effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
FStar.Pervasives.Lemma
val modifies_remove_fresh_frame (h1 h2 h3: HS.mem) (l: loc) : Lemma (requires (HS.fresh_frame h1 h2 /\ modifies (loc_union (loc_all_regions_from false (HS.get_tip h2)) l) h2 h3)) (ensures (modifies l h1 h3)) [SMTPat (modifies l h1 h3); SMTPat (HS.fresh_frame h1 h2)]
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let modifies_remove_fresh_frame (h1 h2 h3:HS.mem) (l:loc) : Lemma (requires (HS.fresh_frame h1 h2 /\ modifies (loc_union (loc_all_regions_from false (HS.get_tip h2)) l) h2 h3)) (ensures (modifies l h1 h3)) [SMTPat (modifies l h1 h3); SMTPat (HS.fresh_frame h1 h2)] = loc_regions_unused_in h1 (HS.mod_set (Set.singleton (HS.get_tip h2))); modifies_only_not_unused_in l h1 h3
val modifies_remove_fresh_frame (h1 h2 h3: HS.mem) (l: loc) : Lemma (requires (HS.fresh_frame h1 h2 /\ modifies (loc_union (loc_all_regions_from false (HS.get_tip h2)) l) h2 h3)) (ensures (modifies l h1 h3)) [SMTPat (modifies l h1 h3); SMTPat (HS.fresh_frame h1 h2)] let modifies_remove_fresh_frame (h1 h2 h3: HS.mem) (l: loc) : Lemma (requires (HS.fresh_frame h1 h2 /\ modifies (loc_union (loc_all_regions_from false (HS.get_tip h2)) l) h2 h3)) (ensures (modifies l h1 h3)) [SMTPat (modifies l h1 h3); SMTPat (HS.fresh_frame h1 h2)] =
false
null
true
loc_regions_unused_in h1 (HS.mod_set (Set.singleton (HS.get_tip h2))); modifies_only_not_unused_in l h1 h3
{ "checked_file": "LowStar.Monotonic.Buffer.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "LowStar.Monotonic.Buffer.fsti" }
[ "lemma" ]
[ "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.loc", "LowStar.Monotonic.Buffer.modifies_only_not_unused_in", "Prims.unit", "LowStar.Monotonic.Buffer.loc_regions_unused_in", "FStar.Monotonic.HyperHeap.mod_set", "FStar.Set.singleton", "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.HyperStack.get_tip", "Prims.l_and", "FStar.Monotonic.HyperStack.fresh_frame", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_union", "LowStar.Monotonic.Buffer.loc_all_regions_from", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.logical", "Prims.Nil" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST (* Most comments are taken from the Low* tutorial at: https://fstarlang.github.io/lowstar/html/LowStar.html *) (* Shorthand for preorder over sequences *) unfold let srel (a:Type0) = Preorder.preorder (Seq.seq a) (* * A compatibility relation between preorders of a sequence and its subsequence *) [@@"opaque_to_smt"] unfold let compatible_subseq_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = (forall (s1 s2:Seq.seq a). {:pattern (rel s1 s2); (sub_rel (Seq.slice s1 i j) (Seq.slice s2 i j))} //for any two sequences s1 and s2 (Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2) ==> //of length len, and related by rel (sub_rel (Seq.slice s1 i j) (Seq.slice s2 i j))) /\ //their slices [i, j) are related by sub_rel (forall (s s2:Seq.seq a). {:pattern (sub_rel (Seq.slice s i j) s2); (rel s (Seq.replace_subseq s i j s2))} //for any two sequences s and s2 (Seq.length s == len /\ Seq.length s2 == j - i /\ sub_rel (Seq.slice s i j) s2) ==> //such that s has length len and s2 has length (j - i), and the slice [i, j) of s is related to s2 by sub_rel (rel s (Seq.replace_subseq s i j s2))) //if we replace the slice [i, j) in s by s2, then s and the resulting buffer are related by rel /// Low* buffers /// ============== /// /// The workhorse of Low*, this module allows modeling C arrays on the /// stack and in the heap. At compilation time, KaRaMeL implements /// buffers using C arrays, i.e. if Low* type ``t`` is translated into C /// type ``u``, then Low* type ``buffer t`` is translated to C type ``u*``. /// /// The type is indexed by two preorders: /// rrel is the preorder with which the buffer is initially created /// rel is the preorder of the current buffer (which could be a sub-buffer of the original one) /// /// The buffer contents are constrained to evolve according to rel (* * rrel is part of the type for technical reasons * If we make it part of the implementation of the buffer type, * it bumps up the universe of buffer itself by one, * which is too restrictive (e.g. no buffers of buffers) * * We expect that clients will rarely work with this directly * Most of the times, they will use wrappers such as buffer, immutable buffer etc. *) val mbuffer (a:Type0) (rrel rel:srel a) :Tot Type0 /// The C ``NULL`` pointer is represented as the Low* ``null`` buffer. For /// any given type, there is exactly one ``null`` buffer of this type, /// just like there is exactly one C ``NULL`` pointer of any given type. /// /// The nullity test ``g_is_null`` is ghost, for proof purposes /// only. The corresponding stateful nullity test is ``is_null``, see /// below. (* FIXME: The nullity test for proof purposes is currently expressed as a ghost predicate, `g_is_null`, but it is scheduled to be replaced with equality with `null` *) val g_is_null (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot bool val mnull (#a:Type0) (#rrel #rel:srel a) :Tot (b:mbuffer a rrel rel {g_is_null b}) val null_unique (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (g_is_null b <==> b == mnull) /// ``unused_in b h`` holds only if buffer ``b`` has not been allocated /// yet. val unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :GTot Type0 /// ``live h b`` holds if, and only if, buffer ``b`` is currently /// allocated in ``h`` and has not been deallocated yet. /// /// This predicate corresponds to the C notion of "lifetime", and as /// such, is a prerequisite for all stateful operations on buffers /// (see below), per the C standard: /// /// If an object is referred to outside of its lifetime, the /// behavior is undefined. /// /// -- ISO/IEC 9899:2011, Section 6.2.4 paragraph 2 /// /// By contrast, it is not required for the ghost versions of those /// operators. val live (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :GTot Type0 /// The null pointer is always live. val live_null (a:Type0) (rrel rel:srel a) (h:HS.mem) :Lemma (live h (mnull #a #rrel #rel)) let live_is_null (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :Lemma (requires (g_is_null b == true)) (ensures (live h b)) [SMTPat (live h b)] = null_unique b; live_null a rrel rel h /// A live buffer has already been allocated. val live_not_unused_in (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :Lemma (requires (live h b /\ b `unused_in` h)) (ensures False) /// If two memories have equal domains, then liveness in one implies liveness in the other val lemma_live_equal_mem_domains (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h0 h1:HS.mem) :Lemma (requires (HST.equal_domains h0 h1 /\ live h0 b)) (ensures (live h1 b)) [SMTPat (HST.equal_domains h0 h1); SMTPat (live h1 b)] (* FIXME: the following definition is necessary to isolate the pattern because of unification. In other words, if we attached the pattern to `live_not_unused_in`, then we would not be able to use `FStar.Classical.forall_intro_`n and `FStar.Classical.move_requires` due to unification issues. Anyway, we plan to isolate patterns in a separate module to clean up the Z3 context. *) let live_not_unused_in' (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :Lemma (requires (live h b /\ b `unused_in` h)) (ensures False) [SMTPat (live h b); SMTPat (b `unused_in` h)] = live_not_unused_in h b /// Buffers live in the HyperStack model, which is an extension of /// the HyperHeap model, a hierarchical memory model that divides the /// heap into a tree of regions. This coarse-grained separation /// allows the programmer to state modifies clauses at the level of /// regions, rather than on individual buffers. /// /// The HyperHeap memory model is described: /// - in the 2016 POPL paper: https://www.fstar-lang.org/papers/mumon/ /// - in the relevant section of the F* tutorial: http://www.fstar-lang.org/tutorial/ /// /// ``frameOf b`` returns the identifier of the region in which the /// buffer ``b`` lives. val frameOf (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Tot HS.rid /// ``as_addr b`` returns the abstract address of the buffer in its /// region, as an allocation unit: two buffers that are allocated /// separately in the same region will actually have different /// addresses, but a sub-buffer of a buffer will actually have the /// same address as its enclosing buffer. val as_addr (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot nat /// A buffer is unused if, and only if, its address is unused. val unused_in_equiv (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (unused_in b h <==> (HS.live_region h (frameOf b) ==> as_addr b `Heap.addr_unused_in` (Map.sel (HS.get_hmap h) (frameOf b)))) /// If a buffer is live, then so is its region. val live_region_frameOf (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :Lemma (requires (live h b)) (ensures (HS.live_region h (frameOf b))) [SMTPatOr [ [SMTPat (live h b)]; [SMTPat (HS.live_region h