract val mul_wide64: #m1:scale64 -> #m2:scale64 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864} -> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} #push-options "--z3rlimit 5" let mul_wide64 #m1 #m2 x y = let open FStar.Math.Lemmas in lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51) lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51) paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51 paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2) swap_mul max51 m2; //max51 * m2 = m2 * max51 paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51 paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51) assert (v x * v y <= m1 * max51 * m2 * max51); assert (v x * v y <= m1 * m2 * max51 * max51); mul64_wide x y #pop-options inline_for_extraction noextract val smul_felem5: #m1:scale64 -> #m2:scale64_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864} -> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ wide_as_nat5 out == uint_v u1 * as_nat5 f2} let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) = let (m20, m21, m22, m23, m24) = m2 in [@inline_let] let o0 = mul_wide64 #m1 #m20 u1 f20 in [@inline_let] let o1 = mul_wide64 #m1 #m21 u1 f21 in [@inline_let] let o2 = mul_wide64 #m1 #m22 u1 f22 in [@inline_let] let o3 = mul_wide64 #m1 #m23 u1 f23 in [@inline_let] let o4 = mul_wide64 #m1 #m24 u1 f24 in [@inline_let] let out = (o0, o1, o2, o3, o4) in lemma_smul_felem5 u1 (f20, f21, f22, f23, f24); out inline_for_extraction noextract val mul_add_wide128: #m1:scale64 -> #m2:scale64 -> #m3:scale128 -> x:uint64{felem_fits1 x m1} -> y:uint64{felem_fits1 y m2} -> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} -> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} let mul_add_wide128 #m1 #m2 #m3 x y z = z +! mul_wide64 #m1 #m2 x y #push-options "--z3rlimit 100" inline_for_extraction noextract val smul_add_felem5: #m1:scale64 -> #m2:scale64_5 -> #m3:scale128_5 -> u1:uint64{felem_fits1 u1 m1} -> f2:felem5{felem_fits5 f2 m2} -> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864} -> acc2:felem_wide5{ wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) = let (m20, m21, m22, m23, m24) = m2 in let (m30, m31, m32, m33, m34) = m3 in [@inline_let] let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in [@inline_let] let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in [@inline_let] let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in [@inline_let] let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in [@inline_let] let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in [@inline_let] let out = (o0', o1', o2', o3', o4') in lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4); out #pop-options inline_for_extraction noextract val precomp_r19: f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} let precomp_r19 (f20, f21, f22, f23, f24) = [@inline_let] let r190 = f20 *! u64 19 in [@inline_let] let r191 = f21 *! u64 19 in [@inline_let] let r192 = f22 *! u64 19 in [@inline_let] let r193 = f23 *! u64 19 in [@inline_let] let r194 = f24 *! u64 19 in (r190, r191, r192, r193, r194) inline_for_extraction noextract val mul_felem5: f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)} -> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)} -> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r} -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ feval_wide out == fmul (feval f1) (feval r)} let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) = let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81) f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171) f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252) f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342) f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4); (o0, o1, o2, o3, o4) inline_for_extraction noextract val carry51: l:uint64 -> cin:uint64 -> Pure (uint64 & uint64) (requires felem_fits1 l 2 /\ felem_fits1 cin 8190) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ uint_v l1 < pow2 13) let carry51 l cin = let l' = l +! cin in lemma_carry51 l cin; (l' &. mask51, l' >>. 51ul) inline_for_extraction noextract val carry51_wide: #m:scale64{m < 8192} -> l:uint128{felem_wide_fits1 l m} -> cin:uint64 -> Pure (uint64 & uint64) (requires True) (ensures fun (l0, l1) -> v l + v cin == v l1 * pow2 51 + v l0 /\ felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) let carry51_wide #m l cin = let l' = l +! to_u128 cin in lemma_carry51_wide #m l cin; ((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) let mul_inv_t (f:felem5) = let (o0, o1, o2, o3, o4) = f in if v o1 >= pow2 51 then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192 else felem_fits5 f (1, 1, 1, 1, 1) #push-options "--ifuel 1" val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1))
false
false
Hacl.Spec.Curve25519.Field51.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_mul_inv: f:felem5{felem_fits5 f (1, 1, 1, 1, 1)} -> cin:uint64{v cin < pow2 51} -> Lemma (let (i0, i1, i2, i3, i4) = f in assert_norm (pow51 = pow2 51); let i1' = i1 +! cin in let out = (i0, i1', i2, i3, i4) in if (v i1 + v cin) / pow2 51 > 0 then felem_fits5 out (1, 2, 1, 1, 1) /\ (v i1 + v cin) % pow2 51 < v cin else felem_fits5 out (1, 1, 1, 1, 1))
[]
Hacl.Spec.Curve25519.Field51.lemma_mul_inv
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
f: Hacl.Spec.Curve25519.Field51.Definition.felem5 {Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1)} -> cin: Lib.IntTypes.uint64{Lib.IntTypes.v cin < Prims.pow2 51} -> FStar.Pervasives.Lemma (ensures (let _ = f in (let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ i0 i1 i2 i3 i4 = _ in FStar.Pervasives.assert_norm (Hacl.Spec.Curve25519.Field51.Definition.pow51 = Prims.pow2 51); let i1' = i1 +! cin in let out = i0, i1', i2, i3, i4 in (match (Lib.IntTypes.v i1 + Lib.IntTypes.v cin) / Prims.pow2 51 > 0 with | true -> Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (1, 2, 1, 1, 1) /\ (Lib.IntTypes.v i1 + Lib.IntTypes.v cin) % Prims.pow2 51 < Lib.IntTypes.v cin | _ -> Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (1, 1, 1, 1, 1)) <: Type0) <: Type0))
{ "end_col": 31, "end_line": 257, "start_col": 2, "start_line": 257 }