effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Tot | val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sqr_mod x = S.qmul x x | val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = | false | null | false | S.qmul x x | {
"checked_file": "Hacl.Spec.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
"total"
] | [
"Spec.K256.PointOps.qelem",
"Spec.K256.PointOps.qmul"
] | [] | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y | false | true | Hacl.Spec.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid | [] | Hacl.Spec.K256.Qinv.sqr_mod | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Exponentiation.sqr_st Spec.K256.PointOps.qelem Hacl.Spec.K256.Qinv.mk_to_nat_mod_comm_monoid | {
"end_col": 26,
"end_line": 27,
"start_col": 16,
"start_line": 27
} |
FStar.Pervasives.Lemma | val qinv_is_qinv_lemma: f:S.qelem -> Lemma (qinv f == S.qinv f) | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_is_qinv_lemma f =
qinv_lemma f;
assert (qinv f == M.pow f (S.q - 2) % S.q);
M.lemma_pow_mod #S.q f (S.q - 2) | val qinv_is_qinv_lemma: f:S.qelem -> Lemma (qinv f == S.qinv f)
let qinv_is_qinv_lemma f = | false | null | true | qinv_lemma f;
assert (qinv f == M.pow f (S.q - 2) % S.q);
M.lemma_pow_mod #S.q f (S.q - 2) | {
"checked_file": "Hacl.Spec.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.K256.PointOps.qelem",
"Lib.NatMod.lemma_pow_mod",
"Spec.K256.PointOps.q",
"Prims.op_Subtraction",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.K256.Qinv.qinv",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Hacl.Spec.K256.Qinv.qinv_lemma"
] | [] | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25
val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q)
let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.q) (M.pow f b % S.q);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.q }
M.pow f a * M.pow f b % S.q;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.q;
}
val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q) == M.pow f (a * b + c) % S.q)
let lemma_pow_pow_mod_mul f a b c =
calc (==) {
S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q);
(==) {
M.lemma_pow_mod_base (M.pow f a) b S.q;
Math.Lemmas.lemma_mod_mul_distr_l (M.pow (M.pow f a) b) (M.pow f c % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow (M.pow f a) b) (M.pow f c) S.q }
M.pow (M.pow f a) b * M.pow f c % S.q;
(==) { M.lemma_pow_mul f a b }
M.pow f (a * b) * M.pow f c % S.q;
(==) { M.lemma_pow_add f (a * b) c }
M.pow f (a * b + c) % S.q;
}
// S.q - 2 = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd036413f
val qinv_lemma: f:S.qelem -> Lemma (qinv f == M.pow f (S.q - 2) % S.q)
let qinv_lemma f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
qsquare_times_lemma f 1;
assert_norm (pow2 1 = 0x2);
assert (x_10 == M.pow f 0x2 % S.q);
let x_11 = S.qmul x_10 x_1 in
lemma_pow_mod_1 f;
lemma_pow_mod_mul f 0x2 0x1;
assert (x_11 == M.pow f 0x3 % S.q);
let x_101 = S.qmul x_10 x_11 in
lemma_pow_mod_mul f 0x2 0x3;
assert (x_101 == M.pow f 0x5 % S.q);
let x_111 = S.qmul x_10 x_101 in
lemma_pow_mod_mul f 0x2 0x5;
assert (x_111 == M.pow f 0x7 % S.q);
let x_1001 = S.qmul x_10 x_111 in
lemma_pow_mod_mul f 0x2 0x7;
assert (x_1001 == M.pow f 0x9 % S.q);
let x_1011 = S.qmul x_10 x_1001 in
lemma_pow_mod_mul f 0x2 0x9;
assert (x_1011 == M.pow f 0xb % S.q);
let x_1101 = S.qmul x_10 x_1011 in
lemma_pow_mod_mul f 0x2 0xb;
assert (x_1101 == M.pow f 0xd % S.q);
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
qsquare_times_lemma x_1101 2;
assert_norm (pow2 2 = 0x4);
lemma_pow_pow_mod_mul f 0xd 0x4 0xb;
assert (x6 == M.pow f 0x3f % S.q);
let x8 = S.qmul (qsquare_times x6 2) x_11 in
qsquare_times_lemma x6 2;
lemma_pow_pow_mod_mul f 0x3f 0x4 0x3;
assert (x8 == M.pow f 0xff % S.q);
let x14 = S.qmul (qsquare_times x8 6) x6 in
qsquare_times_lemma x8 6;
assert_norm (pow2 6 = 0x40);
lemma_pow_pow_mod_mul f 0xff 0x40 0x3f;
assert (x14 == M.pow f 0x3fff % S.q);
let x28 = S.qmul (qsquare_times x14 14) x14 in
qsquare_times_lemma x14 14;
assert_norm (pow2 14 = 0x4000);
lemma_pow_pow_mod_mul f 0x3fff 0x4000 0x3fff;
assert (x28 == M.pow f 0xfffffff % S.q);
let x56 = S.qmul (qsquare_times x28 28) x28 in
qsquare_times_lemma x28 28;
assert_norm (pow2 28 = 0x10000000);
lemma_pow_pow_mod_mul f 0xfffffff 0x10000000 0xfffffff;
assert (x56 == M.pow f 0xffffffffffffff % S.q);
let r0 = S.qmul (qsquare_times x56 56) x56 in
qsquare_times_lemma x56 56;
assert_norm (pow2 56 = 0x100000000000000);
lemma_pow_pow_mod_mul f 0xffffffffffffff 0x100000000000000 0xffffffffffffff;
assert (r0 == M.pow f 0xffffffffffffffffffffffffffff % S.q);
let r1 = S.qmul (qsquare_times r0 14) x14 in
qsquare_times_lemma r0 14;
lemma_pow_pow_mod_mul f 0xffffffffffffffffffffffffffff 0x4000 0x3fff;
assert (r1 == M.pow f 0x3fffffffffffffffffffffffffffffff % S.q);
let r2 = S.qmul (qsquare_times r1 3) x_101 in
qsquare_times_lemma r1 3;
assert_norm (pow2 3 = 0x8);
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffff 0x8 0x5;
assert (r2 == M.pow f 0x1fffffffffffffffffffffffffffffffd % S.q);
let r3 = S.qmul (qsquare_times r2 4) x_111 in
qsquare_times_lemma r2 4;
assert_norm (pow2 4 = 0x10);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd 0x10 0x7;
assert (r3 == M.pow f 0x1fffffffffffffffffffffffffffffffd7 % S.q);
let r4 = S.qmul (qsquare_times r3 4) x_101 in
qsquare_times_lemma r3 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd7 0x10 0x5;
assert (r4 == M.pow f 0x1fffffffffffffffffffffffffffffffd75 % S.q);
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
qsquare_times_lemma r4 5;
assert_norm (pow2 5 = 0x20);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd75 0x20 0xb;
assert (r5 == M.pow f 0x3fffffffffffffffffffffffffffffffaeab % S.q);
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
qsquare_times_lemma r5 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeab 0x10 0xb;
assert (r6 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb % S.q);
let r7 = S.qmul (qsquare_times r6 4) x_111 in
qsquare_times_lemma r6 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb 0x10 0x7;
assert (r7 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb7 % S.q);
let r8 = S.qmul (qsquare_times r7 5) x_111 in
qsquare_times_lemma r7 5;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb7 0x20 0x7;
assert (r8 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7 % S.q);
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
qsquare_times_lemma r8 6;
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7 0x40 0xd;
assert (r9 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd % S.q);
let r10 = S.qmul (qsquare_times r9 4) x_101 in
qsquare_times_lemma r9 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd 0x10 0x5;
assert (r10 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5 % S.q);
let r11 = S.qmul (qsquare_times r10 3) x_111 in
qsquare_times_lemma r10 3;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5 0x8 0x7;
assert (r11 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af % S.q);
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
qsquare_times_lemma r11 5;
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af 0x20 0x9;
assert (r12 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9 % S.q);
let r13 = S.qmul (qsquare_times r12 6) x_101 in
qsquare_times_lemma r12 6;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9 0x40 0x5;
assert (r13 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7357a45 % S.q);
let r14 = S.qmul (qsquare_times r13 10) x_111 in
qsquare_times_lemma r13 10;
assert_norm (pow2 10 = 0x400);
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7357a45 0x400 0x7;
assert (r14 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e91407 % S.q);
let r15 = S.qmul (qsquare_times r14 4) x_111 in
qsquare_times_lemma r14 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e91407 0x10 0x7;
assert (r15 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e914077 % S.q);
let r16 = S.qmul (qsquare_times r15 9) x8 in
qsquare_times_lemma r15 9;
assert_norm (pow2 9 = 0x200);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e914077 0x200 0xff;
assert (r16 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff % S.q);
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
qsquare_times_lemma r16 5;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff 0x20 0x9;
assert (r17 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe9 % S.q);
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
qsquare_times_lemma r17 6;
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe9 0x40 0xb;
assert (r18 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4b % S.q);
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
qsquare_times_lemma r18 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4b 0x10 0xd;
assert (r19 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4bd % S.q);
let r20 = S.qmul (qsquare_times r19 5) x_11 in
qsquare_times_lemma r19 5;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4bd 0x20 0x3;
assert (r20 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3 % S.q);
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
qsquare_times_lemma r20 6;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3 0x40 0xd;
assert (r21 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd % S.q);
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
qsquare_times_lemma r21 10;
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd 0x400 0xd;
assert (r22 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d % S.q);
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
qsquare_times_lemma r22 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d 0x10 0x9;
assert (r23 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9 % S.q);
let r24 = S.qmul (qsquare_times r23 6) x_1 in
qsquare_times_lemma r23 6;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9 0x40 0x1;
assert (r24 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03641 % S.q);
let r25 = S.qmul (qsquare_times r24 8) x6 in
qsquare_times_lemma r24 8;
assert_norm (pow2 8 = 0x100);
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03641 0x100 0x3f;
assert (r25 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd036413f % S.q)
val qinv_is_qinv_lemma: f:S.qelem -> Lemma (qinv f == S.qinv f) | false | false | Hacl.Spec.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_is_qinv_lemma: f:S.qelem -> Lemma (qinv f == S.qinv f) | [] | Hacl.Spec.K256.Qinv.qinv_is_qinv_lemma | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.K256.PointOps.qelem
-> FStar.Pervasives.Lemma (ensures Hacl.Spec.K256.Qinv.qinv f == Spec.K256.PointOps.qinv f) | {
"end_col": 34,
"end_line": 378,
"start_col": 2,
"start_line": 376
} |
Prims.Tot | val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let one_mod _ = 1 | val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = | false | null | false | 1 | {
"checked_file": "Hacl.Spec.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
"total"
] | [
"Prims.unit",
"Spec.K256.PointOps.qelem"
] | [] | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
} | false | true | Hacl.Spec.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid | [] | Hacl.Spec.K256.Qinv.one_mod | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Exponentiation.one_st Spec.K256.PointOps.qelem Hacl.Spec.K256.Qinv.mk_to_nat_mod_comm_monoid | {
"end_col": 17,
"end_line": 21,
"start_col": 16,
"start_line": 21
} |
FStar.Pervasives.Lemma | val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q) | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q) | val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q)
let lemma_pow_mod_1 f = | false | null | true | M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q) | {
"checked_file": "Hacl.Spec.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.K256.PointOps.qelem",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.K256.PointOps.q",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.pow2",
"FStar.Math.Lemmas.small_mod",
"Lib.NatMod.lemma_pow1"
] | [] | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25
val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q) | false | false | Hacl.Spec.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q) | [] | Hacl.Spec.K256.Qinv.lemma_pow_mod_1 | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.K256.PointOps.qelem
-> FStar.Pervasives.Lemma (ensures f == Lib.NatMod.pow f 1 % Spec.K256.PointOps.q) | {
"end_col": 31,
"end_line": 138,
"start_col": 2,
"start_line": 135
} |
FStar.Pervasives.Lemma | val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q) | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b) | val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b = | false | null | true | SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b) | {
"checked_file": "Hacl.Spec.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.K256.PointOps.qelem",
"Prims.nat",
"Lib.NatMod.lemma_pow_nat_mod_is_pow",
"Spec.K256.PointOps.q",
"Prims.pow2",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.l_or",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.K256.Qinv.qsquare_times",
"Lib.Exponentiation.Definition.pow",
"Lib.NatMod.nat_mod",
"Hacl.Spec.K256.Qinv.nat_mod_comm_monoid",
"Lib.Exponentiation.exp_pow2_lemma",
"Spec.Exponentiation.exp_pow2_lemma",
"Hacl.Spec.K256.Qinv.mk_nat_mod_concrete_ops"
] | [] | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q) | false | false | Hacl.Spec.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q) | [] | Hacl.Spec.K256.Qinv.qsquare_times_lemma | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.K256.PointOps.qelem -> b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.K256.Qinv.qsquare_times a b ==
Lib.NatMod.pow a (Prims.pow2 b) % Spec.K256.PointOps.q) | {
"end_col": 44,
"end_line": 45,
"start_col": 2,
"start_line": 42
} |
FStar.Pervasives.Lemma | val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q) | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.q) (M.pow f b % S.q);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.q }
M.pow f a * M.pow f b % S.q;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.q;
} | val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q)
let lemma_pow_mod_mul f a b = | false | null | true | calc ( == ) {
S.qmul (M.pow f a % S.q) (M.pow f b % S.q);
( == ) { (Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.q) }
M.pow f a * M.pow f b % S.q;
( == ) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.q;
} | {
"checked_file": "Hacl.Spec.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.K256.PointOps.qelem",
"Prims.nat",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Spec.K256.PointOps.qmul",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.K256.PointOps.q",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Prims.squash",
"Lib.NatMod.lemma_pow_add"
] | [] | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25
val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q) | false | false | Hacl.Spec.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q) | [] | Hacl.Spec.K256.Qinv.lemma_pow_mod_mul | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.K256.PointOps.qelem -> a: Prims.nat -> b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Spec.K256.PointOps.qmul (Lib.NatMod.pow f a % Spec.K256.PointOps.q)
(Lib.NatMod.pow f b % Spec.K256.PointOps.q) ==
Lib.NatMod.pow f (a + b) % Spec.K256.PointOps.q) | {
"end_col": 3,
"end_line": 152,
"start_col": 2,
"start_line": 144
} |
FStar.Pervasives.Lemma | val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q) == M.pow f (a * b + c) % S.q) | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_pow_pow_mod_mul f a b c =
calc (==) {
S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q);
(==) {
M.lemma_pow_mod_base (M.pow f a) b S.q;
Math.Lemmas.lemma_mod_mul_distr_l (M.pow (M.pow f a) b) (M.pow f c % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow (M.pow f a) b) (M.pow f c) S.q }
M.pow (M.pow f a) b * M.pow f c % S.q;
(==) { M.lemma_pow_mul f a b }
M.pow f (a * b) * M.pow f c % S.q;
(==) { M.lemma_pow_add f (a * b) c }
M.pow f (a * b + c) % S.q;
} | val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q) == M.pow f (a * b + c) % S.q)
let lemma_pow_pow_mod_mul f a b c = | false | null | true | calc ( == ) {
S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q);
( == ) { (M.lemma_pow_mod_base (M.pow f a) b S.q;
Math.Lemmas.lemma_mod_mul_distr_l (M.pow (M.pow f a) b) (M.pow f c % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow (M.pow f a) b) (M.pow f c) S.q) }
M.pow (M.pow f a) b * M.pow f c % S.q;
( == ) { M.lemma_pow_mul f a b }
M.pow f (a * b) * M.pow f c % S.q;
( == ) { M.lemma_pow_add f (a * b) c }
M.pow f (a * b + c) % S.q;
} | {
"checked_file": "Hacl.Spec.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.K256.PointOps.qelem",
"Prims.nat",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Spec.K256.PointOps.qmul",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.K256.PointOps.q",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Lib.NatMod.lemma_pow_mod_base",
"Prims.squash",
"Lib.NatMod.lemma_pow_mul",
"Lib.NatMod.lemma_pow_add"
] | [] | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25
val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q)
let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.q) (M.pow f b % S.q);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.q }
M.pow f a * M.pow f b % S.q;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.q;
}
val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q) == M.pow f (a * b + c) % S.q) | false | false | Hacl.Spec.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q) == M.pow f (a * b + c) % S.q) | [] | Hacl.Spec.K256.Qinv.lemma_pow_pow_mod_mul | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.K256.PointOps.qelem -> a: Prims.nat -> b: Prims.nat -> c: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Spec.K256.PointOps.qmul (Lib.NatMod.pow (Lib.NatMod.pow f a % Spec.K256.PointOps.q) b %
Spec.K256.PointOps.q)
(Lib.NatMod.pow f c % Spec.K256.PointOps.q) ==
Lib.NatMod.pow f (a * b + c) % Spec.K256.PointOps.q) | {
"end_col": 3,
"end_line": 169,
"start_col": 2,
"start_line": 158
} |
FStar.Pervasives.Lemma | val qinv_lemma: f:S.qelem -> Lemma (qinv f == M.pow f (S.q - 2) % S.q) | [
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_lemma f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
qsquare_times_lemma f 1;
assert_norm (pow2 1 = 0x2);
assert (x_10 == M.pow f 0x2 % S.q);
let x_11 = S.qmul x_10 x_1 in
lemma_pow_mod_1 f;
lemma_pow_mod_mul f 0x2 0x1;
assert (x_11 == M.pow f 0x3 % S.q);
let x_101 = S.qmul x_10 x_11 in
lemma_pow_mod_mul f 0x2 0x3;
assert (x_101 == M.pow f 0x5 % S.q);
let x_111 = S.qmul x_10 x_101 in
lemma_pow_mod_mul f 0x2 0x5;
assert (x_111 == M.pow f 0x7 % S.q);
let x_1001 = S.qmul x_10 x_111 in
lemma_pow_mod_mul f 0x2 0x7;
assert (x_1001 == M.pow f 0x9 % S.q);
let x_1011 = S.qmul x_10 x_1001 in
lemma_pow_mod_mul f 0x2 0x9;
assert (x_1011 == M.pow f 0xb % S.q);
let x_1101 = S.qmul x_10 x_1011 in
lemma_pow_mod_mul f 0x2 0xb;
assert (x_1101 == M.pow f 0xd % S.q);
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
qsquare_times_lemma x_1101 2;
assert_norm (pow2 2 = 0x4);
lemma_pow_pow_mod_mul f 0xd 0x4 0xb;
assert (x6 == M.pow f 0x3f % S.q);
let x8 = S.qmul (qsquare_times x6 2) x_11 in
qsquare_times_lemma x6 2;
lemma_pow_pow_mod_mul f 0x3f 0x4 0x3;
assert (x8 == M.pow f 0xff % S.q);
let x14 = S.qmul (qsquare_times x8 6) x6 in
qsquare_times_lemma x8 6;
assert_norm (pow2 6 = 0x40);
lemma_pow_pow_mod_mul f 0xff 0x40 0x3f;
assert (x14 == M.pow f 0x3fff % S.q);
let x28 = S.qmul (qsquare_times x14 14) x14 in
qsquare_times_lemma x14 14;
assert_norm (pow2 14 = 0x4000);
lemma_pow_pow_mod_mul f 0x3fff 0x4000 0x3fff;
assert (x28 == M.pow f 0xfffffff % S.q);
let x56 = S.qmul (qsquare_times x28 28) x28 in
qsquare_times_lemma x28 28;
assert_norm (pow2 28 = 0x10000000);
lemma_pow_pow_mod_mul f 0xfffffff 0x10000000 0xfffffff;
assert (x56 == M.pow f 0xffffffffffffff % S.q);
let r0 = S.qmul (qsquare_times x56 56) x56 in
qsquare_times_lemma x56 56;
assert_norm (pow2 56 = 0x100000000000000);
lemma_pow_pow_mod_mul f 0xffffffffffffff 0x100000000000000 0xffffffffffffff;
assert (r0 == M.pow f 0xffffffffffffffffffffffffffff % S.q);
let r1 = S.qmul (qsquare_times r0 14) x14 in
qsquare_times_lemma r0 14;
lemma_pow_pow_mod_mul f 0xffffffffffffffffffffffffffff 0x4000 0x3fff;
assert (r1 == M.pow f 0x3fffffffffffffffffffffffffffffff % S.q);
let r2 = S.qmul (qsquare_times r1 3) x_101 in
qsquare_times_lemma r1 3;
assert_norm (pow2 3 = 0x8);
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffff 0x8 0x5;
assert (r2 == M.pow f 0x1fffffffffffffffffffffffffffffffd % S.q);
let r3 = S.qmul (qsquare_times r2 4) x_111 in
qsquare_times_lemma r2 4;
assert_norm (pow2 4 = 0x10);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd 0x10 0x7;
assert (r3 == M.pow f 0x1fffffffffffffffffffffffffffffffd7 % S.q);
let r4 = S.qmul (qsquare_times r3 4) x_101 in
qsquare_times_lemma r3 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd7 0x10 0x5;
assert (r4 == M.pow f 0x1fffffffffffffffffffffffffffffffd75 % S.q);
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
qsquare_times_lemma r4 5;
assert_norm (pow2 5 = 0x20);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd75 0x20 0xb;
assert (r5 == M.pow f 0x3fffffffffffffffffffffffffffffffaeab % S.q);
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
qsquare_times_lemma r5 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeab 0x10 0xb;
assert (r6 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb % S.q);
let r7 = S.qmul (qsquare_times r6 4) x_111 in
qsquare_times_lemma r6 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb 0x10 0x7;
assert (r7 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb7 % S.q);
let r8 = S.qmul (qsquare_times r7 5) x_111 in
qsquare_times_lemma r7 5;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb7 0x20 0x7;
assert (r8 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7 % S.q);
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
qsquare_times_lemma r8 6;
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7 0x40 0xd;
assert (r9 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd % S.q);
let r10 = S.qmul (qsquare_times r9 4) x_101 in
qsquare_times_lemma r9 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd 0x10 0x5;
assert (r10 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5 % S.q);
let r11 = S.qmul (qsquare_times r10 3) x_111 in
qsquare_times_lemma r10 3;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5 0x8 0x7;
assert (r11 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af % S.q);
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
qsquare_times_lemma r11 5;
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af 0x20 0x9;
assert (r12 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9 % S.q);
let r13 = S.qmul (qsquare_times r12 6) x_101 in
qsquare_times_lemma r12 6;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9 0x40 0x5;
assert (r13 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7357a45 % S.q);
let r14 = S.qmul (qsquare_times r13 10) x_111 in
qsquare_times_lemma r13 10;
assert_norm (pow2 10 = 0x400);
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7357a45 0x400 0x7;
assert (r14 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e91407 % S.q);
let r15 = S.qmul (qsquare_times r14 4) x_111 in
qsquare_times_lemma r14 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e91407 0x10 0x7;
assert (r15 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e914077 % S.q);
let r16 = S.qmul (qsquare_times r15 9) x8 in
qsquare_times_lemma r15 9;
assert_norm (pow2 9 = 0x200);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e914077 0x200 0xff;
assert (r16 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff % S.q);
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
qsquare_times_lemma r16 5;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff 0x20 0x9;
assert (r17 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe9 % S.q);
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
qsquare_times_lemma r17 6;
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe9 0x40 0xb;
assert (r18 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4b % S.q);
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
qsquare_times_lemma r18 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4b 0x10 0xd;
assert (r19 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4bd % S.q);
let r20 = S.qmul (qsquare_times r19 5) x_11 in
qsquare_times_lemma r19 5;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4bd 0x20 0x3;
assert (r20 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3 % S.q);
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
qsquare_times_lemma r20 6;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3 0x40 0xd;
assert (r21 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd % S.q);
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
qsquare_times_lemma r21 10;
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd 0x400 0xd;
assert (r22 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d % S.q);
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
qsquare_times_lemma r22 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d 0x10 0x9;
assert (r23 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9 % S.q);
let r24 = S.qmul (qsquare_times r23 6) x_1 in
qsquare_times_lemma r23 6;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9 0x40 0x1;
assert (r24 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03641 % S.q);
let r25 = S.qmul (qsquare_times r24 8) x6 in
qsquare_times_lemma r24 8;
assert_norm (pow2 8 = 0x100);
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03641 0x100 0x3f;
assert (r25 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd036413f % S.q) | val qinv_lemma: f:S.qelem -> Lemma (qinv f == M.pow f (S.q - 2) % S.q)
let qinv_lemma f = | false | null | true | let x_1 = f in
let x_10 = qsquare_times f 1 in
qsquare_times_lemma f 1;
assert_norm (pow2 1 = 0x2);
assert (x_10 == M.pow f 0x2 % S.q);
let x_11 = S.qmul x_10 x_1 in
lemma_pow_mod_1 f;
lemma_pow_mod_mul f 0x2 0x1;
assert (x_11 == M.pow f 0x3 % S.q);
let x_101 = S.qmul x_10 x_11 in
lemma_pow_mod_mul f 0x2 0x3;
assert (x_101 == M.pow f 0x5 % S.q);
let x_111 = S.qmul x_10 x_101 in
lemma_pow_mod_mul f 0x2 0x5;
assert (x_111 == M.pow f 0x7 % S.q);
let x_1001 = S.qmul x_10 x_111 in
lemma_pow_mod_mul f 0x2 0x7;
assert (x_1001 == M.pow f 0x9 % S.q);
let x_1011 = S.qmul x_10 x_1001 in
lemma_pow_mod_mul f 0x2 0x9;
assert (x_1011 == M.pow f 0xb % S.q);
let x_1101 = S.qmul x_10 x_1011 in
lemma_pow_mod_mul f 0x2 0xb;
assert (x_1101 == M.pow f 0xd % S.q);
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
qsquare_times_lemma x_1101 2;
assert_norm (pow2 2 = 0x4);
lemma_pow_pow_mod_mul f 0xd 0x4 0xb;
assert (x6 == M.pow f 0x3f % S.q);
let x8 = S.qmul (qsquare_times x6 2) x_11 in
qsquare_times_lemma x6 2;
lemma_pow_pow_mod_mul f 0x3f 0x4 0x3;
assert (x8 == M.pow f 0xff % S.q);
let x14 = S.qmul (qsquare_times x8 6) x6 in
qsquare_times_lemma x8 6;
assert_norm (pow2 6 = 0x40);
lemma_pow_pow_mod_mul f 0xff 0x40 0x3f;
assert (x14 == M.pow f 0x3fff % S.q);
let x28 = S.qmul (qsquare_times x14 14) x14 in
qsquare_times_lemma x14 14;
assert_norm (pow2 14 = 0x4000);
lemma_pow_pow_mod_mul f 0x3fff 0x4000 0x3fff;
assert (x28 == M.pow f 0xfffffff % S.q);
let x56 = S.qmul (qsquare_times x28 28) x28 in
qsquare_times_lemma x28 28;
assert_norm (pow2 28 = 0x10000000);
lemma_pow_pow_mod_mul f 0xfffffff 0x10000000 0xfffffff;
assert (x56 == M.pow f 0xffffffffffffff % S.q);
let r0 = S.qmul (qsquare_times x56 56) x56 in
qsquare_times_lemma x56 56;
assert_norm (pow2 56 = 0x100000000000000);
lemma_pow_pow_mod_mul f 0xffffffffffffff 0x100000000000000 0xffffffffffffff;
assert (r0 == M.pow f 0xffffffffffffffffffffffffffff % S.q);
let r1 = S.qmul (qsquare_times r0 14) x14 in
qsquare_times_lemma r0 14;
lemma_pow_pow_mod_mul f 0xffffffffffffffffffffffffffff 0x4000 0x3fff;
assert (r1 == M.pow f 0x3fffffffffffffffffffffffffffffff % S.q);
let r2 = S.qmul (qsquare_times r1 3) x_101 in
qsquare_times_lemma r1 3;
assert_norm (pow2 3 = 0x8);
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffff 0x8 0x5;
assert (r2 == M.pow f 0x1fffffffffffffffffffffffffffffffd % S.q);
let r3 = S.qmul (qsquare_times r2 4) x_111 in
qsquare_times_lemma r2 4;
assert_norm (pow2 4 = 0x10);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd 0x10 0x7;
assert (r3 == M.pow f 0x1fffffffffffffffffffffffffffffffd7 % S.q);
let r4 = S.qmul (qsquare_times r3 4) x_101 in
qsquare_times_lemma r3 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd7 0x10 0x5;
assert (r4 == M.pow f 0x1fffffffffffffffffffffffffffffffd75 % S.q);
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
qsquare_times_lemma r4 5;
assert_norm (pow2 5 = 0x20);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd75 0x20 0xb;
assert (r5 == M.pow f 0x3fffffffffffffffffffffffffffffffaeab % S.q);
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
qsquare_times_lemma r5 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeab 0x10 0xb;
assert (r6 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb % S.q);
let r7 = S.qmul (qsquare_times r6 4) x_111 in
qsquare_times_lemma r6 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb 0x10 0x7;
assert (r7 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb7 % S.q);
let r8 = S.qmul (qsquare_times r7 5) x_111 in
qsquare_times_lemma r7 5;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb7 0x20 0x7;
assert (r8 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7 % S.q);
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
qsquare_times_lemma r8 6;
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7 0x40 0xd;
assert (r9 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd % S.q);
let r10 = S.qmul (qsquare_times r9 4) x_101 in
qsquare_times_lemma r9 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd 0x10 0x5;
assert (r10 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5 % S.q);
let r11 = S.qmul (qsquare_times r10 3) x_111 in
qsquare_times_lemma r10 3;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5 0x8 0x7;
assert (r11 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af % S.q);
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
qsquare_times_lemma r11 5;
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af 0x20 0x9;
assert (r12 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9 % S.q);
let r13 = S.qmul (qsquare_times r12 6) x_101 in
qsquare_times_lemma r12 6;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9 0x40 0x5;
assert (r13 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7357a45 % S.q);
let r14 = S.qmul (qsquare_times r13 10) x_111 in
qsquare_times_lemma r13 10;
assert_norm (pow2 10 = 0x400);
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7357a45 0x400 0x7;
assert (r14 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e91407 % S.q);
let r15 = S.qmul (qsquare_times r14 4) x_111 in
qsquare_times_lemma r14 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e91407 0x10 0x7;
assert (r15 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e914077 % S.q);
let r16 = S.qmul (qsquare_times r15 9) x8 in
qsquare_times_lemma r15 9;
assert_norm (pow2 9 = 0x200);
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e914077 0x200 0xff;
assert (r16 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff % S.q);
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
qsquare_times_lemma r16 5;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff 0x20 0x9;
assert (r17 == M.pow f 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe9 % S.q);
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
qsquare_times_lemma r17 6;
lemma_pow_pow_mod_mul f 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe9 0x40 0xb;
assert (r18 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4b % S.q);
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
qsquare_times_lemma r18 4;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4b 0x10 0xd;
assert (r19 == M.pow f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4bd % S.q);
let r20 = S.qmul (qsquare_times r19 5) x_11 in
qsquare_times_lemma r19 5;
lemma_pow_pow_mod_mul f 0x1fffffffffffffffffffffffffffffffd755db9cd5e9140777fa4bd 0x20 0x3;
assert (r20 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3 % S.q);
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
qsquare_times_lemma r20 6;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3 0x40 0xd;
assert (r21 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd % S.q);
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
qsquare_times_lemma r21 10;
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd 0x400 0xd;
assert (r22 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d % S.q);
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
qsquare_times_lemma r22 4;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d 0x10 0x9;
assert (r23 == M.pow f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9 % S.q);
let r24 = S.qmul (qsquare_times r23 6) x_1 in
qsquare_times_lemma r23 6;
lemma_pow_pow_mod_mul f 0x3fffffffffffffffffffffffffffffffaeabb739abd2280eeff497a3340d9 0x40 0x1;
assert (r24 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03641 % S.q);
let r25 = S.qmul (qsquare_times r24 8) x6 in
qsquare_times_lemma r24 8;
assert_norm (pow2 8 = 0x100);
lemma_pow_pow_mod_mul f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd03641 0x100 0x3f;
assert (r25 == M.pow f 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd036413f % S.q) | {
"checked_file": "Hacl.Spec.K256.Qinv.fst.checked",
"dependencies": [
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.K256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.K256.PointOps.qelem",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.K256.PointOps.q",
"Prims.unit",
"Hacl.Spec.K256.Qinv.lemma_pow_pow_mod_mul",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.pow2",
"Hacl.Spec.K256.Qinv.qsquare_times_lemma",
"Spec.K256.PointOps.qmul",
"Hacl.Spec.K256.Qinv.qsquare_times",
"Hacl.Spec.K256.Qinv.lemma_pow_mod_mul",
"Hacl.Spec.K256.Qinv.lemma_pow_mod_1"
] | [] | module Hacl.Spec.K256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.K256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.q
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.q)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.q a (pow2 b)
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv_r0_r1 (x14: S.qelem) : S.qelem
let qinv_r0_r1 x14 =
let x28 = S.qmul (qsquare_times x14 14) x14 in
let x56 = S.qmul (qsquare_times x28 28) x28 in
let r0 = S.qmul (qsquare_times x56 56) x56 in
let r1 = S.qmul (qsquare_times r0 14) x14 in
r1
val qinv_r2_r8 (r1 x_101 x_111 x_1011: S.qelem) : S.qelem
let qinv_r2_r8 r1 x_101 x_111 x_1011 =
let r2 = S.qmul (qsquare_times r1 3) x_101 in
let r3 = S.qmul (qsquare_times r2 4) x_111 in
let r4 = S.qmul (qsquare_times r3 4) x_101 in
let r5 = S.qmul (qsquare_times r4 5) x_1011 in
let r6 = S.qmul (qsquare_times r5 4) x_1011 in
let r7 = S.qmul (qsquare_times r6 4) x_111 in
let r8 = S.qmul (qsquare_times r7 5) x_111 in
r8
val qinv_r9_r15 (r8 x_101 x_111 x_1001 x_1101: S.qelem) : S.qelem
let qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 =
let r9 = S.qmul (qsquare_times r8 6) x_1101 in
let r10 = S.qmul (qsquare_times r9 4) x_101 in
let r11 = S.qmul (qsquare_times r10 3) x_111 in
let r12 = S.qmul (qsquare_times r11 5) x_1001 in
let r13 = S.qmul (qsquare_times r12 6) x_101 in
let r14 = S.qmul (qsquare_times r13 10) x_111 in
let r15 = S.qmul (qsquare_times r14 4) x_111 in
r15
val qinv_r16_r23 (r15 x8 x_11 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 =
let r16 = S.qmul (qsquare_times r15 9) x8 in
let r17 = S.qmul (qsquare_times r16 5) x_1001 in
let r18 = S.qmul (qsquare_times r17 6) x_1011 in
let r19 = S.qmul (qsquare_times r18 4) x_1101 in
let r20 = S.qmul (qsquare_times r19 5) x_11 in
let r21 = S.qmul (qsquare_times r20 6) x_1101 in
let r22 = S.qmul (qsquare_times r21 10) x_1101 in
let r23 = S.qmul (qsquare_times r22 4) x_1001 in
r23
val qinv_r24_r25 (r23 x_1 x6: S.qelem) : S.qelem
let qinv_r24_r25 r23 x_1 x6 =
let r24 = S.qmul (qsquare_times r23 6) x_1 in
let r25 = S.qmul (qsquare_times r24 8) x6 in
r25
val qinv_r0_r25 (x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101: S.qelem) : S.qelem
let qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101 =
let x6 = S.qmul (qsquare_times x_1101 2) x_1011 in
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x14 = S.qmul (qsquare_times x8 6) x6 in
let r1 = qinv_r0_r1 x14 in
let r8 = qinv_r2_r8 r1 x_101 x_111 x_1011 in
let r15 = qinv_r9_r15 r8 x_101 x_111 x_1001 x_1101 in
let r23 = qinv_r16_r23 r15 x8 x_11 x_1001 x_1011 x_1101 in
qinv_r24_r25 r23 x_1 x6
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_1 = f in
let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 x_1 in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1001 = S.qmul x_10 x_111 in
let x_1011 = S.qmul x_10 x_1001 in
let x_1101 = S.qmul x_10 x_1011 in
qinv_r0_r25 x_1 x_11 x_101 x_111 x_1001 x_1011 x_1101
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.q)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.q;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.q)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.q) (M.pow f b % S.q) == M.pow f (a + b) % S.q)
let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.q) (M.pow f b % S.q);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.q }
M.pow f a * M.pow f b % S.q;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.q;
}
val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q) == M.pow f (a * b + c) % S.q)
let lemma_pow_pow_mod_mul f a b c =
calc (==) {
S.qmul (M.pow (M.pow f a % S.q) b % S.q) (M.pow f c % S.q);
(==) {
M.lemma_pow_mod_base (M.pow f a) b S.q;
Math.Lemmas.lemma_mod_mul_distr_l (M.pow (M.pow f a) b) (M.pow f c % S.q) S.q;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow (M.pow f a) b) (M.pow f c) S.q }
M.pow (M.pow f a) b * M.pow f c % S.q;
(==) { M.lemma_pow_mul f a b }
M.pow f (a * b) * M.pow f c % S.q;
(==) { M.lemma_pow_add f (a * b) c }
M.pow f (a * b + c) % S.q;
}
// S.q - 2 = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd036413f | false | false | Hacl.Spec.K256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_lemma: f:S.qelem -> Lemma (qinv f == M.pow f (S.q - 2) % S.q) | [] | Hacl.Spec.K256.Qinv.qinv_lemma | {
"file_name": "code/k256/Hacl.Spec.K256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.K256.PointOps.qelem
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.K256.Qinv.qinv f ==
Lib.NatMod.pow f (Spec.K256.PointOps.q - 2) % Spec.K256.PointOps.q) | {
"end_col": 98,
"end_line": 371,
"start_col": 18,
"start_line": 174
} |
Prims.Tot | val bezout_prop (n l: nat) (b: bezout_t) : Tot prop | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l | val bezout_prop (n l: nat) (b: bezout_t) : Tot prop
let bezout_prop (n l: nat) (b: bezout_t) : Tot prop = | false | null | false | bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"total"
] | [
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout_t",
"Steel.ST.GenArraySwap.Proof.bezout_prop'",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_l",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__u_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__u_l",
"Prims.prop"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t) | false | true | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bezout_prop (n l: nat) (b: bezout_t) : Tot prop | [] | Steel.ST.GenArraySwap.Proof.bezout_prop | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | n: Prims.nat -> l: Prims.nat -> b: Steel.ST.GenArraySwap.Proof.bezout_t -> Prims.prop | {
"end_col": 46,
"end_line": 98,
"start_col": 2,
"start_line": 98
} |
Prims.Tot | val bezout_prop' (n l: nat) (d: pos) (q_n q_l: nat) (u_n u_l: int) : Tot prop | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l | val bezout_prop' (n l: nat) (d: pos) (q_n q_l: nat) (u_n u_l: int) : Tot prop
let bezout_prop' (n l: nat) (d: pos) (q_n q_l: nat) (u_n u_l: int) : Tot prop = | false | null | false | n == d * q_n /\ l == d * q_l /\ d == n * u_n + l * u_l | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.pos",
"Prims.int",
"Prims.l_and",
"Prims.eq2",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Prims.prop"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int) | false | true | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bezout_prop' (n l: nat) (d: pos) (q_n q_l: nat) (u_n u_l: int) : Tot prop | [] | Steel.ST.GenArraySwap.Proof.bezout_prop' | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.nat ->
l: Prims.nat ->
d: Prims.pos ->
q_n: Prims.nat ->
q_l: Prims.nat ->
u_n: Prims.int ->
u_l: Prims.int
-> Prims.prop | {
"end_col": 24,
"end_line": 91,
"start_col": 2,
"start_line": 89
} |
FStar.Tactics.Effect.Tac | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed () | let int_semiring () = | true | null | false | FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed () | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.qed",
"FStar.Tactics.V1.Derived.trefl",
"FStar.Tactics.CanonCommSemiring.int_semiring"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false" | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val int_semiring : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | [] | Steel.ST.GenArraySwap.Proof.int_semiring | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | {
"end_col": 22,
"end_line": 68,
"start_col": 2,
"start_line": 66
} |
|
Prims.Tot | val array_swap_post (#t: Type) (s0: Seq.seq t) (n l: nat) (s: Seq.seq t) : Tot prop | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let array_swap_post
(#t: Type)
(s0: Seq.seq t)
(n: nat)
(l: nat)
(s: Seq.seq t)
: Tot prop
=
n == Seq.length s0 /\
0 <= l /\
l <= n /\
s `Seq.equal` (Seq.slice s0 l n `Seq.append` Seq.slice s0 0 l) | val array_swap_post (#t: Type) (s0: Seq.seq t) (n l: nat) (s: Seq.seq t) : Tot prop
let array_swap_post (#t: Type) (s0: Seq.seq t) (n l: nat) (s: Seq.seq t) : Tot prop = | false | null | false | n == Seq.length s0 /\ 0 <= l /\ l <= n /\
s `Seq.equal` ((Seq.slice s0 l n) `Seq.append` (Seq.slice s0 0 l)) | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"total"
] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.length",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.equal",
"FStar.Seq.Base.append",
"FStar.Seq.Base.slice",
"Prims.prop"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x)
let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x
let jump_jump_iter_pred_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(j: nat_up_to b.q_n)
: Lemma
(requires (
j == b.q_n - 1
))
(ensures (
jump n l (iter_fun (jump n l) j x) == x
))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)]
= jump_iter_q n l b x
let array_swap_post
(#t: Type)
(s0: Seq.seq t)
(n: nat)
(l: nat)
(s: Seq.seq t)
: Tot prop | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val array_swap_post (#t: Type) (s0: Seq.seq t) (n l: nat) (s: Seq.seq t) : Tot prop | [] | Steel.ST.GenArraySwap.Proof.array_swap_post | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | s0: FStar.Seq.Base.seq t -> n: Prims.nat -> l: Prims.nat -> s: FStar.Seq.Base.seq t -> Prims.prop | {
"end_col": 66,
"end_line": 605,
"start_col": 4,
"start_line": 602
} |
Prims.GTot | val iter_fun (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t) : GTot t (decreases n) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x) | val iter_fun (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t) : GTot t (decreases n)
let rec iter_fun (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t) : GTot t (decreases n) = | false | null | false | if n = 0 then x else iter_fun f (n - 1) (f x) | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"sometrivial",
""
] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Prims.op_Subtraction"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val iter_fun (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t) : GTot t (decreases n) | [
"recursion"
] | Steel.ST.GenArraySwap.Proof.iter_fun | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | f: (_: t -> Prims.GTot t) -> n: Prims.nat -> x: t -> Prims.GTot t | {
"end_col": 31,
"end_line": 187,
"start_col": 2,
"start_line": 185
} |
FStar.Pervasives.Lemma | val jump_if (n: pos) (l: nat) (sq: squash (l < n)) (idx: nat_up_to n)
: Lemma (jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n | val jump_if (n: pos) (l: nat) (sq: squash (l < n)) (idx: nat_up_to n)
: Lemma (jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
let jump_if (n: pos) (l: nat) (sq: squash (l < n)) (idx: nat_up_to n)
: Lemma (jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l)) = | false | null | true | let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (- 1) n | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Prims.squash",
"Prims.b2t",
"Prims.op_LessThan",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.op_Addition",
"Prims.op_Minus",
"Prims.unit",
"FStar.Math.Lemmas.small_mod",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Subtraction",
"Prims.bool",
"Prims.l_True",
"Prims.eq2",
"Prims.int",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_if (n: pos) (l: nat) (sq: squash (l < n)) (idx: nat_up_to n)
: Lemma (jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l)) | [] | Steel.ST.GenArraySwap.Proof.jump_if | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.nat ->
sq: Prims.squash (l < n) ->
idx: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> FStar.Pervasives.Lemma
(ensures
Steel.ST.GenArraySwap.Proof.jump n l idx ==
(match idx + l >= n with
| true -> idx - (n - l)
| _ -> idx + l)) | {
"end_col": 33,
"end_line": 542,
"start_col": 1,
"start_line": 539
} |
FStar.Pervasives.Lemma | val bezout_pos_le (n: pos) (l: nat) (b: bezout n l)
: Lemma (b.d <= n /\ b.q_n > 0) [SMTPat (bezout_prop n l b)] | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d | val bezout_pos_le (n: pos) (l: nat) (b: bezout n l)
: Lemma (b.d <= n /\ b.q_n > 0) [SMTPat (bezout_prop n l b)]
let bezout_pos_le (n: pos) (l: nat) (b: bezout n l)
: Lemma (b.d <= n /\ b.q_n > 0) [SMTPat (bezout_prop n l b)] = | false | null | true | lemma_pos_mul_pos_args b.q_n b.d | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.lemma_pos_mul_pos_args",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.prop",
"Steel.ST.GenArraySwap.Proof.bezout_prop",
"Prims.Nil"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bezout_pos_le (n: pos) (l: nat) (b: bezout n l)
: Lemma (b.d <= n /\ b.q_n > 0) [SMTPat (bezout_prop n l b)] | [] | Steel.ST.GenArraySwap.Proof.bezout_pos_le | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | n: Prims.pos -> l: Prims.nat -> b: Steel.ST.GenArraySwap.Proof.bezout n l
-> FStar.Pervasives.Lemma (ensures Mkbezout_t?.d b <= n /\ Mkbezout_t?.q_n b > 0)
[SMTPat (Steel.ST.GenArraySwap.Proof.bezout_prop n l b)] | {
"end_col": 34,
"end_line": 264,
"start_col": 2,
"start_line": 264
} |
Prims.GTot | val jump (n: pos) (l: nat) (x: nat_up_to n) : GTot (nat_up_to n) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n | val jump (n: pos) (l: nat) (x: nat_up_to n) : GTot (nat_up_to n)
let jump (n: pos) (l: nat) (x: nat_up_to n) : GTot (nat_up_to n) = | false | null | false | (x + l) % n | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"sometrivial"
] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.op_Modulus",
"Prims.op_Addition"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump (n: pos) (l: nat) (x: nat_up_to n) : GTot (nat_up_to n) | [] | Steel.ST.GenArraySwap.Proof.jump | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | n: Prims.pos -> l: Prims.nat -> x: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> Prims.GTot (Steel.ST.GenArraySwap.Proof.nat_up_to n) | {
"end_col": 13,
"end_line": 196,
"start_col": 2,
"start_line": 196
} |
Prims.Tot | val array_swap_outer_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i: nat)
: Tot prop | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let array_swap_outer_invariant // hoisting necessary because "Let binding is effectful"
(#t: Type0) (s0: Seq.seq t) (n: nat) (l: nat) (bz: bezout (n) (l))
(s: Seq.seq t) (i: nat)
: Tot prop
= 0 < l /\
l < n /\
i <= bz.d /\
n == Seq.length s0 /\
n == Seq.length s /\
(forall (i': nat_up_to bz.d) . // this is always true, but I need it here for the pattern
Seq.index s i' == Seq.index s (iter_fun #(nat_up_to (n)) (jump (n) (l)) 0 i')
) /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j i' in
Seq.index s idx == Seq.index s0 (if i' < i then jump (n) (l) idx else idx)
)) | val array_swap_outer_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i: nat)
: Tot prop
let array_swap_outer_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i: nat)
: Tot prop = | false | null | false | 0 < l /\ l < n /\ i <= bz.d /\ n == Seq.length s0 /\ n == Seq.length s /\
(forall (i': nat_up_to bz.d).
Seq.index s i' == Seq.index s (iter_fun #(nat_up_to (n)) (jump (n) (l)) 0 i')) /\
(forall (i': nat_up_to bz.d).
(forall (j: nat_up_to bz.q_n).
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j i' in
Seq.index s idx == Seq.index s0 (if i' < i then jump (n) (l) idx else idx))) | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"total"
] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_LessThanOrEqual",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.eq2",
"FStar.Seq.Base.length",
"Prims.l_Forall",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"FStar.Seq.Base.index",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.bool",
"Prims.prop"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x)
let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x
let jump_jump_iter_pred_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(j: nat_up_to b.q_n)
: Lemma
(requires (
j == b.q_n - 1
))
(ensures (
jump n l (iter_fun (jump n l) j x) == x
))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)]
= jump_iter_q n l b x
let array_swap_post
(#t: Type)
(s0: Seq.seq t)
(n: nat)
(l: nat)
(s: Seq.seq t)
: Tot prop
=
n == Seq.length s0 /\
0 <= l /\
l <= n /\
s `Seq.equal` (Seq.slice s0 l n `Seq.append` Seq.slice s0 0 l)
let array_as_ring_buffer_swap
(#t: Type)
(n: nat)
(l: nat)
(bz: bezout n l)
(s0: Seq.seq t)
(s: Seq.seq t)
: Lemma
(requires (
n == Seq.length s0 /\
n == Seq.length s /\
0 < l /\
l < n /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
(i' < bz.d) ==> (
let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx)
)))
))
(ensures (
array_swap_post s0 n l s
))
[SMTPat (array_swap_post s0 n l s); SMTPat (bezout_prop n l bz)]
= Classical.forall_intro (jump_if n l ());
let p
(idx: nat_up_to n)
: Tot prop
= Seq.index s idx == Seq.index s0 (jump n l idx)
in
jump_iter_elim n p l bz
let array_swap_outer_invariant // hoisting necessary because "Let binding is effectful"
(#t: Type0) (s0: Seq.seq t) (n: nat) (l: nat) (bz: bezout (n) (l))
(s: Seq.seq t) (i: nat) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val array_swap_outer_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i: nat)
: Tot prop | [] | Steel.ST.GenArraySwap.Proof.array_swap_outer_invariant | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
s0: FStar.Seq.Base.seq t ->
n: Prims.nat ->
l: Prims.nat ->
bz: Steel.ST.GenArraySwap.Proof.bezout n l ->
s: FStar.Seq.Base.seq t ->
i: Prims.nat
-> Prims.prop | {
"end_col": 4,
"end_line": 655,
"start_col": 2,
"start_line": 643
} |
Prims.Ghost | val minimal_exists' (p: (nat -> GTot bool)) (n i: nat)
: Ghost nat
(requires (p n == true /\ i <= n /\ (forall (j: nat). j < i ==> p j == false)))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false)))
(decreases (n - i)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1) | val minimal_exists' (p: (nat -> GTot bool)) (n i: nat)
: Ghost nat
(requires (p n == true /\ i <= n /\ (forall (j: nat). j < i ==> p j == false)))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false)))
(decreases (n - i))
let rec minimal_exists' (p: (nat -> GTot bool)) (n i: nat)
: Ghost nat
(requires (p n == true /\ i <= n /\ (forall (j: nat). j < i ==> p j == false)))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false)))
(decreases (n - i)) = | false | null | false | if p i then i else minimal_exists' p n (i + 1) | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
""
] | [
"Prims.nat",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.minimal_exists'",
"Prims.op_Addition",
"Prims.l_and",
"Prims.eq2",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.op_LessThan"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val minimal_exists' (p: (nat -> GTot bool)) (n i: nat)
: Ghost nat
(requires (p n == true /\ i <= n /\ (forall (j: nat). j < i ==> p j == false)))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false)))
(decreases (n - i)) | [
"recursion"
] | Steel.ST.GenArraySwap.Proof.minimal_exists' | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: (_: Prims.nat -> Prims.GTot Prims.bool) -> n: Prims.nat -> i: Prims.nat -> Prims.Ghost Prims.nat | {
"end_col": 34,
"end_line": 318,
"start_col": 2,
"start_line": 316
} |
Prims.Tot | val array_swap_inner_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i j idx: nat)
: Tot prop | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let array_swap_inner_invariant
(#t: Type0) (s0: Seq.seq t) (n: nat) (l: nat) (bz: bezout (n) (l))
(s: Seq.seq t) (i: nat) (j: nat) (idx: nat)
: Tot prop
= 0 < l /\
l < n /\
n == Seq.length s0 /\
i < bz.d /\
j < bz.q_n /\
idx == iter_fun #(nat_up_to (n)) (jump (n) (l)) (j) (i) /\
n == Seq.length s /\
(forall (i': nat_up_to bz.d) .
(forall (j': nat_up_to bz.q_n) .
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j' i' in
Seq.index s idx == Seq.index s0 (if i' < i || (i' = i && j' < j) then jump (n) (l) idx else idx)
)) | val array_swap_inner_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i j idx: nat)
: Tot prop
let array_swap_inner_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i j idx: nat)
: Tot prop = | false | null | false | 0 < l /\ l < n /\ n == Seq.length s0 /\ i < bz.d /\ j < bz.q_n /\
idx == iter_fun #(nat_up_to (n)) (jump (n) (l)) (j) (i) /\ n == Seq.length s /\
(forall (i': nat_up_to bz.d).
(forall (j': nat_up_to bz.q_n).
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j' i' in
Seq.index s idx ==
Seq.index s0 (if i' < i || (i' = i && j' < j) then jump (n) (l) idx else idx))) | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"total"
] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.Seq.Base.length",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.l_Forall",
"FStar.Seq.Base.index",
"Prims.op_BarBar",
"Prims.op_AmpAmp",
"Prims.op_Equality",
"Prims.bool",
"Prims.prop"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x)
let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x
let jump_jump_iter_pred_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(j: nat_up_to b.q_n)
: Lemma
(requires (
j == b.q_n - 1
))
(ensures (
jump n l (iter_fun (jump n l) j x) == x
))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)]
= jump_iter_q n l b x
let array_swap_post
(#t: Type)
(s0: Seq.seq t)
(n: nat)
(l: nat)
(s: Seq.seq t)
: Tot prop
=
n == Seq.length s0 /\
0 <= l /\
l <= n /\
s `Seq.equal` (Seq.slice s0 l n `Seq.append` Seq.slice s0 0 l)
let array_as_ring_buffer_swap
(#t: Type)
(n: nat)
(l: nat)
(bz: bezout n l)
(s0: Seq.seq t)
(s: Seq.seq t)
: Lemma
(requires (
n == Seq.length s0 /\
n == Seq.length s /\
0 < l /\
l < n /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
(i' < bz.d) ==> (
let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx)
)))
))
(ensures (
array_swap_post s0 n l s
))
[SMTPat (array_swap_post s0 n l s); SMTPat (bezout_prop n l bz)]
= Classical.forall_intro (jump_if n l ());
let p
(idx: nat_up_to n)
: Tot prop
= Seq.index s idx == Seq.index s0 (jump n l idx)
in
jump_iter_elim n p l bz
let array_swap_outer_invariant // hoisting necessary because "Let binding is effectful"
(#t: Type0) (s0: Seq.seq t) (n: nat) (l: nat) (bz: bezout (n) (l))
(s: Seq.seq t) (i: nat)
: Tot prop
= 0 < l /\
l < n /\
i <= bz.d /\
n == Seq.length s0 /\
n == Seq.length s /\
(forall (i': nat_up_to bz.d) . // this is always true, but I need it here for the pattern
Seq.index s i' == Seq.index s (iter_fun #(nat_up_to (n)) (jump (n) (l)) 0 i')
) /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j i' in
Seq.index s idx == Seq.index s0 (if i' < i then jump (n) (l) idx else idx)
))
let array_swap_inner_invariant
(#t: Type0) (s0: Seq.seq t) (n: nat) (l: nat) (bz: bezout (n) (l))
(s: Seq.seq t) (i: nat) (j: nat) (idx: nat) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val array_swap_inner_invariant
(#t: Type0)
(s0: Seq.seq t)
(n l: nat)
(bz: bezout (n) (l))
(s: Seq.seq t)
(i j idx: nat)
: Tot prop | [] | Steel.ST.GenArraySwap.Proof.array_swap_inner_invariant | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
s0: FStar.Seq.Base.seq t ->
n: Prims.nat ->
l: Prims.nat ->
bz: Steel.ST.GenArraySwap.Proof.bezout n l ->
s: FStar.Seq.Base.seq t ->
i: Prims.nat ->
j: Prims.nat ->
idx: Prims.nat
-> Prims.prop | {
"end_col": 4,
"end_line": 672,
"start_col": 2,
"start_line": 661
} |
Prims.Ghost | val minimal_exists (p: (nat -> GTot bool)) (n: nat)
: Ghost nat
(requires (p n == true))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false))) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0 | val minimal_exists (p: (nat -> GTot bool)) (n: nat)
: Ghost nat
(requires (p n == true))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false)))
let minimal_exists (p: (nat -> GTot bool)) (n: nat)
: Ghost nat
(requires (p n == true))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false))) = | false | null | false | minimal_exists' p n 0 | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [] | [
"Prims.nat",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.minimal_exists'",
"Prims.eq2",
"Prims.l_and",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val minimal_exists (p: (nat -> GTot bool)) (n: nat)
: Ghost nat
(requires (p n == true))
(ensures (fun k -> p k == true /\ (forall (j: nat). j < k ==> p j == false))) | [] | Steel.ST.GenArraySwap.Proof.minimal_exists | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | p: (_: Prims.nat -> Prims.GTot Prims.bool) -> n: Prims.nat -> Prims.Ghost Prims.nat | {
"end_col": 23,
"end_line": 333,
"start_col": 2,
"start_line": 333
} |
FStar.Pervasives.Lemma | val mod_eq_intro (n: pos) (x1 x2 k: int)
: Lemma (requires (x1 - x2 == k * n)) (ensures (x1 % n == x2 % n)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n | val mod_eq_intro (n: pos) (x1 x2 k: int)
: Lemma (requires (x1 - x2 == k * n)) (ensures (x1 % n == x2 % n))
let mod_eq_intro (n: pos) (x1 x2 k: int)
: Lemma (requires (x1 - x2 == k * n)) (ensures (x1 % n == x2 % n)) = | false | null | true | lemma_mod_plus x2 k n | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.int",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.unit",
"Prims.eq2",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Prims.squash",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_eq_intro (n: pos) (x1 x2 k: int)
: Lemma (requires (x1 - x2 == k * n)) (ensures (x1 % n == x2 % n)) | [] | Steel.ST.GenArraySwap.Proof.mod_eq_intro | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | n: Prims.pos -> x1: Prims.int -> x2: Prims.int -> k: Prims.int
-> FStar.Pervasives.Lemma (requires x1 - x2 == k * n) (ensures x1 % n == x2 % n) | {
"end_col": 23,
"end_line": 412,
"start_col": 2,
"start_line": 412
} |
FStar.Pervasives.Lemma | val bezout_q_eq (n l: nat) (bz: bezout n l)
: Lemma (bz.q_n == n / bz.d) [SMTPat (bezout_prop n l bz); SMTPat bz.q_n] | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d | val bezout_q_eq (n l: nat) (bz: bezout n l)
: Lemma (bz.q_n == n / bz.d) [SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
let bezout_q_eq (n l: nat) (bz: bezout n l)
: Lemma (bz.q_n == n / bz.d) [SMTPat (bezout_prop n l bz); SMTPat bz.q_n] = | false | null | true | cancel_mul_div bz.q_n bz.d | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"FStar.Math.Lemmas.cancel_mul_div",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.prop",
"Steel.ST.GenArraySwap.Proof.bezout_prop",
"Prims.Nil"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bezout_q_eq (n l: nat) (bz: bezout n l)
: Lemma (bz.q_n == n / bz.d) [SMTPat (bezout_prop n l bz); SMTPat bz.q_n] | [] | Steel.ST.GenArraySwap.Proof.bezout_q_eq | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | n: Prims.nat -> l: Prims.nat -> bz: Steel.ST.GenArraySwap.Proof.bezout n l
-> FStar.Pervasives.Lemma (ensures Mkbezout_t?.q_n bz == n / Mkbezout_t?.d bz)
[SMTPat (Steel.ST.GenArraySwap.Proof.bezout_prop n l bz); SMTPat (Mkbezout_t?.q_n bz)] | {
"end_col": 28,
"end_line": 176,
"start_col": 2,
"start_line": 176
} |
FStar.Pervasives.Lemma | val iter_succ_l (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t)
: Lemma (f (iter_fun f n x) == iter_fun f (n + 1) x) [SMTPat (f (iter_fun f n x))] | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x | val iter_succ_l (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t)
: Lemma (f (iter_fun f n x) == iter_fun f (n + 1) x) [SMTPat (f (iter_fun f n x))]
let iter_succ_l (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t)
: Lemma (f (iter_fun f n x) == iter_fun f (n + 1) x) [SMTPat (f (iter_fun f n x))] = | false | null | true | iter_fun_add f 1 n x | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.iter_fun_add",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x)
let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val iter_succ_l (#t: Type) (f: (t -> GTot t)) (n: nat) (x: t)
: Lemma (f (iter_fun f n x) == iter_fun f (n + 1) x) [SMTPat (f (iter_fun f n x))] | [] | Steel.ST.GenArraySwap.Proof.iter_succ_l | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | f: (_: t -> Prims.GTot t) -> n: Prims.nat -> x: t
-> FStar.Pervasives.Lemma
(ensures
f (Steel.ST.GenArraySwap.Proof.iter_fun f n x) ==
Steel.ST.GenArraySwap.Proof.iter_fun f (n + 1) x)
[SMTPat (f (Steel.ST.GenArraySwap.Proof.iter_fun f n x))] | {
"end_col": 22,
"end_line": 576,
"start_col": 2,
"start_line": 576
} |
FStar.Pervasives.Lemma | val sz_rem_spec (n l: SZ.t)
: Lemma (requires (SZ.v l > 0))
(ensures (SZ.v (SZ.rem n l) == SZ.v n % SZ.v l))
[SMTPat (SZ.rem n l)] | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "SZ"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sz_rem_spec
(n: SZ.t)
(l: SZ.t)
: Lemma
(requires (SZ.v l > 0))
(ensures (SZ.v (SZ.rem n l) == SZ.v n % SZ.v l))
[SMTPat (SZ.rem n l)]
= euclidean_division_definition (SZ.v n) (SZ.v l) | val sz_rem_spec (n l: SZ.t)
: Lemma (requires (SZ.v l > 0))
(ensures (SZ.v (SZ.rem n l) == SZ.v n % SZ.v l))
[SMTPat (SZ.rem n l)]
let sz_rem_spec (n l: SZ.t)
: Lemma (requires (SZ.v l > 0))
(ensures (SZ.v (SZ.rem n l) == SZ.v n % SZ.v l))
[SMTPat (SZ.rem n l)] = | false | null | true | euclidean_division_definition (SZ.v n) (SZ.v l) | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"FStar.SizeT.t",
"FStar.Math.Lemmas.euclidean_division_definition",
"FStar.SizeT.v",
"Prims.unit",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"FStar.SizeT.rem",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x)
let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x
let jump_jump_iter_pred_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(j: nat_up_to b.q_n)
: Lemma
(requires (
j == b.q_n - 1
))
(ensures (
jump n l (iter_fun (jump n l) j x) == x
))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)]
= jump_iter_q n l b x
let array_swap_post
(#t: Type)
(s0: Seq.seq t)
(n: nat)
(l: nat)
(s: Seq.seq t)
: Tot prop
=
n == Seq.length s0 /\
0 <= l /\
l <= n /\
s `Seq.equal` (Seq.slice s0 l n `Seq.append` Seq.slice s0 0 l)
let array_as_ring_buffer_swap
(#t: Type)
(n: nat)
(l: nat)
(bz: bezout n l)
(s0: Seq.seq t)
(s: Seq.seq t)
: Lemma
(requires (
n == Seq.length s0 /\
n == Seq.length s /\
0 < l /\
l < n /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
(i' < bz.d) ==> (
let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx)
)))
))
(ensures (
array_swap_post s0 n l s
))
[SMTPat (array_swap_post s0 n l s); SMTPat (bezout_prop n l bz)]
= Classical.forall_intro (jump_if n l ());
let p
(idx: nat_up_to n)
: Tot prop
= Seq.index s idx == Seq.index s0 (jump n l idx)
in
jump_iter_elim n p l bz
let array_swap_outer_invariant // hoisting necessary because "Let binding is effectful"
(#t: Type0) (s0: Seq.seq t) (n: nat) (l: nat) (bz: bezout (n) (l))
(s: Seq.seq t) (i: nat)
: Tot prop
= 0 < l /\
l < n /\
i <= bz.d /\
n == Seq.length s0 /\
n == Seq.length s /\
(forall (i': nat_up_to bz.d) . // this is always true, but I need it here for the pattern
Seq.index s i' == Seq.index s (iter_fun #(nat_up_to (n)) (jump (n) (l)) 0 i')
) /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j i' in
Seq.index s idx == Seq.index s0 (if i' < i then jump (n) (l) idx else idx)
))
let array_swap_inner_invariant
(#t: Type0) (s0: Seq.seq t) (n: nat) (l: nat) (bz: bezout (n) (l))
(s: Seq.seq t) (i: nat) (j: nat) (idx: nat)
: Tot prop
= 0 < l /\
l < n /\
n == Seq.length s0 /\
i < bz.d /\
j < bz.q_n /\
idx == iter_fun #(nat_up_to (n)) (jump (n) (l)) (j) (i) /\
n == Seq.length s /\
(forall (i': nat_up_to bz.d) .
(forall (j': nat_up_to bz.q_n) .
let idx = iter_fun #(nat_up_to (n)) (jump (n) (l)) j' i' in
Seq.index s idx == Seq.index s0 (if i' < i || (i' = i && j' < j) then jump (n) (l) idx else idx)
))
let array_swap_inner_invariant_end
(#t: Type)
(n: nat)
(l: nat)
(bz: bezout (n) (l))
(s0: Seq.seq t)
(s: Seq.seq t)
(i: nat)
(j: nat)
(idx: nat)
: Lemma
(requires (
array_swap_inner_invariant s0 n l bz s i j idx /\
(~ (j < bz.q_n - 1))
))
(ensures (
let s' = Seq.upd s idx (Seq.index s0 i) in
array_swap_outer_invariant s0 n l bz s' (i + 1)
))
// [SMTPat (array_swap_inner_invariant s0 n l bz s i j idx)]
= ()
module SZ = FStar.SizeT
let sz_rem_spec
(n: SZ.t)
(l: SZ.t)
: Lemma
(requires (SZ.v l > 0))
(ensures (SZ.v (SZ.rem n l) == SZ.v n % SZ.v l)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sz_rem_spec (n l: SZ.t)
: Lemma (requires (SZ.v l > 0))
(ensures (SZ.v (SZ.rem n l) == SZ.v n % SZ.v l))
[SMTPat (SZ.rem n l)] | [] | Steel.ST.GenArraySwap.Proof.sz_rem_spec | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | n: FStar.SizeT.t -> l: FStar.SizeT.t
-> FStar.Pervasives.Lemma (requires FStar.SizeT.v l > 0)
(ensures FStar.SizeT.v (FStar.SizeT.rem n l) == FStar.SizeT.v n % FStar.SizeT.v l)
[SMTPat (FStar.SizeT.rem n l)] | {
"end_col": 49,
"end_line": 705,
"start_col": 2,
"start_line": 705
} |
FStar.Pervasives.Lemma | val jump_iter_inj (n l: nat) (b: bezout_t) (i1 i2 k1 k2: nat)
: Lemma
(requires
(n > 0 /\ l > 0 /\ bezout_prop n l b /\ i1 < b.d /\ i2 < b.d /\ k1 < b.q_n /\ k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2))
(ensures (i1 == i2 /\ k1 == k2))
[
SMTPat (iter_fun (jump n l) k1 i1);
SMTPat (iter_fun (jump n l) k2 i2);
SMTPat (bezout_prop n l b)
] | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n | val jump_iter_inj (n l: nat) (b: bezout_t) (i1 i2 k1 k2: nat)
: Lemma
(requires
(n > 0 /\ l > 0 /\ bezout_prop n l b /\ i1 < b.d /\ i2 < b.d /\ k1 < b.q_n /\ k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2))
(ensures (i1 == i2 /\ k1 == k2))
[
SMTPat (iter_fun (jump n l) k1 i1);
SMTPat (iter_fun (jump n l) k2 i2);
SMTPat (bezout_prop n l b)
]
let jump_iter_inj (n l: nat) (b: bezout_t) (i1 i2 k1 k2: nat)
: Lemma
(requires
(n > 0 /\ l > 0 /\ bezout_prop n l b /\ i1 < b.d /\ i2 < b.d /\ k1 < b.q_n /\ k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2))
(ensures (i1 == i2 /\ k1 == k2))
[
SMTPat (iter_fun (jump n l) k1 i1);
SMTPat (iter_fun (jump n l) k2 i2);
SMTPat (bezout_prop n l b)
] = | false | null | true | jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout_t",
"FStar.Math.Lemmas.small_mod",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.unit",
"Steel.ST.GenArraySwap.Proof.jump_iter_mod_q_inj_weak",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.jump_iter_mod_d",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Steel.ST.GenArraySwap.Proof.bezout_prop",
"Prims.op_LessThan",
"Prims.eq2",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.prop",
"Prims.Nil"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_iter_inj (n l: nat) (b: bezout_t) (i1 i2 k1 k2: nat)
: Lemma
(requires
(n > 0 /\ l > 0 /\ bezout_prop n l b /\ i1 < b.d /\ i2 < b.d /\ k1 < b.q_n /\ k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2))
(ensures (i1 == i2 /\ k1 == k2))
[
SMTPat (iter_fun (jump n l) k1 i1);
SMTPat (iter_fun (jump n l) k2 i2);
SMTPat (bezout_prop n l b)
] | [] | Steel.ST.GenArraySwap.Proof.jump_iter_inj | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.nat ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout_t ->
i1: Prims.nat ->
i2: Prims.nat ->
k1: Prims.nat ->
k2: Prims.nat
-> FStar.Pervasives.Lemma
(requires
n > 0 /\ l > 0 /\ Steel.ST.GenArraySwap.Proof.bezout_prop n l b /\ i1 < Mkbezout_t?.d b /\
i2 < Mkbezout_t?.d b /\ k1 < Mkbezout_t?.q_n b /\ k2 < Mkbezout_t?.q_n b /\
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k1 i1 ==
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k2 i2)
(ensures i1 == i2 /\ k1 == k2)
[
SMTPat (Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k1 i1);
SMTPat (Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k2 i2);
SMTPat (Steel.ST.GenArraySwap.Proof.bezout_prop n l b)
] | {
"end_col": 20,
"end_line": 505,
"start_col": 2,
"start_line": 499
} |
FStar.Pervasives.Lemma | val jump_coverage_strong_bound (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (b.q_n > 0 /\ jump_coverage_strong n l b x < b.q_n)
[SMTPat (jump_coverage_strong n l b x)] | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k | val jump_coverage_strong_bound (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (b.q_n > 0 /\ jump_coverage_strong n l b x < b.q_n)
[SMTPat (jump_coverage_strong n l b x)]
let jump_coverage_strong_bound (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (b.q_n > 0 /\ jump_coverage_strong n l b x < b.q_n)
[SMTPat (jump_coverage_strong n l b x)] = | false | null | true | let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.jump_iter_mod_q",
"Prims.op_Modulus",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.jump_coverage_strong",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.op_LessThan",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_coverage_strong_bound (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (b.q_n > 0 /\ jump_coverage_strong n l b x < b.q_n)
[SMTPat (jump_coverage_strong n l b x)] | [] | Steel.ST.GenArraySwap.Proof.jump_coverage_strong_bound | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> FStar.Pervasives.Lemma
(ensures
Mkbezout_t?.q_n b > 0 /\
Steel.ST.GenArraySwap.Proof.jump_coverage_strong n l b x < Mkbezout_t?.q_n b)
[SMTPat (Steel.ST.GenArraySwap.Proof.jump_coverage_strong n l b x)] | {
"end_col": 35,
"end_line": 384,
"start_col": 1,
"start_line": 383
} |
FStar.Pervasives.Lemma | val jump_iter_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (ensures (iter_fun (jump n l) b.q_n x == x)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n | val jump_iter_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (ensures (iter_fun (jump n l) b.q_n x == x))
let jump_iter_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (ensures (iter_fun (jump n l) b.q_n x == x)) = | false | null | true | cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.jump_iter_mod_q",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.unit",
"FStar.Math.Lemmas.cancel_mul_mod",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_iter_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (ensures (iter_fun (jump n l) b.q_n x == x)) | [] | Steel.ST.GenArraySwap.Proof.jump_iter_q | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> FStar.Pervasives.Lemma
(ensures
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l)
(Mkbezout_t?.q_n b)
x ==
x) | {
"end_col": 31,
"end_line": 554,
"start_col": 2,
"start_line": 553
} |
FStar.Pervasives.Lemma | val jump_jump_iter_pred_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (j: nat_up_to b.q_n)
: Lemma (requires (j == b.q_n - 1))
(ensures (jump n l (iter_fun (jump n l) j x) == x))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)] | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_jump_iter_pred_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(j: nat_up_to b.q_n)
: Lemma
(requires (
j == b.q_n - 1
))
(ensures (
jump n l (iter_fun (jump n l) j x) == x
))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)]
= jump_iter_q n l b x | val jump_jump_iter_pred_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (j: nat_up_to b.q_n)
: Lemma (requires (j == b.q_n - 1))
(ensures (jump n l (iter_fun (jump n l) j x) == x))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)]
let jump_jump_iter_pred_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (j: nat_up_to b.q_n)
: Lemma (requires (j == b.q_n - 1))
(ensures (jump n l (iter_fun (jump n l) j x) == x))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)] = | false | null | true | jump_iter_q n l b x | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.jump_iter_q",
"Prims.unit",
"Prims.eq2",
"Prims.int",
"Prims.op_Subtraction",
"Prims.squash",
"Steel.ST.GenArraySwap.Proof.jump",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.prop",
"Steel.ST.GenArraySwap.Proof.bezout_prop",
"Prims.Nil"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x)
let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x
let jump_jump_iter_pred_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(j: nat_up_to b.q_n)
: Lemma
(requires (
j == b.q_n - 1
))
(ensures (
jump n l (iter_fun (jump n l) j x) == x
)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_jump_iter_pred_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (j: nat_up_to b.q_n)
: Lemma (requires (j == b.q_n - 1))
(ensures (jump n l (iter_fun (jump n l) j x) == x))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)] | [] | Steel.ST.GenArraySwap.Proof.jump_jump_iter_pred_q | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n ->
j: Steel.ST.GenArraySwap.Proof.nat_up_to (Mkbezout_t?.q_n b)
-> FStar.Pervasives.Lemma (requires j == Mkbezout_t?.q_n b - 1)
(ensures
Steel.ST.GenArraySwap.Proof.jump n
l
(Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) j x) ==
x)
[
SMTPat (Steel.ST.GenArraySwap.Proof.jump n
l
(Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) j x));
SMTPat (Steel.ST.GenArraySwap.Proof.bezout_prop n l b)
] | {
"end_col": 21,
"end_line": 592,
"start_col": 2,
"start_line": 592
} |
Prims.Ghost | val jump_coverage_strong (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat
(requires True)
(ensures
(fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat). k' < k ==> (~(x == iter_fun (jump n l) k' (x % b.d)))))) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k' | val jump_coverage_strong (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat
(requires True)
(ensures
(fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat). k' < k ==> (~(x == iter_fun (jump n l) k' (x % b.d))))))
let jump_coverage_strong (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat
(requires True)
(ensures
(fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat). k' < k ==> (~(x == iter_fun (jump n l) k' (x % b.d)))))) = | false | null | false | let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k' | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.minimal_exists",
"Prims.op_Equality",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.op_Modulus",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.jump_coverage",
"Prims.l_True",
"Prims.l_and",
"Prims.eq2",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.l_not"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d)))) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_coverage_strong (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat
(requires True)
(ensures
(fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat). k' < k ==> (~(x == iter_fun (jump n l) k' (x % b.d)))))) | [] | Steel.ST.GenArraySwap.Proof.jump_coverage_strong | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> Prims.Ghost Prims.nat | {
"end_col": 66,
"end_line": 349,
"start_col": 1,
"start_line": 348
} |
FStar.Pervasives.Lemma | val iter_fun_add (#t: Type) (f: (t -> GTot t)) (n1 n2: nat) (x: t)
: Lemma (ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x)) (decreases n2) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x) | val iter_fun_add (#t: Type) (f: (t -> GTot t)) (n1 n2: nat) (x: t)
: Lemma (ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x)) (decreases n2)
let rec iter_fun_add (#t: Type) (f: (t -> GTot t)) (n1 n2: nat) (x: t)
: Lemma (ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x)) (decreases n2) = | false | null | true | if n2 = 0 then () else iter_fun_add f n1 (n2 - 1) (f x) | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma",
""
] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.iter_fun_add",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val iter_fun_add (#t: Type) (f: (t -> GTot t)) (n1 n2: nat) (x: t)
: Lemma (ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x)) (decreases n2) | [
"recursion"
] | Steel.ST.GenArraySwap.Proof.iter_fun_add | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | f: (_: t -> Prims.GTot t) -> n1: Prims.nat -> n2: Prims.nat -> x: t
-> FStar.Pervasives.Lemma
(ensures
Steel.ST.GenArraySwap.Proof.iter_fun f n1 (Steel.ST.GenArraySwap.Proof.iter_fun f n2 x) ==
Steel.ST.GenArraySwap.Proof.iter_fun f (n1 + n2) x) (decreases n2) | {
"end_col": 39,
"end_line": 566,
"start_col": 2,
"start_line": 564
} |
FStar.Pervasives.Lemma | val jump_iter_elim (n: pos) (p: (nat_up_to n -> prop)) (l: nat) (b: bezout n l)
: Lemma (requires (forall (i: nat_up_to b.d) (k: nat_up_to b.q_n). p (iter_fun (jump n l) k i)))
(ensures (forall (x: nat_up_to n). p x)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf | val jump_iter_elim (n: pos) (p: (nat_up_to n -> prop)) (l: nat) (b: bezout n l)
: Lemma (requires (forall (i: nat_up_to b.d) (k: nat_up_to b.q_n). p (iter_fun (jump n l) k i)))
(ensures (forall (x: nat_up_to n). p x))
let jump_iter_elim (n: pos) (p: (nat_up_to n -> prop)) (l: nat) (b: bezout n l)
: Lemma (requires (forall (i: nat_up_to b.d) (k: nat_up_to b.q_n). p (iter_fun (jump n l) k i)))
(ensures (forall (x: nat_up_to n). p x)) = | false | null | true | let prf (x: nat_up_to n) : Lemma (p x) =
let i:nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.prop",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"FStar.Classical.forall_intro",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims._assert",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Steel.ST.GenArraySwap.Proof.jump_coverage_strong_bound",
"Steel.ST.GenArraySwap.Proof.jump_coverage_strong",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.op_Modulus",
"Prims.l_Forall",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_iter_elim (n: pos) (p: (nat_up_to n -> prop)) (l: nat) (b: bezout n l)
: Lemma (requires (forall (i: nat_up_to b.d) (k: nat_up_to b.q_n). p (iter_fun (jump n l) k i)))
(ensures (forall (x: nat_up_to n). p x)) | [] | Steel.ST.GenArraySwap.Proof.jump_iter_elim | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
p: (_: Steel.ST.GenArraySwap.Proof.nat_up_to n -> Prims.prop) ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l
-> FStar.Pervasives.Lemma
(requires
forall (i: Steel.ST.GenArraySwap.Proof.nat_up_to (Mkbezout_t?.d b))
(k: Steel.ST.GenArraySwap.Proof.nat_up_to (Mkbezout_t?.q_n b)).
p (Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k i))
(ensures forall (x: Steel.ST.GenArraySwap.Proof.nat_up_to n). p x) | {
"end_col": 28,
"end_line": 530,
"start_col": 1,
"start_line": 520
} |
FStar.Pervasives.Lemma | val jump_iter_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d)) (decreases k) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end | val jump_iter_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d)) (decreases k)
let rec jump_iter_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d)) (decreases k) = | false | null | true | if k = 0
then ()
else
(jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)) | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma",
""
] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.jump_iter_mod_d",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.op_Subtraction",
"Prims.unit",
"Steel.ST.GenArraySwap.Proof.jump_mod_d",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.op_Modulus",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_iter_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d)) (decreases k) | [
"recursion"
] | Steel.ST.GenArraySwap.Proof.jump_iter_mod_d | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n ->
k: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k x %
Mkbezout_t?.d b ==
x % Mkbezout_t?.d b) (decreases k) | {
"end_col": 5,
"end_line": 234,
"start_col": 2,
"start_line": 229
} |
FStar.Pervasives.Lemma | val jump_iter_mod_q_inj_weak (n l: pos) (b: bezout n l) (x: nat_up_to n) (k1 k2: nat)
: Lemma (requires (iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x))
(ensures (b.q_n > 0 /\ k1 % b.q_n == k2 % b.q_n)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq | val jump_iter_mod_q_inj_weak (n l: pos) (b: bezout n l) (x: nat_up_to n) (k1 k2: nat)
: Lemma (requires (iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x))
(ensures (b.q_n > 0 /\ k1 % b.q_n == k2 % b.q_n))
let jump_iter_mod_q_inj_weak (n l: pos) (b: bezout n l) (x: nat_up_to n) (k1 k2: nat)
: Lemma (requires (iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x))
(ensures (b.q_n > 0 /\ k1 % b.q_n == k2 % b.q_n)) = | false | null | true | jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
FStar.Tactics.Effect.assert_by_tactic ((k1 + - k2) * l == (k1 * l + - (k2 * l)))
(fun _ ->
();
(int_semiring ()));
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.mod_eq_intro",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.int",
"Steel.ST.GenArraySwap.Proof.gauss",
"Prims.op_Addition",
"Prims.op_Minus",
"Prims.unit",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"FStar.Mul.op_Star",
"Steel.ST.GenArraySwap.Proof.int_semiring",
"Steel.ST.GenArraySwap.Proof.mod_eq_elim",
"Steel.ST.GenArraySwap.Proof.jump_iter",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_iter_mod_q_inj_weak (n l: pos) (b: bezout n l) (x: nat_up_to n) (k1 k2: nat)
: Lemma (requires (iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x))
(ensures (b.q_n > 0 /\ k1 % b.q_n == k2 % b.q_n)) | [] | Steel.ST.GenArraySwap.Proof.jump_iter_mod_q_inj_weak | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.pos ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n ->
k1: Prims.nat ->
k2: Prims.nat
-> FStar.Pervasives.Lemma
(requires
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k1 x ==
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k2 x)
(ensures Mkbezout_t?.q_n b > 0 /\ k1 % Mkbezout_t?.q_n b == k2 % Mkbezout_t?.q_n b) | {
"end_col": 29,
"end_line": 475,
"start_col": 2,
"start_line": 470
} |
FStar.Pervasives.Lemma | val jump_iter (n: pos) (l: nat) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n)) (decreases k) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end | val jump_iter (n: pos) (l: nat) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n)) (decreases k)
let rec jump_iter (n: pos) (l: nat) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n)) (decreases k) = | false | null | true | if k = 0
then
(FStar.Tactics.Effect.assert_by_tactic (eq2 #int (x + 0 * l) x)
(fun _ ->
();
(int_semiring ()));
small_mod x n)
else
let k' = k - 1 in
FStar.Tactics.Effect.assert_by_tactic (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l))
(fun _ ->
();
(int_semiring ()));
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma",
""
] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.op_Equality",
"Prims.int",
"FStar.Math.Lemmas.small_mod",
"Prims.unit",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Steel.ST.GenArraySwap.Proof.int_semiring",
"Prims.bool",
"FStar.Math.Lemmas.lemma_mod_add_distr",
"Steel.ST.GenArraySwap.Proof.jump_iter",
"Prims.op_Modulus",
"Prims.op_Subtraction",
"Prims.l_True",
"Prims.squash",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_iter (n: pos) (l: nat) (x: nat_up_to n) (k: nat)
: Lemma (ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n)) (decreases k) | [
"recursion"
] | Steel.ST.GenArraySwap.Proof.jump_iter | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | n: Prims.pos -> l: Prims.nat -> x: Steel.ST.GenArraySwap.Proof.nat_up_to n -> k: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k x ==
(x + k * l) % n) (decreases k) | {
"end_col": 5,
"end_line": 255,
"start_col": 2,
"start_line": 246
} |
FStar.Pervasives.Lemma | val array_as_ring_buffer_swap (#t: Type) (n l: nat) (bz: bezout n l) (s0 s: Seq.seq t)
: Lemma
(requires
(n == Seq.length s0 /\ n == Seq.length s /\ 0 < l /\ l < n /\
(forall (i': nat_up_to bz.d).
(forall (j: nat_up_to bz.q_n).
(i' < bz.d) ==>
(let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx))))))
(ensures (array_swap_post s0 n l s))
[SMTPat (array_swap_post s0 n l s); SMTPat (bezout_prop n l bz)] | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let array_as_ring_buffer_swap
(#t: Type)
(n: nat)
(l: nat)
(bz: bezout n l)
(s0: Seq.seq t)
(s: Seq.seq t)
: Lemma
(requires (
n == Seq.length s0 /\
n == Seq.length s /\
0 < l /\
l < n /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
(i' < bz.d) ==> (
let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx)
)))
))
(ensures (
array_swap_post s0 n l s
))
[SMTPat (array_swap_post s0 n l s); SMTPat (bezout_prop n l bz)]
= Classical.forall_intro (jump_if n l ());
let p
(idx: nat_up_to n)
: Tot prop
= Seq.index s idx == Seq.index s0 (jump n l idx)
in
jump_iter_elim n p l bz | val array_as_ring_buffer_swap (#t: Type) (n l: nat) (bz: bezout n l) (s0 s: Seq.seq t)
: Lemma
(requires
(n == Seq.length s0 /\ n == Seq.length s /\ 0 < l /\ l < n /\
(forall (i': nat_up_to bz.d).
(forall (j: nat_up_to bz.q_n).
(i' < bz.d) ==>
(let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx))))))
(ensures (array_swap_post s0 n l s))
[SMTPat (array_swap_post s0 n l s); SMTPat (bezout_prop n l bz)]
let array_as_ring_buffer_swap (#t: Type) (n l: nat) (bz: bezout n l) (s0 s: Seq.seq t)
: Lemma
(requires
(n == Seq.length s0 /\ n == Seq.length s /\ 0 < l /\ l < n /\
(forall (i': nat_up_to bz.d).
(forall (j: nat_up_to bz.q_n).
(i' < bz.d) ==>
(let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx))))))
(ensures (array_swap_post s0 n l s))
[SMTPat (array_swap_post s0 n l s); SMTPat (bezout_prop n l bz)] = | false | null | true | Classical.forall_intro (jump_if n l ());
let p (idx: nat_up_to n) : Tot prop = Seq.index s idx == Seq.index s0 (jump n l idx) in
jump_iter_elim n p l bz | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"FStar.Seq.Base.seq",
"Steel.ST.GenArraySwap.Proof.jump_iter_elim",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.prop",
"Prims.eq2",
"FStar.Seq.Base.index",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.int",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Addition",
"Prims.op_Subtraction",
"Prims.bool",
"Steel.ST.GenArraySwap.Proof.jump_if",
"Prims.l_and",
"FStar.Seq.Base.length",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.l_Forall",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.l_imp",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Prims.squash",
"Steel.ST.GenArraySwap.Proof.array_swap_post",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Steel.ST.GenArraySwap.Proof.bezout_prop",
"Prims.Nil"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end
let jump_iter_mod_q_inj_weak
(n: pos)
(l: pos)
(b: bezout n l)
(x: nat_up_to n)
(k1 k2: nat)
: Lemma
(requires (
iter_fun (jump n l) k1 x == iter_fun (jump n l) k2 x
))
(ensures (
b.q_n > 0 /\
k1 % b.q_n == k2 % b.q_n
))
= jump_iter n l x k1;
jump_iter n l x k2;
let kn = mod_eq_elim n (x + k1 * l) (x + k2 * l) in
assert ((k1 + - k2) * l == (k1 * l + - (k2 * l))) by (int_semiring ());
let kq = gauss n l b (k1 + - k2) kn in
mod_eq_intro b.q_n k1 k2 kq
let jump_iter_inj
(n: nat)
(l: nat)
(b: bezout_t)
(i1 i2: nat)
(k1 k2: nat)
: Lemma
(requires (
n > 0 /\
l > 0 /\
bezout_prop n l b /\
i1 < b.d /\
i2 < b.d /\
k1 < b.q_n /\
k2 < b.q_n /\
iter_fun (jump n l) k1 i1 == iter_fun (jump n l) k2 i2
))
(ensures (
i1 == i2 /\
k1 == k2
))
[SMTPat (iter_fun (jump n l) k1 i1); SMTPat (iter_fun (jump n l) k2 i2); SMTPat (bezout_prop n l b)]
= jump_iter_mod_d n l b i1 k1;
jump_iter_mod_d n l b i2 k2;
small_mod i1 b.d;
small_mod i2 b.d;
jump_iter_mod_q_inj_weak n l b i1 k1 k2;
small_mod k1 b.q_n;
small_mod k2 b.q_n
#restart-solver
let jump_iter_elim
(n: pos)
(p: nat_up_to n -> prop)
(l: nat)
(b: bezout n l)
: Lemma
(requires (
forall (i: nat_up_to b.d) (k: nat_up_to b.q_n) . p (iter_fun (jump n l) k i)
))
(ensures (
forall (x: nat_up_to n) . p x
))
= let prf
(x: nat_up_to n)
: Lemma
(p x)
=
let i : nat_up_to b.d = x % b.d in
let k' = jump_coverage_strong n l b x in
jump_coverage_strong_bound n l b x;
assert (p (iter_fun (jump n l) k' i))
in
Classical.forall_intro prf
let jump_if
(n: pos)
(l: nat)
(sq: squash (l < n))
(idx: nat_up_to n)
: Lemma
(jump n l idx == (if idx + l >= n then idx - (n - l) else idx + l))
= let idx' = (if idx + l >= n then idx - (n - l) else idx + l) in
small_mod idx n;
small_mod idx' n;
lemma_mod_plus (idx + l) (-1) n
let jump_iter_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(ensures (
iter_fun (jump n l) b.q_n x == x
))
= cancel_mul_mod 1 b.q_n;
jump_iter_mod_q n l b x b.q_n
let rec iter_fun_add
(#t: Type)
(f: (t -> GTot t))
(n1 n2: nat)
(x: t)
: Lemma
(ensures (iter_fun f n1 (iter_fun f n2 x) == iter_fun f (n1 + n2) x))
(decreases n2)
= if n2 = 0
then ()
else iter_fun_add f n1 (n2 - 1) (f x)
let iter_succ_l
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: Lemma
(f (iter_fun f n x) == iter_fun f (n + 1) x)
[SMTPat (f (iter_fun f n x))]
= iter_fun_add f 1 n x
let jump_jump_iter_pred_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(j: nat_up_to b.q_n)
: Lemma
(requires (
j == b.q_n - 1
))
(ensures (
jump n l (iter_fun (jump n l) j x) == x
))
[SMTPat (jump n l (iter_fun (jump n l) j x)); SMTPat (bezout_prop n l b)]
= jump_iter_q n l b x
let array_swap_post
(#t: Type)
(s0: Seq.seq t)
(n: nat)
(l: nat)
(s: Seq.seq t)
: Tot prop
=
n == Seq.length s0 /\
0 <= l /\
l <= n /\
s `Seq.equal` (Seq.slice s0 l n `Seq.append` Seq.slice s0 0 l)
let array_as_ring_buffer_swap
(#t: Type)
(n: nat)
(l: nat)
(bz: bezout n l)
(s0: Seq.seq t)
(s: Seq.seq t)
: Lemma
(requires (
n == Seq.length s0 /\
n == Seq.length s /\
0 < l /\
l < n /\
(forall (i': nat_up_to bz.d) .
(forall (j: nat_up_to bz.q_n) .
(i' < bz.d) ==> (
let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx)
)))
))
(ensures (
array_swap_post s0 n l s
)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val array_as_ring_buffer_swap (#t: Type) (n l: nat) (bz: bezout n l) (s0 s: Seq.seq t)
: Lemma
(requires
(n == Seq.length s0 /\ n == Seq.length s /\ 0 < l /\ l < n /\
(forall (i': nat_up_to bz.d).
(forall (j: nat_up_to bz.q_n).
(i' < bz.d) ==>
(let idx = iter_fun #(nat_up_to n) (jump n l) j i' in
Seq.index s idx == Seq.index s0 (jump n l idx))))))
(ensures (array_swap_post s0 n l s))
[SMTPat (array_swap_post s0 n l s); SMTPat (bezout_prop n l bz)] | [] | Steel.ST.GenArraySwap.Proof.array_as_ring_buffer_swap | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.nat ->
l: Prims.nat ->
bz: Steel.ST.GenArraySwap.Proof.bezout n l ->
s0: FStar.Seq.Base.seq t ->
s: FStar.Seq.Base.seq t
-> FStar.Pervasives.Lemma
(requires
n == FStar.Seq.Base.length s0 /\ n == FStar.Seq.Base.length s /\ 0 < l /\ l < n /\
(forall (i': Steel.ST.GenArraySwap.Proof.nat_up_to (Mkbezout_t?.d bz))
(j: Steel.ST.GenArraySwap.Proof.nat_up_to (Mkbezout_t?.q_n bz)).
i' < Mkbezout_t?.d bz ==>
(let idx =
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) j i'
in
FStar.Seq.Base.index s idx ==
FStar.Seq.Base.index s0 (Steel.ST.GenArraySwap.Proof.jump n l idx))))
(ensures Steel.ST.GenArraySwap.Proof.array_swap_post s0 n l s)
[
SMTPat (Steel.ST.GenArraySwap.Proof.array_swap_post s0 n l s);
SMTPat (Steel.ST.GenArraySwap.Proof.bezout_prop n l bz)
] | {
"end_col": 25,
"end_line": 637,
"start_col": 2,
"start_line": 631
} |
Prims.Ghost | val mod_eq_elim (n: pos) (x1 x2: int)
: Ghost int (requires (x1 % n == x2 % n)) (ensures (fun k -> x1 - x2 == k * n)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k | val mod_eq_elim (n: pos) (x1 x2: int)
: Ghost int (requires (x1 % n == x2 % n)) (ensures (fun k -> x1 - x2 == k * n))
let mod_eq_elim (n: pos) (x1 x2: int)
: Ghost int (requires (x1 % n == x2 % n)) (ensures (fun k -> x1 - x2 == k * n)) = | false | null | false | euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
FStar.Tactics.Effect.assert_by_tactic (q1 * n + r + - (q2 * n + r) == k * n)
(fun _ ->
();
(int_semiring ()));
k | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [] | [
"Prims.pos",
"Prims.int",
"Prims.unit",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Minus",
"Steel.ST.GenArraySwap.Proof.int_semiring",
"Prims.op_Modulus",
"Prims.op_Division",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims.op_Subtraction"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_eq_elim (n: pos) (x1 x2: int)
: Ghost int (requires (x1 % n == x2 % n)) (ensures (fun k -> x1 - x2 == k * n)) | [] | Steel.ST.GenArraySwap.Proof.mod_eq_elim | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | n: Prims.pos -> x1: Prims.int -> x2: Prims.int -> Prims.Ghost Prims.int | {
"end_col": 3,
"end_line": 403,
"start_col": 2,
"start_line": 396
} |
FStar.Pervasives.Lemma | val jump_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (jump n l x % b.d == x % b.d) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d | val jump_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (jump n l x % b.d == x % b.d)
let jump_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (jump n l x % b.d == x % b.d) = | false | null | true | let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
FStar.Tactics.Effect.assert_by_tactic (eq2 #int x'_alt (x + qx * b.d))
(fun _ ->
();
(int_semiring ()));
lemma_mod_plus x qx b.d | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"FStar.Math.Lemmas.lemma_mod_plus",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.unit",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Steel.ST.GenArraySwap.Proof.int_semiring",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_l",
"Prims.op_Minus",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims._assert",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims.op_Division",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.l_True",
"Prims.squash",
"Prims.op_Modulus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_mod_d (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Lemma (jump n l x % b.d == x % b.d) | [] | Steel.ST.GenArraySwap.Proof.jump_mod_d | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> FStar.Pervasives.Lemma
(ensures Steel.ST.GenArraySwap.Proof.jump n l x % Mkbezout_t?.d b == x % Mkbezout_t?.d b) | {
"end_col": 25,
"end_line": 218,
"start_col": 1,
"start_line": 206
} |
FStar.Pervasives.Lemma | val jump_iter_mod_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (b.q_n > 0 /\ iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n | val jump_iter_mod_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (b.q_n > 0 /\ iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x))
let jump_iter_mod_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (b.q_n > 0 /\ iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x)) = | false | null | true | assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
FStar.Tactics.Effect.assert_by_tactic (eq2 #int
(x + (qk * b.q_n + k') * (b.d * b.q_l))
(x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n)))
(fun _ ->
();
(int_semiring ()));
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
"lemma"
] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_l",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"FStar.Tactics.Effect.assert_by_tactic",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.int_semiring",
"Steel.ST.GenArraySwap.Proof.jump_iter",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims.op_Division",
"Prims.op_Modulus",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_iter_mod_q (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n) (k: nat)
: Lemma (ensures (b.q_n > 0 /\ iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x)) | [] | Steel.ST.GenArraySwap.Proof.jump_iter_mod_q | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n ->
k: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Mkbezout_t?.q_n b > 0 /\
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l)
(k % Mkbezout_t?.q_n b)
x ==
Steel.ST.GenArraySwap.Proof.iter_fun (Steel.ST.GenArraySwap.Proof.jump n l) k x) | {
"end_col": 44,
"end_line": 371,
"start_col": 2,
"start_line": 363
} |
Prims.Ghost | val gauss (n l: pos) (b: bezout n l) (kl kn: int)
: Ghost int (requires (kl * l == kn * n)) (ensures (fun k -> kl == k * b.q_n)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n
))
= assert ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l == b.d * (b.u_n * b.q_n + b.u_l * b.q_l)) by (int_semiring ());
assert (b.d == b.d * 1) by (int_semiring ());
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then begin
lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
assert (kl * 1 == kl) by (int_semiring ());
kl
end else begin
assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
assert (kl * (b.d * b.q_l) == b.d * (kl * b.q_l)) by (int_semiring ());
assert (kn * (b.d * b.q_n) == b.d * (kn * b.q_n)) by (int_semiring ());
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
assert (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l)) by (int_semiring ());
assert (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n) by (int_semiring ());
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
assert (kl * (1 + - (b.u_n * b.q_n)) == kl + - kl * b.u_n * b.q_n) by (int_semiring ());
assert (kl * b.u_n * b.q_n + (kn * b.u_l) * b.q_n == (kn * b.u_l + kl * b.u_n) * b.q_n) by (int_semiring ());
kn * b.u_l + kl * b.u_n
end | val gauss (n l: pos) (b: bezout n l) (kl kn: int)
: Ghost int (requires (kl * l == kn * n)) (ensures (fun k -> kl == k * b.q_n))
let gauss (n l: pos) (b: bezout n l) (kl kn: int)
: Ghost int (requires (kl * l == kn * n)) (ensures (fun k -> kl == k * b.q_n)) = | false | null | false | FStar.Tactics.Effect.assert_by_tactic ((b.d * b.q_n) * b.u_n + (b.d * b.q_l) * b.u_l ==
b.d * (b.u_n * b.q_n + b.u_l * b.q_l))
(fun _ ->
();
(int_semiring ()));
FStar.Tactics.Effect.assert_by_tactic (b.d == b.d * 1)
(fun _ ->
();
(int_semiring ()));
assert (b.d * (b.u_n * b.q_n + b.u_l * b.q_l) == b.d * 1);
lemma_mult_reg_l b.d (b.u_n * b.q_n + b.u_l * b.q_l) 1;
assert (b.u_n * b.q_n + b.u_l * b.q_l == 1);
if b.u_l = 0
then
(lemma_bezout_one_zero b.u_n b.q_n b.u_l b.q_l;
assert (b.q_n == 1);
FStar.Tactics.Effect.assert_by_tactic (kl * 1 == kl)
(fun _ ->
();
(int_semiring ()));
kl)
else
(assert (kl * (b.d * b.q_l) == kn * (b.d * b.q_n));
FStar.Tactics.Effect.assert_by_tactic (kl * (b.d * b.q_l) == b.d * (kl * b.q_l))
(fun _ ->
();
(int_semiring ()));
FStar.Tactics.Effect.assert_by_tactic (kn * (b.d * b.q_n) == b.d * (kn * b.q_n))
(fun _ ->
();
(int_semiring ()));
assert (b.d * (kl * b.q_l) == b.d * (kn * b.q_n));
lemma_mult_reg_l b.d (kl * b.q_l) (kn * b.q_n);
assert (kl * b.q_l == kn * b.q_n);
assert (b.u_l * (kl * b.q_l) == b.u_l * (kn * b.q_n));
FStar.Tactics.Effect.assert_by_tactic (b.u_l * (kl * b.q_l) == kl * (b.u_l * b.q_l))
(fun _ ->
();
(int_semiring ()));
FStar.Tactics.Effect.assert_by_tactic (b.u_l * (kn * b.q_n) == (kn * b.u_l) * b.q_n)
(fun _ ->
();
(int_semiring ()));
assert (kl * (b.u_l * b.q_l) == (kn * b.u_l) * b.q_n);
FStar.Tactics.Effect.assert_by_tactic (kl * (1 + - (b.u_n * b.q_n)) ==
kl + - (kl * b.u_n) * b.q_n)
(fun _ ->
();
(int_semiring ()));
FStar.Tactics.Effect.assert_by_tactic ((kl * b.u_n) * b.q_n + (kn * b.u_l) * b.q_n ==
(kn * b.u_l + kl * b.u_n) * b.q_n)
(fun _ ->
();
(int_semiring ()));
kn * b.u_l + kl * b.u_n) | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [] | [
"Prims.pos",
"Steel.ST.GenArraySwap.Proof.bezout",
"Prims.int",
"Prims.op_Equality",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__u_l",
"Prims.unit",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"FStar.Mul.op_Star",
"Steel.ST.GenArraySwap.Proof.int_semiring",
"Prims._assert",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.lemma_bezout_one_zero",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__u_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_l",
"Prims.bool",
"Prims.op_Addition",
"Prims.op_Minus",
"Steel.ST.GenArraySwap.Proof.lemma_mult_reg_l",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k
[@@"opaque_to_smt"]
irreducible
let rec minimal_exists'
(p: (nat -> GTot bool))
(n: nat)
(i: nat)
: Ghost nat
(requires (
p n == true /\
i <= n /\
(forall (j: nat) . j < i ==> p j == false)
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
(decreases (n - i))
= if p i
then i
else minimal_exists' p n (i + 1)
[@@"opaque_to_smt"]
irreducible
let minimal_exists
(p: (nat -> GTot bool))
(n: nat)
: Ghost nat
(requires (
p n == true
))
(ensures (fun k ->
p k == true /\
(forall (j: nat) . j < k ==> p j == false)
))
= minimal_exists' p n 0
[@@"opaque_to_smt"]
irreducible
let jump_coverage_strong
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) /\
(forall (k': nat) . k' < k ==> (~ (x == iter_fun (jump n l) k' (x % b.d))))
))
= let k' = jump_coverage n l b x in
minimal_exists (fun k -> x = iter_fun (jump n l) k (x % b.d)) k'
#restart-solver
let jump_iter_mod_q
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (
b.q_n > 0 /\
iter_fun (jump n l) (k % b.q_n) x == iter_fun (jump n l) k x
))
= assert (b.q_n > 0);
let k' = k % b.q_n in
let qk = k / b.q_n in
euclidean_division_definition k b.q_n;
jump_iter n l x k';
jump_iter n l x k;
assert (eq2 #int (x + (qk * b.q_n + k') * (b.d * b.q_l)) (x + k' * (b.d * b.q_l) + (qk * b.q_l) * (b.d * b.q_n))) by (int_semiring ());
assert (x + k * l == x + k' * l + (qk * b.q_l) * n);
lemma_mod_plus (x + k' * l) (qk * b.q_l) n
let jump_coverage_strong_bound
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(b.q_n > 0 /\
jump_coverage_strong n l b x < b.q_n
)
[SMTPat (jump_coverage_strong n l b x)]
= let k = jump_coverage_strong n l b x in
jump_iter_mod_q n l b (x % b.d) k
#restart-solver
[@@"opaque_to_smt"]
irreducible
let mod_eq_elim
(n: pos)
(x1 x2: int)
: Ghost int
(requires (x1 % n == x2 % n))
(ensures (fun k -> x1 - x2 == k * n))
= euclidean_division_definition x1 n;
euclidean_division_definition x2 n;
let q1 = x1 / n in
let q2 = x2 / n in
let k = q1 + - q2 in
let r = x1 % n in
assert (q1 * n + r + - (q2 * n + r) == k * n) by (int_semiring ());
k
let mod_eq_intro
(n: pos)
(x1 x2: int)
(k: int)
: Lemma
(requires (x1 - x2 == k * n))
(ensures (x1 % n == x2 % n))
= lemma_mod_plus x2 k n
#restart-solver
[@@"opaque_to_smt"]
irreducible
let gauss
(n: pos)
(l: pos) // necessary here
(b: bezout n l)
(kl kn: int)
: Ghost int
(requires (
kl * l == kn * n
))
(ensures (fun k ->
kl == k * b.q_n | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val gauss (n l: pos) (b: bezout n l) (kl kn: int)
: Ghost int (requires (kl * l == kn * n)) (ensures (fun k -> kl == k * b.q_n)) | [] | Steel.ST.GenArraySwap.Proof.gauss | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.pos ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
kl: Prims.int ->
kn: Prims.int
-> Prims.Ghost Prims.int | {
"end_col": 5,
"end_line": 454,
"start_col": 2,
"start_line": 429
} |
Prims.Ghost | val jump_coverage (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat (requires True) (ensures (fun k -> x == iter_fun (jump n l) k (x % b.d))) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d)
))
=
let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
assert (eq2 #int (qx * (n * b.u_n + l * b.u_l) + i) (i + k1 * l + m * n)) by (int_semiring ());
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
assert (i + (qk * n + k) * l == i + k * l + (qk * l) * n) by (int_semiring ());
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k | val jump_coverage (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat (requires True) (ensures (fun k -> x == iter_fun (jump n l) k (x % b.d)))
let jump_coverage (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat (requires True) (ensures (fun k -> x == iter_fun (jump n l) k (x % b.d))) = | false | null | false | let i = x % b.d in
let qx = x / b.d in
euclidean_division_definition x b.d;
let k1 = qx * b.u_l in
let m = qx * b.u_n in
FStar.Tactics.Effect.assert_by_tactic (eq2 #int
(qx * (n * b.u_n + l * b.u_l) + i)
(i + k1 * l + m * n))
(fun _ ->
();
(int_semiring ()));
assert (x == i + k1 * l + m * n);
small_mod x n;
lemma_mod_plus (i + k1 * l) m n;
assert (x == (i + k1 * l) % n);
let k = k1 % n in
let qk = k1 / n in
euclidean_division_definition k1 n;
FStar.Tactics.Effect.assert_by_tactic (i + (qk * n + k) * l == i + k * l + (qk * l) * n)
(fun _ ->
();
(int_semiring ()));
lemma_mod_plus (i + k * l) (qk * l) n;
assert (eq2 #int x ((i + k * l) % n));
jump_iter n l i k;
k | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [] | [
"Prims.pos",
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Prims.unit",
"Steel.ST.GenArraySwap.Proof.jump_iter",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"FStar.Math.Lemmas.lemma_mod_plus",
"FStar.Tactics.Effect.assert_by_tactic",
"Steel.ST.GenArraySwap.Proof.int_semiring",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims.op_Division",
"FStar.Math.Lemmas.small_mod",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__u_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__u_l",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.l_True",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Steel.ST.GenArraySwap.Proof.jump"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end
let bezout_q_eq
(n: nat)
(l: nat)
(bz: bezout n l)
: Lemma
(bz.q_n == n / bz.d)
[SMTPat (bezout_prop n l bz); SMTPat bz.q_n]
= cancel_mul_div bz.q_n bz.d
let rec iter_fun
(#t: Type)
(f: (t -> GTot t))
(n: nat)
(x: t)
: GTot t
(decreases n)
= if n = 0
then x
else iter_fun f (n - 1) (f x)
let nat_up_to (n: nat) : Tot Type = (i: nat { i < n })
let jump
(n: pos)
(l: nat)
(x: nat_up_to n)
: GTot (nat_up_to n)
= (x + l) % n
#restart-solver
let jump_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Lemma
(jump n l x % b.d == x % b.d)
=
let x' = jump n l x in
let x'q = (x + l) / n in
euclidean_division_definition (x + l) n;
let l_alt = b.d * b.q_l in
assert (l_alt == l);
let n_alt = b.d * b.q_n in
assert (n_alt == n);
let x'_alt = x + l_alt + - x'q * n_alt in
assert (x'_alt == x');
let qx = b.q_l + - x'q * b.q_n in
assert (eq2 #int x'_alt (x + qx * b.d)) by (int_semiring ());
lemma_mod_plus x qx b.d
let rec jump_iter_mod_d
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x % b.d == x % b.d))
(decreases k)
= if k = 0
then ()
else begin
jump_mod_d n l b x;
jump_iter_mod_d n l b (jump n l x) (k - 1)
end
(* Coverage *)
let rec jump_iter
(n: pos)
(l: nat)
(x: nat_up_to n)
(k: nat)
: Lemma
(ensures (iter_fun #(nat_up_to n) (jump n l) k x == (x + k * l) % n))
(decreases k)
= if k = 0
then begin
assert (eq2 #int (x + 0 * l) x) by (int_semiring ());
small_mod x n
end else begin
let k' = k - 1 in
assert (eq2 #int (x + (k' + 1) * l) ((x + l) + k' * l)) by (int_semiring ());
jump_iter n l ((x + l) % n) k';
lemma_mod_add_distr (k' * l) (x + l) n
end
let bezout_pos_le
(n: pos)
(l: nat)
(b: bezout n l)
: Lemma
(b.d <= n /\ b.q_n > 0)
[SMTPat (bezout_prop n l b)]
= lemma_pos_mul_pos_args b.q_n b.d
#restart-solver
[@@"opaque_to_smt"]
irreducible
let jump_coverage
(n: pos)
(l: nat)
(b: bezout n l)
(x: nat_up_to n)
: Ghost nat
(requires True)
(ensures (fun k ->
x == iter_fun (jump n l) k (x % b.d) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val jump_coverage (n: pos) (l: nat) (b: bezout n l) (x: nat_up_to n)
: Ghost nat (requires True) (ensures (fun k -> x == iter_fun (jump n l) k (x % b.d))) | [] | Steel.ST.GenArraySwap.Proof.jump_coverage | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} |
n: Prims.pos ->
l: Prims.nat ->
b: Steel.ST.GenArraySwap.Proof.bezout n l ->
x: Steel.ST.GenArraySwap.Proof.nat_up_to n
-> Prims.Ghost Prims.nat | {
"end_col": 3,
"end_line": 297,
"start_col": 1,
"start_line": 279
} |
Prims.Pure | val mk_bezout (n: pos) (l: nat)
: Pure (bezout n l) (requires (l < n)) (ensures (fun _ -> True)) (decreases l) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.GenArraySwap",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True))
(decreases l)
= if l = 0
then begin
let d : pos = n in
let q_n : nat = 1 in
let q_l : nat = 0 in
let u_n : int = 1 in
let u_l : int = 0 in
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = u_n;
u_l = u_l;
}
in
assert (eq2 #int n (d * q_n)) by (int_semiring ());
assert (eq2 #int 0 (d * q_l)) by (int_semiring ());
assert (eq2 #int d (n * 1 + 0 * res.u_l)) by (int_semiring ());
res
end
else begin
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
assert (eq2 #int n_alt1 (d * q_n)) by (int_semiring ());
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
assert (eq2 #int (n * upre_lpre + l * u_l) d_alt) by (int_semiring ());
let res = {
d = d;
q_n = q_n;
q_l = q_l;
u_n = upre_lpre;
u_l = u_l;
}
in
res
end | val mk_bezout (n: pos) (l: nat)
: Pure (bezout n l) (requires (l < n)) (ensures (fun _ -> True)) (decreases l)
let rec mk_bezout (n: pos) (l: nat)
: Pure (bezout n l) (requires (l < n)) (ensures (fun _ -> True)) (decreases l) = | false | null | false | if l = 0
then
let d:pos = n in
let q_n:nat = 1 in
let q_l:nat = 0 in
let u_n:int = 1 in
let u_l:int = 0 in
let res = { d = d; q_n = q_n; q_l = q_l; u_n = u_n; u_l = u_l } in
FStar.Tactics.Effect.assert_by_tactic (eq2 #int n (d * q_n))
(fun _ ->
();
(int_semiring ()));
FStar.Tactics.Effect.assert_by_tactic (eq2 #int 0 (d * q_l))
(fun _ ->
();
(int_semiring ()));
FStar.Tactics.Effect.assert_by_tactic (eq2 #int d (n * 1 + 0 * res.u_l))
(fun _ ->
();
(int_semiring ()));
res
else
let lpre = n % l in
let ql = n / l in
euclidean_division_definition n l;
let bpre = mk_bezout l lpre in
let d = bpre.d in
let q_l = bpre.q_n in
let qpre_lpre = bpre.q_l in
let upre_l = bpre.u_n in
let upre_lpre = bpre.u_l in
let n_alt0 = l * ql + lpre in
assert (n == n_alt0);
let l_alt = d * q_l in
let lpre_alt1 = d * qpre_lpre in
let n_alt1 = l_alt * ql + lpre_alt1 in
assert (n_alt1 == n);
let q_n = q_l * ql + qpre_lpre in
FStar.Tactics.Effect.assert_by_tactic (eq2 #int n_alt1 (d * q_n))
(fun _ ->
();
(int_semiring ()));
let lpre_alt2 = n + - l * ql in
assert (lpre_alt2 == lpre);
let d_alt = l * upre_l + lpre_alt2 * upre_lpre in
assert (d_alt == d);
let u_l = upre_l + - ql * upre_lpre in
FStar.Tactics.Effect.assert_by_tactic (eq2 #int (n * upre_lpre + l * u_l) d_alt)
(fun _ ->
();
(int_semiring ()));
let res = { d = d; q_n = q_n; q_l = q_l; u_n = upre_lpre; u_l = u_l } in
res | {
"checked_file": "Steel.ST.GenArraySwap.Proof.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.ST.GenArraySwap.Proof.fst"
} | [
""
] | [
"Prims.pos",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.unit",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__u_l",
"Steel.ST.GenArraySwap.Proof.int_semiring",
"Steel.ST.GenArraySwap.Proof.bezout_t",
"Steel.ST.GenArraySwap.Proof.Mkbezout_t",
"Prims.bool",
"Prims.op_Minus",
"Prims._assert",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__u_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_l",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.bezout",
"Steel.ST.GenArraySwap.Proof.mk_bezout",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims.op_Division",
"Prims.op_Modulus",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.l_True"
] | [] | module Steel.ST.GenArraySwap.Proof
open FStar.Math.Lemmas
open FStar.Mul
let lemma_mod_lt
(a:int)
(b:pos)
: Lemma
(let r = a % b in 0 <= r /\ r < b)
[SMTPat (a % b)]
= ()
let lemma_mul_nat_nat_is_nat
(a b: nat)
: Lemma
(a * b >= 0)
[SMTPat (a * b)]
= ()
let lemma_pos_mul_pos_args
(a: nat)
(b: nat)
: Lemma
(requires (a * b > 0))
(ensures (a > 0 /\ b > 0 /\ a <= a * b /\ b <= a * b /\ a * b == b * a))
= ()
let lemma_div_nat
(a: nat)
(b: pos)
: Lemma
(a / b >= 0)
[SMTPat (a / b)]
= ()
let lemma_mult_reg_l
(k: int)
(x1 x2: int)
: Lemma
(requires (
k * x1 == k * x2 /\
k <> 0
))
(ensures (
x1 == x2
))
= ()
let lemma_bezout_one_zero
(x1: int)
(x2: nat)
(y1 y2: int)
: Lemma
(requires (
x1 * x2 + y1 * y2 == 1 /\
y1 == 0
))
(ensures (
x1 == 1 /\ x2 == 1
))
= ()
#set-options "--z3cliopt smt.arith.nl=false"
let int_semiring () =
FStar.Tactics.CanonCommSemiring.int_semiring ();
FStar.Tactics.trefl ();
FStar.Tactics.qed ()
[@@erasable]
noeq
type bezout_t = {
d: pos;
q_n: nat;
q_l: nat;
u_n: int;
u_l: int;
}
let bezout_prop'
(n: nat)
(l: nat)
(d: pos)
(q_n: nat)
(q_l: nat)
(u_n: int)
(u_l: int)
: Tot prop
= n == d * q_n /\
l == d * q_l /\
d == n * u_n + l * u_l
let bezout_prop
(n: nat)
(l: nat)
(b: bezout_t)
: Tot prop
= bezout_prop' n l b.d b.q_n b.q_l b.u_n b.u_l
let bezout
(n: nat)
(l: nat)
: Tot Type
= (b: bezout_t { bezout_prop n l b })
#restart-solver
let rec mk_bezout
(n: pos)
(l: nat)
: Pure (bezout n l)
(requires (l < n))
(ensures (fun _ -> True)) | false | false | Steel.ST.GenArraySwap.Proof.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.arith.nl=false"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mk_bezout (n: pos) (l: nat)
: Pure (bezout n l) (requires (l < n)) (ensures (fun _ -> True)) (decreases l) | [
"recursion"
] | Steel.ST.GenArraySwap.Proof.mk_bezout | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.Proof.fst",
"git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | n: Prims.pos -> l: Prims.nat -> Prims.Pure (Steel.ST.GenArraySwap.Proof.bezout n l) | {
"end_col": 5,
"end_line": 167,
"start_col": 2,
"start_line": 114
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let p = Vale.X64.CPU_Features_s.(adx_enabled /\ bmi2_enabled) | let p = | false | null | false | let open Vale.X64.CPU_Features_s in adx_enabled /\ bmi2_enabled | {
"checked_file": "Hacl.Curve25519_64.fsti.checked",
"dependencies": [
"Vale.X64.CPU_Features_s.fst.checked",
"prims.fst.checked",
"Hacl.Impl.Curve25519.Generic.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Curve25519_64.fsti"
} | [
"total"
] | [
"Prims.l_and",
"Prims.b2t",
"Vale.X64.CPU_Features_s.adx_enabled",
"Vale.X64.CPU_Features_s.bmi2_enabled"
] | [] | module Hacl.Curve25519_64
open Hacl.Impl.Curve25519.Generic
open Hacl.Impl.Curve25519.Fields | false | true | Hacl.Curve25519_64.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val p : Prims.logical | [] | Hacl.Curve25519_64.p | {
"file_name": "code/curve25519/Hacl.Curve25519_64.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Prims.logical | {
"end_col": 60,
"end_line": 7,
"start_col": 33,
"start_line": 7
} |
|
FStar.HyperStack.ST.Stack | val verify:
public_key:lbuffer uint8 32ul
-> msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> signature:lbuffer uint8 64ul ->
Stack bool
(requires fun h -> live h public_key /\ live h msg /\ live h signature)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
b == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature)) | [
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let verify public_key msg_len msg signature =
Hacl.Impl.Ed25519.Verify.verify public_key msg_len msg signature | val verify:
public_key:lbuffer uint8 32ul
-> msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> signature:lbuffer uint8 64ul ->
Stack bool
(requires fun h -> live h public_key /\ live h msg /\ live h signature)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
b == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature))
let verify public_key msg_len msg signature = | true | null | false | Hacl.Impl.Ed25519.Verify.verify public_key msg_len msg signature | {
"checked_file": "Hacl.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Ed25519.Verify.fst.checked",
"Hacl.Impl.Ed25519.Sign.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Ed25519.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.size_t",
"Hacl.Impl.Ed25519.Verify.verify",
"Prims.bool"
] | [] | module Hacl.Ed25519
module ST = FStar.HyperStack.ST
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module S = Spec.Ed25519
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val secret_expand: expanded:lbuffer uint8 64ul -> secret:lbuffer uint8 32ul -> Stack unit
(requires fun h -> live h expanded /\ live h secret /\ disjoint expanded secret)
(ensures fun h0 _ h1 -> modifies (loc expanded) h0 h1 /\
(let a, prefix = S.secret_expand (as_seq h0 secret) in
as_seq h1 (gsub expanded 0ul 32ul) == a /\
as_seq h1 (gsub expanded 32ul 32ul) == prefix))
[@CInline]
let secret_expand expanded secret =
assert_norm (pow2 32 <= pow2 125 - 1);
Hacl.Streaming.SHA2.hash_512 secret 32ul expanded;
let h_low = sub expanded 0ul 32ul in
let h_low0 = h_low.( 0ul) in
let h_low31 = h_low.(31ul) in
h_low.( 0ul) <- h_low0 &. u8 0xf8;
h_low.(31ul) <- (h_low31 &. u8 127) |. u8 64
let secret_to_public public_key private_key =
push_frame ();
let expanded_secret = create 64ul (u8 0) in
secret_expand expanded_secret private_key;
let a = sub expanded_secret 0ul 32ul in
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key a;
pop_frame ()
let expand_keys expanded_keys private_key =
let public_key = sub expanded_keys 0ul 32ul in
let s_prefix = sub expanded_keys 32ul 64ul in
let s = sub expanded_keys 32ul 32ul in
secret_expand s_prefix private_key;
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key s
let sign_expanded signature expanded_keys msg_len msg =
Hacl.Impl.Ed25519.Sign.sign_expanded signature expanded_keys msg_len msg
let sign signature private_key msg_len msg =
push_frame ();
let expanded_keys = create 96ul (u8 0) in
expand_keys expanded_keys private_key;
sign_expanded signature expanded_keys msg_len msg;
pop_frame () | false | false | Hacl.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val verify:
public_key:lbuffer uint8 32ul
-> msg_len:size_t
-> msg:lbuffer uint8 msg_len
-> signature:lbuffer uint8 64ul ->
Stack bool
(requires fun h -> live h public_key /\ live h msg /\ live h signature)
(ensures fun h0 b h1 -> modifies0 h0 h1 /\
b == Spec.Ed25519.verify (as_seq h0 public_key) (as_seq h0 msg) (as_seq h0 signature)) | [] | Hacl.Ed25519.verify | {
"file_name": "code/ed25519/Hacl.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
public_key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
msg_len: Lib.IntTypes.size_t ->
msg: Lib.Buffer.lbuffer Lib.IntTypes.uint8 msg_len ->
signature: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul
-> FStar.HyperStack.ST.Stack Prims.bool | {
"end_col": 66,
"end_line": 62,
"start_col": 2,
"start_line": 62
} |
FStar.HyperStack.ST.Stack | val sign_expanded:
signature:lbuffer uint8 64ul
-> expanded_keys:lbuffer uint8 96ul
-> msg_len:size_t
-> msg:lbuffer uint8 msg_len ->
Stack unit
(requires fun h ->
live h signature /\ live h msg /\ live h expanded_keys /\
disjoint signature msg /\ disjoint signature expanded_keys)
(ensures fun h0 _ h1 -> modifies (loc signature) h0 h1 /\
as_seq h1 signature == Spec.Ed25519.sign_expanded
(as_seq h0 (gsub expanded_keys 0ul 32ul))
(as_seq h0 (gsub expanded_keys 32ul 32ul))
(as_seq h0 (gsub expanded_keys 64ul 32ul))
(as_seq h0 msg)) | [
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sign_expanded signature expanded_keys msg_len msg =
Hacl.Impl.Ed25519.Sign.sign_expanded signature expanded_keys msg_len msg | val sign_expanded:
signature:lbuffer uint8 64ul
-> expanded_keys:lbuffer uint8 96ul
-> msg_len:size_t
-> msg:lbuffer uint8 msg_len ->
Stack unit
(requires fun h ->
live h signature /\ live h msg /\ live h expanded_keys /\
disjoint signature msg /\ disjoint signature expanded_keys)
(ensures fun h0 _ h1 -> modifies (loc signature) h0 h1 /\
as_seq h1 signature == Spec.Ed25519.sign_expanded
(as_seq h0 (gsub expanded_keys 0ul 32ul))
(as_seq h0 (gsub expanded_keys 32ul 32ul))
(as_seq h0 (gsub expanded_keys 64ul 32ul))
(as_seq h0 msg))
let sign_expanded signature expanded_keys msg_len msg = | true | null | false | Hacl.Impl.Ed25519.Sign.sign_expanded signature expanded_keys msg_len msg | {
"checked_file": "Hacl.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Ed25519.Verify.fst.checked",
"Hacl.Impl.Ed25519.Sign.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Ed25519.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.size_t",
"Hacl.Impl.Ed25519.Sign.sign_expanded",
"Prims.unit"
] | [] | module Hacl.Ed25519
module ST = FStar.HyperStack.ST
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module S = Spec.Ed25519
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val secret_expand: expanded:lbuffer uint8 64ul -> secret:lbuffer uint8 32ul -> Stack unit
(requires fun h -> live h expanded /\ live h secret /\ disjoint expanded secret)
(ensures fun h0 _ h1 -> modifies (loc expanded) h0 h1 /\
(let a, prefix = S.secret_expand (as_seq h0 secret) in
as_seq h1 (gsub expanded 0ul 32ul) == a /\
as_seq h1 (gsub expanded 32ul 32ul) == prefix))
[@CInline]
let secret_expand expanded secret =
assert_norm (pow2 32 <= pow2 125 - 1);
Hacl.Streaming.SHA2.hash_512 secret 32ul expanded;
let h_low = sub expanded 0ul 32ul in
let h_low0 = h_low.( 0ul) in
let h_low31 = h_low.(31ul) in
h_low.( 0ul) <- h_low0 &. u8 0xf8;
h_low.(31ul) <- (h_low31 &. u8 127) |. u8 64
let secret_to_public public_key private_key =
push_frame ();
let expanded_secret = create 64ul (u8 0) in
secret_expand expanded_secret private_key;
let a = sub expanded_secret 0ul 32ul in
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key a;
pop_frame ()
let expand_keys expanded_keys private_key =
let public_key = sub expanded_keys 0ul 32ul in
let s_prefix = sub expanded_keys 32ul 64ul in
let s = sub expanded_keys 32ul 32ul in
secret_expand s_prefix private_key;
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key s | false | false | Hacl.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sign_expanded:
signature:lbuffer uint8 64ul
-> expanded_keys:lbuffer uint8 96ul
-> msg_len:size_t
-> msg:lbuffer uint8 msg_len ->
Stack unit
(requires fun h ->
live h signature /\ live h msg /\ live h expanded_keys /\
disjoint signature msg /\ disjoint signature expanded_keys)
(ensures fun h0 _ h1 -> modifies (loc signature) h0 h1 /\
as_seq h1 signature == Spec.Ed25519.sign_expanded
(as_seq h0 (gsub expanded_keys 0ul 32ul))
(as_seq h0 (gsub expanded_keys 32ul 32ul))
(as_seq h0 (gsub expanded_keys 64ul 32ul))
(as_seq h0 msg)) | [] | Hacl.Ed25519.sign_expanded | {
"file_name": "code/ed25519/Hacl.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
signature: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul ->
expanded_keys: Lib.Buffer.lbuffer Lib.IntTypes.uint8 96ul ->
msg_len: Lib.IntTypes.size_t ->
msg: Lib.Buffer.lbuffer Lib.IntTypes.uint8 msg_len
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 74,
"end_line": 50,
"start_col": 2,
"start_line": 50
} |
FStar.HyperStack.ST.Stack | val secret_to_public:
public_key:lbuffer uint8 32ul
-> private_key:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h public_key /\ live h private_key /\ disjoint public_key private_key)
(ensures fun h0 _ h1 -> modifies (loc public_key) h0 h1 /\
as_seq h1 public_key == Spec.Ed25519.secret_to_public (as_seq h0 private_key)) | [
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let secret_to_public public_key private_key =
push_frame ();
let expanded_secret = create 64ul (u8 0) in
secret_expand expanded_secret private_key;
let a = sub expanded_secret 0ul 32ul in
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key a;
pop_frame () | val secret_to_public:
public_key:lbuffer uint8 32ul
-> private_key:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h public_key /\ live h private_key /\ disjoint public_key private_key)
(ensures fun h0 _ h1 -> modifies (loc public_key) h0 h1 /\
as_seq h1 public_key == Spec.Ed25519.secret_to_public (as_seq h0 private_key))
let secret_to_public public_key private_key = | true | null | false | push_frame ();
let expanded_secret = create 64ul (u8 0) in
secret_expand expanded_secret private_key;
let a = sub expanded_secret 0ul 32ul in
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key a;
pop_frame () | {
"checked_file": "Hacl.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Ed25519.Verify.fst.checked",
"Hacl.Impl.Ed25519.Sign.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Ed25519.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.Ed25519.Sign.point_mul_g_compress",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.sub",
"Hacl.Ed25519.secret_expand",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Ed25519
module ST = FStar.HyperStack.ST
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module S = Spec.Ed25519
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val secret_expand: expanded:lbuffer uint8 64ul -> secret:lbuffer uint8 32ul -> Stack unit
(requires fun h -> live h expanded /\ live h secret /\ disjoint expanded secret)
(ensures fun h0 _ h1 -> modifies (loc expanded) h0 h1 /\
(let a, prefix = S.secret_expand (as_seq h0 secret) in
as_seq h1 (gsub expanded 0ul 32ul) == a /\
as_seq h1 (gsub expanded 32ul 32ul) == prefix))
[@CInline]
let secret_expand expanded secret =
assert_norm (pow2 32 <= pow2 125 - 1);
Hacl.Streaming.SHA2.hash_512 secret 32ul expanded;
let h_low = sub expanded 0ul 32ul in
let h_low0 = h_low.( 0ul) in
let h_low31 = h_low.(31ul) in
h_low.( 0ul) <- h_low0 &. u8 0xf8;
h_low.(31ul) <- (h_low31 &. u8 127) |. u8 64 | false | false | Hacl.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val secret_to_public:
public_key:lbuffer uint8 32ul
-> private_key:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h public_key /\ live h private_key /\ disjoint public_key private_key)
(ensures fun h0 _ h1 -> modifies (loc public_key) h0 h1 /\
as_seq h1 public_key == Spec.Ed25519.secret_to_public (as_seq h0 private_key)) | [] | Hacl.Ed25519.secret_to_public | {
"file_name": "code/ed25519/Hacl.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
public_key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
private_key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 38,
"start_col": 2,
"start_line": 33
} |
FStar.HyperStack.ST.Stack | val secret_expand: expanded:lbuffer uint8 64ul -> secret:lbuffer uint8 32ul -> Stack unit
(requires fun h -> live h expanded /\ live h secret /\ disjoint expanded secret)
(ensures fun h0 _ h1 -> modifies (loc expanded) h0 h1 /\
(let a, prefix = S.secret_expand (as_seq h0 secret) in
as_seq h1 (gsub expanded 0ul 32ul) == a /\
as_seq h1 (gsub expanded 32ul 32ul) == prefix)) | [
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let secret_expand expanded secret =
assert_norm (pow2 32 <= pow2 125 - 1);
Hacl.Streaming.SHA2.hash_512 secret 32ul expanded;
let h_low = sub expanded 0ul 32ul in
let h_low0 = h_low.( 0ul) in
let h_low31 = h_low.(31ul) in
h_low.( 0ul) <- h_low0 &. u8 0xf8;
h_low.(31ul) <- (h_low31 &. u8 127) |. u8 64 | val secret_expand: expanded:lbuffer uint8 64ul -> secret:lbuffer uint8 32ul -> Stack unit
(requires fun h -> live h expanded /\ live h secret /\ disjoint expanded secret)
(ensures fun h0 _ h1 -> modifies (loc expanded) h0 h1 /\
(let a, prefix = S.secret_expand (as_seq h0 secret) in
as_seq h1 (gsub expanded 0ul 32ul) == a /\
as_seq h1 (gsub expanded 32ul 32ul) == prefix))
let secret_expand expanded secret = | true | null | false | assert_norm (pow2 32 <= pow2 125 - 1);
Hacl.Streaming.SHA2.hash_512 secret 32ul expanded;
let h_low = sub expanded 0ul 32ul in
let h_low0 = h_low.(0ul) in
let h_low31 = h_low.(31ul) in
h_low.(0ul) <- h_low0 &. u8 0xf8;
h_low.(31ul) <- (h_low31 &. u8 127) |. u8 64 | {
"checked_file": "Hacl.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Ed25519.Verify.fst.checked",
"Hacl.Impl.Ed25519.Sign.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Ed25519.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.op_Array_Assignment",
"Lib.IntTypes.op_Bar_Dot",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.u8",
"Prims.unit",
"Lib.IntTypes.int_t",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"Lib.Buffer.lbuffer_t",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.sub",
"Hacl.Streaming.SHA2.hash_512",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.pow2",
"Prims.op_Subtraction"
] | [] | module Hacl.Ed25519
module ST = FStar.HyperStack.ST
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module S = Spec.Ed25519
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val secret_expand: expanded:lbuffer uint8 64ul -> secret:lbuffer uint8 32ul -> Stack unit
(requires fun h -> live h expanded /\ live h secret /\ disjoint expanded secret)
(ensures fun h0 _ h1 -> modifies (loc expanded) h0 h1 /\
(let a, prefix = S.secret_expand (as_seq h0 secret) in
as_seq h1 (gsub expanded 0ul 32ul) == a /\
as_seq h1 (gsub expanded 32ul 32ul) == prefix))
[@CInline] | false | false | Hacl.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val secret_expand: expanded:lbuffer uint8 64ul -> secret:lbuffer uint8 32ul -> Stack unit
(requires fun h -> live h expanded /\ live h secret /\ disjoint expanded secret)
(ensures fun h0 _ h1 -> modifies (loc expanded) h0 h1 /\
(let a, prefix = S.secret_expand (as_seq h0 secret) in
as_seq h1 (gsub expanded 0ul 32ul) == a /\
as_seq h1 (gsub expanded 32ul 32ul) == prefix)) | [] | Hacl.Ed25519.secret_expand | {
"file_name": "code/ed25519/Hacl.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
expanded: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul ->
secret: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 46,
"end_line": 29,
"start_col": 2,
"start_line": 23
} |
FStar.HyperStack.ST.Stack | val expand_keys:
expanded_keys:lbuffer uint8 96ul
-> private_key:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h expanded_keys /\ live h private_key /\ disjoint expanded_keys private_key)
(ensures fun h0 _ h1 -> modifies (loc expanded_keys) h0 h1 /\
(let public_key, s, prefix = Spec.Ed25519.expand_keys (as_seq h0 private_key) in
as_seq h1 (gsub expanded_keys 0ul 32ul) == public_key /\
as_seq h1 (gsub expanded_keys 32ul 32ul) == s /\
as_seq h1 (gsub expanded_keys 64ul 32ul) == prefix)) | [
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let expand_keys expanded_keys private_key =
let public_key = sub expanded_keys 0ul 32ul in
let s_prefix = sub expanded_keys 32ul 64ul in
let s = sub expanded_keys 32ul 32ul in
secret_expand s_prefix private_key;
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key s | val expand_keys:
expanded_keys:lbuffer uint8 96ul
-> private_key:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h expanded_keys /\ live h private_key /\ disjoint expanded_keys private_key)
(ensures fun h0 _ h1 -> modifies (loc expanded_keys) h0 h1 /\
(let public_key, s, prefix = Spec.Ed25519.expand_keys (as_seq h0 private_key) in
as_seq h1 (gsub expanded_keys 0ul 32ul) == public_key /\
as_seq h1 (gsub expanded_keys 32ul 32ul) == s /\
as_seq h1 (gsub expanded_keys 64ul 32ul) == prefix))
let expand_keys expanded_keys private_key = | true | null | false | let public_key = sub expanded_keys 0ul 32ul in
let s_prefix = sub expanded_keys 32ul 64ul in
let s = sub expanded_keys 32ul 32ul in
secret_expand s_prefix private_key;
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key s | {
"checked_file": "Hacl.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Ed25519.Verify.fst.checked",
"Hacl.Impl.Ed25519.Sign.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Ed25519.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Ed25519.Sign.point_mul_g_compress",
"Prims.unit",
"Hacl.Ed25519.secret_expand",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.sub"
] | [] | module Hacl.Ed25519
module ST = FStar.HyperStack.ST
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module S = Spec.Ed25519
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val secret_expand: expanded:lbuffer uint8 64ul -> secret:lbuffer uint8 32ul -> Stack unit
(requires fun h -> live h expanded /\ live h secret /\ disjoint expanded secret)
(ensures fun h0 _ h1 -> modifies (loc expanded) h0 h1 /\
(let a, prefix = S.secret_expand (as_seq h0 secret) in
as_seq h1 (gsub expanded 0ul 32ul) == a /\
as_seq h1 (gsub expanded 32ul 32ul) == prefix))
[@CInline]
let secret_expand expanded secret =
assert_norm (pow2 32 <= pow2 125 - 1);
Hacl.Streaming.SHA2.hash_512 secret 32ul expanded;
let h_low = sub expanded 0ul 32ul in
let h_low0 = h_low.( 0ul) in
let h_low31 = h_low.(31ul) in
h_low.( 0ul) <- h_low0 &. u8 0xf8;
h_low.(31ul) <- (h_low31 &. u8 127) |. u8 64
let secret_to_public public_key private_key =
push_frame ();
let expanded_secret = create 64ul (u8 0) in
secret_expand expanded_secret private_key;
let a = sub expanded_secret 0ul 32ul in
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key a;
pop_frame () | false | false | Hacl.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val expand_keys:
expanded_keys:lbuffer uint8 96ul
-> private_key:lbuffer uint8 32ul ->
Stack unit
(requires fun h ->
live h expanded_keys /\ live h private_key /\ disjoint expanded_keys private_key)
(ensures fun h0 _ h1 -> modifies (loc expanded_keys) h0 h1 /\
(let public_key, s, prefix = Spec.Ed25519.expand_keys (as_seq h0 private_key) in
as_seq h1 (gsub expanded_keys 0ul 32ul) == public_key /\
as_seq h1 (gsub expanded_keys 32ul 32ul) == s /\
as_seq h1 (gsub expanded_keys 64ul 32ul) == prefix)) | [] | Hacl.Ed25519.expand_keys | {
"file_name": "code/ed25519/Hacl.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
expanded_keys: Lib.Buffer.lbuffer Lib.IntTypes.uint8 96ul ->
private_key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 58,
"end_line": 46,
"start_col": 43,
"start_line": 41
} |
FStar.HyperStack.ST.Stack | val sign:
signature:lbuffer uint8 64ul
-> private_key:lbuffer uint8 32ul
-> msg_len:size_t
-> msg:lbuffer uint8 msg_len ->
Stack unit
(requires fun h ->
live h signature /\ live h msg /\ live h private_key /\
disjoint signature msg /\ disjoint signature private_key)
(ensures fun h0 _ h1 -> modifies (loc signature) h0 h1 /\
as_seq h1 signature == Spec.Ed25519.sign (as_seq h0 private_key) (as_seq h0 msg)) | [
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sign signature private_key msg_len msg =
push_frame ();
let expanded_keys = create 96ul (u8 0) in
expand_keys expanded_keys private_key;
sign_expanded signature expanded_keys msg_len msg;
pop_frame () | val sign:
signature:lbuffer uint8 64ul
-> private_key:lbuffer uint8 32ul
-> msg_len:size_t
-> msg:lbuffer uint8 msg_len ->
Stack unit
(requires fun h ->
live h signature /\ live h msg /\ live h private_key /\
disjoint signature msg /\ disjoint signature private_key)
(ensures fun h0 _ h1 -> modifies (loc signature) h0 h1 /\
as_seq h1 signature == Spec.Ed25519.sign (as_seq h0 private_key) (as_seq h0 msg))
let sign signature private_key msg_len msg = | true | null | false | push_frame ();
let expanded_keys = create 96ul (u8 0) in
expand_keys expanded_keys private_key;
sign_expanded signature expanded_keys msg_len msg;
pop_frame () | {
"checked_file": "Hacl.Ed25519.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Streaming.SHA2.fst.checked",
"Hacl.Impl.Ed25519.Verify.fst.checked",
"Hacl.Impl.Ed25519.Sign.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Ed25519.fst"
} | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.size_t",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Ed25519.sign_expanded",
"Hacl.Ed25519.expand_keys",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.u8",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Ed25519
module ST = FStar.HyperStack.ST
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module S = Spec.Ed25519
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
val secret_expand: expanded:lbuffer uint8 64ul -> secret:lbuffer uint8 32ul -> Stack unit
(requires fun h -> live h expanded /\ live h secret /\ disjoint expanded secret)
(ensures fun h0 _ h1 -> modifies (loc expanded) h0 h1 /\
(let a, prefix = S.secret_expand (as_seq h0 secret) in
as_seq h1 (gsub expanded 0ul 32ul) == a /\
as_seq h1 (gsub expanded 32ul 32ul) == prefix))
[@CInline]
let secret_expand expanded secret =
assert_norm (pow2 32 <= pow2 125 - 1);
Hacl.Streaming.SHA2.hash_512 secret 32ul expanded;
let h_low = sub expanded 0ul 32ul in
let h_low0 = h_low.( 0ul) in
let h_low31 = h_low.(31ul) in
h_low.( 0ul) <- h_low0 &. u8 0xf8;
h_low.(31ul) <- (h_low31 &. u8 127) |. u8 64
let secret_to_public public_key private_key =
push_frame ();
let expanded_secret = create 64ul (u8 0) in
secret_expand expanded_secret private_key;
let a = sub expanded_secret 0ul 32ul in
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key a;
pop_frame ()
let expand_keys expanded_keys private_key =
let public_key = sub expanded_keys 0ul 32ul in
let s_prefix = sub expanded_keys 32ul 64ul in
let s = sub expanded_keys 32ul 32ul in
secret_expand s_prefix private_key;
Hacl.Impl.Ed25519.Sign.point_mul_g_compress public_key s
let sign_expanded signature expanded_keys msg_len msg =
Hacl.Impl.Ed25519.Sign.sign_expanded signature expanded_keys msg_len msg | false | false | Hacl.Ed25519.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sign:
signature:lbuffer uint8 64ul
-> private_key:lbuffer uint8 32ul
-> msg_len:size_t
-> msg:lbuffer uint8 msg_len ->
Stack unit
(requires fun h ->
live h signature /\ live h msg /\ live h private_key /\
disjoint signature msg /\ disjoint signature private_key)
(ensures fun h0 _ h1 -> modifies (loc signature) h0 h1 /\
as_seq h1 signature == Spec.Ed25519.sign (as_seq h0 private_key) (as_seq h0 msg)) | [] | Hacl.Ed25519.sign | {
"file_name": "code/ed25519/Hacl.Ed25519.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
signature: Lib.Buffer.lbuffer Lib.IntTypes.uint8 64ul ->
private_key: Lib.Buffer.lbuffer Lib.IntTypes.uint8 32ul ->
msg_len: Lib.IntTypes.size_t ->
msg: Lib.Buffer.lbuffer Lib.IntTypes.uint8 msg_len
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 14,
"end_line": 58,
"start_col": 2,
"start_line": 54
} |
Prims.Tot | val sel: #key:eqtype -> #value:Type -> t key value -> key -> Tot value | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sel #key #value m k = m.mappings k | val sel: #key:eqtype -> #value:Type -> t key value -> key -> Tot value
let sel #key #value m k = | false | null | false | m.mappings k | {
"checked_file": "FStar.Map.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Map.__proj__Mkt__item__mappings"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
} | false | false | FStar.Map.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sel: #key:eqtype -> #value:Type -> t key value -> key -> Tot value | [] | FStar.Map.sel | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: FStar.Map.t key value -> k: key -> value | {
"end_col": 38,
"end_line": 38,
"start_col": 26,
"start_line": 38
} |
Prims.Tot | val map_literal (#k:eqtype) (#v:Type) (f: k -> Tot v)
: t k v | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_literal #k #v f = {
mappings = F.on k f;
domain = complement empty;
} | val map_literal (#k:eqtype) (#v:Type) (f: k -> Tot v)
: t k v
let map_literal #k #v f = | false | null | false | { mappings = F.on k f; domain = complement empty } | {
"checked_file": "FStar.Map.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Map.Mkt",
"FStar.FunctionalExtensionality.on",
"FStar.Set.complement",
"FStar.Set.empty",
"FStar.Map.t"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain
let contains #key #value m k = mem k m.domain
(* Again, use F.on to build a domain-restricted function *)
let concat #key #value m1 m2 = {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
}
let map_val #_ #_ f #key m = {
mappings = F.on key (fun x -> f (m.mappings x));
domain = m.domain
}
let restrict #key #value s m = {
mappings = m.mappings;
domain = intersect s m.domain
} | false | false | FStar.Map.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_literal (#k:eqtype) (#v:Type) (f: k -> Tot v)
: t k v | [] | FStar.Map.map_literal | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: k -> v) -> FStar.Map.t k v | {
"end_col": 28,
"end_line": 76,
"start_col": 2,
"start_line": 75
} |
Prims.Tot | val contains: #key:eqtype -> #value:Type -> t key value -> key -> Tot bool | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let contains #key #value m k = mem k m.domain | val contains: #key:eqtype -> #value:Type -> t key value -> key -> Tot bool
let contains #key #value m k = | false | null | false | mem k m.domain | {
"checked_file": "FStar.Map.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Set.mem",
"FStar.Map.__proj__Mkt__item__domain",
"Prims.bool"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain | false | false | FStar.Map.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val contains: #key:eqtype -> #value:Type -> t key value -> key -> Tot bool | [] | FStar.Map.contains | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: FStar.Map.t key value -> k: key -> Prims.bool | {
"end_col": 45,
"end_line": 56,
"start_col": 31,
"start_line": 56
} |
Prims.Tot | val concat: #key:eqtype -> #value:Type -> t key value -> t key value -> Tot (t key value) | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let concat #key #value m1 m2 = {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
} | val concat: #key:eqtype -> #value:Type -> t key value -> t key value -> Tot (t key value)
let concat #key #value m1 m2 = | false | null | false | {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
} | {
"checked_file": "FStar.Map.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Map.Mkt",
"FStar.FunctionalExtensionality.on",
"FStar.Set.mem",
"FStar.Map.__proj__Mkt__item__domain",
"FStar.Map.__proj__Mkt__item__mappings",
"Prims.bool",
"FStar.Set.union"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain
let contains #key #value m k = mem k m.domain
(* Again, use F.on to build a domain-restricted function *) | false | false | FStar.Map.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val concat: #key:eqtype -> #value:Type -> t key value -> t key value -> Tot (t key value) | [] | FStar.Map.concat | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m1: FStar.Map.t key value -> m2: FStar.Map.t key value -> FStar.Map.t key value | {
"end_col": 38,
"end_line": 61,
"start_col": 2,
"start_line": 60
} |
Prims.Tot | val const: #key:eqtype -> #value:Type -> value -> Tot (t key value) | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
} | val const: #key:eqtype -> #value:Type -> value -> Tot (t key value)
let const #key #value v = | false | null | false | { mappings = F.on key (fun _ -> v); domain = complement empty } | {
"checked_file": "FStar.Map.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Map.Mkt",
"FStar.FunctionalExtensionality.on",
"FStar.Set.complement",
"FStar.Set.empty",
"FStar.Map.t"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *) | false | false | FStar.Map.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val const: #key:eqtype -> #value:Type -> value -> Tot (t key value) | [] | FStar.Map.const | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | v: value -> FStar.Map.t key value | {
"end_col": 29,
"end_line": 51,
"start_col": 2,
"start_line": 50
} |
Prims.Tot | val map_val: #val1:Type -> #val2:Type -> f:(val1 -> val2) -> #key:eqtype -> t key val1 -> Tot (t key val2) | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let map_val #_ #_ f #key m = {
mappings = F.on key (fun x -> f (m.mappings x));
domain = m.domain
} | val map_val: #val1:Type -> #val2:Type -> f:(val1 -> val2) -> #key:eqtype -> t key val1 -> Tot (t key val2)
let map_val #_ #_ f #key m = | false | null | false | { mappings = F.on key (fun x -> f (m.mappings x)); domain = m.domain } | {
"checked_file": "FStar.Map.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Map.Mkt",
"FStar.FunctionalExtensionality.on",
"FStar.Map.__proj__Mkt__item__mappings",
"FStar.Map.__proj__Mkt__item__domain"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain
let contains #key #value m k = mem k m.domain
(* Again, use F.on to build a domain-restricted function *)
let concat #key #value m1 m2 = {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
} | false | false | FStar.Map.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val map_val: #val1:Type -> #val2:Type -> f:(val1 -> val2) -> #key:eqtype -> t key val1 -> Tot (t key val2) | [] | FStar.Map.map_val | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: val1 -> val2) -> m: FStar.Map.t key val1 -> FStar.Map.t key val2 | {
"end_col": 21,
"end_line": 66,
"start_col": 2,
"start_line": 65
} |
Prims.Tot | val restrict: #key:eqtype -> #value:Type -> S.set key -> t key value -> Tot (t key value) | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let restrict #key #value s m = {
mappings = m.mappings;
domain = intersect s m.domain
} | val restrict: #key:eqtype -> #value:Type -> S.set key -> t key value -> Tot (t key value)
let restrict #key #value s m = | false | null | false | { mappings = m.mappings; domain = intersect s m.domain } | {
"checked_file": "FStar.Map.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Set.set",
"FStar.Map.t",
"FStar.Map.Mkt",
"FStar.Map.__proj__Mkt__item__mappings",
"FStar.Set.intersect",
"FStar.Map.__proj__Mkt__item__domain"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain
let contains #key #value m k = mem k m.domain
(* Again, use F.on to build a domain-restricted function *)
let concat #key #value m1 m2 = {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
}
let map_val #_ #_ f #key m = {
mappings = F.on key (fun x -> f (m.mappings x));
domain = m.domain
} | false | false | FStar.Map.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val restrict: #key:eqtype -> #value:Type -> S.set key -> t key value -> Tot (t key value) | [] | FStar.Map.restrict | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | s: FStar.Set.set key -> m: FStar.Map.t key value -> FStar.Map.t key value | {
"end_col": 33,
"end_line": 71,
"start_col": 2,
"start_line": 70
} |
Prims.Tot | val domain: #key:eqtype -> #value:Type -> t key value -> Tot (S.set key) | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let domain #key #value m = m.domain | val domain: #key:eqtype -> #value:Type -> t key value -> Tot (S.set key)
let domain #key #value m = | false | null | false | m.domain | {
"checked_file": "FStar.Map.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Map.__proj__Mkt__item__domain",
"FStar.Set.set"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
} | false | false | FStar.Map.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val domain: #key:eqtype -> #value:Type -> t key value -> Tot (S.set key) | [] | FStar.Map.domain | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: FStar.Map.t key value -> FStar.Set.set key | {
"end_col": 35,
"end_line": 54,
"start_col": 27,
"start_line": 54
} |
Prims.Tot | val upd: #key:eqtype -> #value:Type -> t key value -> key -> value -> Tot (t key value) | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
} | val upd: #key:eqtype -> #value:Type -> t key value -> key -> value -> Tot (t key value)
let upd #key #value m k v = | false | null | false | {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
} | {
"checked_file": "FStar.Map.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Map.t",
"FStar.Map.Mkt",
"FStar.FunctionalExtensionality.on",
"Prims.op_Equality",
"Prims.bool",
"FStar.Map.__proj__Mkt__item__mappings",
"FStar.Set.union",
"FStar.Map.__proj__Mkt__item__domain",
"FStar.Set.singleton"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *) | false | false | FStar.Map.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val upd: #key:eqtype -> #value:Type -> t key value -> key -> value -> Tot (t key value) | [] | FStar.Map.upd | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m: FStar.Map.t key value -> k: key -> v: value -> FStar.Map.t key value | {
"end_col": 43,
"end_line": 45,
"start_col": 2,
"start_line": 44
} |
Prims.Tot | val equal (#key:eqtype) (#value:Type) (m1:t key value) (m2:t key value) : prop | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.FunctionalExtensionality",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Set",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let equal (#key:eqtype) (#value:Type) (m1:t key value) (m2:t key value) : Type0 =
F.feq m1.mappings m2.mappings /\
S.equal m1.domain m2.domain | val equal (#key:eqtype) (#value:Type) (m1:t key value) (m2:t key value) : prop
let equal (#key: eqtype) (#value: Type) (m1 m2: t key value) : Type0 = | false | null | false | F.feq m1.mappings m2.mappings /\ S.equal m1.domain m2.domain | {
"checked_file": "FStar.Map.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.FunctionalExtensionality.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.Map.fst"
} | [
"total"
] | [
"Prims.eqtype",
"FStar.Map.t",
"Prims.l_and",
"FStar.FunctionalExtensionality.feq",
"FStar.Map.__proj__Mkt__item__mappings",
"FStar.Set.equal",
"FStar.Map.__proj__Mkt__item__domain",
"Prims.prop"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
(**
* Implementation of partial maps with extensional equality
*)
module FStar.Map
open FStar.Set
open FStar.FunctionalExtensionality
module S = FStar.Set
module F = FStar.FunctionalExtensionality
(* The main "trick" in the representation of the type `t`
* is to use a domain-restricted function type `key ^-> value`
* from the FStar.FunctionalExtensionality library.
* These restricted function types enjoy extensional equality,
* which is necessary if Map.t is to also enjoy extensional equality.
*)
noeq
type t (key:eqtype) (value:Type) = {
mappings: key ^-> value;
domain: set key
}
let sel #key #value m k = m.mappings k
(* Since mappings are restricted functions,
assignments to that field must use `F.on`
to restrict the domain of the functional maps *)
let upd #key #value m k v = {
mappings = F.on key (fun x -> if x = k then v else m.mappings x);
domain = S.union m.domain (singleton k)
}
(* idem *)
let const #key #value v = {
mappings = F.on key (fun _ -> v);
domain = complement empty
}
let domain #key #value m = m.domain
let contains #key #value m k = mem k m.domain
(* Again, use F.on to build a domain-restricted function *)
let concat #key #value m1 m2 = {
mappings = F.on key (fun x -> if mem x m2.domain then m2.mappings x else m1.mappings x);
domain = union m1.domain m2.domain
}
let map_val #_ #_ f #key m = {
mappings = F.on key (fun x -> f (m.mappings x));
domain = m.domain
}
let restrict #key #value s m = {
mappings = m.mappings;
domain = intersect s m.domain
}
let map_literal #k #v f = {
mappings = F.on k f;
domain = complement empty;
}
let lemma_SelUpd1 #key #value m k v = ()
let lemma_SelUpd2 #key #value m k1 k2 v = ()
let lemma_SelConst #key #value v k = ()
let lemma_SelRestrict #key #value m ks k = ()
let lemma_SelConcat1 #key #value m1 m2 k = ()
let lemma_SelConcat2 #key #value m1 m2 k = ()
let lemma_SelMapVal #val1 #val2 f #key m k = ()
let lemma_InDomUpd1 #key #value m k1 k2 v = ()
let lemma_InDomUpd2 #key #value m k1 k2 v = ()
let lemma_InDomConstMap #key #value v k = ()
let lemma_InDomConcat #key #value m1 m2 k = ()
let lemma_InMapVal #val1 #val2 f #key m k = ()
let lemma_InDomRestrict #key #value m ks k = ()
let lemma_ContainsDom #key #value m k = ()
let lemma_UpdDomain #key #value m k v = ()
let lemma_map_literal #key #value f = () | false | false | FStar.Map.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val equal (#key:eqtype) (#value:Type) (m1:t key value) (m2:t key value) : prop | [] | FStar.Map.equal | {
"file_name": "ulib/FStar.Map.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | m1: FStar.Map.t key value -> m2: FStar.Map.t key value -> Prims.prop | {
"end_col": 31,
"end_line": 98,
"start_col": 4,
"start_line": 97
} |
Prims.Tot | val max (x1 x2: nat) : Tot nat | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let max (x1 x2: nat) : Tot nat = if x1 > x2 then x1 else x2 | val max (x1 x2: nat) : Tot nat
let max (x1 x2: nat) : Tot nat = | false | null | false | if x1 > x2 then x1 else x2 | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"Prims.nat",
"Prims.op_GreaterThan",
"Prims.bool"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
) | false | true | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val max (x1 x2: nat) : Tot nat | [] | LowParse.Low.Writers.Instances.max | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | x1: Prims.nat -> x2: Prims.nat -> Prims.nat | {
"end_col": 59,
"end_line": 72,
"start_col": 33,
"start_line": 72
} |
Prims.Tot | val swrite_weaken
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(k2: parser_kind)
(w1:
swriter s1 h0 space_beyond sout pout_from0
{(k2 `is_weaker_than` k1) /\ k2.parser_kind_subkind == Some ParserStrong})
: Tot
(w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {swvalue w2 == swvalue w1}
) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
) | val swrite_weaken
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(k2: parser_kind)
(w1:
swriter s1 h0 space_beyond sout pout_from0
{(k2 `is_weaker_than` k1) /\ k2.parser_kind_subkind == Some ParserStrong})
: Tot
(w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {swvalue w2 == swvalue w1}
)
let swrite_weaken
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(k2: parser_kind)
(w1:
swriter s1 h0 space_beyond sout pout_from0
{(k2 `is_weaker_than` k1) /\ k2.parser_kind_subkind == Some ParserStrong})
: Tot
(w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {swvalue w2 == swvalue w1}
) = | false | null | false | SWriter (Ghost.hide (swvalue w1))
(fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res) | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.slice",
"LowParse.Slice.srel_of_buffer_srel",
"LowParse.Bytes.byte",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"LowParse.Low.Writers.swriter",
"Prims.l_and",
"LowParse.Spec.Base.is_weaker_than",
"LowParse.Low.Writers.SWriter",
"LowParse.Spec.Base.weaken",
"LowParse.Spec.Combinators.serialize_weaken",
"FStar.Ghost.hide",
"LowParse.Low.Writers.swvalue",
"Prims.unit",
"LowParse.Low.Base.valid_weaken",
"FStar.HyperStack.ST.get",
"LowParse.Low.Writers.swrite",
"LowParse.Low.Base.Spec.serialized_length_eq"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1 | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val swrite_weaken
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(k2: parser_kind)
(w1:
swriter s1 h0 space_beyond sout pout_from0
{(k2 `is_weaker_than` k1) /\ k2.parser_kind_subkind == Some ParserStrong})
: Tot
(w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {swvalue w2 == swvalue w1}
) | [] | LowParse.Low.Writers.Instances.swrite_weaken | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
k2: LowParse.Spec.Base.parser_kind ->
w1:
LowParse.Low.Writers.swriter s1 h0 space_beyond sout pout_from0
{ LowParse.Spec.Base.is_weaker_than k2 k1 /\
Mkparser_kind'?.parser_kind_subkind k2 ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong }
-> w2:
LowParse.Low.Writers.swriter (LowParse.Spec.Combinators.serialize_weaken k2 s1)
h0
space_beyond
sout
pout_from0 {LowParse.Low.Writers.swvalue w2 == LowParse.Low.Writers.swvalue w1} | {
"end_col": 3,
"end_line": 38,
"start_col": 2,
"start_line": 31
} |
Prims.Tot | val swrite_filter
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 {cond (swvalue w1)})
: Tot
(w2:
swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {swvalue w2 == swvalue w1}) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let swrite_filter
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 { cond (swvalue w1) } )
: Tot (w2: swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq (serialize_filter s1 cond) (swvalue w1);
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_filter h p1 cond sout pout_from;
res
) | val swrite_filter
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 {cond (swvalue w1)})
: Tot
(w2:
swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {swvalue w2 == swvalue w1})
let swrite_filter
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 {cond (swvalue w1)})
: Tot
(w2:
swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {swvalue w2 == swvalue w1}) = | false | null | false | SWriter (Ghost.hide (swvalue w1))
(fun pout_from ->
serialized_length_eq (serialize_filter s1 cond) (swvalue w1);
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_filter h p1 cond sout pout_from;
res) | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.slice",
"LowParse.Slice.srel_of_buffer_srel",
"LowParse.Bytes.byte",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"Prims.bool",
"LowParse.Low.Writers.swriter",
"Prims.b2t",
"LowParse.Low.Writers.swvalue",
"LowParse.Low.Writers.SWriter",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.Combinators.serialize_filter",
"FStar.Ghost.hide",
"Prims.unit",
"LowParse.Low.Combinators.valid_filter",
"FStar.HyperStack.ST.get",
"LowParse.Low.Writers.swrite",
"LowParse.Low.Base.Spec.serialized_length_eq"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
)
let max (x1 x2: nat) : Tot nat = if x1 > x2 then x1 else x2
inline_for_extraction
noextract
let swrite_nondep_then
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= [@inline_let]
let sbmax = space_beyond1 `max` space_beyond2 in
weaken_swriter w1 h0 sbmax pout_from0 `swrite_nondep_then'` weaken_swriter w2 h0 sbmax pout_from0
inline_for_extraction
noextract
let swrite_filter
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 { cond (swvalue w1) } )
: Tot (w2: swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1 | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val swrite_filter
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 {cond (swvalue w1)})
: Tot
(w2:
swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {swvalue w2 == swvalue w1}) | [] | LowParse.Low.Writers.Instances.swrite_filter | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
cond: (_: t1 -> Prims.GTot Prims.bool) ->
w1:
LowParse.Low.Writers.swriter s1 h0 space_beyond sout pout_from0
{cond (LowParse.Low.Writers.swvalue w1)}
-> w2:
LowParse.Low.Writers.swriter (LowParse.Spec.Combinators.serialize_filter s1 cond)
h0
space_beyond
sout
pout_from0 {LowParse.Low.Writers.swvalue w2 == LowParse.Low.Writers.swvalue w1} | {
"end_col": 3,
"end_line": 122,
"start_col": 2,
"start_line": 115
} |
Prims.Tot | val swrite_synth
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (synth_injective f12 /\ synth_inverse f12 f21))
: Tot
(w2:
swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0
{swvalue w2 == f12 (swvalue w1) /\ swvalue w1 == f21 (swvalue w2)}) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let swrite_synth
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (
synth_injective f12 /\
synth_inverse f12 f21
))
: Tot (w2: swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0 {
swvalue w2 == f12 (swvalue w1) /\
swvalue w1 == f21 (swvalue w2)
})
= [@inline_let] let _ =
serialize_synth_eq p1 f12 s1 f21 () (f12 (swvalue w1));
synth_injective_synth_inverse_synth_inverse_recip f12 f21 ()
in
SWriter (Ghost.hide (f12 (swvalue w1))) (fun pout_from ->
serialized_length_eq (serialize_synth p1 f12 s1 f21 ()) (f12 (swvalue w1));
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_synth h p1 f12 sout pout_from;
res
) | val swrite_synth
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (synth_injective f12 /\ synth_inverse f12 f21))
: Tot
(w2:
swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0
{swvalue w2 == f12 (swvalue w1) /\ swvalue w1 == f21 (swvalue w2)})
let swrite_synth
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (synth_injective f12 /\ synth_inverse f12 f21))
: Tot
(w2:
swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0
{swvalue w2 == f12 (swvalue w1) /\ swvalue w1 == f21 (swvalue w2)}) = | false | null | false | [@@ inline_let ]let _ =
serialize_synth_eq p1 f12 s1 f21 () (f12 (swvalue w1));
synth_injective_synth_inverse_synth_inverse_recip f12 f21 ()
in
SWriter (Ghost.hide (f12 (swvalue w1)))
(fun pout_from ->
serialized_length_eq (serialize_synth p1 f12 s1 f21 ()) (f12 (swvalue w1));
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_synth h p1 f12 sout pout_from;
res) | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.slice",
"LowParse.Slice.srel_of_buffer_srel",
"LowParse.Bytes.byte",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"LowParse.Low.Writers.swriter",
"Prims.squash",
"Prims.l_and",
"LowParse.Spec.Combinators.synth_injective",
"LowParse.Spec.Combinators.synth_inverse",
"LowParse.Low.Writers.SWriter",
"LowParse.Spec.Combinators.parse_synth",
"LowParse.Spec.Combinators.serialize_synth",
"FStar.Ghost.hide",
"LowParse.Low.Writers.swvalue",
"Prims.unit",
"LowParse.Low.Combinators.valid_synth",
"FStar.HyperStack.ST.get",
"LowParse.Low.Writers.swrite",
"LowParse.Low.Base.Spec.serialized_length_eq",
"LowParse.Spec.Combinators.synth_injective_synth_inverse_synth_inverse_recip",
"LowParse.Spec.Combinators.serialize_synth_eq"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
)
let max (x1 x2: nat) : Tot nat = if x1 > x2 then x1 else x2
inline_for_extraction
noextract
let swrite_nondep_then
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= [@inline_let]
let sbmax = space_beyond1 `max` space_beyond2 in
weaken_swriter w1 h0 sbmax pout_from0 `swrite_nondep_then'` weaken_swriter w2 h0 sbmax pout_from0
inline_for_extraction
noextract
let swrite_filter
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 { cond (swvalue w1) } )
: Tot (w2: swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq (serialize_filter s1 cond) (swvalue w1);
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_filter h p1 cond sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_synth
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (
synth_injective f12 /\
synth_inverse f12 f21
))
: Tot (w2: swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0 {
swvalue w2 == f12 (swvalue w1) /\
swvalue w1 == f21 (swvalue w2) | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val swrite_synth
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (synth_injective f12 /\ synth_inverse f12 f21))
: Tot
(w2:
swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0
{swvalue w2 == f12 (swvalue w1) /\ swvalue w1 == f21 (swvalue w2)}) | [] | LowParse.Low.Writers.Instances.swrite_synth | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
w1: LowParse.Low.Writers.swriter s1 h0 space_beyond sout pout_from0 ->
f12: (_: t1 -> Prims.GTot t2) ->
f21: (_: t2 -> Prims.GTot t1) ->
prf:
Prims.squash (LowParse.Spec.Combinators.synth_injective f12 /\
LowParse.Spec.Combinators.synth_inverse f12 f21)
-> w2:
LowParse.Low.Writers.swriter (LowParse.Spec.Combinators.serialize_synth p1 f12 s1 f21 ())
h0
space_beyond
sout
pout_from0
{ LowParse.Low.Writers.swvalue w2 == f12 (LowParse.Low.Writers.swvalue w1) /\
LowParse.Low.Writers.swvalue w1 == f21 (LowParse.Low.Writers.swvalue w2) } | {
"end_col": 3,
"end_line": 158,
"start_col": 2,
"start_line": 147
} |
Prims.Tot | val swrite_nondep_then
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 {k2.parser_kind_subkind == Some ParserStrong})
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot
(w:
swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0
{swvalue w == (swvalue w1, swvalue w2)}) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let swrite_nondep_then
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= [@inline_let]
let sbmax = space_beyond1 `max` space_beyond2 in
weaken_swriter w1 h0 sbmax pout_from0 `swrite_nondep_then'` weaken_swriter w2 h0 sbmax pout_from0 | val swrite_nondep_then
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 {k2.parser_kind_subkind == Some ParserStrong})
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot
(w:
swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0
{swvalue w == (swvalue w1, swvalue w2)})
let swrite_nondep_then
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 {k2.parser_kind_subkind == Some ParserStrong})
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot
(w:
swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0
{swvalue w == (swvalue w1, swvalue w2)}) = | false | null | false | [@@ inline_let ]let sbmax = space_beyond1 `max` space_beyond2 in
(weaken_swriter w1 h0 sbmax pout_from0)
`swrite_nondep_then'`
(weaken_swriter w2 h0 sbmax pout_from0) | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.slice",
"LowParse.Slice.srel_of_buffer_srel",
"LowParse.Bytes.byte",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"LowParse.Low.Writers.swriter",
"LowParse.Low.Writers.Instances.swrite_nondep_then'",
"LowParse.Low.Writers.weaken_swriter",
"LowParse.Low.Writers.Instances.max",
"LowParse.Spec.Combinators.and_then_kind",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Combinators.nondep_then",
"LowParse.Spec.Combinators.serialize_nondep_then",
"LowParse.Low.Writers.swvalue",
"FStar.Pervasives.Native.Mktuple2"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
)
let max (x1 x2: nat) : Tot nat = if x1 > x2 then x1 else x2
inline_for_extraction
noextract
let swrite_nondep_then
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2) | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val swrite_nondep_then
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 {k2.parser_kind_subkind == Some ParserStrong})
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot
(w:
swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0
{swvalue w == (swvalue w1, swvalue w2)}) | [] | LowParse.Low.Writers.Instances.swrite_nondep_then | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
w1: LowParse.Low.Writers.swriter s1 h0 space_beyond1 sout pout_from0 ->
w2: LowParse.Low.Writers.swriter s2 h0 space_beyond2 sout pout_from0
-> w:
LowParse.Low.Writers.swriter (LowParse.Spec.Combinators.serialize_nondep_then s1 s2)
h0
(LowParse.Low.Writers.Instances.max space_beyond1 space_beyond2)
sout
pout_from0
{ LowParse.Low.Writers.swvalue w ==
FStar.Pervasives.Native.Mktuple2 (LowParse.Low.Writers.swvalue w1)
(LowParse.Low.Writers.swvalue w2) } | {
"end_col": 99,
"end_line": 97,
"start_col": 2,
"start_line": 95
} |
Prims.Tot | val swrite_nondep_then'
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 {k2.parser_kind_subkind == Some ParserStrong})
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot
(w:
swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0
{swvalue w == (swvalue w1, swvalue w2)}) | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
) | val swrite_nondep_then'
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 {k2.parser_kind_subkind == Some ParserStrong})
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot
(w:
swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0
{swvalue w == (swvalue w1, swvalue w2)})
let swrite_nondep_then'
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 {k2.parser_kind_subkind == Some ParserStrong})
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot
(w:
swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0
{swvalue w == (swvalue w1, swvalue w2)}) = | false | null | false | SWriter (Ghost.hide (swvalue w1, swvalue w2))
(fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2) | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.slice",
"LowParse.Slice.srel_of_buffer_srel",
"LowParse.Bytes.byte",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"Prims.nat",
"LowParse.Low.Writers.swriter",
"LowParse.Low.Writers.SWriter",
"LowParse.Spec.Combinators.and_then_kind",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.Combinators.nondep_then",
"LowParse.Spec.Combinators.serialize_nondep_then",
"FStar.Ghost.hide",
"FStar.Pervasives.Native.Mktuple2",
"LowParse.Low.Writers.swvalue",
"Prims.unit",
"LowParse.Low.Combinators.valid_nondep_then",
"FStar.HyperStack.ST.get",
"LowParse.Low.Writers.swrite",
"LowParse.Low.Base.Spec.serialized_length_eq",
"LowParse.Spec.Combinators.serialize_nondep_then_eq"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2) | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val swrite_nondep_then'
(#h0: HS.mem)
(#sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 {k1.parser_kind_subkind == Some ParserStrong})
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 {k2.parser_kind_subkind == Some ParserStrong})
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot
(w:
swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0
{swvalue w == (swvalue w1, swvalue w2)}) | [] | LowParse.Low.Writers.Instances.swrite_nondep_then' | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
w1: LowParse.Low.Writers.swriter s1 h0 space_beyond sout pout_from0 ->
w2: LowParse.Low.Writers.swriter s2 h0 space_beyond sout pout_from0
-> w:
LowParse.Low.Writers.swriter (LowParse.Spec.Combinators.serialize_nondep_then s1 s2)
h0
space_beyond
sout
pout_from0
{ LowParse.Low.Writers.swvalue w ==
FStar.Pervasives.Native.Mktuple2 (LowParse.Low.Writers.swvalue w1)
(LowParse.Low.Writers.swvalue w2) } | {
"end_col": 3,
"end_line": 70,
"start_col": 2,
"start_line": 60
} |
Prims.Tot | val swrite_flbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0 len: U32.t)
(b:
B.buffer U8.t
{ B.live h0 b /\ B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)}) | [
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "FB"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let swrite_flbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(len: U32.t)
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_flbytes (U32.v len)) (FB.hide (B.as_seq h0 b));
let payload = B.sub sout.base pout_from len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_flbytes_intro h (U32.v len) sout pout_from;
pout_from `U32.add` len
) | val swrite_flbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0 len: U32.t)
(b:
B.buffer U8.t
{ B.live h0 b /\ B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)})
let swrite_flbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0 len: U32.t)
(b:
B.buffer U8.t
{ B.live h0 b /\ B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)}) = | false | null | false | SWriter (Ghost.hide (FB.hide (B.as_seq h0 b)))
(fun pout_from ->
serialized_length_eq (serialize_flbytes (U32.v len)) (FB.hide (B.as_seq h0 b));
let payload = B.sub sout.base pout_from len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_flbytes_intro h (U32.v len) sout pout_from;
pout_from `U32.add` len) | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.slice",
"LowParse.Slice.srel_of_buffer_srel",
"LowParse.Bytes.byte",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowParse.Slice.loc_slice_from",
"LowParse.Low.Writers.SWriter",
"LowParse.Spec.Base.total_constant_size_parser_kind",
"FStar.Bytes.lbytes",
"LowParse.Spec.Bytes.parse_flbytes",
"LowParse.Spec.Bytes.serialize_flbytes",
"FStar.Ghost.hide",
"FStar.Bytes.hide",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt32.add",
"Prims.unit",
"LowParse.Low.Bytes.valid_flbytes_intro",
"FStar.HyperStack.ST.get",
"LowStar.Monotonic.Buffer.blit",
"FStar.UInt32.__uint_to_t",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.sub",
"LowParse.Slice.__proj__Mkslice__item__base",
"LowParse.Low.Base.Spec.serialized_length_eq",
"LowParse.Low.Writers.swriter",
"FStar.Bytes.bytes",
"LowParse.Low.Writers.swvalue"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
)
let max (x1 x2: nat) : Tot nat = if x1 > x2 then x1 else x2
inline_for_extraction
noextract
let swrite_nondep_then
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= [@inline_let]
let sbmax = space_beyond1 `max` space_beyond2 in
weaken_swriter w1 h0 sbmax pout_from0 `swrite_nondep_then'` weaken_swriter w2 h0 sbmax pout_from0
inline_for_extraction
noextract
let swrite_filter
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 { cond (swvalue w1) } )
: Tot (w2: swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq (serialize_filter s1 cond) (swvalue w1);
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_filter h p1 cond sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_synth
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (
synth_injective f12 /\
synth_inverse f12 f21
))
: Tot (w2: swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0 {
swvalue w2 == f12 (swvalue w1) /\
swvalue w1 == f21 (swvalue w2)
})
= [@inline_let] let _ =
serialize_synth_eq p1 f12 s1 f21 () (f12 (swvalue w1));
synth_injective_synth_inverse_synth_inverse_recip f12 f21 ()
in
SWriter (Ghost.hide (f12 (swvalue w1))) (fun pout_from ->
serialized_length_eq (serialize_synth p1 f12 s1 f21 ()) (f12 (swvalue w1));
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_synth h p1 f12 sout pout_from;
res
)
module U8 = FStar.UInt8
module FB = FStar.Bytes
#push-options "--z3rlimit 16"
inline_for_extraction
noextract
let swrite_flbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(len: U32.t)
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b) | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val swrite_flbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0 len: U32.t)
(b:
B.buffer U8.t
{ B.live h0 b /\ B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)}) | [] | LowParse.Low.Writers.Instances.swrite_flbytes | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
h0: FStar.Monotonic.HyperStack.mem ->
sout:
LowParse.Slice.slice (LowParse.Slice.srel_of_buffer_srel (LowStar.Buffer.trivial_preorder LowParse.Bytes.byte
))
(LowParse.Slice.srel_of_buffer_srel (LowStar.Buffer.trivial_preorder LowParse.Bytes.byte)) ->
pout_from0: FStar.UInt32.t ->
len: FStar.UInt32.t ->
b:
LowStar.Buffer.buffer FStar.UInt8.t
{ LowStar.Monotonic.Buffer.live h0 b /\
LowStar.Monotonic.Buffer.length b == FStar.UInt32.v len /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer b)
(LowParse.Slice.loc_slice_from sout pout_from0) }
-> w:
LowParse.Low.Writers.swriter (LowParse.Spec.Bytes.serialize_flbytes (FStar.UInt32.v len))
h0
0
sout
pout_from0
{LowParse.Low.Writers.swvalue w == FStar.Bytes.hide (LowStar.Monotonic.Buffer.as_seq h0 b)} | {
"end_col": 3,
"end_line": 187,
"start_col": 2,
"start_line": 180
} |
Prims.Tot | val swrite_bounded_integer_ct
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(i: U32.t{1 <= U32.v i /\ U32.v i <= 4})
(pout_from0: U32.t)
(x: bounded_integer (U32.v i))
: Tot
(y:
swriter (serialize_bounded_integer (U32.v i)) h0 (4 - U32.v i) sout pout_from0
{swvalue y == x}) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "LowParse.Endianness.BitFields",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "FB"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let swrite_bounded_integer_ct
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(i: U32.t { 1 <= U32.v i /\ U32.v i <= 4 })
(pout_from0: U32.t)
(x: bounded_integer (U32.v i))
: Tot (y: swriter (serialize_bounded_integer (U32.v i)) h0 (4 - U32.v i) sout pout_from0 { swvalue y == x } )
= SWriter (Ghost.hide x)
(fun pout_from ->
serialized_length_eq (serialize_bounded_integer (U32.v i)) x;
serialize32_bounded_integer_ct i x sout.base pout_from;
let h = HST.get () in
[@inline_let] let _ =
let large = bytes_of_slice_from h sout pout_from in
let small = bytes_of_slice_from_to h sout pout_from (pout_from `U32.add` i) in
parse_strong_prefix (parse_bounded_integer (U32.v i)) small large;
valid_facts (parse_bounded_integer (U32.v i)) h sout pout_from
in
pout_from `U32.add` i
) | val swrite_bounded_integer_ct
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(i: U32.t{1 <= U32.v i /\ U32.v i <= 4})
(pout_from0: U32.t)
(x: bounded_integer (U32.v i))
: Tot
(y:
swriter (serialize_bounded_integer (U32.v i)) h0 (4 - U32.v i) sout pout_from0
{swvalue y == x})
let swrite_bounded_integer_ct
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(i: U32.t{1 <= U32.v i /\ U32.v i <= 4})
(pout_from0: U32.t)
(x: bounded_integer (U32.v i))
: Tot
(y:
swriter (serialize_bounded_integer (U32.v i)) h0 (4 - U32.v i) sout pout_from0
{swvalue y == x}) = | false | null | false | SWriter (Ghost.hide x)
(fun pout_from ->
serialized_length_eq (serialize_bounded_integer (U32.v i)) x;
serialize32_bounded_integer_ct i x sout.base pout_from;
let h = HST.get () in
[@@ inline_let ]let _ =
let large = bytes_of_slice_from h sout pout_from in
let small = bytes_of_slice_from_to h sout pout_from (pout_from `U32.add` i) in
parse_strong_prefix (parse_bounded_integer (U32.v i)) small large;
valid_facts (parse_bounded_integer (U32.v i)) h sout pout_from
in
pout_from `U32.add` i) | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.slice",
"LowParse.Slice.srel_of_buffer_srel",
"LowParse.Bytes.byte",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Low.Writers.SWriter",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.parse_bounded_integer",
"LowParse.Spec.BoundedInt.serialize_bounded_integer",
"Prims.op_Subtraction",
"FStar.Ghost.hide",
"FStar.UInt32.add",
"Prims.unit",
"LowParse.Low.Base.Spec.valid_facts",
"LowParse.Spec.Base.parse_strong_prefix",
"LowParse.Bytes.bytes",
"LowParse.Low.Base.Spec.bytes_of_slice_from_to",
"LowParse.Slice.bytes_of_slice_from",
"FStar.HyperStack.ST.get",
"LowParse.Low.Writers.Instances.serialize32_bounded_integer_ct",
"LowParse.Slice.__proj__Mkslice__item__base",
"LowParse.Low.Base.Spec.serialized_length_eq",
"LowParse.Low.Writers.swriter",
"Prims.eq2",
"LowParse.Low.Writers.swvalue"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
)
let max (x1 x2: nat) : Tot nat = if x1 > x2 then x1 else x2
inline_for_extraction
noextract
let swrite_nondep_then
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= [@inline_let]
let sbmax = space_beyond1 `max` space_beyond2 in
weaken_swriter w1 h0 sbmax pout_from0 `swrite_nondep_then'` weaken_swriter w2 h0 sbmax pout_from0
inline_for_extraction
noextract
let swrite_filter
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 { cond (swvalue w1) } )
: Tot (w2: swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq (serialize_filter s1 cond) (swvalue w1);
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_filter h p1 cond sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_synth
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (
synth_injective f12 /\
synth_inverse f12 f21
))
: Tot (w2: swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0 {
swvalue w2 == f12 (swvalue w1) /\
swvalue w1 == f21 (swvalue w2)
})
= [@inline_let] let _ =
serialize_synth_eq p1 f12 s1 f21 () (f12 (swvalue w1));
synth_injective_synth_inverse_synth_inverse_recip f12 f21 ()
in
SWriter (Ghost.hide (f12 (swvalue w1))) (fun pout_from ->
serialized_length_eq (serialize_synth p1 f12 s1 f21 ()) (f12 (swvalue w1));
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_synth h p1 f12 sout pout_from;
res
)
module U8 = FStar.UInt8
module FB = FStar.Bytes
#push-options "--z3rlimit 16"
inline_for_extraction
noextract
let swrite_flbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(len: U32.t)
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_flbytes (U32.v len)) (FB.hide (B.as_seq h0 b));
let payload = B.sub sout.base pout_from len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_flbytes_intro h (U32.v len) sout pout_from;
pout_from `U32.add` len
)
inline_for_extraction
noextract
let swrite_bounded_vlbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.length b == U32.v len /\
B.live h0 b /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlbytes min max) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_bounded_vlbytes min max) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlbytes min max (FB.hide (B.as_seq h0 b));
let pout_payload = pout_from `U32.add` U32.uint_to_t (log256' max) in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
finalize_bounded_vlbytes min max sout pout_from len
)
inline_for_extraction
noextract
let swrite_bounded_vlgenbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk { kk.parser_kind_subkind == Some ParserStrong })
(wk: leaf_writer_strong sk)
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlgenbytes min max sk) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_bounded_vlgenbytes min max sk) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlgenbytes min max sk (FB.hide (B.as_seq h0 b));
serialized_length_eq sk len;
let pout_payload = swrite (swrite_leaf wk h0 sout pout_from0 len) pout_from in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_bounded_vlgenbytes min max pk sout pout_from h;
pout_payload `U32.add` len
)
#pop-options
#push-options "--z3rlimit 32"
inline_for_extraction
noextract
let swrite_bitsum
(h0: HS.mem)
(space_beyond: nat)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(#s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(w_tg: leaf_writer_strong s)
(mk: synth_bitsum'_recip_t b)
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(k: bitsum'_type b {
(parse_bitsum_kind kt b type_of_tag f).parser_kind_subkind == Some ParserStrong /\
(dfst (f (bitsum'_key_of_t b k))).parser_kind_subkind == Some ParserStrong
})
(w_pl: swriter (g (bitsum'_key_of_t b k)) h0 space_beyond sout pout_from0)
: Tot (w' : swriter (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g) h0 space_beyond sout pout_from0 {
swvalue w' == synth_case.f k (swvalue w_pl)
})
= SWriter (Ghost.hide (synth_case.f k (swvalue w_pl))) (fun pout_from ->
serialized_length_eq (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g) (synth_case.f k (swvalue w_pl));
serialized_length_eq s (synth_bitsum'_recip b k);
serialized_length_eq (g (bitsum'_key_of_t b k)) (swvalue w_pl);
serialize_bitsum_eq_2 b tag_of_data type_of_tag synth_case s g k (swvalue w_pl);
let pos1 = w_tg (mk k) sout pout_from in
let pos2 = swrite w_pl pos1 in
let h = HST.get () in
valid_filter h p (filter_bitsum' b) sout pout_from;
synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
assert (filter_bitsum' b (mk k) == true);
assert (synth_bitsum' b (mk k) == k);
valid_synth h (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) sout pout_from;
valid_bitsum_intro b tag_of_data type_of_tag synth_case p f h sout pout_from;
pos2
)
#pop-options
module BF = LowParse.BitFields
module E = LowParse.Endianness.BitFields
module LE = LowStar.Endianness
#push-options "--z3rlimit 16"
inline_for_extraction
let serialize32_bounded_integer_ct
(i: U32.t { 1 <= U32.v i /\ U32.v i <= 4 })
(x: bounded_integer (U32.v i))
(b: B.buffer byte)
(pos: U32.t)
: HST.Stack unit
(requires (fun h ->
B.live h b /\
U32.v pos + 4 <= B.length b
))
(ensures (fun h _ h' ->
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` i)) h h' /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v i) == serialize (serialize_bounded_integer (U32.v i)) x
))
= let h = HST.get () in
let before = LE.load32_be_i b pos in
bounded_integer_prop_equiv (U32.v i) x;
let after = BF.uint32.BF.set_bitfield_gen before (8ul `U32.mul` (4ul `U32.sub` i)) 32ul x in
LE.store32_be_i b pos after;
let h' = HST.get () in
parse_bounded_integer_spec (U32.v i) (Seq.slice (B.as_seq h b) (U32.v pos) (B.length b));
E.n_to_be_be_to_n 4 (Seq.slice (Seq.slice (B.as_seq h b) (U32.v pos) (B.length b)) 0 4);
Seq.slice_slice (B.as_seq h b) (U32.v pos) (B.length b) 0 4;
Seq.slice_slice (B.as_seq h' b) (U32.v pos) (B.length b) 0 4;
E.slice_n_to_be_bitfield 4 (U32.v before) (U32.v i) 4;
E.slice_n_to_be_bitfield 4 (U32.v after) (U32.v i) 4;
Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 4)) (U32.v i);
Seq.lemma_split (Seq.slice (B.as_seq h b) (U32.v pos) (U32.v pos + 4)) (U32.v i);
BF.get_bitfield_set_bitfield_other #32 (U32.v before) (8 `op_Multiply` (4 - U32.v i)) 32 (U32.v x) 0 (8 `op_Multiply` (4 - U32.v i));
Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos + U32.v i) (B.length b)) (4 - U32.v i);
Seq.lemma_split (Seq.slice (B.as_seq h b) (U32.v pos + U32.v i) (B.length b)) (4 - U32.v i);
B.modifies_loc_buffer_from_to_intro b pos (pos `U32.add` i) B.loc_none h h';
E.slice_n_to_be_bitfield 4 (U32.v after) 0 (U32.v i);
BF.get_bitfield_set_bitfield_same #32 (U32.v before) (8 `op_Multiply` (4 - U32.v i)) 32 (U32.v x);
serialize_bounded_integer_spec (U32.v i) x
#pop-options
inline_for_extraction
noextract
let swrite_bounded_integer_ct
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(i: U32.t { 1 <= U32.v i /\ U32.v i <= 4 })
(pout_from0: U32.t)
(x: bounded_integer (U32.v i)) | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val swrite_bounded_integer_ct
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(i: U32.t{1 <= U32.v i /\ U32.v i <= 4})
(pout_from0: U32.t)
(x: bounded_integer (U32.v i))
: Tot
(y:
swriter (serialize_bounded_integer (U32.v i)) h0 (4 - U32.v i) sout pout_from0
{swvalue y == x}) | [] | LowParse.Low.Writers.Instances.swrite_bounded_integer_ct | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
h0: FStar.Monotonic.HyperStack.mem ->
sout:
LowParse.Slice.slice (LowParse.Slice.srel_of_buffer_srel (LowStar.Buffer.trivial_preorder LowParse.Bytes.byte
))
(LowParse.Slice.srel_of_buffer_srel (LowStar.Buffer.trivial_preorder LowParse.Bytes.byte)) ->
i: FStar.UInt32.t{1 <= FStar.UInt32.v i /\ FStar.UInt32.v i <= 4} ->
pout_from0: FStar.UInt32.t ->
x: LowParse.Spec.BoundedInt.bounded_integer (FStar.UInt32.v i)
-> y:
LowParse.Low.Writers.swriter (LowParse.Spec.BoundedInt.serialize_bounded_integer (FStar.UInt32.v
i))
h0
(4 - FStar.UInt32.v i)
sout
pout_from0 {LowParse.Low.Writers.swvalue y == x} | {
"end_col": 3,
"end_line": 368,
"start_col": 2,
"start_line": 356
} |
Prims.Tot | val swrite_bounded_vlbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(len: U32.t{min <= U32.v len /\ U32.v len <= max})
(b:
B.buffer U8.t
{ B.length b == U32.v len /\ B.live h0 b /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_bounded_vlbytes min max) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)}) | [
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "FB"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let swrite_bounded_vlbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.length b == U32.v len /\
B.live h0 b /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlbytes min max) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_bounded_vlbytes min max) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlbytes min max (FB.hide (B.as_seq h0 b));
let pout_payload = pout_from `U32.add` U32.uint_to_t (log256' max) in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
finalize_bounded_vlbytes min max sout pout_from len
) | val swrite_bounded_vlbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(len: U32.t{min <= U32.v len /\ U32.v len <= max})
(b:
B.buffer U8.t
{ B.length b == U32.v len /\ B.live h0 b /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_bounded_vlbytes min max) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)})
let swrite_bounded_vlbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(len: U32.t{min <= U32.v len /\ U32.v len <= max})
(b:
B.buffer U8.t
{ B.length b == U32.v len /\ B.live h0 b /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_bounded_vlbytes min max) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)}) = | false | null | false | SWriter (Ghost.hide (FB.hide (B.as_seq h0 b)))
(fun pout_from ->
serialized_length_eq (serialize_bounded_vlbytes min max) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlbytes min max (FB.hide (B.as_seq h0 b));
let pout_payload = pout_from `U32.add` (U32.uint_to_t (log256' max)) in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
finalize_bounded_vlbytes min max sout pout_from len) | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.slice",
"LowParse.Slice.srel_of_buffer_srel",
"LowParse.Bytes.byte",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"FStar.UInt32.v",
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"LowStar.Monotonic.Buffer.length",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowParse.Slice.loc_slice_from",
"LowParse.Low.Writers.SWriter",
"LowParse.Spec.VLData.parse_bounded_vldata_strong_kind",
"LowParse.Spec.BoundedInt.log256'",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.Bytes.parse_bounded_vlbytes",
"LowParse.Spec.Bytes.serialize_bounded_vlbytes",
"FStar.Ghost.hide",
"FStar.Bytes.hide",
"LowStar.Monotonic.Buffer.as_seq",
"LowParse.Low.Bytes.finalize_bounded_vlbytes",
"Prims.unit",
"LowStar.Monotonic.Buffer.blit",
"FStar.UInt32.__uint_to_t",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.sub",
"LowParse.Slice.__proj__Mkslice__item__base",
"FStar.UInt32.add",
"FStar.UInt32.uint_to_t",
"LowParse.Spec.Bytes.length_serialize_bounded_vlbytes",
"LowParse.Low.Base.Spec.serialized_length_eq",
"LowParse.Low.Writers.swriter",
"FStar.Bytes.bytes",
"LowParse.Low.Writers.swvalue"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
)
let max (x1 x2: nat) : Tot nat = if x1 > x2 then x1 else x2
inline_for_extraction
noextract
let swrite_nondep_then
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= [@inline_let]
let sbmax = space_beyond1 `max` space_beyond2 in
weaken_swriter w1 h0 sbmax pout_from0 `swrite_nondep_then'` weaken_swriter w2 h0 sbmax pout_from0
inline_for_extraction
noextract
let swrite_filter
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 { cond (swvalue w1) } )
: Tot (w2: swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq (serialize_filter s1 cond) (swvalue w1);
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_filter h p1 cond sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_synth
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (
synth_injective f12 /\
synth_inverse f12 f21
))
: Tot (w2: swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0 {
swvalue w2 == f12 (swvalue w1) /\
swvalue w1 == f21 (swvalue w2)
})
= [@inline_let] let _ =
serialize_synth_eq p1 f12 s1 f21 () (f12 (swvalue w1));
synth_injective_synth_inverse_synth_inverse_recip f12 f21 ()
in
SWriter (Ghost.hide (f12 (swvalue w1))) (fun pout_from ->
serialized_length_eq (serialize_synth p1 f12 s1 f21 ()) (f12 (swvalue w1));
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_synth h p1 f12 sout pout_from;
res
)
module U8 = FStar.UInt8
module FB = FStar.Bytes
#push-options "--z3rlimit 16"
inline_for_extraction
noextract
let swrite_flbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(len: U32.t)
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_flbytes (U32.v len)) (FB.hide (B.as_seq h0 b));
let payload = B.sub sout.base pout_from len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_flbytes_intro h (U32.v len) sout pout_from;
pout_from `U32.add` len
)
inline_for_extraction
noextract
let swrite_bounded_vlbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.length b == U32.v len /\
B.live h0 b /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlbytes min max) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b) | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val swrite_bounded_vlbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(len: U32.t{min <= U32.v len /\ U32.v len <= max})
(b:
B.buffer U8.t
{ B.length b == U32.v len /\ B.live h0 b /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_bounded_vlbytes min max) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)}) | [] | LowParse.Low.Writers.Instances.swrite_bounded_vlbytes | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
h0: FStar.Monotonic.HyperStack.mem ->
sout:
LowParse.Slice.slice (LowParse.Slice.srel_of_buffer_srel (LowStar.Buffer.trivial_preorder LowParse.Bytes.byte
))
(LowParse.Slice.srel_of_buffer_srel (LowStar.Buffer.trivial_preorder LowParse.Bytes.byte)) ->
pout_from0: FStar.UInt32.t ->
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
len: FStar.UInt32.t{min <= FStar.UInt32.v len /\ FStar.UInt32.v len <= max} ->
b:
LowStar.Buffer.buffer FStar.UInt8.t
{ LowStar.Monotonic.Buffer.length b == FStar.UInt32.v len /\
LowStar.Monotonic.Buffer.live h0 b /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer b)
(LowParse.Slice.loc_slice_from sout pout_from0) }
-> w:
LowParse.Low.Writers.swriter (LowParse.Spec.Bytes.serialize_bounded_vlbytes min max)
h0
0
sout
pout_from0
{LowParse.Low.Writers.swvalue w == FStar.Bytes.hide (LowStar.Monotonic.Buffer.as_seq h0 b)} | {
"end_col": 3,
"end_line": 213,
"start_col": 2,
"start_line": 206
} |
FStar.HyperStack.ST.Stack | val serialize32_bounded_integer_ct
(i: U32.t{1 <= U32.v i /\ U32.v i <= 4})
(x: bounded_integer (U32.v i))
(b: B.buffer byte)
(pos: U32.t)
: HST.Stack unit
(requires (fun h -> B.live h b /\ U32.v pos + 4 <= B.length b))
(ensures
(fun h _ h' ->
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` i)) h h' /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v i) ==
serialize (serialize_bounded_integer (U32.v i)) x)) | [
{
"abbrev": true,
"full_module": "LowStar.Endianness",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "LowParse.Endianness.BitFields",
"short_module": "E"
},
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "BF"
},
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "FB"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_integer_ct
(i: U32.t { 1 <= U32.v i /\ U32.v i <= 4 })
(x: bounded_integer (U32.v i))
(b: B.buffer byte)
(pos: U32.t)
: HST.Stack unit
(requires (fun h ->
B.live h b /\
U32.v pos + 4 <= B.length b
))
(ensures (fun h _ h' ->
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` i)) h h' /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v i) == serialize (serialize_bounded_integer (U32.v i)) x
))
= let h = HST.get () in
let before = LE.load32_be_i b pos in
bounded_integer_prop_equiv (U32.v i) x;
let after = BF.uint32.BF.set_bitfield_gen before (8ul `U32.mul` (4ul `U32.sub` i)) 32ul x in
LE.store32_be_i b pos after;
let h' = HST.get () in
parse_bounded_integer_spec (U32.v i) (Seq.slice (B.as_seq h b) (U32.v pos) (B.length b));
E.n_to_be_be_to_n 4 (Seq.slice (Seq.slice (B.as_seq h b) (U32.v pos) (B.length b)) 0 4);
Seq.slice_slice (B.as_seq h b) (U32.v pos) (B.length b) 0 4;
Seq.slice_slice (B.as_seq h' b) (U32.v pos) (B.length b) 0 4;
E.slice_n_to_be_bitfield 4 (U32.v before) (U32.v i) 4;
E.slice_n_to_be_bitfield 4 (U32.v after) (U32.v i) 4;
Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 4)) (U32.v i);
Seq.lemma_split (Seq.slice (B.as_seq h b) (U32.v pos) (U32.v pos + 4)) (U32.v i);
BF.get_bitfield_set_bitfield_other #32 (U32.v before) (8 `op_Multiply` (4 - U32.v i)) 32 (U32.v x) 0 (8 `op_Multiply` (4 - U32.v i));
Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos + U32.v i) (B.length b)) (4 - U32.v i);
Seq.lemma_split (Seq.slice (B.as_seq h b) (U32.v pos + U32.v i) (B.length b)) (4 - U32.v i);
B.modifies_loc_buffer_from_to_intro b pos (pos `U32.add` i) B.loc_none h h';
E.slice_n_to_be_bitfield 4 (U32.v after) 0 (U32.v i);
BF.get_bitfield_set_bitfield_same #32 (U32.v before) (8 `op_Multiply` (4 - U32.v i)) 32 (U32.v x);
serialize_bounded_integer_spec (U32.v i) x | val serialize32_bounded_integer_ct
(i: U32.t{1 <= U32.v i /\ U32.v i <= 4})
(x: bounded_integer (U32.v i))
(b: B.buffer byte)
(pos: U32.t)
: HST.Stack unit
(requires (fun h -> B.live h b /\ U32.v pos + 4 <= B.length b))
(ensures
(fun h _ h' ->
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` i)) h h' /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v i) ==
serialize (serialize_bounded_integer (U32.v i)) x))
let serialize32_bounded_integer_ct
(i: U32.t{1 <= U32.v i /\ U32.v i <= 4})
(x: bounded_integer (U32.v i))
(b: B.buffer byte)
(pos: U32.t)
: HST.Stack unit
(requires (fun h -> B.live h b /\ U32.v pos + 4 <= B.length b))
(ensures
(fun h _ h' ->
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` i)) h h' /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v i) ==
serialize (serialize_bounded_integer (U32.v i)) x)) = | true | null | false | let h = HST.get () in
let before = LE.load32_be_i b pos in
bounded_integer_prop_equiv (U32.v i) x;
let after = BF.uint32.BF.set_bitfield_gen before (8ul `U32.mul` (4ul `U32.sub` i)) 32ul x in
LE.store32_be_i b pos after;
let h' = HST.get () in
parse_bounded_integer_spec (U32.v i) (Seq.slice (B.as_seq h b) (U32.v pos) (B.length b));
E.n_to_be_be_to_n 4 (Seq.slice (Seq.slice (B.as_seq h b) (U32.v pos) (B.length b)) 0 4);
Seq.slice_slice (B.as_seq h b) (U32.v pos) (B.length b) 0 4;
Seq.slice_slice (B.as_seq h' b) (U32.v pos) (B.length b) 0 4;
E.slice_n_to_be_bitfield 4 (U32.v before) (U32.v i) 4;
E.slice_n_to_be_bitfield 4 (U32.v after) (U32.v i) 4;
Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + 4)) (U32.v i);
Seq.lemma_split (Seq.slice (B.as_seq h b) (U32.v pos) (U32.v pos + 4)) (U32.v i);
BF.get_bitfield_set_bitfield_other #32
(U32.v before)
(8 `op_Multiply` (4 - U32.v i))
32
(U32.v x)
0
(8 `op_Multiply` (4 - U32.v i));
Seq.lemma_split (Seq.slice (B.as_seq h' b) (U32.v pos + U32.v i) (B.length b)) (4 - U32.v i);
Seq.lemma_split (Seq.slice (B.as_seq h b) (U32.v pos + U32.v i) (B.length b)) (4 - U32.v i);
B.modifies_loc_buffer_from_to_intro b pos (pos `U32.add` i) B.loc_none h h';
E.slice_n_to_be_bitfield 4 (U32.v after) 0 (U32.v i);
BF.get_bitfield_set_bitfield_same #32 (U32.v before) (8 `op_Multiply` (4 - U32.v i)) 32 (U32.v x);
serialize_bounded_integer_spec (U32.v i) x | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [] | [
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowStar.Buffer.buffer",
"LowParse.Bytes.byte",
"LowParse.Spec.BoundedInt.serialize_bounded_integer_spec",
"Prims.unit",
"LowParse.BitFields.get_bitfield_set_bitfield_same",
"Prims.op_Multiply",
"Prims.op_Subtraction",
"LowParse.Endianness.BitFields.slice_n_to_be_bitfield",
"LowStar.Monotonic.Buffer.modifies_loc_buffer_from_to_intro",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.add",
"LowStar.Monotonic.Buffer.loc_none",
"FStar.Seq.Properties.lemma_split",
"FStar.Seq.Base.slice",
"LowStar.Monotonic.Buffer.as_seq",
"Prims.op_Addition",
"LowStar.Monotonic.Buffer.length",
"LowParse.BitFields.get_bitfield_set_bitfield_other",
"FStar.Seq.Properties.slice_slice",
"FStar.Endianness.n_to_be_be_to_n",
"LowParse.Spec.BoundedInt.parse_bounded_integer_spec",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowStar.Endianness.store32_be_i",
"Prims.eq2",
"FStar.UInt.uint_t",
"LowParse.BitFields.__proj__Mkuint_t__item__v",
"LowParse.BitFields.uint32",
"LowParse.BitFields.set_bitfield",
"FStar.UInt32.mul",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.sub",
"LowParse.BitFields.__proj__Mkuint_t__item__set_bitfield_gen",
"FStar.UInt32.__uint_to_t",
"LowParse.Spec.BoundedInt.bounded_integer_prop_equiv",
"LowStar.Endianness.u32",
"LowStar.Endianness.load32_be_i",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer_from_to",
"FStar.Seq.Base.seq",
"LowParse.Spec.Base.serialize",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.parse_bounded_integer",
"LowParse.Spec.BoundedInt.serialize_bounded_integer"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
)
let max (x1 x2: nat) : Tot nat = if x1 > x2 then x1 else x2
inline_for_extraction
noextract
let swrite_nondep_then
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= [@inline_let]
let sbmax = space_beyond1 `max` space_beyond2 in
weaken_swriter w1 h0 sbmax pout_from0 `swrite_nondep_then'` weaken_swriter w2 h0 sbmax pout_from0
inline_for_extraction
noextract
let swrite_filter
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 { cond (swvalue w1) } )
: Tot (w2: swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq (serialize_filter s1 cond) (swvalue w1);
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_filter h p1 cond sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_synth
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (
synth_injective f12 /\
synth_inverse f12 f21
))
: Tot (w2: swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0 {
swvalue w2 == f12 (swvalue w1) /\
swvalue w1 == f21 (swvalue w2)
})
= [@inline_let] let _ =
serialize_synth_eq p1 f12 s1 f21 () (f12 (swvalue w1));
synth_injective_synth_inverse_synth_inverse_recip f12 f21 ()
in
SWriter (Ghost.hide (f12 (swvalue w1))) (fun pout_from ->
serialized_length_eq (serialize_synth p1 f12 s1 f21 ()) (f12 (swvalue w1));
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_synth h p1 f12 sout pout_from;
res
)
module U8 = FStar.UInt8
module FB = FStar.Bytes
#push-options "--z3rlimit 16"
inline_for_extraction
noextract
let swrite_flbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(len: U32.t)
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_flbytes (U32.v len)) (FB.hide (B.as_seq h0 b));
let payload = B.sub sout.base pout_from len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_flbytes_intro h (U32.v len) sout pout_from;
pout_from `U32.add` len
)
inline_for_extraction
noextract
let swrite_bounded_vlbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.length b == U32.v len /\
B.live h0 b /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlbytes min max) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_bounded_vlbytes min max) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlbytes min max (FB.hide (B.as_seq h0 b));
let pout_payload = pout_from `U32.add` U32.uint_to_t (log256' max) in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
finalize_bounded_vlbytes min max sout pout_from len
)
inline_for_extraction
noextract
let swrite_bounded_vlgenbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk { kk.parser_kind_subkind == Some ParserStrong })
(wk: leaf_writer_strong sk)
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlgenbytes min max sk) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_bounded_vlgenbytes min max sk) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlgenbytes min max sk (FB.hide (B.as_seq h0 b));
serialized_length_eq sk len;
let pout_payload = swrite (swrite_leaf wk h0 sout pout_from0 len) pout_from in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_bounded_vlgenbytes min max pk sout pout_from h;
pout_payload `U32.add` len
)
#pop-options
#push-options "--z3rlimit 32"
inline_for_extraction
noextract
let swrite_bitsum
(h0: HS.mem)
(space_beyond: nat)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(#s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(w_tg: leaf_writer_strong s)
(mk: synth_bitsum'_recip_t b)
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(k: bitsum'_type b {
(parse_bitsum_kind kt b type_of_tag f).parser_kind_subkind == Some ParserStrong /\
(dfst (f (bitsum'_key_of_t b k))).parser_kind_subkind == Some ParserStrong
})
(w_pl: swriter (g (bitsum'_key_of_t b k)) h0 space_beyond sout pout_from0)
: Tot (w' : swriter (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g) h0 space_beyond sout pout_from0 {
swvalue w' == synth_case.f k (swvalue w_pl)
})
= SWriter (Ghost.hide (synth_case.f k (swvalue w_pl))) (fun pout_from ->
serialized_length_eq (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g) (synth_case.f k (swvalue w_pl));
serialized_length_eq s (synth_bitsum'_recip b k);
serialized_length_eq (g (bitsum'_key_of_t b k)) (swvalue w_pl);
serialize_bitsum_eq_2 b tag_of_data type_of_tag synth_case s g k (swvalue w_pl);
let pos1 = w_tg (mk k) sout pout_from in
let pos2 = swrite w_pl pos1 in
let h = HST.get () in
valid_filter h p (filter_bitsum' b) sout pout_from;
synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
assert (filter_bitsum' b (mk k) == true);
assert (synth_bitsum' b (mk k) == k);
valid_synth h (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) sout pout_from;
valid_bitsum_intro b tag_of_data type_of_tag synth_case p f h sout pout_from;
pos2
)
#pop-options
module BF = LowParse.BitFields
module E = LowParse.Endianness.BitFields
module LE = LowStar.Endianness
#push-options "--z3rlimit 16"
inline_for_extraction
let serialize32_bounded_integer_ct
(i: U32.t { 1 <= U32.v i /\ U32.v i <= 4 })
(x: bounded_integer (U32.v i))
(b: B.buffer byte)
(pos: U32.t)
: HST.Stack unit
(requires (fun h ->
B.live h b /\
U32.v pos + 4 <= B.length b
))
(ensures (fun h _ h' ->
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` i)) h h' /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v i) == serialize (serialize_bounded_integer (U32.v i)) x | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_integer_ct
(i: U32.t{1 <= U32.v i /\ U32.v i <= 4})
(x: bounded_integer (U32.v i))
(b: B.buffer byte)
(pos: U32.t)
: HST.Stack unit
(requires (fun h -> B.live h b /\ U32.v pos + 4 <= B.length b))
(ensures
(fun h _ h' ->
B.modifies (B.loc_buffer_from_to b pos (pos `U32.add` i)) h h' /\
Seq.slice (B.as_seq h' b) (U32.v pos) (U32.v pos + U32.v i) ==
serialize (serialize_bounded_integer (U32.v i)) x)) | [] | LowParse.Low.Writers.Instances.serialize32_bounded_integer_ct | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
i: FStar.UInt32.t{1 <= FStar.UInt32.v i /\ FStar.UInt32.v i <= 4} ->
x: LowParse.Spec.BoundedInt.bounded_integer (FStar.UInt32.v i) ->
b: LowStar.Buffer.buffer LowParse.Bytes.byte ->
pos: FStar.UInt32.t
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 44,
"end_line": 343,
"start_col": 1,
"start_line": 323
} |
Prims.Tot | val swrite_bounded_vlgenbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk {kk.parser_kind_subkind == Some ParserStrong})
(wk: leaf_writer_strong sk)
(len: U32.t{min <= U32.v len /\ U32.v len <= max})
(b:
B.buffer U8.t
{ B.live h0 b /\ B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_bounded_vlgenbytes min max sk) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)}) | [
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "FB"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let swrite_bounded_vlgenbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk { kk.parser_kind_subkind == Some ParserStrong })
(wk: leaf_writer_strong sk)
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlgenbytes min max sk) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_bounded_vlgenbytes min max sk) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlgenbytes min max sk (FB.hide (B.as_seq h0 b));
serialized_length_eq sk len;
let pout_payload = swrite (swrite_leaf wk h0 sout pout_from0 len) pout_from in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_bounded_vlgenbytes min max pk sout pout_from h;
pout_payload `U32.add` len
) | val swrite_bounded_vlgenbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk {kk.parser_kind_subkind == Some ParserStrong})
(wk: leaf_writer_strong sk)
(len: U32.t{min <= U32.v len /\ U32.v len <= max})
(b:
B.buffer U8.t
{ B.live h0 b /\ B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_bounded_vlgenbytes min max sk) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)})
let swrite_bounded_vlgenbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk {kk.parser_kind_subkind == Some ParserStrong})
(wk: leaf_writer_strong sk)
(len: U32.t{min <= U32.v len /\ U32.v len <= max})
(b:
B.buffer U8.t
{ B.live h0 b /\ B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_bounded_vlgenbytes min max sk) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)}) = | false | null | false | SWriter (Ghost.hide (FB.hide (B.as_seq h0 b)))
(fun pout_from ->
serialized_length_eq (serialize_bounded_vlgenbytes min max sk) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlgenbytes min max sk (FB.hide (B.as_seq h0 b));
serialized_length_eq sk len;
let pout_payload = swrite (swrite_leaf wk h0 sout pout_from0 len) pout_from in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_bounded_vlgenbytes min max pk sout pout_from h;
pout_payload `U32.add` len) | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"LowParse.Slice.slice",
"LowParse.Slice.srel_of_buffer_srel",
"LowParse.Bytes.byte",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_GreaterThan",
"Prims.op_LessThan",
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"LowParse.Low.Base.leaf_writer_strong",
"FStar.UInt32.v",
"LowStar.Buffer.buffer",
"FStar.UInt8.t",
"LowStar.Monotonic.Buffer.live",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"FStar.UInt.size",
"FStar.UInt32.n",
"LowStar.Monotonic.Buffer.length",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowParse.Slice.loc_slice_from",
"LowParse.Low.Writers.SWriter",
"LowParse.Spec.VLGen.parse_bounded_vlgen_kind",
"LowParse.Spec.Bytes.parse_all_bytes_kind",
"LowParse.Spec.Bytes.parse_bounded_vlbytes_t",
"LowParse.Spec.Bytes.parse_bounded_vlgenbytes",
"LowParse.Spec.Bytes.serialize_bounded_vlgenbytes",
"FStar.Ghost.hide",
"FStar.Bytes.hide",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.UInt32.add",
"Prims.unit",
"LowParse.Low.Bytes.valid_bounded_vlgenbytes",
"FStar.HyperStack.ST.get",
"LowStar.Monotonic.Buffer.blit",
"FStar.UInt32.__uint_to_t",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.sub",
"LowParse.Slice.__proj__Mkslice__item__base",
"LowParse.Low.Writers.swrite",
"LowParse.Low.Writers.swrite_leaf",
"LowParse.Low.Base.Spec.serialized_length_eq",
"LowParse.Spec.Bytes.length_serialize_bounded_vlgenbytes",
"LowParse.Low.Writers.swriter",
"FStar.Bytes.bytes",
"LowParse.Low.Writers.swvalue"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
)
let max (x1 x2: nat) : Tot nat = if x1 > x2 then x1 else x2
inline_for_extraction
noextract
let swrite_nondep_then
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= [@inline_let]
let sbmax = space_beyond1 `max` space_beyond2 in
weaken_swriter w1 h0 sbmax pout_from0 `swrite_nondep_then'` weaken_swriter w2 h0 sbmax pout_from0
inline_for_extraction
noextract
let swrite_filter
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 { cond (swvalue w1) } )
: Tot (w2: swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq (serialize_filter s1 cond) (swvalue w1);
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_filter h p1 cond sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_synth
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (
synth_injective f12 /\
synth_inverse f12 f21
))
: Tot (w2: swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0 {
swvalue w2 == f12 (swvalue w1) /\
swvalue w1 == f21 (swvalue w2)
})
= [@inline_let] let _ =
serialize_synth_eq p1 f12 s1 f21 () (f12 (swvalue w1));
synth_injective_synth_inverse_synth_inverse_recip f12 f21 ()
in
SWriter (Ghost.hide (f12 (swvalue w1))) (fun pout_from ->
serialized_length_eq (serialize_synth p1 f12 s1 f21 ()) (f12 (swvalue w1));
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_synth h p1 f12 sout pout_from;
res
)
module U8 = FStar.UInt8
module FB = FStar.Bytes
#push-options "--z3rlimit 16"
inline_for_extraction
noextract
let swrite_flbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(len: U32.t)
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_flbytes (U32.v len)) (FB.hide (B.as_seq h0 b));
let payload = B.sub sout.base pout_from len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_flbytes_intro h (U32.v len) sout pout_from;
pout_from `U32.add` len
)
inline_for_extraction
noextract
let swrite_bounded_vlbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.length b == U32.v len /\
B.live h0 b /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlbytes min max) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_bounded_vlbytes min max) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlbytes min max (FB.hide (B.as_seq h0 b));
let pout_payload = pout_from `U32.add` U32.uint_to_t (log256' max) in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
finalize_bounded_vlbytes min max sout pout_from len
)
inline_for_extraction
noextract
let swrite_bounded_vlgenbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk { kk.parser_kind_subkind == Some ParserStrong })
(wk: leaf_writer_strong sk)
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlgenbytes min max sk) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b) | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val swrite_bounded_vlgenbytes
(h0: HS.mem)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat{min <= max /\ max > 0 /\ max < 4294967296})
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk {kk.parser_kind_subkind == Some ParserStrong})
(wk: leaf_writer_strong sk)
(len: U32.t{min <= U32.v len /\ U32.v len <= max})
(b:
B.buffer U8.t
{ B.live h0 b /\ B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0) })
: Tot
(w:
swriter (serialize_bounded_vlgenbytes min max sk) h0 0 sout pout_from0
{swvalue w == FB.hide (B.as_seq h0 b)}) | [] | LowParse.Low.Writers.Instances.swrite_bounded_vlgenbytes | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
h0: FStar.Monotonic.HyperStack.mem ->
sout:
LowParse.Slice.slice (LowParse.Slice.srel_of_buffer_srel (LowStar.Buffer.trivial_preorder LowParse.Bytes.byte
))
(LowParse.Slice.srel_of_buffer_srel (LowStar.Buffer.trivial_preorder LowParse.Bytes.byte)) ->
pout_from0: FStar.UInt32.t ->
min: Prims.nat ->
max: Prims.nat{min <= max /\ max > 0 /\ max < 4294967296} ->
wk: LowParse.Low.Base.leaf_writer_strong sk ->
len: FStar.UInt32.t{min <= FStar.UInt32.v len /\ FStar.UInt32.v len <= max} ->
b:
LowStar.Buffer.buffer FStar.UInt8.t
{ LowStar.Monotonic.Buffer.live h0 b /\
LowStar.Monotonic.Buffer.length b == FStar.UInt32.v len /\
LowStar.Monotonic.Buffer.loc_disjoint (LowStar.Monotonic.Buffer.loc_buffer b)
(LowParse.Slice.loc_slice_from sout pout_from0) }
-> w:
LowParse.Low.Writers.swriter (LowParse.Spec.Bytes.serialize_bounded_vlgenbytes min max sk)
h0
0
sout
pout_from0
{LowParse.Low.Writers.swvalue w == FStar.Bytes.hide (LowStar.Monotonic.Buffer.as_seq h0 b)} | {
"end_col": 3,
"end_line": 246,
"start_col": 2,
"start_line": 236
} |
Prims.Tot | val swrite_bitsum
(h0: HS.mem)
(space_beyond: nat)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(#s: serializer p {kt.parser_kind_subkind == Some ParserStrong})
(w_tg: leaf_writer_strong s)
(mk: synth_bitsum'_recip_t b)
(#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x)))))
(k:
bitsum'_type b
{ (parse_bitsum_kind kt b type_of_tag f).parser_kind_subkind == Some ParserStrong /\
(dfst (f (bitsum'_key_of_t b k))).parser_kind_subkind == Some ParserStrong })
(w_pl: swriter (g (bitsum'_key_of_t b k)) h0 space_beyond sout pout_from0)
: Tot
(w':
swriter (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g)
h0
space_beyond
sout
pout_from0 {swvalue w' == synth_case.f k (swvalue w_pl)}) | [
{
"abbrev": true,
"full_module": "FStar.Bytes",
"short_module": "FB"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowParse.Low.BitSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Bytes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Low.Writers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let swrite_bitsum
(h0: HS.mem)
(space_beyond: nat)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(#s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(w_tg: leaf_writer_strong s)
(mk: synth_bitsum'_recip_t b)
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(k: bitsum'_type b {
(parse_bitsum_kind kt b type_of_tag f).parser_kind_subkind == Some ParserStrong /\
(dfst (f (bitsum'_key_of_t b k))).parser_kind_subkind == Some ParserStrong
})
(w_pl: swriter (g (bitsum'_key_of_t b k)) h0 space_beyond sout pout_from0)
: Tot (w' : swriter (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g) h0 space_beyond sout pout_from0 {
swvalue w' == synth_case.f k (swvalue w_pl)
})
= SWriter (Ghost.hide (synth_case.f k (swvalue w_pl))) (fun pout_from ->
serialized_length_eq (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g) (synth_case.f k (swvalue w_pl));
serialized_length_eq s (synth_bitsum'_recip b k);
serialized_length_eq (g (bitsum'_key_of_t b k)) (swvalue w_pl);
serialize_bitsum_eq_2 b tag_of_data type_of_tag synth_case s g k (swvalue w_pl);
let pos1 = w_tg (mk k) sout pout_from in
let pos2 = swrite w_pl pos1 in
let h = HST.get () in
valid_filter h p (filter_bitsum' b) sout pout_from;
synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
assert (filter_bitsum' b (mk k) == true);
assert (synth_bitsum' b (mk k) == k);
valid_synth h (p `parse_filter` filter_bitsum' b) (synth_bitsum' b) sout pout_from;
valid_bitsum_intro b tag_of_data type_of_tag synth_case p f h sout pout_from;
pos2
) | val swrite_bitsum
(h0: HS.mem)
(space_beyond: nat)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(#s: serializer p {kt.parser_kind_subkind == Some ParserStrong})
(w_tg: leaf_writer_strong s)
(mk: synth_bitsum'_recip_t b)
(#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x)))))
(k:
bitsum'_type b
{ (parse_bitsum_kind kt b type_of_tag f).parser_kind_subkind == Some ParserStrong /\
(dfst (f (bitsum'_key_of_t b k))).parser_kind_subkind == Some ParserStrong })
(w_pl: swriter (g (bitsum'_key_of_t b k)) h0 space_beyond sout pout_from0)
: Tot
(w':
swriter (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g)
h0
space_beyond
sout
pout_from0 {swvalue w' == synth_case.f k (swvalue w_pl)})
let swrite_bitsum
(h0: HS.mem)
(space_beyond: nat)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(#s: serializer p {kt.parser_kind_subkind == Some ParserStrong})
(w_tg: leaf_writer_strong s)
(mk: synth_bitsum'_recip_t b)
(#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x)))))
(k:
bitsum'_type b
{ (parse_bitsum_kind kt b type_of_tag f).parser_kind_subkind == Some ParserStrong /\
(dfst (f (bitsum'_key_of_t b k))).parser_kind_subkind == Some ParserStrong })
(w_pl: swriter (g (bitsum'_key_of_t b k)) h0 space_beyond sout pout_from0)
: Tot
(w':
swriter (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g)
h0
space_beyond
sout
pout_from0 {swvalue w' == synth_case.f k (swvalue w_pl)}) = | false | null | false | SWriter (Ghost.hide (synth_case.f k (swvalue w_pl)))
(fun pout_from ->
serialized_length_eq (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g)
(synth_case.f k (swvalue w_pl));
serialized_length_eq s (synth_bitsum'_recip b k);
serialized_length_eq (g (bitsum'_key_of_t b k)) (swvalue w_pl);
serialize_bitsum_eq_2 b tag_of_data type_of_tag synth_case s g k (swvalue w_pl);
let pos1 = w_tg (mk k) sout pout_from in
let pos2 = swrite w_pl pos1 in
let h = HST.get () in
valid_filter h p (filter_bitsum' b) sout pout_from;
synth_bitsum'_injective b;
synth_bitsum'_recip_inverse b;
assert (filter_bitsum' b (mk k) == true);
assert (synth_bitsum' b (mk k) == k);
valid_synth h (p `parse_filter` (filter_bitsum' b)) (synth_bitsum' b) sout pout_from;
valid_bitsum_intro b tag_of_data type_of_tag synth_case p f h sout pout_from;
pos2) | {
"checked_file": "LowParse.Low.Writers.Instances.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowStar.Endianness.fst.checked",
"LowStar.Buffer.fst.checked",
"LowParse.Low.Writers.fst.checked",
"LowParse.Low.Combinators.fsti.checked",
"LowParse.Low.Bytes.fst.checked",
"LowParse.Low.BitSum.fst.checked",
"LowParse.Endianness.BitFields.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Bytes.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.Low.Writers.Instances.fst"
} | [
"total"
] | [
"FStar.Monotonic.HyperStack.mem",
"Prims.nat",
"LowParse.Slice.slice",
"LowParse.Slice.srel_of_buffer_srel",
"LowParse.Bytes.byte",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.t",
"LowParse.Spec.Base.parser_kind",
"Prims.pos",
"Prims.eqtype",
"LowParse.BitFields.uint_t",
"LowParse.Spec.BitSum.bitsum'",
"LowParse.Spec.BitSum.bitsum'_type",
"LowParse.Spec.BitSum.bitsum'_key_type",
"LowParse.Spec.BitSum.synth_case_t",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"Prims.eq2",
"FStar.Pervasives.Native.option",
"LowParse.Spec.Base.parser_subkind",
"LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind",
"FStar.Pervasives.Native.Some",
"LowParse.Spec.Base.ParserStrong",
"LowParse.Low.Base.leaf_writer_strong",
"LowParse.Spec.BitSum.synth_bitsum'_recip_t",
"Prims.dtuple2",
"Prims.__proj__Mkdtuple2__item___1",
"FStar.Pervasives.dsnd",
"Prims.l_and",
"LowParse.Spec.BitSum.parse_bitsum_kind",
"FStar.Pervasives.dfst",
"LowParse.Spec.BitSum.bitsum'_key_of_t",
"LowParse.Low.Writers.swriter",
"LowParse.Low.Writers.SWriter",
"LowParse.Spec.BitSum.parse_bitsum",
"LowParse.Spec.BitSum.serialize_bitsum",
"FStar.Ghost.hide",
"LowParse.Spec.BitSum.__proj__SynthCase__item__f",
"LowParse.Low.Writers.swvalue",
"Prims.unit",
"LowParse.Low.BitSum.valid_bitsum_intro",
"LowParse.Low.Combinators.valid_synth",
"LowParse.Spec.Combinators.parse_filter_kind",
"LowParse.Spec.Combinators.parse_filter_refine",
"LowParse.Spec.BitSum.filter_bitsum'",
"LowParse.Spec.Combinators.parse_filter",
"LowParse.Spec.BitSum.synth_bitsum'",
"Prims._assert",
"Prims.bool",
"LowParse.Spec.BitSum.synth_bitsum'_recip_inverse",
"LowParse.Spec.BitSum.synth_bitsum'_injective",
"LowParse.Low.Combinators.valid_filter",
"FStar.HyperStack.ST.get",
"LowParse.Low.Writers.swrite",
"LowParse.Spec.BitSum.serialize_bitsum_eq_2",
"LowParse.Low.Base.Spec.serialized_length_eq",
"LowParse.Spec.BitSum.synth_bitsum'_recip"
] | [] | module LowParse.Low.Writers.Instances
include LowParse.Low.Writers
include LowParse.Low.Combinators
include LowParse.Low.Bytes
include LowParse.Low.BitSum
module HS = FStar.HyperStack
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
inline_for_extraction
noextract
let swrite_weaken
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(k2: parser_kind)
(w1: swriter s1 h0 space_beyond sout pout_from0 {
(k2 `is_weaker_than` k1) /\
k2.parser_kind_subkind == Some ParserStrong
})
: Tot (w2: swriter (serialize_weaken k2 s1) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq s1 (swvalue w1);
serialized_length_eq (serialize_weaken k2 s1) (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_weaken k2 p1 h sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_nondep_then'
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(w2: swriter s2 h0 space_beyond sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 space_beyond sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= SWriter (Ghost.hide (swvalue w1, swvalue w2)) (fun pout_from ->
serialized_length_eq (s1 `serialize_nondep_then` s2) (swvalue w1, swvalue w2);
serialize_nondep_then_eq s1 s2 (swvalue w1, swvalue w2);
serialized_length_eq s1 (swvalue w1);
serialized_length_eq s2 (swvalue w2);
let pos1 = swrite w1 pout_from in
let pos2 = swrite w2 pos1 in
let h' = HST.get () in
valid_nondep_then h' p1 p2 sout pout_from;
pos2
)
let max (x1 x2: nat) : Tot nat = if x1 > x2 then x1 else x2
inline_for_extraction
noextract
let swrite_nondep_then
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond1: nat)
(w1: swriter s1 h0 space_beyond1 sout pout_from0)
(#k2: parser_kind)
(#t2: Type)
(#p2: parser k2 t2)
(#s2: serializer p2 { k2.parser_kind_subkind == Some ParserStrong })
(#space_beyond2: nat)
(w2: swriter s2 h0 space_beyond2 sout pout_from0)
: Tot (w: swriter (s1 `serialize_nondep_then` s2) h0 (space_beyond1 `max` space_beyond2) sout pout_from0 {
swvalue w == (swvalue w1, swvalue w2)
})
= [@inline_let]
let sbmax = space_beyond1 `max` space_beyond2 in
weaken_swriter w1 h0 sbmax pout_from0 `swrite_nondep_then'` weaken_swriter w2 h0 sbmax pout_from0
inline_for_extraction
noextract
let swrite_filter
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(cond: (t1 -> GTot bool))
(w1: swriter s1 h0 space_beyond sout pout_from0 { cond (swvalue w1) } )
: Tot (w2: swriter (serialize_filter s1 cond) h0 space_beyond sout pout_from0 {
swvalue w2 == swvalue w1
})
= SWriter (Ghost.hide (swvalue w1)) (fun pout_from ->
serialized_length_eq (serialize_filter s1 cond) (swvalue w1);
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_filter h p1 cond sout pout_from;
res
)
inline_for_extraction
noextract
let swrite_synth
(#h0: HS.mem)
(#sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(#pout_from0: U32.t)
(#k1: parser_kind)
(#t1: Type)
(#p1: parser k1 t1)
(#s1: serializer p1 { k1.parser_kind_subkind == Some ParserStrong })
(#space_beyond: nat)
(w1: swriter s1 h0 space_beyond sout pout_from0)
(#t2: Type)
(f12: (t1 -> GTot t2))
(f21: (t2 -> GTot t1))
(prf: squash (
synth_injective f12 /\
synth_inverse f12 f21
))
: Tot (w2: swriter (serialize_synth p1 f12 s1 f21 ()) h0 space_beyond sout pout_from0 {
swvalue w2 == f12 (swvalue w1) /\
swvalue w1 == f21 (swvalue w2)
})
= [@inline_let] let _ =
serialize_synth_eq p1 f12 s1 f21 () (f12 (swvalue w1));
synth_injective_synth_inverse_synth_inverse_recip f12 f21 ()
in
SWriter (Ghost.hide (f12 (swvalue w1))) (fun pout_from ->
serialized_length_eq (serialize_synth p1 f12 s1 f21 ()) (f12 (swvalue w1));
serialized_length_eq s1 (swvalue w1);
let res = swrite w1 pout_from in
let h = HST.get () in
valid_synth h p1 f12 sout pout_from;
res
)
module U8 = FStar.UInt8
module FB = FStar.Bytes
#push-options "--z3rlimit 16"
inline_for_extraction
noextract
let swrite_flbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(len: U32.t)
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_flbytes (U32.v len)) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_flbytes (U32.v len)) (FB.hide (B.as_seq h0 b));
let payload = B.sub sout.base pout_from len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_flbytes_intro h (U32.v len) sout pout_from;
pout_from `U32.add` len
)
inline_for_extraction
noextract
let swrite_bounded_vlbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.length b == U32.v len /\
B.live h0 b /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlbytes min max) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_bounded_vlbytes min max) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlbytes min max (FB.hide (B.as_seq h0 b));
let pout_payload = pout_from `U32.add` U32.uint_to_t (log256' max) in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
finalize_bounded_vlbytes min max sout pout_from len
)
inline_for_extraction
noextract
let swrite_bounded_vlgenbytes
(h0: HS.mem)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(min: nat)
(max: nat { min <= max /\ max > 0 /\ max < 4294967296 })
(#kk: parser_kind)
(#pk: parser kk (bounded_int32 min max))
(#sk: serializer pk { kk.parser_kind_subkind == Some ParserStrong })
(wk: leaf_writer_strong sk)
(len: U32.t { min <= U32.v len /\ U32.v len <= max })
(b: B.buffer U8.t {
B.live h0 b /\
B.length b == U32.v len /\
B.loc_disjoint (B.loc_buffer b) (loc_slice_from sout pout_from0)
})
: Tot (w: swriter (serialize_bounded_vlgenbytes min max sk) h0 0 sout pout_from0 {
swvalue w == FB.hide (B.as_seq h0 b)
})
= SWriter (Ghost.hide (FB.hide (B.as_seq h0 b))) (fun pout_from ->
serialized_length_eq (serialize_bounded_vlgenbytes min max sk) (FB.hide (B.as_seq h0 b));
length_serialize_bounded_vlgenbytes min max sk (FB.hide (B.as_seq h0 b));
serialized_length_eq sk len;
let pout_payload = swrite (swrite_leaf wk h0 sout pout_from0 len) pout_from in
let payload = B.sub sout.base pout_payload len in
B.blit b 0ul payload 0ul len;
let h = HST.get () in
valid_bounded_vlgenbytes min max pk sout pout_from h;
pout_payload `U32.add` len
)
#pop-options
#push-options "--z3rlimit 32"
inline_for_extraction
noextract
let swrite_bitsum
(h0: HS.mem)
(space_beyond: nat)
(sout: slice (srel_of_buffer_srel (B.trivial_preorder _)) (srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(#s: serializer p { kt.parser_kind_subkind == Some ParserStrong } )
(w_tg: leaf_writer_strong s)
(mk: synth_bitsum'_recip_t b)
(#f: (x: bitsum'_key_type b) -> Tot (k: parser_kind & parser k (type_of_tag x)))
(g: (x: bitsum'_key_type b) -> Tot (serializer (dsnd (f x))))
(k: bitsum'_type b {
(parse_bitsum_kind kt b type_of_tag f).parser_kind_subkind == Some ParserStrong /\
(dfst (f (bitsum'_key_of_t b k))).parser_kind_subkind == Some ParserStrong
})
(w_pl: swriter (g (bitsum'_key_of_t b k)) h0 space_beyond sout pout_from0)
: Tot (w' : swriter (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g) h0 space_beyond sout pout_from0 {
swvalue w' == synth_case.f k (swvalue w_pl) | false | false | LowParse.Low.Writers.Instances.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 32,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val swrite_bitsum
(h0: HS.mem)
(space_beyond: nat)
(sout:
slice (srel_of_buffer_srel (B.trivial_preorder _))
(srel_of_buffer_srel (B.trivial_preorder _)))
(pout_from0: U32.t)
(#kt: parser_kind)
(#tot: pos)
(#t: eqtype)
(#cl: uint_t tot t)
(b: bitsum' cl tot)
(#data: Type)
(tag_of_data: (data -> Tot (bitsum'_type b)))
(type_of_tag: (bitsum'_key_type b -> Tot Type))
(synth_case: synth_case_t b data tag_of_data type_of_tag)
(#p: parser kt t)
(#s: serializer p {kt.parser_kind_subkind == Some ParserStrong})
(w_tg: leaf_writer_strong s)
(mk: synth_bitsum'_recip_t b)
(#f: (x: bitsum'_key_type b -> Tot (k: parser_kind & parser k (type_of_tag x))))
(g: (x: bitsum'_key_type b -> Tot (serializer (dsnd (f x)))))
(k:
bitsum'_type b
{ (parse_bitsum_kind kt b type_of_tag f).parser_kind_subkind == Some ParserStrong /\
(dfst (f (bitsum'_key_of_t b k))).parser_kind_subkind == Some ParserStrong })
(w_pl: swriter (g (bitsum'_key_of_t b k)) h0 space_beyond sout pout_from0)
: Tot
(w':
swriter (serialize_bitsum b tag_of_data type_of_tag synth_case s #f g)
h0
space_beyond
sout
pout_from0 {swvalue w' == synth_case.f k (swvalue w_pl)}) | [] | LowParse.Low.Writers.Instances.swrite_bitsum | {
"file_name": "src/lowparse/LowParse.Low.Writers.Instances.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
h0: FStar.Monotonic.HyperStack.mem ->
space_beyond: Prims.nat ->
sout:
LowParse.Slice.slice (LowParse.Slice.srel_of_buffer_srel (LowStar.Buffer.trivial_preorder LowParse.Bytes.byte
))
(LowParse.Slice.srel_of_buffer_srel (LowStar.Buffer.trivial_preorder LowParse.Bytes.byte)) ->
pout_from0: FStar.UInt32.t ->
b: LowParse.Spec.BitSum.bitsum' cl tot ->
tag_of_data: (_: data -> LowParse.Spec.BitSum.bitsum'_type b) ->
type_of_tag: (_: LowParse.Spec.BitSum.bitsum'_key_type b -> Type) ->
synth_case: LowParse.Spec.BitSum.synth_case_t b data tag_of_data type_of_tag ->
w_tg: LowParse.Low.Base.leaf_writer_strong s ->
mk: LowParse.Spec.BitSum.synth_bitsum'_recip_t b ->
g:
(x: LowParse.Spec.BitSum.bitsum'_key_type b
-> LowParse.Spec.Base.serializer (FStar.Pervasives.dsnd (f x))) ->
k:
LowParse.Spec.BitSum.bitsum'_type b
{ Mkparser_kind'?.parser_kind_subkind (LowParse.Spec.BitSum.parse_bitsum_kind kt
b
type_of_tag
f) ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong /\
Mkparser_kind'?.parser_kind_subkind (FStar.Pervasives.dfst (f (LowParse.Spec.BitSum.bitsum'_key_of_t
b
k))) ==
FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong } ->
w_pl:
LowParse.Low.Writers.swriter (g (LowParse.Spec.BitSum.bitsum'_key_of_t b k))
h0
space_beyond
sout
pout_from0
-> w':
LowParse.Low.Writers.swriter (LowParse.Spec.BitSum.serialize_bitsum b
tag_of_data
type_of_tag
synth_case
s
g)
h0
space_beyond
sout
pout_from0
{ LowParse.Low.Writers.swvalue w' ==
SynthCase?.f synth_case k (LowParse.Low.Writers.swvalue w_pl) } | {
"end_col": 3,
"end_line": 298,
"start_col": 2,
"start_line": 282
} |
Prims.Tot | val qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128 | val qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem = | false | null | false | let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128 | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Spec.P256.PointOps.qmul",
"Hacl.Spec.P256.Qinv.qsquare_times"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b) | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem | [] | Hacl.Spec.P256.Qinv.qinv_x8_x128 | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x6: Spec.P256.PointOps.qelem -> x_11: Spec.P256.PointOps.qelem -> Spec.P256.PointOps.qelem | {
"end_col": 6,
"end_line": 54,
"start_col": 47,
"start_line": 48
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order | let nat_mod_comm_monoid = | false | null | false | M.mk_nat_mod_comm_monoid S.order | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Lib.NatMod.mk_nat_mod_comm_monoid",
"Spec.P256.PointOps.order"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val nat_mod_comm_monoid : Lib.Exponentiation.Definition.comm_monoid (Lib.NatMod.nat_mod Spec.P256.PointOps.order) | [] | Hacl.Spec.P256.Qinv.nat_mod_comm_monoid | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Lib.Exponentiation.Definition.comm_monoid (Lib.NatMod.nat_mod Spec.P256.PointOps.order) | {
"end_col": 58,
"end_line": 12,
"start_col": 26,
"start_line": 12
} |
|
Prims.Tot | val qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem =
let x243 = S.qmul (qsquare_times x240 3) f in
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
x256 | val qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem
let qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem = | false | null | false | let x243 = S.qmul (qsquare_times x240 3) f in
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
x256 | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Spec.P256.PointOps.qmul",
"Hacl.Spec.P256.Qinv.qsquare_times"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210
let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem =
let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240 | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem | [] | Hacl.Spec.P256.Qinv.qinv_x240_x256 | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
f: Spec.P256.PointOps.qelem ->
x240: Spec.P256.PointOps.qelem ->
x_1111: Spec.P256.PointOps.qelem ->
x_10101: Spec.P256.PointOps.qelem
-> Spec.P256.PointOps.qelem | {
"end_col": 6,
"end_line": 100,
"start_col": 63,
"start_line": 96
} |
Prims.Tot | val qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111 : S.qelem) : S.qelem =
let x128 = qinv_x8_x128 x6 x_11 in
let x153 = qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 in
let x177 = qinv_x153_x177 x153 x_101 x_111 x_101111 in
let x210 = qinv_x177_x210 f x177 x_111 x_1111 in
let x240 = qinv_x210_x240 x210 x_11 x_101 x_101111 in
let x256 = qinv_x240_x256 f x240 x_1111 x_10101 in
x256 | val qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem
let qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem = | false | null | false | let x128 = qinv_x8_x128 x6 x_11 in
let x153 = qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 in
let x177 = qinv_x153_x177 x153 x_101 x_111 x_101111 in
let x210 = qinv_x177_x210 f x177 x_111 x_1111 in
let x240 = qinv_x210_x240 x210 x_11 x_101 x_101111 in
let x256 = qinv_x240_x256 f x240 x_1111 x_10101 in
x256 | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Hacl.Spec.P256.Qinv.qinv_x240_x256",
"Hacl.Spec.P256.Qinv.qinv_x210_x240",
"Hacl.Spec.P256.Qinv.qinv_x177_x210",
"Hacl.Spec.P256.Qinv.qinv_x153_x177",
"Hacl.Spec.P256.Qinv.qinv_x134_x153",
"Hacl.Spec.P256.Qinv.qinv_x8_x128"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210
let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem =
let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240
let qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem =
let x243 = S.qmul (qsquare_times x240 3) f in
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
x256 | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem | [] | Hacl.Spec.P256.Qinv.qinv_x8_x256 | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
f: Spec.P256.PointOps.qelem ->
x6: Spec.P256.PointOps.qelem ->
x_11: Spec.P256.PointOps.qelem ->
x_101: Spec.P256.PointOps.qelem ->
x_111: Spec.P256.PointOps.qelem ->
x_1111: Spec.P256.PointOps.qelem ->
x_10101: Spec.P256.PointOps.qelem ->
x_101111: Spec.P256.PointOps.qelem
-> Spec.P256.PointOps.qelem | {
"end_col": 6,
"end_line": 110,
"start_col": 86,
"start_line": 103
} |
Prims.Tot | val qsquare_times (a: S.qelem) (b: nat) : S.qelem | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b | val qsquare_times (a: S.qelem) (b: nat) : S.qelem
let qsquare_times (a: S.qelem) (b: nat) : S.qelem = | false | null | false | SE.exp_pow2 mk_nat_mod_concrete_ops a b | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Prims.nat",
"Spec.Exponentiation.exp_pow2",
"Hacl.Spec.P256.Qinv.mk_nat_mod_concrete_ops"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
} | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qsquare_times (a: S.qelem) (b: nat) : S.qelem | [] | Hacl.Spec.P256.Qinv.qsquare_times | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.P256.PointOps.qelem -> b: Prims.nat -> Spec.P256.PointOps.qelem | {
"end_col": 41,
"end_line": 37,
"start_col": 2,
"start_line": 37
} |
Prims.Tot | val qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210 | val qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem = | false | null | false | let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210 | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Spec.P256.PointOps.qmul",
"Hacl.Spec.P256.Qinv.qsquare_times"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177 | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem | [] | Hacl.Spec.P256.Qinv.qinv_x177_x210 | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
f: Spec.P256.PointOps.qelem ->
x177: Spec.P256.PointOps.qelem ->
x_111: Spec.P256.PointOps.qelem ->
x_1111: Spec.P256.PointOps.qelem
-> Spec.P256.PointOps.qelem | {
"end_col": 6,
"end_line": 83,
"start_col": 61,
"start_line": 75
} |
Prims.Tot | val qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153 | val qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem = | false | null | false | let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153 | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Spec.P256.PointOps.qmul",
"Hacl.Spec.P256.Qinv.qsquare_times"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128 | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem | [] | Hacl.Spec.P256.Qinv.qinv_x134_x153 | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x128: Spec.P256.PointOps.qelem ->
x_11: Spec.P256.PointOps.qelem ->
x_111: Spec.P256.PointOps.qelem ->
x_1111: Spec.P256.PointOps.qelem ->
x_10101: Spec.P256.PointOps.qelem ->
x_101111: Spec.P256.PointOps.qelem
-> Spec.P256.PointOps.qelem | {
"end_col": 6,
"end_line": 63,
"start_col": 81,
"start_line": 57
} |
Prims.Tot | val qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem =
let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240 | val qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem
let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem = | false | null | false | let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240 | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Spec.P256.PointOps.qmul",
"Hacl.Spec.P256.Qinv.qsquare_times"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210 | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem | [] | Hacl.Spec.P256.Qinv.qinv_x210_x240 | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x210: Spec.P256.PointOps.qelem ->
x_11: Spec.P256.PointOps.qelem ->
x_101: Spec.P256.PointOps.qelem ->
x_101111: Spec.P256.PointOps.qelem
-> Spec.P256.PointOps.qelem | {
"end_col": 6,
"end_line": 93,
"start_col": 66,
"start_line": 86
} |
Prims.Tot | val qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177 | val qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem = | false | null | false | let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177 | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Spec.P256.PointOps.qmul",
"Hacl.Spec.P256.Qinv.qsquare_times"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153 | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem | [] | Hacl.Spec.P256.Qinv.qinv_x153_x177 | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
x153: Spec.P256.PointOps.qelem ->
x_101: Spec.P256.PointOps.qelem ->
x_111: Spec.P256.PointOps.qelem ->
x_101111: Spec.P256.PointOps.qelem
-> Spec.P256.PointOps.qelem | {
"end_col": 6,
"end_line": 72,
"start_col": 67,
"start_line": 66
} |
Prims.Tot | val qinv: f:S.qelem -> S.qelem | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv f =
let x_10 = qsquare_times f 1 in // x_10 is used 3x
let x_11 = S.qmul x_10 f in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1010 = qsquare_times x_101 1 in // x_1010 is used 2x
let x_1111 = S.qmul x_101 x_1010 in
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
let x_101010 = qsquare_times x_10101 1 in // x_101010 is used 2x
let x_101111 = S.qmul x_101 x_101010 in
let x6 = S.qmul x_10101 x_101010 in
qinv_x8_x256 f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111 | val qinv: f:S.qelem -> S.qelem
let qinv f = | false | null | false | let x_10 = qsquare_times f 1 in
let x_11 = S.qmul x_10 f in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1010 = qsquare_times x_101 1 in
let x_1111 = S.qmul x_101 x_1010 in
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
let x_101010 = qsquare_times x_10101 1 in
let x_101111 = S.qmul x_101 x_101010 in
let x6 = S.qmul x_10101 x_101010 in
qinv_x8_x256 f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111 | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Hacl.Spec.P256.Qinv.qinv_x8_x256",
"Spec.P256.PointOps.qmul",
"Hacl.Spec.P256.Qinv.qsquare_times"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210
let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem =
let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240
let qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem =
let x243 = S.qmul (qsquare_times x240 3) f in
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
x256
let qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111 : S.qelem) : S.qelem =
let x128 = qinv_x8_x128 x6 x_11 in
let x153 = qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 in
let x177 = qinv_x153_x177 x153 x_101 x_111 x_101111 in
let x210 = qinv_x177_x210 f x177 x_111 x_1111 in
let x240 = qinv_x210_x240 x210 x_11 x_101 x_101111 in
let x256 = qinv_x240_x256 f x240 x_1111 x_10101 in
x256
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*) | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv: f:S.qelem -> S.qelem | [] | Hacl.Spec.P256.Qinv.qinv | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.P256.PointOps.qelem -> Spec.P256.PointOps.qelem | {
"end_col": 60,
"end_line": 131,
"start_col": 12,
"start_line": 118
} |
Prims.Tot | val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sqr_mod x = S.qmul x x | val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = | false | null | false | S.qmul x x | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Spec.P256.PointOps.qmul"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid | [] | Hacl.Spec.P256.Qinv.sqr_mod | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Exponentiation.sqr_st Spec.P256.PointOps.qelem Hacl.Spec.P256.Qinv.mk_to_nat_mod_comm_monoid | {
"end_col": 26,
"end_line": 27,
"start_col": 16,
"start_line": 27
} |
Prims.Tot | val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_mod x y = S.qmul x y | val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = | false | null | false | S.qmul x y | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Spec.P256.PointOps.qelem",
"Spec.P256.PointOps.qmul"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1 | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid | [] | Hacl.Spec.P256.Qinv.mul_mod | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Exponentiation.mul_st Spec.P256.PointOps.qelem Hacl.Spec.P256.Qinv.mk_to_nat_mod_comm_monoid | {
"end_col": 28,
"end_line": 24,
"start_col": 18,
"start_line": 24
} |
FStar.Pervasives.Lemma | val qinv_is_qinv_lemma: f:S.qelem -> Lemma (qinv f == S.qinv f) | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_is_qinv_lemma f =
qinv_lemma f;
assert (qinv f == M.pow f (S.order - 2) % S.order);
M.lemma_pow_mod #S.order f (S.order - 2) | val qinv_is_qinv_lemma: f:S.qelem -> Lemma (qinv f == S.qinv f)
let qinv_is_qinv_lemma f = | false | null | true | qinv_lemma f;
assert (qinv f == M.pow f (S.order - 2) % S.order);
M.lemma_pow_mod #S.order f (S.order - 2) | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.P256.PointOps.qelem",
"Lib.NatMod.lemma_pow_mod",
"Spec.P256.PointOps.order",
"Prims.op_Subtraction",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.P256.Qinv.qinv",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Hacl.Spec.P256.Qinv.qinv_lemma"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210
let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem =
let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240
let qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem =
let x243 = S.qmul (qsquare_times x240 3) f in
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
x256
let qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111 : S.qelem) : S.qelem =
let x128 = qinv_x8_x128 x6 x_11 in
let x153 = qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 in
let x177 = qinv_x153_x177 x153 x_101 x_111 x_101111 in
let x210 = qinv_x177_x210 f x177 x_111 x_1111 in
let x240 = qinv_x210_x240 x210 x_11 x_101 x_101111 in
let x256 = qinv_x240_x256 f x240 x_1111 x_10101 in
x256
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_10 = qsquare_times f 1 in // x_10 is used 3x
let x_11 = S.qmul x_10 f in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1010 = qsquare_times x_101 1 in // x_1010 is used 2x
let x_1111 = S.qmul x_101 x_1010 in
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
let x_101010 = qsquare_times x_10101 1 in // x_101010 is used 2x
let x_101111 = S.qmul x_101 x_101010 in
let x6 = S.qmul x_10101 x_101010 in
qinv_x8_x256 f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111
// TODO: mv to lib/
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.order)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.order;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.order)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.order) (M.pow f b % S.order) == M.pow f (a + b) % S.order)
let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.order) (M.pow f b % S.order);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.order) S.order;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.order }
M.pow f a * M.pow f b % S.order;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.order;
}
val lemma_pow_pow_mod: f:S.qelem -> a:nat -> b:nat ->
Lemma (M.pow (M.pow f a % S.order) b % S.order == M.pow f (a * b) % S.order)
let lemma_pow_pow_mod f a b =
calc (==) {
M.pow (M.pow f a % S.order) b % S.order;
(==) { M.lemma_pow_mod_base (M.pow f a) b S.order }
M.pow (M.pow f a) b % S.order;
(==) { M.lemma_pow_mul f a b }
M.pow f (a * b) % S.order;
}
val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.order) b % S.order) (M.pow f c % S.order) == M.pow f (a * b + c) % S.order)
let lemma_pow_pow_mod_mul f a b c =
calc (==) {
S.qmul (M.pow (M.pow f a % S.order) b % S.order) (M.pow f c % S.order);
(==) { lemma_pow_pow_mod f a b }
S.qmul (M.pow f (a * b) % S.order) (M.pow f c % S.order);
(==) { lemma_pow_mod_mul f (a * b) c }
M.pow f (a * b + c) % S.order;
}
//////////////////////////////
// S.order - 2 = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f
val qinv_lemma: f:S.qelem -> Lemma (qinv f == M.pow f (S.order - 2) % S.order)
let qinv_lemma f =
let x_10 = qsquare_times f 1 in
qsquare_times_lemma f 1;
assert_norm (pow2 1 = 0x2);
assert (x_10 == M.pow f 0x2 % S.order);
let x_11 = S.qmul x_10 f in
lemma_pow_mod_1 f;
lemma_pow_mod_mul f 0x2 0x1;
assert (x_11 == M.pow f 0x3 % S.order);
let x_101 = S.qmul x_10 x_11 in
lemma_pow_mod_mul f 0x2 0x3;
assert (x_101 == M.pow f 0x5 % S.order);
let x_111 = S.qmul x_10 x_101 in
lemma_pow_mod_mul f 0x2 0x5;
assert (x_111 == M.pow f 0x7 % S.order);
let x_1010 = qsquare_times x_101 1 in
qsquare_times_lemma x_101 1;
assert_norm (pow2 1 = 2);
lemma_pow_pow_mod f 0x5 0x2;
assert (x_1010 == M.pow f 0xa % S.order);
let x_1111 = S.qmul x_101 x_1010 in
lemma_pow_mod_mul f 0x5 0xa;
assert (x_1111 == M.pow f 0xf % S.order);
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
qsquare_times_lemma x_1010 1;
lemma_pow_pow_mod_mul f 0xa 0x2 0x1;
assert (x_10101 == M.pow f 0x15 % S.order);
let x_101010 = qsquare_times x_10101 1 in
qsquare_times_lemma x_10101 1;
lemma_pow_pow_mod f 0x15 0x2;
assert (x_101010 == M.pow f 0x2a % S.order);
let x_101111 = S.qmul x_101 x_101010 in
lemma_pow_mod_mul f 0x5 0x2a;
assert (x_101111 == M.pow f 0x2f % S.order);
let x6 = S.qmul x_10101 x_101010 in
lemma_pow_mod_mul f 0x15 0x2a;
assert (x6 == M.pow f 0x3f % S.order);
let x8 = S.qmul (qsquare_times x6 2) x_11 in
qsquare_times_lemma x6 2;
assert_norm (pow2 2 = 0x4);
lemma_pow_pow_mod_mul f 0x3f 0x4 0x3;
assert (x8 == M.pow f 0xff % S.order);
let x16 = S.qmul (qsquare_times x8 8) x8 in
qsquare_times_lemma x8 8;
assert_norm (pow2 8 = 0x100);
lemma_pow_pow_mod_mul f 0xff 0x100 0xff;
assert (x16 == M.pow f 0xffff % S.order);
let x32 = S.qmul (qsquare_times x16 16) x16 in
qsquare_times_lemma x16 16;
assert_norm (pow2 16 = 0x10000);
lemma_pow_pow_mod_mul f 0xffff 0x10000 0xffff;
assert (x32 == M.pow f 0xffffffff % S.order);
let x96 = S.qmul (qsquare_times x32 64) x32 in
qsquare_times_lemma x32 64;
assert_norm (pow2 64 = 0x10000000000000000);
lemma_pow_pow_mod_mul f 0xffffffff 0x10000000000000000 0xffffffff;
assert (x96 == M.pow f 0xffffffff00000000ffffffff % S.order);
let x128 = S.qmul (qsquare_times x96 32) x32 in
qsquare_times_lemma x96 32;
assert_norm (pow2 32 = 0x100000000);
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffff 0x100000000 0xffffffff;
assert (x128 == M.pow f 0xffffffff00000000ffffffffffffffff % S.order);
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
qsquare_times_lemma x128 6;
assert_norm (pow2 6 = 0x40);
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffff 0x40 0x2f;
assert (x134 == M.pow f 0x3fffffffc00000003fffffffffffffffef % S.order);
let x139 = S.qmul (qsquare_times x134 5) x_111 in
qsquare_times_lemma x134 5;
assert_norm (pow2 5 = 0x20);
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef 0x20 0x7;
assert (x139 == M.pow f 0x7fffffff800000007fffffffffffffffde7 % S.order);
let x143 = S.qmul (qsquare_times x139 4) x_11 in
qsquare_times_lemma x139 4;
assert_norm (pow2 4 = 0x10);
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde7 0x10 0x3;
assert (x143 == M.pow f 0x7fffffff800000007fffffffffffffffde73 % S.order);
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
qsquare_times_lemma x143 5;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde73 0x20 0xf;
assert (x148 == M.pow f 0xffffffff00000000ffffffffffffffffbce6f % S.order);
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
qsquare_times_lemma x148 5;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6f 0x20 0x15;
assert (x153 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf5 % S.order);
let x157 = S.qmul (qsquare_times x153 4) x_101 in
qsquare_times_lemma x153 4;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf5 0x10 0x5;
assert (x157 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55 % S.order);
let x160 = S.qmul (qsquare_times x157 3) x_101 in
qsquare_times_lemma x157 3;
assert_norm (pow2 3 = 0x8);
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55 0x8 0x5;
assert (x160 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faad % S.order);
let x163 = S.qmul (qsquare_times x160 3) x_101 in
qsquare_times_lemma x160 3;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faad 0x8 0x5;
assert (x163 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d % S.order);
let x168 = S.qmul (qsquare_times x163 5) x_111 in
qsquare_times_lemma x163 5;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d 0x20 0x7;
assert (x168 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7 % S.order);
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
qsquare_times_lemma x168 9;
assert_norm (pow2 9 = 0x200);
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7 0x200 0x2f;
assert (x177 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f % S.order);
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
qsquare_times_lemma x177 6;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f 0x40 0xf;
assert (x183 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf % S.order);
let x185 = S.qmul (qsquare_times x183 2) f in
qsquare_times_lemma x183 2;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf 0x4 0x1;
assert (x185 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d % S.order);
let x190 = S.qmul (qsquare_times x185 5) f in
qsquare_times_lemma x185 5;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d 0x20 0x1;
assert (x190 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a1 % S.order);
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
qsquare_times_lemma x190 6;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a1 0x40 0xf;
assert (x196 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f % S.order);
let x201 = S.qmul (qsquare_times x196 5) x_111 in
qsquare_times_lemma x196 5;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f 0x20 0x7;
assert (x201 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e7 % S.order);
let x205 = S.qmul (qsquare_times x201 4) x_111 in
qsquare_times_lemma x201 4;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e7 0x10 0x7;
assert (x205 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e77 % S.order);
let x210 = S.qmul (qsquare_times x205 5) x_111 in
qsquare_times_lemma x205 5;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e77 0x20 0x7;
assert (x210 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee7 % S.order);
let x215 = S.qmul (qsquare_times x210 5) x_101 in
qsquare_times_lemma x210 5;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee7 0x20 0x5;
assert (x215 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5 % S.order);
let x218 = S.qmul (qsquare_times x215 3) x_11 in
qsquare_times_lemma x215 3;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5 0x8 0x3;
assert (x218 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b % S.order);
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
qsquare_times_lemma x218 10;
assert_norm (pow2 10 = 0x400);
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b 0x400 0x2f;
assert (x228 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f % S.order);
let x230 = S.qmul (qsquare_times x228 2) x_11 in
qsquare_times_lemma x228 2;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f 0x4 0x3;
assert (x230 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf % S.order);
let x235 = S.qmul (qsquare_times x230 5) x_11 in
qsquare_times_lemma x230 5;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf 0x20 0x3;
assert (x235 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e3 % S.order);
let x240 = S.qmul (qsquare_times x235 5) x_11 in
qsquare_times_lemma x235 5;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e3 0x20 0x3;
assert (x240 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63 % S.order);
let x243 = S.qmul (qsquare_times x240 3) f in
qsquare_times_lemma x240 3;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63 0x8 0x1;
assert (x243 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e319 % S.order);
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
qsquare_times_lemma x243 7;
assert_norm (pow2 7 = 0x80);
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e319 0x80 0x15;
assert (x250 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf18c95 % S.order);
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
qsquare_times_lemma x250 6;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf18c95 0x40 0xf;
assert (x256 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f % S.order);
assert_norm (S.order - 2 = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f)
val qinv_is_qinv_lemma: f:S.qelem -> Lemma (qinv f == S.qinv f) | false | false | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_is_qinv_lemma: f:S.qelem -> Lemma (qinv f == S.qinv f) | [] | Hacl.Spec.P256.Qinv.qinv_is_qinv_lemma | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.P256.PointOps.qelem
-> FStar.Pervasives.Lemma (ensures Hacl.Spec.P256.Qinv.qinv f == Spec.P256.PointOps.qinv f) | {
"end_col": 42,
"end_line": 405,
"start_col": 2,
"start_line": 403
} |
FStar.Pervasives.Lemma | val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.order) | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.order;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.order) | val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.order)
let lemma_pow_mod_1 f = | false | null | true | M.lemma_pow1 f;
Math.Lemmas.small_mod f S.order;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.order) | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.P256.PointOps.qelem",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.P256.PointOps.order",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.pow2",
"FStar.Math.Lemmas.small_mod",
"Lib.NatMod.lemma_pow1"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210
let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem =
let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240
let qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem =
let x243 = S.qmul (qsquare_times x240 3) f in
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
x256
let qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111 : S.qelem) : S.qelem =
let x128 = qinv_x8_x128 x6 x_11 in
let x153 = qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 in
let x177 = qinv_x153_x177 x153 x_101 x_111 x_101111 in
let x210 = qinv_x177_x210 f x177 x_111 x_1111 in
let x240 = qinv_x210_x240 x210 x_11 x_101 x_101111 in
let x256 = qinv_x240_x256 f x240 x_1111 x_10101 in
x256
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_10 = qsquare_times f 1 in // x_10 is used 3x
let x_11 = S.qmul x_10 f in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1010 = qsquare_times x_101 1 in // x_1010 is used 2x
let x_1111 = S.qmul x_101 x_1010 in
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
let x_101010 = qsquare_times x_10101 1 in // x_101010 is used 2x
let x_101111 = S.qmul x_101 x_101010 in
let x6 = S.qmul x_10101 x_101010 in
qinv_x8_x256 f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111
// TODO: mv to lib/
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.order) | false | false | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.order) | [] | Hacl.Spec.P256.Qinv.lemma_pow_mod_1 | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.P256.PointOps.qelem
-> FStar.Pervasives.Lemma (ensures f == Lib.NatMod.pow f 1 % Spec.P256.PointOps.order) | {
"end_col": 35,
"end_line": 140,
"start_col": 2,
"start_line": 137
} |
Prims.Tot | val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let one_mod _ = 1 | val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = | false | null | false | 1 | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"total"
] | [
"Prims.unit",
"Spec.P256.PointOps.qelem"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
} | false | true | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid | [] | Hacl.Spec.P256.Qinv.one_mod | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | Spec.Exponentiation.one_st Spec.P256.PointOps.qelem Hacl.Spec.P256.Qinv.mk_to_nat_mod_comm_monoid | {
"end_col": 17,
"end_line": 21,
"start_col": 16,
"start_line": 21
} |
FStar.Pervasives.Lemma | val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order) | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b) | val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b = | false | null | true | SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b) | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.P256.PointOps.qelem",
"Prims.nat",
"Lib.NatMod.lemma_pow_nat_mod_is_pow",
"Spec.P256.PointOps.order",
"Prims.pow2",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.l_or",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.P256.Qinv.qsquare_times",
"Lib.Exponentiation.Definition.pow",
"Lib.NatMod.nat_mod",
"Hacl.Spec.P256.Qinv.nat_mod_comm_monoid",
"Lib.Exponentiation.exp_pow2_lemma",
"Spec.Exponentiation.exp_pow2_lemma",
"Hacl.Spec.P256.Qinv.mk_nat_mod_concrete_ops"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order) | false | false | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order) | [] | Hacl.Spec.P256.Qinv.qsquare_times_lemma | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Spec.P256.PointOps.qelem -> b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.P256.Qinv.qsquare_times a b ==
Lib.NatMod.pow a (Prims.pow2 b) % Spec.P256.PointOps.order) | {
"end_col": 48,
"end_line": 45,
"start_col": 2,
"start_line": 42
} |
FStar.Pervasives.Lemma | val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.order) (M.pow f b % S.order) == M.pow f (a + b) % S.order) | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.order) (M.pow f b % S.order);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.order) S.order;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.order }
M.pow f a * M.pow f b % S.order;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.order;
} | val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.order) (M.pow f b % S.order) == M.pow f (a + b) % S.order)
let lemma_pow_mod_mul f a b = | false | null | true | calc ( == ) {
S.qmul (M.pow f a % S.order) (M.pow f b % S.order);
( == ) { (Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.order) S.order;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.order) }
M.pow f a * M.pow f b % S.order;
( == ) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.order;
} | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.P256.PointOps.qelem",
"Prims.nat",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Spec.P256.PointOps.qmul",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.P256.PointOps.order",
"Prims.op_Addition",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Mul.op_Star",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Prims.squash",
"Lib.NatMod.lemma_pow_add"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210
let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem =
let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240
let qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem =
let x243 = S.qmul (qsquare_times x240 3) f in
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
x256
let qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111 : S.qelem) : S.qelem =
let x128 = qinv_x8_x128 x6 x_11 in
let x153 = qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 in
let x177 = qinv_x153_x177 x153 x_101 x_111 x_101111 in
let x210 = qinv_x177_x210 f x177 x_111 x_1111 in
let x240 = qinv_x210_x240 x210 x_11 x_101 x_101111 in
let x256 = qinv_x240_x256 f x240 x_1111 x_10101 in
x256
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_10 = qsquare_times f 1 in // x_10 is used 3x
let x_11 = S.qmul x_10 f in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1010 = qsquare_times x_101 1 in // x_1010 is used 2x
let x_1111 = S.qmul x_101 x_1010 in
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
let x_101010 = qsquare_times x_10101 1 in // x_101010 is used 2x
let x_101111 = S.qmul x_101 x_101010 in
let x6 = S.qmul x_10101 x_101010 in
qinv_x8_x256 f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111
// TODO: mv to lib/
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.order)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.order;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.order)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.order) (M.pow f b % S.order) == M.pow f (a + b) % S.order) | false | false | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.order) (M.pow f b % S.order) == M.pow f (a + b) % S.order) | [] | Hacl.Spec.P256.Qinv.lemma_pow_mod_mul | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.P256.PointOps.qelem -> a: Prims.nat -> b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Spec.P256.PointOps.qmul (Lib.NatMod.pow f a % Spec.P256.PointOps.order)
(Lib.NatMod.pow f b % Spec.P256.PointOps.order) ==
Lib.NatMod.pow f (a + b) % Spec.P256.PointOps.order) | {
"end_col": 3,
"end_line": 154,
"start_col": 2,
"start_line": 146
} |
FStar.Pervasives.Lemma | val lemma_pow_pow_mod: f:S.qelem -> a:nat -> b:nat ->
Lemma (M.pow (M.pow f a % S.order) b % S.order == M.pow f (a * b) % S.order) | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_pow_pow_mod f a b =
calc (==) {
M.pow (M.pow f a % S.order) b % S.order;
(==) { M.lemma_pow_mod_base (M.pow f a) b S.order }
M.pow (M.pow f a) b % S.order;
(==) { M.lemma_pow_mul f a b }
M.pow f (a * b) % S.order;
} | val lemma_pow_pow_mod: f:S.qelem -> a:nat -> b:nat ->
Lemma (M.pow (M.pow f a % S.order) b % S.order == M.pow f (a * b) % S.order)
let lemma_pow_pow_mod f a b = | false | null | true | calc ( == ) {
M.pow (M.pow f a % S.order) b % S.order;
( == ) { M.lemma_pow_mod_base (M.pow f a) b S.order }
M.pow (M.pow f a) b % S.order;
( == ) { M.lemma_pow_mul f a b }
M.pow f (a * b) % S.order;
} | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.P256.PointOps.qelem",
"Prims.nat",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.P256.PointOps.order",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.NatMod.lemma_pow_mod_base",
"Prims.squash",
"Lib.NatMod.lemma_pow_mul"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210
let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem =
let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240
let qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem =
let x243 = S.qmul (qsquare_times x240 3) f in
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
x256
let qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111 : S.qelem) : S.qelem =
let x128 = qinv_x8_x128 x6 x_11 in
let x153 = qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 in
let x177 = qinv_x153_x177 x153 x_101 x_111 x_101111 in
let x210 = qinv_x177_x210 f x177 x_111 x_1111 in
let x240 = qinv_x210_x240 x210 x_11 x_101 x_101111 in
let x256 = qinv_x240_x256 f x240 x_1111 x_10101 in
x256
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_10 = qsquare_times f 1 in // x_10 is used 3x
let x_11 = S.qmul x_10 f in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1010 = qsquare_times x_101 1 in // x_1010 is used 2x
let x_1111 = S.qmul x_101 x_1010 in
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
let x_101010 = qsquare_times x_10101 1 in // x_101010 is used 2x
let x_101111 = S.qmul x_101 x_101010 in
let x6 = S.qmul x_10101 x_101010 in
qinv_x8_x256 f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111
// TODO: mv to lib/
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.order)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.order;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.order)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.order) (M.pow f b % S.order) == M.pow f (a + b) % S.order)
let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.order) (M.pow f b % S.order);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.order) S.order;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.order }
M.pow f a * M.pow f b % S.order;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.order;
}
val lemma_pow_pow_mod: f:S.qelem -> a:nat -> b:nat ->
Lemma (M.pow (M.pow f a % S.order) b % S.order == M.pow f (a * b) % S.order) | false | false | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_pow_pow_mod: f:S.qelem -> a:nat -> b:nat ->
Lemma (M.pow (M.pow f a % S.order) b % S.order == M.pow f (a * b) % S.order) | [] | Hacl.Spec.P256.Qinv.lemma_pow_pow_mod | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.P256.PointOps.qelem -> a: Prims.nat -> b: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Lib.NatMod.pow (Lib.NatMod.pow f a % Spec.P256.PointOps.order) b % Spec.P256.PointOps.order ==
Lib.NatMod.pow f (a * b) % Spec.P256.PointOps.order) | {
"end_col": 5,
"end_line": 166,
"start_col": 2,
"start_line": 160
} |
FStar.Pervasives.Lemma | val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.order) b % S.order) (M.pow f c % S.order) == M.pow f (a * b + c) % S.order) | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_pow_pow_mod_mul f a b c =
calc (==) {
S.qmul (M.pow (M.pow f a % S.order) b % S.order) (M.pow f c % S.order);
(==) { lemma_pow_pow_mod f a b }
S.qmul (M.pow f (a * b) % S.order) (M.pow f c % S.order);
(==) { lemma_pow_mod_mul f (a * b) c }
M.pow f (a * b + c) % S.order;
} | val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.order) b % S.order) (M.pow f c % S.order) == M.pow f (a * b + c) % S.order)
let lemma_pow_pow_mod_mul f a b c = | false | null | true | calc ( == ) {
S.qmul (M.pow (M.pow f a % S.order) b % S.order) (M.pow f c % S.order);
( == ) { lemma_pow_pow_mod f a b }
S.qmul (M.pow f (a * b) % S.order) (M.pow f c % S.order);
( == ) { lemma_pow_mod_mul f (a * b) c }
M.pow f (a * b + c) % S.order;
} | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.P256.PointOps.qelem",
"Prims.nat",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Spec.P256.PointOps.qmul",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Spec.P256.PointOps.order",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.P256.Qinv.lemma_pow_pow_mod",
"Prims.squash",
"Hacl.Spec.P256.Qinv.lemma_pow_mod_mul"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210
let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem =
let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240
let qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem =
let x243 = S.qmul (qsquare_times x240 3) f in
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
x256
let qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111 : S.qelem) : S.qelem =
let x128 = qinv_x8_x128 x6 x_11 in
let x153 = qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 in
let x177 = qinv_x153_x177 x153 x_101 x_111 x_101111 in
let x210 = qinv_x177_x210 f x177 x_111 x_1111 in
let x240 = qinv_x210_x240 x210 x_11 x_101 x_101111 in
let x256 = qinv_x240_x256 f x240 x_1111 x_10101 in
x256
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_10 = qsquare_times f 1 in // x_10 is used 3x
let x_11 = S.qmul x_10 f in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1010 = qsquare_times x_101 1 in // x_1010 is used 2x
let x_1111 = S.qmul x_101 x_1010 in
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
let x_101010 = qsquare_times x_10101 1 in // x_101010 is used 2x
let x_101111 = S.qmul x_101 x_101010 in
let x6 = S.qmul x_10101 x_101010 in
qinv_x8_x256 f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111
// TODO: mv to lib/
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.order)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.order;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.order)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.order) (M.pow f b % S.order) == M.pow f (a + b) % S.order)
let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.order) (M.pow f b % S.order);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.order) S.order;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.order }
M.pow f a * M.pow f b % S.order;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.order;
}
val lemma_pow_pow_mod: f:S.qelem -> a:nat -> b:nat ->
Lemma (M.pow (M.pow f a % S.order) b % S.order == M.pow f (a * b) % S.order)
let lemma_pow_pow_mod f a b =
calc (==) {
M.pow (M.pow f a % S.order) b % S.order;
(==) { M.lemma_pow_mod_base (M.pow f a) b S.order }
M.pow (M.pow f a) b % S.order;
(==) { M.lemma_pow_mul f a b }
M.pow f (a * b) % S.order;
}
val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.order) b % S.order) (M.pow f c % S.order) == M.pow f (a * b + c) % S.order) | false | false | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.order) b % S.order) (M.pow f c % S.order) == M.pow f (a * b + c) % S.order) | [] | Hacl.Spec.P256.Qinv.lemma_pow_pow_mod_mul | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.P256.PointOps.qelem -> a: Prims.nat -> b: Prims.nat -> c: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
Spec.P256.PointOps.qmul (Lib.NatMod.pow (Lib.NatMod.pow f a % Spec.P256.PointOps.order) b %
Spec.P256.PointOps.order)
(Lib.NatMod.pow f c % Spec.P256.PointOps.order) ==
Lib.NatMod.pow f (a * b + c) % Spec.P256.PointOps.order) | {
"end_col": 3,
"end_line": 178,
"start_col": 2,
"start_line": 172
} |
FStar.Pervasives.Lemma | val qinv_lemma: f:S.qelem -> Lemma (qinv f == M.pow f (S.order - 2) % S.order) | [
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let qinv_lemma f =
let x_10 = qsquare_times f 1 in
qsquare_times_lemma f 1;
assert_norm (pow2 1 = 0x2);
assert (x_10 == M.pow f 0x2 % S.order);
let x_11 = S.qmul x_10 f in
lemma_pow_mod_1 f;
lemma_pow_mod_mul f 0x2 0x1;
assert (x_11 == M.pow f 0x3 % S.order);
let x_101 = S.qmul x_10 x_11 in
lemma_pow_mod_mul f 0x2 0x3;
assert (x_101 == M.pow f 0x5 % S.order);
let x_111 = S.qmul x_10 x_101 in
lemma_pow_mod_mul f 0x2 0x5;
assert (x_111 == M.pow f 0x7 % S.order);
let x_1010 = qsquare_times x_101 1 in
qsquare_times_lemma x_101 1;
assert_norm (pow2 1 = 2);
lemma_pow_pow_mod f 0x5 0x2;
assert (x_1010 == M.pow f 0xa % S.order);
let x_1111 = S.qmul x_101 x_1010 in
lemma_pow_mod_mul f 0x5 0xa;
assert (x_1111 == M.pow f 0xf % S.order);
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
qsquare_times_lemma x_1010 1;
lemma_pow_pow_mod_mul f 0xa 0x2 0x1;
assert (x_10101 == M.pow f 0x15 % S.order);
let x_101010 = qsquare_times x_10101 1 in
qsquare_times_lemma x_10101 1;
lemma_pow_pow_mod f 0x15 0x2;
assert (x_101010 == M.pow f 0x2a % S.order);
let x_101111 = S.qmul x_101 x_101010 in
lemma_pow_mod_mul f 0x5 0x2a;
assert (x_101111 == M.pow f 0x2f % S.order);
let x6 = S.qmul x_10101 x_101010 in
lemma_pow_mod_mul f 0x15 0x2a;
assert (x6 == M.pow f 0x3f % S.order);
let x8 = S.qmul (qsquare_times x6 2) x_11 in
qsquare_times_lemma x6 2;
assert_norm (pow2 2 = 0x4);
lemma_pow_pow_mod_mul f 0x3f 0x4 0x3;
assert (x8 == M.pow f 0xff % S.order);
let x16 = S.qmul (qsquare_times x8 8) x8 in
qsquare_times_lemma x8 8;
assert_norm (pow2 8 = 0x100);
lemma_pow_pow_mod_mul f 0xff 0x100 0xff;
assert (x16 == M.pow f 0xffff % S.order);
let x32 = S.qmul (qsquare_times x16 16) x16 in
qsquare_times_lemma x16 16;
assert_norm (pow2 16 = 0x10000);
lemma_pow_pow_mod_mul f 0xffff 0x10000 0xffff;
assert (x32 == M.pow f 0xffffffff % S.order);
let x96 = S.qmul (qsquare_times x32 64) x32 in
qsquare_times_lemma x32 64;
assert_norm (pow2 64 = 0x10000000000000000);
lemma_pow_pow_mod_mul f 0xffffffff 0x10000000000000000 0xffffffff;
assert (x96 == M.pow f 0xffffffff00000000ffffffff % S.order);
let x128 = S.qmul (qsquare_times x96 32) x32 in
qsquare_times_lemma x96 32;
assert_norm (pow2 32 = 0x100000000);
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffff 0x100000000 0xffffffff;
assert (x128 == M.pow f 0xffffffff00000000ffffffffffffffff % S.order);
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
qsquare_times_lemma x128 6;
assert_norm (pow2 6 = 0x40);
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffff 0x40 0x2f;
assert (x134 == M.pow f 0x3fffffffc00000003fffffffffffffffef % S.order);
let x139 = S.qmul (qsquare_times x134 5) x_111 in
qsquare_times_lemma x134 5;
assert_norm (pow2 5 = 0x20);
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef 0x20 0x7;
assert (x139 == M.pow f 0x7fffffff800000007fffffffffffffffde7 % S.order);
let x143 = S.qmul (qsquare_times x139 4) x_11 in
qsquare_times_lemma x139 4;
assert_norm (pow2 4 = 0x10);
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde7 0x10 0x3;
assert (x143 == M.pow f 0x7fffffff800000007fffffffffffffffde73 % S.order);
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
qsquare_times_lemma x143 5;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde73 0x20 0xf;
assert (x148 == M.pow f 0xffffffff00000000ffffffffffffffffbce6f % S.order);
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
qsquare_times_lemma x148 5;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6f 0x20 0x15;
assert (x153 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf5 % S.order);
let x157 = S.qmul (qsquare_times x153 4) x_101 in
qsquare_times_lemma x153 4;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf5 0x10 0x5;
assert (x157 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55 % S.order);
let x160 = S.qmul (qsquare_times x157 3) x_101 in
qsquare_times_lemma x157 3;
assert_norm (pow2 3 = 0x8);
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55 0x8 0x5;
assert (x160 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faad % S.order);
let x163 = S.qmul (qsquare_times x160 3) x_101 in
qsquare_times_lemma x160 3;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faad 0x8 0x5;
assert (x163 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d % S.order);
let x168 = S.qmul (qsquare_times x163 5) x_111 in
qsquare_times_lemma x163 5;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d 0x20 0x7;
assert (x168 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7 % S.order);
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
qsquare_times_lemma x168 9;
assert_norm (pow2 9 = 0x200);
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7 0x200 0x2f;
assert (x177 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f % S.order);
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
qsquare_times_lemma x177 6;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f 0x40 0xf;
assert (x183 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf % S.order);
let x185 = S.qmul (qsquare_times x183 2) f in
qsquare_times_lemma x183 2;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf 0x4 0x1;
assert (x185 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d % S.order);
let x190 = S.qmul (qsquare_times x185 5) f in
qsquare_times_lemma x185 5;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d 0x20 0x1;
assert (x190 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a1 % S.order);
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
qsquare_times_lemma x190 6;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a1 0x40 0xf;
assert (x196 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f % S.order);
let x201 = S.qmul (qsquare_times x196 5) x_111 in
qsquare_times_lemma x196 5;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f 0x20 0x7;
assert (x201 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e7 % S.order);
let x205 = S.qmul (qsquare_times x201 4) x_111 in
qsquare_times_lemma x201 4;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e7 0x10 0x7;
assert (x205 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e77 % S.order);
let x210 = S.qmul (qsquare_times x205 5) x_111 in
qsquare_times_lemma x205 5;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e77 0x20 0x7;
assert (x210 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee7 % S.order);
let x215 = S.qmul (qsquare_times x210 5) x_101 in
qsquare_times_lemma x210 5;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee7 0x20 0x5;
assert (x215 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5 % S.order);
let x218 = S.qmul (qsquare_times x215 3) x_11 in
qsquare_times_lemma x215 3;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5 0x8 0x3;
assert (x218 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b % S.order);
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
qsquare_times_lemma x218 10;
assert_norm (pow2 10 = 0x400);
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b 0x400 0x2f;
assert (x228 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f % S.order);
let x230 = S.qmul (qsquare_times x228 2) x_11 in
qsquare_times_lemma x228 2;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f 0x4 0x3;
assert (x230 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf % S.order);
let x235 = S.qmul (qsquare_times x230 5) x_11 in
qsquare_times_lemma x230 5;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf 0x20 0x3;
assert (x235 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e3 % S.order);
let x240 = S.qmul (qsquare_times x235 5) x_11 in
qsquare_times_lemma x235 5;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e3 0x20 0x3;
assert (x240 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63 % S.order);
let x243 = S.qmul (qsquare_times x240 3) f in
qsquare_times_lemma x240 3;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63 0x8 0x1;
assert (x243 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e319 % S.order);
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
qsquare_times_lemma x243 7;
assert_norm (pow2 7 = 0x80);
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e319 0x80 0x15;
assert (x250 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf18c95 % S.order);
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
qsquare_times_lemma x250 6;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf18c95 0x40 0xf;
assert (x256 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f % S.order);
assert_norm (S.order - 2 = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f) | val qinv_lemma: f:S.qelem -> Lemma (qinv f == M.pow f (S.order - 2) % S.order)
let qinv_lemma f = | false | null | true | let x_10 = qsquare_times f 1 in
qsquare_times_lemma f 1;
assert_norm (pow2 1 = 0x2);
assert (x_10 == M.pow f 0x2 % S.order);
let x_11 = S.qmul x_10 f in
lemma_pow_mod_1 f;
lemma_pow_mod_mul f 0x2 0x1;
assert (x_11 == M.pow f 0x3 % S.order);
let x_101 = S.qmul x_10 x_11 in
lemma_pow_mod_mul f 0x2 0x3;
assert (x_101 == M.pow f 0x5 % S.order);
let x_111 = S.qmul x_10 x_101 in
lemma_pow_mod_mul f 0x2 0x5;
assert (x_111 == M.pow f 0x7 % S.order);
let x_1010 = qsquare_times x_101 1 in
qsquare_times_lemma x_101 1;
assert_norm (pow2 1 = 2);
lemma_pow_pow_mod f 0x5 0x2;
assert (x_1010 == M.pow f 0xa % S.order);
let x_1111 = S.qmul x_101 x_1010 in
lemma_pow_mod_mul f 0x5 0xa;
assert (x_1111 == M.pow f 0xf % S.order);
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
qsquare_times_lemma x_1010 1;
lemma_pow_pow_mod_mul f 0xa 0x2 0x1;
assert (x_10101 == M.pow f 0x15 % S.order);
let x_101010 = qsquare_times x_10101 1 in
qsquare_times_lemma x_10101 1;
lemma_pow_pow_mod f 0x15 0x2;
assert (x_101010 == M.pow f 0x2a % S.order);
let x_101111 = S.qmul x_101 x_101010 in
lemma_pow_mod_mul f 0x5 0x2a;
assert (x_101111 == M.pow f 0x2f % S.order);
let x6 = S.qmul x_10101 x_101010 in
lemma_pow_mod_mul f 0x15 0x2a;
assert (x6 == M.pow f 0x3f % S.order);
let x8 = S.qmul (qsquare_times x6 2) x_11 in
qsquare_times_lemma x6 2;
assert_norm (pow2 2 = 0x4);
lemma_pow_pow_mod_mul f 0x3f 0x4 0x3;
assert (x8 == M.pow f 0xff % S.order);
let x16 = S.qmul (qsquare_times x8 8) x8 in
qsquare_times_lemma x8 8;
assert_norm (pow2 8 = 0x100);
lemma_pow_pow_mod_mul f 0xff 0x100 0xff;
assert (x16 == M.pow f 0xffff % S.order);
let x32 = S.qmul (qsquare_times x16 16) x16 in
qsquare_times_lemma x16 16;
assert_norm (pow2 16 = 0x10000);
lemma_pow_pow_mod_mul f 0xffff 0x10000 0xffff;
assert (x32 == M.pow f 0xffffffff % S.order);
let x96 = S.qmul (qsquare_times x32 64) x32 in
qsquare_times_lemma x32 64;
assert_norm (pow2 64 = 0x10000000000000000);
lemma_pow_pow_mod_mul f 0xffffffff 0x10000000000000000 0xffffffff;
assert (x96 == M.pow f 0xffffffff00000000ffffffff % S.order);
let x128 = S.qmul (qsquare_times x96 32) x32 in
qsquare_times_lemma x96 32;
assert_norm (pow2 32 = 0x100000000);
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffff 0x100000000 0xffffffff;
assert (x128 == M.pow f 0xffffffff00000000ffffffffffffffff % S.order);
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
qsquare_times_lemma x128 6;
assert_norm (pow2 6 = 0x40);
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffff 0x40 0x2f;
assert (x134 == M.pow f 0x3fffffffc00000003fffffffffffffffef % S.order);
let x139 = S.qmul (qsquare_times x134 5) x_111 in
qsquare_times_lemma x134 5;
assert_norm (pow2 5 = 0x20);
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef 0x20 0x7;
assert (x139 == M.pow f 0x7fffffff800000007fffffffffffffffde7 % S.order);
let x143 = S.qmul (qsquare_times x139 4) x_11 in
qsquare_times_lemma x139 4;
assert_norm (pow2 4 = 0x10);
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde7 0x10 0x3;
assert (x143 == M.pow f 0x7fffffff800000007fffffffffffffffde73 % S.order);
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
qsquare_times_lemma x143 5;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde73 0x20 0xf;
assert (x148 == M.pow f 0xffffffff00000000ffffffffffffffffbce6f % S.order);
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
qsquare_times_lemma x148 5;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6f 0x20 0x15;
assert (x153 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf5 % S.order);
let x157 = S.qmul (qsquare_times x153 4) x_101 in
qsquare_times_lemma x153 4;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf5 0x10 0x5;
assert (x157 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55 % S.order);
let x160 = S.qmul (qsquare_times x157 3) x_101 in
qsquare_times_lemma x157 3;
assert_norm (pow2 3 = 0x8);
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55 0x8 0x5;
assert (x160 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faad % S.order);
let x163 = S.qmul (qsquare_times x160 3) x_101 in
qsquare_times_lemma x160 3;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faad 0x8 0x5;
assert (x163 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d % S.order);
let x168 = S.qmul (qsquare_times x163 5) x_111 in
qsquare_times_lemma x163 5;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d 0x20 0x7;
assert (x168 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7 % S.order);
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
qsquare_times_lemma x168 9;
assert_norm (pow2 9 = 0x200);
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7 0x200 0x2f;
assert (x177 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f % S.order);
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
qsquare_times_lemma x177 6;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f 0x40 0xf;
assert (x183 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf % S.order);
let x185 = S.qmul (qsquare_times x183 2) f in
qsquare_times_lemma x183 2;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf 0x4 0x1;
assert (x185 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d % S.order);
let x190 = S.qmul (qsquare_times x185 5) f in
qsquare_times_lemma x185 5;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d 0x20 0x1;
assert (x190 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a1 % S.order);
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
qsquare_times_lemma x190 6;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a1 0x40 0xf;
assert (x196 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f % S.order);
let x201 = S.qmul (qsquare_times x196 5) x_111 in
qsquare_times_lemma x196 5;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f 0x20 0x7;
assert (x201 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e7 % S.order);
let x205 = S.qmul (qsquare_times x201 4) x_111 in
qsquare_times_lemma x201 4;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e7 0x10 0x7;
assert (x205 == M.pow f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e77 % S.order);
let x210 = S.qmul (qsquare_times x205 5) x_111 in
qsquare_times_lemma x205 5;
lemma_pow_pow_mod_mul f 0x1fffffffe00000001ffffffffffffffff79cdf55b4e2f3d09e77 0x20 0x7;
assert (x210 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee7 % S.order);
let x215 = S.qmul (qsquare_times x210 5) x_101 in
qsquare_times_lemma x210 5;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee7 0x20 0x5;
assert (x215 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5 % S.order);
let x218 = S.qmul (qsquare_times x215 3) x_11 in
qsquare_times_lemma x215 3;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5 0x8 0x3;
assert (x218 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b % S.order);
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
qsquare_times_lemma x218 10;
assert_norm (pow2 10 = 0x400);
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b 0x400 0x2f;
assert (x228 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f % S.order);
let x230 = S.qmul (qsquare_times x228 2) x_11 in
qsquare_times_lemma x228 2;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2f 0x4 0x3;
assert (x230 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf % S.order);
let x235 = S.qmul (qsquare_times x230 5) x_11 in
qsquare_times_lemma x230 5;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf 0x20 0x3;
assert (x235 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e3 % S.order);
let x240 = S.qmul (qsquare_times x235 5) x_11 in
qsquare_times_lemma x235 5;
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e3 0x20 0x3;
assert (x240 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63 % S.order);
let x243 = S.qmul (qsquare_times x240 3) f in
qsquare_times_lemma x240 3;
lemma_pow_pow_mod_mul f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63 0x8 0x1;
assert (x243 == M.pow f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e319 % S.order);
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
qsquare_times_lemma x243 7;
assert_norm (pow2 7 = 0x80);
lemma_pow_pow_mod_mul f 0x7fffffff800000007fffffffffffffffde737d56d38bcf4279dce5617e319 0x80 0x15;
assert (x250 == M.pow f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf18c95 % S.order);
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
qsquare_times_lemma x250 6;
lemma_pow_pow_mod_mul f 0x3fffffffc00000003fffffffffffffffef39beab69c5e7a13cee72b0bf18c95 0x40 0xf;
assert (x256 == M.pow f 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f % S.order
);
assert_norm (S.order - 2 = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f) | {
"checked_file": "Hacl.Spec.P256.Qinv.fst.checked",
"dependencies": [
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.P256.Qinv.fst"
} | [
"lemma"
] | [
"Spec.P256.PointOps.qelem",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Subtraction",
"Spec.P256.PointOps.order",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.op_Modulus",
"Lib.NatMod.pow",
"Hacl.Spec.P256.Qinv.lemma_pow_pow_mod_mul",
"Hacl.Spec.P256.Qinv.qsquare_times_lemma",
"Spec.P256.PointOps.qmul",
"Hacl.Spec.P256.Qinv.qsquare_times",
"Prims.pow2",
"Hacl.Spec.P256.Qinv.lemma_pow_mod_mul",
"Hacl.Spec.P256.Qinv.lemma_pow_pow_mod",
"Hacl.Spec.P256.Qinv.lemma_pow_mod_1"
] | [] | module Hacl.Spec.P256.Qinv
open FStar.Mul
module SE = Spec.Exponentiation
module LE = Lib.Exponentiation
module M = Lib.NatMod
module S = Spec.P256
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let nat_mod_comm_monoid = M.mk_nat_mod_comm_monoid S.order
let mk_to_nat_mod_comm_monoid : SE.to_comm_monoid S.qelem = {
SE.a_spec = S.qelem;
SE.comm_monoid = nat_mod_comm_monoid;
SE.refl = (fun (x:S.qelem) -> x);
}
val one_mod : SE.one_st S.qelem mk_to_nat_mod_comm_monoid
let one_mod _ = 1
val mul_mod : SE.mul_st S.qelem mk_to_nat_mod_comm_monoid
let mul_mod x y = S.qmul x y
val sqr_mod : SE.sqr_st S.qelem mk_to_nat_mod_comm_monoid
let sqr_mod x = S.qmul x x
let mk_nat_mod_concrete_ops : SE.concrete_ops S.qelem = {
SE.to = mk_to_nat_mod_comm_monoid;
SE.one = one_mod;
SE.mul = mul_mod;
SE.sqr = sqr_mod;
}
let qsquare_times (a:S.qelem) (b:nat) : S.qelem =
SE.exp_pow2 mk_nat_mod_concrete_ops a b
val qsquare_times_lemma: a:S.qelem -> b:nat ->
Lemma (qsquare_times a b == M.pow a (pow2 b) % S.order)
let qsquare_times_lemma a b =
SE.exp_pow2_lemma mk_nat_mod_concrete_ops a b;
LE.exp_pow2_lemma nat_mod_comm_monoid a b;
assert (qsquare_times a b == LE.pow nat_mod_comm_monoid a (pow2 b));
M.lemma_pow_nat_mod_is_pow #S.order a (pow2 b)
let qinv_x8_x128 (x6 x_11: S.qelem) : S.qelem =
let x8 = S.qmul (qsquare_times x6 2) x_11 in
let x16 = S.qmul (qsquare_times x8 8) x8 in
let x32 = S.qmul (qsquare_times x16 16) x16 in
let x96 = S.qmul (qsquare_times x32 64) x32 in
let x128 = S.qmul (qsquare_times x96 32) x32 in
x128
let qinv_x134_x153 (x128 x_11 x_111 x_1111 x_10101 x_101111: S.qelem) : S.qelem =
let x134 = S.qmul (qsquare_times x128 6) x_101111 in
let x139 = S.qmul (qsquare_times x134 5) x_111 in
let x143 = S.qmul (qsquare_times x139 4) x_11 in
let x148 = S.qmul (qsquare_times x143 5) x_1111 in
let x153 = S.qmul (qsquare_times x148 5) x_10101 in
x153
let qinv_x153_x177 (x153 x_101 x_111 x_101111: S.qelem) : S.qelem =
let x157 = S.qmul (qsquare_times x153 4) x_101 in
let x160 = S.qmul (qsquare_times x157 3) x_101 in
let x163 = S.qmul (qsquare_times x160 3) x_101 in
let x168 = S.qmul (qsquare_times x163 5) x_111 in
let x177 = S.qmul (qsquare_times x168 9) x_101111 in
x177
let qinv_x177_x210 (f x177 x_111 x_1111: S.qelem) : S.qelem =
let x183 = S.qmul (qsquare_times x177 6) x_1111 in
let x185 = S.qmul (qsquare_times x183 2) f in
let x190 = S.qmul (qsquare_times x185 5) f in
let x196 = S.qmul (qsquare_times x190 6) x_1111 in
let x201 = S.qmul (qsquare_times x196 5) x_111 in
let x205 = S.qmul (qsquare_times x201 4) x_111 in
let x210 = S.qmul (qsquare_times x205 5) x_111 in
x210
let qinv_x210_x240 (x210 x_11 x_101 x_101111: S.qelem) : S.qelem =
let x215 = S.qmul (qsquare_times x210 5) x_101 in
let x218 = S.qmul (qsquare_times x215 3) x_11 in
let x228 = S.qmul (qsquare_times x218 10) x_101111 in
let x230 = S.qmul (qsquare_times x228 2) x_11 in
let x235 = S.qmul (qsquare_times x230 5) x_11 in
let x240 = S.qmul (qsquare_times x235 5) x_11 in
x240
let qinv_x240_x256 (f x240 x_1111 x_10101: S.qelem) : S.qelem =
let x243 = S.qmul (qsquare_times x240 3) f in
let x250 = S.qmul (qsquare_times x243 7) x_10101 in
let x256 = S.qmul (qsquare_times x250 6) x_1111 in
x256
let qinv_x8_x256 (f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111 : S.qelem) : S.qelem =
let x128 = qinv_x8_x128 x6 x_11 in
let x153 = qinv_x134_x153 x128 x_11 x_111 x_1111 x_10101 x_101111 in
let x177 = qinv_x153_x177 x153 x_101 x_111 x_101111 in
let x210 = qinv_x177_x210 f x177 x_111 x_1111 in
let x240 = qinv_x210_x240 x210 x_11 x_101 x_101111 in
let x256 = qinv_x240_x256 f x240 x_1111 x_10101 in
x256
(**
The algorithm is taken from
https://briansmith.org/ecc-inversion-addition-chains-01
*)
val qinv: f:S.qelem -> S.qelem
let qinv f =
let x_10 = qsquare_times f 1 in // x_10 is used 3x
let x_11 = S.qmul x_10 f in
let x_101 = S.qmul x_10 x_11 in
let x_111 = S.qmul x_10 x_101 in
let x_1010 = qsquare_times x_101 1 in // x_1010 is used 2x
let x_1111 = S.qmul x_101 x_1010 in
let x_10101 = S.qmul (qsquare_times x_1010 1) f in
let x_101010 = qsquare_times x_10101 1 in // x_101010 is used 2x
let x_101111 = S.qmul x_101 x_101010 in
let x6 = S.qmul x_10101 x_101010 in
qinv_x8_x256 f x6 x_11 x_101 x_111 x_1111 x_10101 x_101111
// TODO: mv to lib/
val lemma_pow_mod_1: f:S.qelem -> Lemma (f == M.pow f 1 % S.order)
let lemma_pow_mod_1 f =
M.lemma_pow1 f;
Math.Lemmas.small_mod f S.order;
assert_norm (pow2 0 = 1);
assert (f == M.pow f 1 % S.order)
val lemma_pow_mod_mul: f:S.qelem -> a:nat -> b:nat ->
Lemma (S.qmul (M.pow f a % S.order) (M.pow f b % S.order) == M.pow f (a + b) % S.order)
let lemma_pow_mod_mul f a b =
calc (==) {
S.qmul (M.pow f a % S.order) (M.pow f b % S.order);
(==) {
Math.Lemmas.lemma_mod_mul_distr_l (M.pow f a) (M.pow f b % S.order) S.order;
Math.Lemmas.lemma_mod_mul_distr_r (M.pow f a) (M.pow f b) S.order }
M.pow f a * M.pow f b % S.order;
(==) { M.lemma_pow_add f a b }
M.pow f (a + b) % S.order;
}
val lemma_pow_pow_mod: f:S.qelem -> a:nat -> b:nat ->
Lemma (M.pow (M.pow f a % S.order) b % S.order == M.pow f (a * b) % S.order)
let lemma_pow_pow_mod f a b =
calc (==) {
M.pow (M.pow f a % S.order) b % S.order;
(==) { M.lemma_pow_mod_base (M.pow f a) b S.order }
M.pow (M.pow f a) b % S.order;
(==) { M.lemma_pow_mul f a b }
M.pow f (a * b) % S.order;
}
val lemma_pow_pow_mod_mul: f:S.qelem -> a:nat -> b:nat -> c:nat ->
Lemma (S.qmul (M.pow (M.pow f a % S.order) b % S.order) (M.pow f c % S.order) == M.pow f (a * b + c) % S.order)
let lemma_pow_pow_mod_mul f a b c =
calc (==) {
S.qmul (M.pow (M.pow f a % S.order) b % S.order) (M.pow f c % S.order);
(==) { lemma_pow_pow_mod f a b }
S.qmul (M.pow f (a * b) % S.order) (M.pow f c % S.order);
(==) { lemma_pow_mod_mul f (a * b) c }
M.pow f (a * b + c) % S.order;
}
//////////////////////////////
// S.order - 2 = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc63254f | false | false | Hacl.Spec.P256.Qinv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val qinv_lemma: f:S.qelem -> Lemma (qinv f == M.pow f (S.order - 2) % S.order) | [] | Hacl.Spec.P256.Qinv.qinv_lemma | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Qinv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | f: Spec.P256.PointOps.qelem
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.P256.Qinv.qinv f ==
Lib.NatMod.pow f (Spec.P256.PointOps.order - 2) % Spec.P256.PointOps.order) | {
"end_col": 96,
"end_line": 398,
"start_col": 18,
"start_line": 184
} |
Prims.Tot | val get_bitfield16
(value: U16.t)
(bitsFrom: U32.t{U32.v bitsFrom < 16})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i: U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "LBF"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield16 (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i:U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint16.LBF.get_bitfield_gen value bitsFrom bitsTo | val get_bitfield16
(value: U16.t)
(bitsFrom: U32.t{U32.v bitsFrom < 16})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i: U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
let get_bitfield16
(value: U16.t)
(bitsFrom: U32.t{U32.v bitsFrom < 16})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i: U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)} = | false | null | false | LBF.uint16.LBF.get_bitfield_gen value bitsFrom bitsTo | {
"checked_file": "EverParse3d.Prelude.StaticHeader.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "EverParse3d.Prelude.StaticHeader.fst"
} | [
"total"
] | [
"FStar.UInt16.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield_gen",
"LowParse.BitFields.uint16",
"FStar.UInt.size",
"FStar.UInt16.v",
"Prims.op_Subtraction"
] | [] | module EverParse3d.Prelude.StaticHeader
module U64 = FStar.UInt64
module U32 = FStar.UInt32
module U16 = FStar.UInt16
module U8 = FStar.UInt8
module LBF = LowParse.BitFields
////////////////////////////////////////////////////////////////////////////////
// Bit fields
////////////////////////////////////////////////////////////////////////////////
// The get_bitfield operators are least significant bit first by default
// following MSVC (https://learn.microsoft.com/en-us/cpp/c-language/c-bit-fields)
let get_bitfield8
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= LBF.get_bitfield_eq_2 #8 (U8.v value) (U32.v bitsFrom) (U32.v bitsTo);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = value `U8.shift_left` (8ul `U32.sub` bitsTo) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` bitsTo) `U32.add` bitsFrom) in
op2
let get_bitfield16 (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16}) | false | false | EverParse3d.Prelude.StaticHeader.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=10"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield16
(value: U16.t)
(bitsFrom: U32.t{U32.v bitsFrom < 16})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i: U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)} | [] | EverParse3d.Prelude.StaticHeader.get_bitfield16 | {
"file_name": "src/3d/prelude/EverParse3d.Prelude.StaticHeader.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
value: FStar.UInt16.t ->
bitsFrom: FStar.UInt32.t{FStar.UInt32.v bitsFrom < 16} ->
bitsTo:
FStar.UInt32.t{FStar.UInt32.v bitsFrom < FStar.UInt32.v bitsTo /\ FStar.UInt32.v bitsTo <= 16}
-> i:
FStar.UInt16.t
{FStar.UInt.size (FStar.UInt16.v i) (FStar.UInt32.v bitsTo - FStar.UInt32.v bitsFrom)} | {
"end_col": 58,
"end_line": 30,
"start_col": 5,
"start_line": 30
} |
Prims.Tot | val get_bitfield32
(value: U32.t)
(bitsFrom: U32.t{U32.v bitsFrom < 32})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i: U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "LBF"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield32 (value:U32.t)
(bitsFrom:U32.t{U32.v bitsFrom < 32})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i:U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint32.LBF.get_bitfield_gen value bitsFrom bitsTo | val get_bitfield32
(value: U32.t)
(bitsFrom: U32.t{U32.v bitsFrom < 32})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i: U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)}
let get_bitfield32
(value: U32.t)
(bitsFrom: U32.t{U32.v bitsFrom < 32})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i: U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)} = | false | null | false | LBF.uint32.LBF.get_bitfield_gen value bitsFrom bitsTo | {
"checked_file": "EverParse3d.Prelude.StaticHeader.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "EverParse3d.Prelude.StaticHeader.fst"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield_gen",
"LowParse.BitFields.uint32",
"FStar.UInt.size",
"Prims.op_Subtraction"
] | [] | module EverParse3d.Prelude.StaticHeader
module U64 = FStar.UInt64
module U32 = FStar.UInt32
module U16 = FStar.UInt16
module U8 = FStar.UInt8
module LBF = LowParse.BitFields
////////////////////////////////////////////////////////////////////////////////
// Bit fields
////////////////////////////////////////////////////////////////////////////////
// The get_bitfield operators are least significant bit first by default
// following MSVC (https://learn.microsoft.com/en-us/cpp/c-language/c-bit-fields)
let get_bitfield8
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= LBF.get_bitfield_eq_2 #8 (U8.v value) (U32.v bitsFrom) (U32.v bitsTo);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = value `U8.shift_left` (8ul `U32.sub` bitsTo) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` bitsTo) `U32.add` bitsFrom) in
op2
let get_bitfield16 (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i:U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint16.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield32 (value:U32.t)
(bitsFrom:U32.t{U32.v bitsFrom < 32})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32}) | false | false | EverParse3d.Prelude.StaticHeader.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=10"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield32
(value: U32.t)
(bitsFrom: U32.t{U32.v bitsFrom < 32})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i: U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)} | [] | EverParse3d.Prelude.StaticHeader.get_bitfield32 | {
"file_name": "src/3d/prelude/EverParse3d.Prelude.StaticHeader.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
value: FStar.UInt32.t ->
bitsFrom: FStar.UInt32.t{FStar.UInt32.v bitsFrom < 32} ->
bitsTo:
FStar.UInt32.t{FStar.UInt32.v bitsFrom < FStar.UInt32.v bitsTo /\ FStar.UInt32.v bitsTo <= 32}
-> i:
FStar.UInt32.t
{FStar.UInt.size (FStar.UInt32.v i) (FStar.UInt32.v bitsTo - FStar.UInt32.v bitsFrom)} | {
"end_col": 58,
"end_line": 36,
"start_col": 5,
"start_line": 36
} |
Prims.Tot | val get_bitfield64
(value: U64.t)
(bitsFrom: U32.t{U32.v bitsFrom < 64})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i: U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "LBF"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield64 (value:U64.t)
(bitsFrom:U32.t{U32.v bitsFrom < 64})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i:U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint64.LBF.get_bitfield_gen value bitsFrom bitsTo | val get_bitfield64
(value: U64.t)
(bitsFrom: U32.t{U32.v bitsFrom < 64})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i: U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)}
let get_bitfield64
(value: U64.t)
(bitsFrom: U32.t{U32.v bitsFrom < 64})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i: U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)} = | false | null | false | LBF.uint64.LBF.get_bitfield_gen value bitsFrom bitsTo | {
"checked_file": "EverParse3d.Prelude.StaticHeader.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "EverParse3d.Prelude.StaticHeader.fst"
} | [
"total"
] | [
"FStar.UInt64.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"LowParse.BitFields.__proj__Mkuint_t__item__get_bitfield_gen",
"LowParse.BitFields.uint64",
"FStar.UInt.size",
"FStar.UInt64.v",
"Prims.op_Subtraction"
] | [] | module EverParse3d.Prelude.StaticHeader
module U64 = FStar.UInt64
module U32 = FStar.UInt32
module U16 = FStar.UInt16
module U8 = FStar.UInt8
module LBF = LowParse.BitFields
////////////////////////////////////////////////////////////////////////////////
// Bit fields
////////////////////////////////////////////////////////////////////////////////
// The get_bitfield operators are least significant bit first by default
// following MSVC (https://learn.microsoft.com/en-us/cpp/c-language/c-bit-fields)
let get_bitfield8
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= LBF.get_bitfield_eq_2 #8 (U8.v value) (U32.v bitsFrom) (U32.v bitsTo);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = value `U8.shift_left` (8ul `U32.sub` bitsTo) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` bitsTo) `U32.add` bitsFrom) in
op2
let get_bitfield16 (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i:U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint16.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield32 (value:U32.t)
(bitsFrom:U32.t{U32.v bitsFrom < 32})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i:U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint32.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield64 (value:U64.t)
(bitsFrom:U32.t{U32.v bitsFrom < 64})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64}) | false | false | EverParse3d.Prelude.StaticHeader.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=10"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield64
(value: U64.t)
(bitsFrom: U32.t{U32.v bitsFrom < 64})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i: U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)} | [] | EverParse3d.Prelude.StaticHeader.get_bitfield64 | {
"file_name": "src/3d/prelude/EverParse3d.Prelude.StaticHeader.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
value: FStar.UInt64.t ->
bitsFrom: FStar.UInt32.t{FStar.UInt32.v bitsFrom < 64} ->
bitsTo:
FStar.UInt32.t{FStar.UInt32.v bitsFrom < FStar.UInt32.v bitsTo /\ FStar.UInt32.v bitsTo <= 64}
-> i:
FStar.UInt64.t
{FStar.UInt.size (FStar.UInt64.v i) (FStar.UInt32.v bitsTo - FStar.UInt32.v bitsFrom)} | {
"end_col": 58,
"end_line": 42,
"start_col": 5,
"start_line": 42
} |
Prims.Tot | val get_bitfield16_msb_first
(value: U16.t)
(bitsFrom: U32.t{U32.v bitsFrom < 16})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i: U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "LBF"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield16_msb_first (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i:U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
= get_bitfield16 value (16ul `U32.sub` bitsTo) (16ul `U32.sub` bitsFrom) | val get_bitfield16_msb_first
(value: U16.t)
(bitsFrom: U32.t{U32.v bitsFrom < 16})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i: U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
let get_bitfield16_msb_first
(value: U16.t)
(bitsFrom: U32.t{U32.v bitsFrom < 16})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i: U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)} = | false | null | false | get_bitfield16 value (16ul `U32.sub` bitsTo) (16ul `U32.sub` bitsFrom) | {
"checked_file": "EverParse3d.Prelude.StaticHeader.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "EverParse3d.Prelude.StaticHeader.fst"
} | [
"total"
] | [
"FStar.UInt16.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"EverParse3d.Prelude.StaticHeader.get_bitfield16",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"FStar.UInt.size",
"FStar.UInt16.v",
"Prims.op_Subtraction"
] | [] | module EverParse3d.Prelude.StaticHeader
module U64 = FStar.UInt64
module U32 = FStar.UInt32
module U16 = FStar.UInt16
module U8 = FStar.UInt8
module LBF = LowParse.BitFields
////////////////////////////////////////////////////////////////////////////////
// Bit fields
////////////////////////////////////////////////////////////////////////////////
// The get_bitfield operators are least significant bit first by default
// following MSVC (https://learn.microsoft.com/en-us/cpp/c-language/c-bit-fields)
let get_bitfield8
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= LBF.get_bitfield_eq_2 #8 (U8.v value) (U32.v bitsFrom) (U32.v bitsTo);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = value `U8.shift_left` (8ul `U32.sub` bitsTo) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` bitsTo) `U32.add` bitsFrom) in
op2
let get_bitfield16 (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i:U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint16.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield32 (value:U32.t)
(bitsFrom:U32.t{U32.v bitsFrom < 32})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i:U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint32.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield64 (value:U64.t)
(bitsFrom:U32.t{U32.v bitsFrom < 64})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i:U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint64.LBF.get_bitfield_gen value bitsFrom bitsTo
// Most significant bit first variants:
let get_bitfield8_msb_first
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= get_bitfield8 value (8ul `U32.sub` bitsTo) (8ul `U32.sub` bitsFrom)
let get_bitfield16_msb_first (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16}) | false | false | EverParse3d.Prelude.StaticHeader.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=10"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield16_msb_first
(value: U16.t)
(bitsFrom: U32.t{U32.v bitsFrom < 16})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i: U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)} | [] | EverParse3d.Prelude.StaticHeader.get_bitfield16_msb_first | {
"file_name": "src/3d/prelude/EverParse3d.Prelude.StaticHeader.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
value: FStar.UInt16.t ->
bitsFrom: FStar.UInt32.t{FStar.UInt32.v bitsFrom < 16} ->
bitsTo:
FStar.UInt32.t{FStar.UInt32.v bitsFrom < FStar.UInt32.v bitsTo /\ FStar.UInt32.v bitsTo <= 16}
-> i:
FStar.UInt16.t
{FStar.UInt.size (FStar.UInt16.v i) (FStar.UInt32.v bitsTo - FStar.UInt32.v bitsFrom)} | {
"end_col": 75,
"end_line": 57,
"start_col": 5,
"start_line": 57
} |
Prims.Tot | val get_bitfield64_msb_first
(value: U64.t)
(bitsFrom: U32.t{U32.v bitsFrom < 64})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i: U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "LBF"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield64_msb_first (value:U64.t)
(bitsFrom:U32.t{U32.v bitsFrom < 64})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i:U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)}
= get_bitfield64 value (64ul `U32.sub` bitsTo) (64ul `U32.sub` bitsFrom) | val get_bitfield64_msb_first
(value: U64.t)
(bitsFrom: U32.t{U32.v bitsFrom < 64})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i: U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)}
let get_bitfield64_msb_first
(value: U64.t)
(bitsFrom: U32.t{U32.v bitsFrom < 64})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i: U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)} = | false | null | false | get_bitfield64 value (64ul `U32.sub` bitsTo) (64ul `U32.sub` bitsFrom) | {
"checked_file": "EverParse3d.Prelude.StaticHeader.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "EverParse3d.Prelude.StaticHeader.fst"
} | [
"total"
] | [
"FStar.UInt64.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"EverParse3d.Prelude.StaticHeader.get_bitfield64",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"FStar.UInt.size",
"FStar.UInt64.v",
"Prims.op_Subtraction"
] | [] | module EverParse3d.Prelude.StaticHeader
module U64 = FStar.UInt64
module U32 = FStar.UInt32
module U16 = FStar.UInt16
module U8 = FStar.UInt8
module LBF = LowParse.BitFields
////////////////////////////////////////////////////////////////////////////////
// Bit fields
////////////////////////////////////////////////////////////////////////////////
// The get_bitfield operators are least significant bit first by default
// following MSVC (https://learn.microsoft.com/en-us/cpp/c-language/c-bit-fields)
let get_bitfield8
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= LBF.get_bitfield_eq_2 #8 (U8.v value) (U32.v bitsFrom) (U32.v bitsTo);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = value `U8.shift_left` (8ul `U32.sub` bitsTo) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` bitsTo) `U32.add` bitsFrom) in
op2
let get_bitfield16 (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i:U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint16.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield32 (value:U32.t)
(bitsFrom:U32.t{U32.v bitsFrom < 32})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i:U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint32.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield64 (value:U64.t)
(bitsFrom:U32.t{U32.v bitsFrom < 64})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i:U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint64.LBF.get_bitfield_gen value bitsFrom bitsTo
// Most significant bit first variants:
let get_bitfield8_msb_first
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= get_bitfield8 value (8ul `U32.sub` bitsTo) (8ul `U32.sub` bitsFrom)
let get_bitfield16_msb_first (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i:U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
= get_bitfield16 value (16ul `U32.sub` bitsTo) (16ul `U32.sub` bitsFrom)
let get_bitfield32_msb_first (value:U32.t)
(bitsFrom:U32.t{U32.v bitsFrom < 32})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i:U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)}
= get_bitfield32 value (32ul `U32.sub` bitsTo) (32ul `U32.sub` bitsFrom)
let get_bitfield64_msb_first (value:U64.t)
(bitsFrom:U32.t{U32.v bitsFrom < 64})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64}) | false | false | EverParse3d.Prelude.StaticHeader.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=10"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield64_msb_first
(value: U64.t)
(bitsFrom: U32.t{U32.v bitsFrom < 64})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i: U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)} | [] | EverParse3d.Prelude.StaticHeader.get_bitfield64_msb_first | {
"file_name": "src/3d/prelude/EverParse3d.Prelude.StaticHeader.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
value: FStar.UInt64.t ->
bitsFrom: FStar.UInt32.t{FStar.UInt32.v bitsFrom < 64} ->
bitsTo:
FStar.UInt32.t{FStar.UInt32.v bitsFrom < FStar.UInt32.v bitsTo /\ FStar.UInt32.v bitsTo <= 64}
-> i:
FStar.UInt64.t
{FStar.UInt.size (FStar.UInt64.v i) (FStar.UInt32.v bitsTo - FStar.UInt32.v bitsFrom)} | {
"end_col": 75,
"end_line": 69,
"start_col": 5,
"start_line": 69
} |
Prims.Tot | val get_bitfield8_msb_first
(value: U8.t)
(bitsFrom: U32.t{U32.v bitsFrom < 8})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i: U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)}) | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "LBF"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield8_msb_first
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= get_bitfield8 value (8ul `U32.sub` bitsTo) (8ul `U32.sub` bitsFrom) | val get_bitfield8_msb_first
(value: U8.t)
(bitsFrom: U32.t{U32.v bitsFrom < 8})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i: U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
let get_bitfield8_msb_first
(value: U8.t)
(bitsFrom: U32.t{U32.v bitsFrom < 8})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i: U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)}) = | false | null | false | get_bitfield8 value (8ul `U32.sub` bitsTo) (8ul `U32.sub` bitsFrom) | {
"checked_file": "EverParse3d.Prelude.StaticHeader.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "EverParse3d.Prelude.StaticHeader.fst"
} | [
"total"
] | [
"FStar.UInt8.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"EverParse3d.Prelude.StaticHeader.get_bitfield8",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"FStar.UInt.size",
"FStar.UInt8.v",
"Prims.op_Subtraction"
] | [] | module EverParse3d.Prelude.StaticHeader
module U64 = FStar.UInt64
module U32 = FStar.UInt32
module U16 = FStar.UInt16
module U8 = FStar.UInt8
module LBF = LowParse.BitFields
////////////////////////////////////////////////////////////////////////////////
// Bit fields
////////////////////////////////////////////////////////////////////////////////
// The get_bitfield operators are least significant bit first by default
// following MSVC (https://learn.microsoft.com/en-us/cpp/c-language/c-bit-fields)
let get_bitfield8
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= LBF.get_bitfield_eq_2 #8 (U8.v value) (U32.v bitsFrom) (U32.v bitsTo);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = value `U8.shift_left` (8ul `U32.sub` bitsTo) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` bitsTo) `U32.add` bitsFrom) in
op2
let get_bitfield16 (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i:U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint16.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield32 (value:U32.t)
(bitsFrom:U32.t{U32.v bitsFrom < 32})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i:U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint32.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield64 (value:U64.t)
(bitsFrom:U32.t{U32.v bitsFrom < 64})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i:U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint64.LBF.get_bitfield_gen value bitsFrom bitsTo
// Most significant bit first variants:
let get_bitfield8_msb_first
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8}) | false | false | EverParse3d.Prelude.StaticHeader.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=10"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield8_msb_first
(value: U8.t)
(bitsFrom: U32.t{U32.v bitsFrom < 8})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i: U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)}) | [] | EverParse3d.Prelude.StaticHeader.get_bitfield8_msb_first | {
"file_name": "src/3d/prelude/EverParse3d.Prelude.StaticHeader.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
value: FStar.UInt8.t ->
bitsFrom: FStar.UInt32.t{FStar.UInt32.v bitsFrom < 8} ->
bitsTo:
FStar.UInt32.t{FStar.UInt32.v bitsFrom < FStar.UInt32.v bitsTo /\ FStar.UInt32.v bitsTo <= 8}
-> i:
FStar.UInt8.t
{FStar.UInt.size (FStar.UInt8.v i) (FStar.UInt32.v bitsTo - FStar.UInt32.v bitsFrom)} | {
"end_col": 69,
"end_line": 51,
"start_col": 2,
"start_line": 51
} |
Prims.Tot | val get_bitfield8
(value: U8.t)
(bitsFrom: U32.t{U32.v bitsFrom < 8})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i: U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)}) | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "LBF"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield8
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= LBF.get_bitfield_eq_2 #8 (U8.v value) (U32.v bitsFrom) (U32.v bitsTo);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = value `U8.shift_left` (8ul `U32.sub` bitsTo) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` bitsTo) `U32.add` bitsFrom) in
op2 | val get_bitfield8
(value: U8.t)
(bitsFrom: U32.t{U32.v bitsFrom < 8})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i: U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
let get_bitfield8
(value: U8.t)
(bitsFrom: U32.t{U32.v bitsFrom < 8})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i: U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)}) = | false | null | false | LBF.get_bitfield_eq_2 #8 (U8.v value) (U32.v bitsFrom) (U32.v bitsTo);
let op1 = value `U8.shift_left` (8ul `U32.sub` bitsTo) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` bitsTo) `U32.add` bitsFrom) in
op2 | {
"checked_file": "EverParse3d.Prelude.StaticHeader.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "EverParse3d.Prelude.StaticHeader.fst"
} | [
"total"
] | [
"FStar.UInt8.t",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"FStar.UInt8.shift_right",
"FStar.UInt32.add",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"FStar.UInt8.shift_left",
"Prims.unit",
"LowParse.BitFields.get_bitfield_eq_2",
"FStar.UInt8.v",
"FStar.UInt.size",
"Prims.op_Subtraction"
] | [] | module EverParse3d.Prelude.StaticHeader
module U64 = FStar.UInt64
module U32 = FStar.UInt32
module U16 = FStar.UInt16
module U8 = FStar.UInt8
module LBF = LowParse.BitFields
////////////////////////////////////////////////////////////////////////////////
// Bit fields
////////////////////////////////////////////////////////////////////////////////
// The get_bitfield operators are least significant bit first by default
// following MSVC (https://learn.microsoft.com/en-us/cpp/c-language/c-bit-fields)
let get_bitfield8
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8}) | false | false | EverParse3d.Prelude.StaticHeader.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=10"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield8
(value: U8.t)
(bitsFrom: U32.t{U32.v bitsFrom < 8})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i: U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)}) | [] | EverParse3d.Prelude.StaticHeader.get_bitfield8 | {
"file_name": "src/3d/prelude/EverParse3d.Prelude.StaticHeader.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
value: FStar.UInt8.t ->
bitsFrom: FStar.UInt32.t{FStar.UInt32.v bitsFrom < 8} ->
bitsTo:
FStar.UInt32.t{FStar.UInt32.v bitsFrom < FStar.UInt32.v bitsTo /\ FStar.UInt32.v bitsTo <= 8}
-> i:
FStar.UInt8.t
{FStar.UInt.size (FStar.UInt8.v i) (FStar.UInt32.v bitsTo - FStar.UInt32.v bitsFrom)} | {
"end_col": 5,
"end_line": 24,
"start_col": 2,
"start_line": 20
} |
Prims.Tot | val get_bitfield32_msb_first
(value: U32.t)
(bitsFrom: U32.t{U32.v bitsFrom < 32})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i: U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)} | [
{
"abbrev": true,
"full_module": "LowParse.BitFields",
"short_module": "LBF"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.Prelude",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bitfield32_msb_first (value:U32.t)
(bitsFrom:U32.t{U32.v bitsFrom < 32})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i:U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)}
= get_bitfield32 value (32ul `U32.sub` bitsTo) (32ul `U32.sub` bitsFrom) | val get_bitfield32_msb_first
(value: U32.t)
(bitsFrom: U32.t{U32.v bitsFrom < 32})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i: U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)}
let get_bitfield32_msb_first
(value: U32.t)
(bitsFrom: U32.t{U32.v bitsFrom < 32})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i: U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)} = | false | null | false | get_bitfield32 value (32ul `U32.sub` bitsTo) (32ul `U32.sub` bitsFrom) | {
"checked_file": "EverParse3d.Prelude.StaticHeader.fst.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.BitFields.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "EverParse3d.Prelude.StaticHeader.fst"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"EverParse3d.Prelude.StaticHeader.get_bitfield32",
"FStar.UInt32.sub",
"FStar.UInt32.__uint_to_t",
"FStar.UInt.size",
"Prims.op_Subtraction"
] | [] | module EverParse3d.Prelude.StaticHeader
module U64 = FStar.UInt64
module U32 = FStar.UInt32
module U16 = FStar.UInt16
module U8 = FStar.UInt8
module LBF = LowParse.BitFields
////////////////////////////////////////////////////////////////////////////////
// Bit fields
////////////////////////////////////////////////////////////////////////////////
// The get_bitfield operators are least significant bit first by default
// following MSVC (https://learn.microsoft.com/en-us/cpp/c-language/c-bit-fields)
let get_bitfield8
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= LBF.get_bitfield_eq_2 #8 (U8.v value) (U32.v bitsFrom) (U32.v bitsTo);
(* NOTE: due to https://github.com/FStarLang/karamel/issues/102 I need to introduce explicit let-bindings here *)
let op1 = value `U8.shift_left` (8ul `U32.sub` bitsTo) in
let op2 = op1 `U8.shift_right` ((8ul `U32.sub` bitsTo) `U32.add` bitsFrom) in
op2
let get_bitfield16 (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i:U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint16.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield32 (value:U32.t)
(bitsFrom:U32.t{U32.v bitsFrom < 32})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i:U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint32.LBF.get_bitfield_gen value bitsFrom bitsTo
let get_bitfield64 (value:U64.t)
(bitsFrom:U32.t{U32.v bitsFrom < 64})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 64})
: i:U64.t{FStar.UInt.size (U64.v i) (U32.v bitsTo - U32.v bitsFrom)}
= LBF.uint64.LBF.get_bitfield_gen value bitsFrom bitsTo
// Most significant bit first variants:
let get_bitfield8_msb_first
(value:U8.t)
(bitsFrom:U32.t{U32.v bitsFrom < 8})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 8})
: Tot (i:U8.t{FStar.UInt.size (U8.v i) (U32.v bitsTo - U32.v bitsFrom)})
= get_bitfield8 value (8ul `U32.sub` bitsTo) (8ul `U32.sub` bitsFrom)
let get_bitfield16_msb_first (value:U16.t)
(bitsFrom:U32.t{U32.v bitsFrom < 16})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 16})
: i:U16.t{FStar.UInt.size (U16.v i) (U32.v bitsTo - U32.v bitsFrom)}
= get_bitfield16 value (16ul `U32.sub` bitsTo) (16ul `U32.sub` bitsFrom)
let get_bitfield32_msb_first (value:U32.t)
(bitsFrom:U32.t{U32.v bitsFrom < 32})
(bitsTo:U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32}) | false | false | EverParse3d.Prelude.StaticHeader.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=10"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bitfield32_msb_first
(value: U32.t)
(bitsFrom: U32.t{U32.v bitsFrom < 32})
(bitsTo: U32.t{U32.v bitsFrom < U32.v bitsTo /\ U32.v bitsTo <= 32})
: i: U32.t{FStar.UInt.size (U32.v i) (U32.v bitsTo - U32.v bitsFrom)} | [] | EverParse3d.Prelude.StaticHeader.get_bitfield32_msb_first | {
"file_name": "src/3d/prelude/EverParse3d.Prelude.StaticHeader.fst",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
value: FStar.UInt32.t ->
bitsFrom: FStar.UInt32.t{FStar.UInt32.v bitsFrom < 32} ->
bitsTo:
FStar.UInt32.t{FStar.UInt32.v bitsFrom < FStar.UInt32.v bitsTo /\ FStar.UInt32.v bitsTo <= 32}
-> i:
FStar.UInt32.t
{FStar.UInt.size (FStar.UInt32.v i) (FStar.UInt32.v bitsTo - FStar.UInt32.v bitsFrom)} | {
"end_col": 75,
"end_line": 63,
"start_col": 5,
"start_line": 63
} |
FStar.HyperStack.ST.Stack | val crypto_kem_dec_kp_s_cond:
a:FP.frodo_alg
-> bp_matrix:matrix_t params_nbar (params_n a)
-> bpp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> cp_matrix:matrix_t params_nbar params_nbar
-> Stack uint16
(requires fun h ->
live h bp_matrix /\ live h bpp_matrix /\
live h c_matrix /\ live h cp_matrix)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.crypto_kem_dec_kp_s_cond a (as_matrix h0 bp_matrix) (as_matrix h0 bpp_matrix)
(as_matrix h0 c_matrix) (as_matrix h0 cp_matrix)) | [
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.Params",
"short_module": "FP"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Frodo.Random",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM.Encaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let crypto_kem_dec_kp_s_cond a bp_matrix bpp_matrix c_matrix cp_matrix =
let b1 = matrix_eq bp_matrix bpp_matrix in
let b2 = matrix_eq c_matrix cp_matrix in
b1 &. b2 | val crypto_kem_dec_kp_s_cond:
a:FP.frodo_alg
-> bp_matrix:matrix_t params_nbar (params_n a)
-> bpp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> cp_matrix:matrix_t params_nbar params_nbar
-> Stack uint16
(requires fun h ->
live h bp_matrix /\ live h bpp_matrix /\
live h c_matrix /\ live h cp_matrix)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.crypto_kem_dec_kp_s_cond a (as_matrix h0 bp_matrix) (as_matrix h0 bpp_matrix)
(as_matrix h0 c_matrix) (as_matrix h0 cp_matrix))
let crypto_kem_dec_kp_s_cond a bp_matrix bpp_matrix c_matrix cp_matrix = | true | null | false | let b1 = matrix_eq bp_matrix bpp_matrix in
let b2 = matrix_eq c_matrix cp_matrix in
b1 &. b2 | {
"checked_file": "Hacl.Impl.Frodo.KEM.Decaps.fst.checked",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"Hacl.Impl.Frodo.Sample.fst.checked",
"Hacl.Impl.Frodo.Params.fst.checked",
"Hacl.Impl.Frodo.Pack.fst.checked",
"Hacl.Impl.Frodo.KEM.KeyGen.fst.checked",
"Hacl.Impl.Frodo.KEM.Encaps.fst.checked",
"Hacl.Impl.Frodo.KEM.fst.checked",
"Hacl.Impl.Frodo.Encode.fst.checked",
"Hacl.Frodo.Random.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.KEM.Decaps.fst"
} | [] | [
"Spec.Frodo.Params.frodo_alg",
"Hacl.Impl.Matrix.matrix_t",
"Hacl.Impl.Frodo.Params.params_nbar",
"Hacl.Impl.Frodo.Params.params_n",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Lib.IntTypes.uint16",
"Lib.IntTypes.int_t",
"Hacl.Impl.Matrix.matrix_eq"
] | [] | module Hacl.Impl.Frodo.KEM.Decaps
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Matrix
open Hacl.Impl.Frodo.Params
open Hacl.Impl.Frodo.KEM
open Hacl.Impl.Frodo.KEM.Encaps
open Hacl.Impl.Frodo.Encode
open Hacl.Impl.Frodo.Pack
open Hacl.Impl.Frodo.Sample
open Hacl.Frodo.Random
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module FP = Spec.Frodo.Params
module KG = Hacl.Impl.Frodo.KEM.KeyGen
module S = Spec.Frodo.KEM.Decaps
module M = Spec.Matrix
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
inline_for_extraction noextract
val get_bp_c_matrices:
a:FP.frodo_alg
-> ct:lbytes (crypto_ciphertextbytes a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h ct /\ live h bp_matrix /\ live h c_matrix /\
disjoint bp_matrix ct /\ disjoint c_matrix ct /\ disjoint bp_matrix c_matrix)
(ensures fun h0 _ h1 -> modifies (loc bp_matrix |+| loc c_matrix) h0 h1 /\
(as_matrix h1 bp_matrix, as_matrix h1 c_matrix) == S.get_bp_c_matrices a (as_seq h0 ct))
let get_bp_c_matrices a ct bp_matrix c_matrix =
let c1 = sub ct 0ul (ct1bytes_len a) in
let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in
frodo_unpack params_nbar (params_n a) (params_logq a) c1 bp_matrix;
frodo_unpack params_nbar params_nbar (params_logq a) c2 c_matrix
inline_for_extraction noextract
val frodo_mu_decode:
a:FP.frodo_alg
-> s_bytes:lbytes (secretmatrixbytes_len a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> mu_decode:lbytes (bytes_mu a)
-> Stack unit
(requires fun h ->
live h s_bytes /\ live h bp_matrix /\
live h c_matrix /\ live h mu_decode /\
disjoint mu_decode s_bytes /\
as_seq h (mu_decode) == Seq.create (v (bytes_mu a)) (u8 0))
(ensures fun h0 _ h1 -> modifies (loc mu_decode) h0 h1 /\
as_seq h1 mu_decode ==
S.frodo_mu_decode a (as_seq h0 s_bytes) (as_matrix h0 bp_matrix) (as_matrix h0 c_matrix))
let frodo_mu_decode a s_bytes bp_matrix c_matrix mu_decode =
push_frame();
let s_matrix = matrix_create (params_n a) params_nbar in
let m_matrix = matrix_create params_nbar params_nbar in
matrix_from_lbytes s_bytes s_matrix;
matrix_mul_s bp_matrix s_matrix m_matrix;
matrix_sub c_matrix m_matrix;
frodo_key_decode (params_logq a) (params_extracted_bits a) params_nbar m_matrix mu_decode;
clear_matrix s_matrix;
clear_matrix m_matrix;
pop_frame()
inline_for_extraction noextract
val get_bpp_cp_matrices_:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> mu_decode:lbytes (bytes_mu a)
-> sk:lbytes (crypto_secretkeybytes a)
-> bpp_matrix:matrix_t params_nbar (params_n a)
-> cp_matrix:matrix_t params_nbar params_nbar
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h mu_decode /\ live h sk /\
live h bpp_matrix /\ live h cp_matrix /\
live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\
loc_pairwise_disjoint [loc mu_decode; loc sk; loc bpp_matrix;
loc cp_matrix; loc sp_matrix; loc ep_matrix; loc epp_matrix])
(ensures fun h0 _ h1 -> modifies (loc bpp_matrix |+| loc cp_matrix) h0 h1 /\
(as_matrix h1 bpp_matrix, as_matrix h1 cp_matrix) ==
S.get_bpp_cp_matrices_ a gen_a (as_seq h0 mu_decode) (as_seq h0 sk)
(as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix) (as_matrix h0 epp_matrix))
let get_bpp_cp_matrices_ a gen_a mu_decode sk bpp_matrix cp_matrix sp_matrix ep_matrix epp_matrix =
FP.expand_crypto_secretkeybytes a;
FP.expand_crypto_publickeybytes a;
let pk = sub sk (crypto_bytes a) (crypto_publickeybytes a) in
let seed_a = sub pk 0ul bytes_seed_a in
let b = sub pk bytes_seed_a (crypto_publickeybytes a -! bytes_seed_a) in
frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bpp_matrix;
frodo_mul_add_sb_plus_e_plus_mu a mu_decode b sp_matrix epp_matrix cp_matrix;
mod_pow2 (params_logq a) bpp_matrix;
mod_pow2 (params_logq a) cp_matrix
#push-options "--z3rlimit 150"
inline_for_extraction noextract
val get_bpp_cp_matrices:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> mu_decode:lbytes (bytes_mu a)
-> seed_se:lbytes (crypto_bytes a)
-> sk:lbytes (crypto_secretkeybytes a)
-> bpp_matrix:matrix_t params_nbar (params_n a)
-> cp_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h seed_se /\ live h mu_decode /\ live h sk /\
live h bpp_matrix /\ live h cp_matrix /\
loc_pairwise_disjoint [loc mu_decode; loc seed_se; loc sk; loc bpp_matrix; loc cp_matrix])
(ensures fun h0 _ h1 -> modifies (loc bpp_matrix |+| loc cp_matrix) h0 h1 /\
(as_matrix h1 bpp_matrix, as_matrix h1 cp_matrix) ==
S.get_bpp_cp_matrices a gen_a (as_seq h0 mu_decode) (as_seq h0 seed_se) (as_seq h0 sk))
let get_bpp_cp_matrices a gen_a mu_decode seed_se sk bpp_matrix cp_matrix =
push_frame ();
let sp_matrix = matrix_create params_nbar (params_n a) in
let ep_matrix = matrix_create params_nbar (params_n a) in
let epp_matrix = matrix_create params_nbar params_nbar in
get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix;
get_bpp_cp_matrices_ a gen_a mu_decode sk bpp_matrix cp_matrix sp_matrix ep_matrix epp_matrix;
clear_matrix3 a sp_matrix ep_matrix epp_matrix;
pop_frame ()
#pop-options
inline_for_extraction noextract
val crypto_kem_dec_kp_s_cond:
a:FP.frodo_alg
-> bp_matrix:matrix_t params_nbar (params_n a)
-> bpp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> cp_matrix:matrix_t params_nbar params_nbar
-> Stack uint16
(requires fun h ->
live h bp_matrix /\ live h bpp_matrix /\
live h c_matrix /\ live h cp_matrix)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.crypto_kem_dec_kp_s_cond a (as_matrix h0 bp_matrix) (as_matrix h0 bpp_matrix)
(as_matrix h0 c_matrix) (as_matrix h0 cp_matrix)) | false | false | Hacl.Impl.Frodo.KEM.Decaps.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val crypto_kem_dec_kp_s_cond:
a:FP.frodo_alg
-> bp_matrix:matrix_t params_nbar (params_n a)
-> bpp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> cp_matrix:matrix_t params_nbar params_nbar
-> Stack uint16
(requires fun h ->
live h bp_matrix /\ live h bpp_matrix /\
live h c_matrix /\ live h cp_matrix)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.crypto_kem_dec_kp_s_cond a (as_matrix h0 bp_matrix) (as_matrix h0 bpp_matrix)
(as_matrix h0 c_matrix) (as_matrix h0 cp_matrix)) | [] | Hacl.Impl.Frodo.KEM.Decaps.crypto_kem_dec_kp_s_cond | {
"file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Decaps.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Frodo.Params.frodo_alg ->
bp_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
(Hacl.Impl.Frodo.Params.params_n a) ->
bpp_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
(Hacl.Impl.Frodo.Params.params_n a) ->
c_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
Hacl.Impl.Frodo.Params.params_nbar ->
cp_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
Hacl.Impl.Frodo.Params.params_nbar
-> FStar.HyperStack.ST.Stack Lib.IntTypes.uint16 | {
"end_col": 10,
"end_line": 166,
"start_col": 72,
"start_line": 163
} |
FStar.HyperStack.ST.Stack | val crypto_kem_dec_mu:
a:FP.frodo_alg
-> sk:lbytes (crypto_secretkeybytes a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> mu_decode:lbytes (bytes_mu a)
-> Stack unit
(requires fun h ->
live h sk /\ live h mu_decode /\
live h bp_matrix /\ live h c_matrix /\
as_seq h (mu_decode) == Seq.create (v (bytes_mu a)) (u8 0) /\
loc_pairwise_disjoint [loc sk; loc mu_decode; loc bp_matrix; loc c_matrix])
(ensures fun h0 _ h1 -> modifies (loc mu_decode) h0 h1 /\
as_seq h1 mu_decode == S.crypto_kem_dec_mu a (as_seq h0 sk)
(as_matrix h0 bp_matrix) (as_matrix h0 c_matrix)) | [
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.Params",
"short_module": "FP"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Frodo.Random",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM.Encaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let crypto_kem_dec_mu a sk bp_matrix c_matrix mu_decode =
FP.expand_crypto_secretkeybytes a;
let s_bytes = sub sk (crypto_bytes a +! crypto_publickeybytes a) (secretmatrixbytes_len a) in
frodo_mu_decode a s_bytes bp_matrix c_matrix mu_decode | val crypto_kem_dec_mu:
a:FP.frodo_alg
-> sk:lbytes (crypto_secretkeybytes a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> mu_decode:lbytes (bytes_mu a)
-> Stack unit
(requires fun h ->
live h sk /\ live h mu_decode /\
live h bp_matrix /\ live h c_matrix /\
as_seq h (mu_decode) == Seq.create (v (bytes_mu a)) (u8 0) /\
loc_pairwise_disjoint [loc sk; loc mu_decode; loc bp_matrix; loc c_matrix])
(ensures fun h0 _ h1 -> modifies (loc mu_decode) h0 h1 /\
as_seq h1 mu_decode == S.crypto_kem_dec_mu a (as_seq h0 sk)
(as_matrix h0 bp_matrix) (as_matrix h0 c_matrix))
let crypto_kem_dec_mu a sk bp_matrix c_matrix mu_decode = | true | null | false | FP.expand_crypto_secretkeybytes a;
let s_bytes = sub sk (crypto_bytes a +! crypto_publickeybytes a) (secretmatrixbytes_len a) in
frodo_mu_decode a s_bytes bp_matrix c_matrix mu_decode | {
"checked_file": "Hacl.Impl.Frodo.KEM.Decaps.fst.checked",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"Hacl.Impl.Frodo.Sample.fst.checked",
"Hacl.Impl.Frodo.Params.fst.checked",
"Hacl.Impl.Frodo.Pack.fst.checked",
"Hacl.Impl.Frodo.KEM.KeyGen.fst.checked",
"Hacl.Impl.Frodo.KEM.Encaps.fst.checked",
"Hacl.Impl.Frodo.KEM.fst.checked",
"Hacl.Impl.Frodo.Encode.fst.checked",
"Hacl.Frodo.Random.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.KEM.Decaps.fst"
} | [] | [
"Spec.Frodo.Params.frodo_alg",
"Hacl.Impl.Matrix.lbytes",
"Hacl.Impl.Frodo.Params.crypto_secretkeybytes",
"Hacl.Impl.Matrix.matrix_t",
"Hacl.Impl.Frodo.Params.params_nbar",
"Hacl.Impl.Frodo.Params.params_n",
"Hacl.Impl.Frodo.Params.bytes_mu",
"Hacl.Impl.Frodo.KEM.Decaps.frodo_mu_decode",
"Prims.unit",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Hacl.Impl.Frodo.Params.secretmatrixbytes_len",
"Lib.Buffer.sub",
"Lib.IntTypes.uint8",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Impl.Frodo.Params.crypto_bytes",
"Hacl.Impl.Frodo.Params.crypto_publickeybytes",
"Spec.Frodo.Params.expand_crypto_secretkeybytes"
] | [] | module Hacl.Impl.Frodo.KEM.Decaps
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Matrix
open Hacl.Impl.Frodo.Params
open Hacl.Impl.Frodo.KEM
open Hacl.Impl.Frodo.KEM.Encaps
open Hacl.Impl.Frodo.Encode
open Hacl.Impl.Frodo.Pack
open Hacl.Impl.Frodo.Sample
open Hacl.Frodo.Random
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module FP = Spec.Frodo.Params
module KG = Hacl.Impl.Frodo.KEM.KeyGen
module S = Spec.Frodo.KEM.Decaps
module M = Spec.Matrix
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
inline_for_extraction noextract
val get_bp_c_matrices:
a:FP.frodo_alg
-> ct:lbytes (crypto_ciphertextbytes a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h ct /\ live h bp_matrix /\ live h c_matrix /\
disjoint bp_matrix ct /\ disjoint c_matrix ct /\ disjoint bp_matrix c_matrix)
(ensures fun h0 _ h1 -> modifies (loc bp_matrix |+| loc c_matrix) h0 h1 /\
(as_matrix h1 bp_matrix, as_matrix h1 c_matrix) == S.get_bp_c_matrices a (as_seq h0 ct))
let get_bp_c_matrices a ct bp_matrix c_matrix =
let c1 = sub ct 0ul (ct1bytes_len a) in
let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in
frodo_unpack params_nbar (params_n a) (params_logq a) c1 bp_matrix;
frodo_unpack params_nbar params_nbar (params_logq a) c2 c_matrix
inline_for_extraction noextract
val frodo_mu_decode:
a:FP.frodo_alg
-> s_bytes:lbytes (secretmatrixbytes_len a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> mu_decode:lbytes (bytes_mu a)
-> Stack unit
(requires fun h ->
live h s_bytes /\ live h bp_matrix /\
live h c_matrix /\ live h mu_decode /\
disjoint mu_decode s_bytes /\
as_seq h (mu_decode) == Seq.create (v (bytes_mu a)) (u8 0))
(ensures fun h0 _ h1 -> modifies (loc mu_decode) h0 h1 /\
as_seq h1 mu_decode ==
S.frodo_mu_decode a (as_seq h0 s_bytes) (as_matrix h0 bp_matrix) (as_matrix h0 c_matrix))
let frodo_mu_decode a s_bytes bp_matrix c_matrix mu_decode =
push_frame();
let s_matrix = matrix_create (params_n a) params_nbar in
let m_matrix = matrix_create params_nbar params_nbar in
matrix_from_lbytes s_bytes s_matrix;
matrix_mul_s bp_matrix s_matrix m_matrix;
matrix_sub c_matrix m_matrix;
frodo_key_decode (params_logq a) (params_extracted_bits a) params_nbar m_matrix mu_decode;
clear_matrix s_matrix;
clear_matrix m_matrix;
pop_frame()
inline_for_extraction noextract
val get_bpp_cp_matrices_:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> mu_decode:lbytes (bytes_mu a)
-> sk:lbytes (crypto_secretkeybytes a)
-> bpp_matrix:matrix_t params_nbar (params_n a)
-> cp_matrix:matrix_t params_nbar params_nbar
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h mu_decode /\ live h sk /\
live h bpp_matrix /\ live h cp_matrix /\
live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\
loc_pairwise_disjoint [loc mu_decode; loc sk; loc bpp_matrix;
loc cp_matrix; loc sp_matrix; loc ep_matrix; loc epp_matrix])
(ensures fun h0 _ h1 -> modifies (loc bpp_matrix |+| loc cp_matrix) h0 h1 /\
(as_matrix h1 bpp_matrix, as_matrix h1 cp_matrix) ==
S.get_bpp_cp_matrices_ a gen_a (as_seq h0 mu_decode) (as_seq h0 sk)
(as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix) (as_matrix h0 epp_matrix))
let get_bpp_cp_matrices_ a gen_a mu_decode sk bpp_matrix cp_matrix sp_matrix ep_matrix epp_matrix =
FP.expand_crypto_secretkeybytes a;
FP.expand_crypto_publickeybytes a;
let pk = sub sk (crypto_bytes a) (crypto_publickeybytes a) in
let seed_a = sub pk 0ul bytes_seed_a in
let b = sub pk bytes_seed_a (crypto_publickeybytes a -! bytes_seed_a) in
frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bpp_matrix;
frodo_mul_add_sb_plus_e_plus_mu a mu_decode b sp_matrix epp_matrix cp_matrix;
mod_pow2 (params_logq a) bpp_matrix;
mod_pow2 (params_logq a) cp_matrix
#push-options "--z3rlimit 150"
inline_for_extraction noextract
val get_bpp_cp_matrices:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> mu_decode:lbytes (bytes_mu a)
-> seed_se:lbytes (crypto_bytes a)
-> sk:lbytes (crypto_secretkeybytes a)
-> bpp_matrix:matrix_t params_nbar (params_n a)
-> cp_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h seed_se /\ live h mu_decode /\ live h sk /\
live h bpp_matrix /\ live h cp_matrix /\
loc_pairwise_disjoint [loc mu_decode; loc seed_se; loc sk; loc bpp_matrix; loc cp_matrix])
(ensures fun h0 _ h1 -> modifies (loc bpp_matrix |+| loc cp_matrix) h0 h1 /\
(as_matrix h1 bpp_matrix, as_matrix h1 cp_matrix) ==
S.get_bpp_cp_matrices a gen_a (as_seq h0 mu_decode) (as_seq h0 seed_se) (as_seq h0 sk))
let get_bpp_cp_matrices a gen_a mu_decode seed_se sk bpp_matrix cp_matrix =
push_frame ();
let sp_matrix = matrix_create params_nbar (params_n a) in
let ep_matrix = matrix_create params_nbar (params_n a) in
let epp_matrix = matrix_create params_nbar params_nbar in
get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix;
get_bpp_cp_matrices_ a gen_a mu_decode sk bpp_matrix cp_matrix sp_matrix ep_matrix epp_matrix;
clear_matrix3 a sp_matrix ep_matrix epp_matrix;
pop_frame ()
#pop-options
inline_for_extraction noextract
val crypto_kem_dec_kp_s_cond:
a:FP.frodo_alg
-> bp_matrix:matrix_t params_nbar (params_n a)
-> bpp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> cp_matrix:matrix_t params_nbar params_nbar
-> Stack uint16
(requires fun h ->
live h bp_matrix /\ live h bpp_matrix /\
live h c_matrix /\ live h cp_matrix)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.crypto_kem_dec_kp_s_cond a (as_matrix h0 bp_matrix) (as_matrix h0 bpp_matrix)
(as_matrix h0 c_matrix) (as_matrix h0 cp_matrix))
let crypto_kem_dec_kp_s_cond a bp_matrix bpp_matrix c_matrix cp_matrix =
let b1 = matrix_eq bp_matrix bpp_matrix in
let b2 = matrix_eq c_matrix cp_matrix in
b1 &. b2
inline_for_extraction noextract
val crypto_kem_dec_kp_s:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> mu_decode:lbytes (bytes_mu a)
-> seed_se:lbytes (crypto_bytes a)
-> sk:lbytes (crypto_secretkeybytes a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> Stack uint16
(requires fun h ->
live h mu_decode /\ live h bp_matrix /\ live h seed_se /\
live h c_matrix /\ live h sk /\
loc_pairwise_disjoint [loc mu_decode; loc seed_se; loc sk])
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.crypto_kem_dec_kp_s a gen_a (as_seq h0 mu_decode) (as_seq h0 seed_se)
(as_seq h0 sk) (as_matrix h0 bp_matrix) (as_matrix h0 c_matrix))
let crypto_kem_dec_kp_s a gen_a mu_decode seed_se sk bp_matrix c_matrix =
push_frame ();
let bpp_matrix = matrix_create params_nbar (params_n a) in
let cp_matrix = matrix_create params_nbar params_nbar in
get_bpp_cp_matrices a gen_a mu_decode seed_se sk bpp_matrix cp_matrix;
let mask = crypto_kem_dec_kp_s_cond a bp_matrix bpp_matrix c_matrix cp_matrix in
pop_frame ();
mask
inline_for_extraction noextract
val crypto_kem_dec_ss0:
a:FP.frodo_alg
-> ct:lbytes (crypto_ciphertextbytes a)
-> mask:uint16{v mask == 0 \/ v mask == v (ones U16 SEC)}
-> kp:lbytes (crypto_bytes a)
-> s:lbytes (crypto_bytes a)
-> ss:lbytes (crypto_bytes a)
-> Stack unit
(requires fun h ->
live h ct /\ live h kp /\ live h s /\ live h ss /\
disjoint ss ct /\ disjoint ss kp /\ disjoint ss s /\
disjoint kp s)
(ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\
as_seq h1 ss == S.crypto_kem_dec_ss0 a (as_seq h0 ct) mask (as_seq h0 kp) (as_seq h0 s))
let crypto_kem_dec_ss0 a ct mask kp s ss =
push_frame ();
let kp_s = create (crypto_bytes a) (u8 0) in
Lib.ByteBuffer.buf_mask_select kp s (to_u8 mask) kp_s;
let ss_init_len = crypto_ciphertextbytes a +! crypto_bytes a in
let ss_init = create ss_init_len (u8 0) in
concat2 (crypto_ciphertextbytes a) ct (crypto_bytes a) kp_s ss_init;
frodo_shake a ss_init_len ss_init (crypto_bytes a) ss;
clear_words_u8 ss_init;
clear_words_u8 kp_s;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_dec_seed_se_k:
a:FP.frodo_alg
-> mu_decode:lbytes (bytes_mu a)
-> sk:lbytes (crypto_secretkeybytes a)
-> seed_se_k:lbytes (2ul *! crypto_bytes a)
-> Stack unit
(requires fun h ->
live h mu_decode /\ live h sk /\ live h seed_se_k /\
disjoint mu_decode seed_se_k /\ disjoint sk seed_se_k)
(ensures fun h0 _ h1 -> modifies (loc seed_se_k) h0 h1 /\
as_seq h1 seed_se_k == S.crypto_kem_dec_seed_se_k a (as_seq h0 mu_decode) (as_seq h0 sk))
let crypto_kem_dec_seed_se_k a mu_decode sk seed_se_k =
push_frame ();
let pkh_mu_decode_len = bytes_pkhash a +! bytes_mu a in
let pkh_mu_decode = create pkh_mu_decode_len (u8 0) in
let pkh = sub sk (crypto_secretkeybytes a -! bytes_pkhash a) (bytes_pkhash a) in
concat2 (bytes_pkhash a) pkh (bytes_mu a) mu_decode pkh_mu_decode;
frodo_shake a pkh_mu_decode_len pkh_mu_decode (2ul *! crypto_bytes a) seed_se_k;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_dec_ss1:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> ct:lbytes (crypto_ciphertextbytes a)
-> sk:lbytes (crypto_secretkeybytes a)
-> mu_decode:lbytes (bytes_mu a)
-> seed_se_k:lbytes (2ul *! crypto_bytes a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> ss:lbytes (crypto_bytes a)
-> Stack unit
(requires fun h ->
live h mu_decode /\ live h bp_matrix /\ live h seed_se_k /\
live h c_matrix /\ live h sk /\ live h ct /\ live h ss /\
loc_pairwise_disjoint [loc ct; loc sk; loc seed_se_k;
loc mu_decode; loc bp_matrix; loc c_matrix; loc ss])
(ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\
as_seq h1 ss == S.crypto_kem_dec_ss1 a gen_a (as_seq h0 ct) (as_seq h0 sk)
(as_seq h0 mu_decode) (as_seq h0 seed_se_k) (as_matrix h0 bp_matrix) (as_matrix h0 c_matrix))
let crypto_kem_dec_ss1 a gen_a ct sk mu_decode seed_se_k bp_matrix c_matrix ss =
let seed_se = sub seed_se_k 0ul (crypto_bytes a) in
let kp = sub seed_se_k (crypto_bytes a) (crypto_bytes a) in
let s = sub sk 0ul (crypto_bytes a) in
let mask = crypto_kem_dec_kp_s a gen_a mu_decode seed_se sk bp_matrix c_matrix in
crypto_kem_dec_ss0 a ct mask kp s ss
inline_for_extraction noextract
val crypto_kem_dec_ss2:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> ct:lbytes (crypto_ciphertextbytes a)
-> sk:lbytes (crypto_secretkeybytes a)
-> mu_decode:lbytes (bytes_mu a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> ss:lbytes (crypto_bytes a)
-> Stack unit
(requires fun h ->
live h mu_decode /\ live h bp_matrix /\
live h c_matrix /\ live h sk /\ live h ct /\ live h ss /\
loc_pairwise_disjoint [loc ct; loc sk;
loc mu_decode; loc bp_matrix; loc c_matrix; loc ss])
(ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\
as_seq h1 ss == S.crypto_kem_dec_ss2 a gen_a (as_seq h0 ct) (as_seq h0 sk)
(as_seq h0 mu_decode) (as_matrix h0 bp_matrix) (as_matrix h0 c_matrix))
let crypto_kem_dec_ss2 a gen_a ct sk mu_decode bp_matrix c_matrix ss =
push_frame ();
let seed_se_k = create (2ul *! crypto_bytes a) (u8 0) in
crypto_kem_dec_seed_se_k a mu_decode sk seed_se_k;
crypto_kem_dec_ss1 a gen_a ct sk mu_decode seed_se_k bp_matrix c_matrix ss;
clear_words_u8 seed_se_k;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_dec_mu:
a:FP.frodo_alg
-> sk:lbytes (crypto_secretkeybytes a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> mu_decode:lbytes (bytes_mu a)
-> Stack unit
(requires fun h ->
live h sk /\ live h mu_decode /\
live h bp_matrix /\ live h c_matrix /\
as_seq h (mu_decode) == Seq.create (v (bytes_mu a)) (u8 0) /\
loc_pairwise_disjoint [loc sk; loc mu_decode; loc bp_matrix; loc c_matrix])
(ensures fun h0 _ h1 -> modifies (loc mu_decode) h0 h1 /\
as_seq h1 mu_decode == S.crypto_kem_dec_mu a (as_seq h0 sk)
(as_matrix h0 bp_matrix) (as_matrix h0 c_matrix)) | false | false | Hacl.Impl.Frodo.KEM.Decaps.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val crypto_kem_dec_mu:
a:FP.frodo_alg
-> sk:lbytes (crypto_secretkeybytes a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> c_matrix:matrix_t params_nbar params_nbar
-> mu_decode:lbytes (bytes_mu a)
-> Stack unit
(requires fun h ->
live h sk /\ live h mu_decode /\
live h bp_matrix /\ live h c_matrix /\
as_seq h (mu_decode) == Seq.create (v (bytes_mu a)) (u8 0) /\
loc_pairwise_disjoint [loc sk; loc mu_decode; loc bp_matrix; loc c_matrix])
(ensures fun h0 _ h1 -> modifies (loc mu_decode) h0 h1 /\
as_seq h1 mu_decode == S.crypto_kem_dec_mu a (as_seq h0 sk)
(as_matrix h0 bp_matrix) (as_matrix h0 c_matrix)) | [] | Hacl.Impl.Frodo.KEM.Decaps.crypto_kem_dec_mu | {
"file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Decaps.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Spec.Frodo.Params.frodo_alg ->
sk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_secretkeybytes a) ->
bp_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
(Hacl.Impl.Frodo.Params.params_n a) ->
c_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
Hacl.Impl.Frodo.Params.params_nbar ->
mu_decode: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a)
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 56,
"end_line": 330,
"start_col": 2,
"start_line": 328
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.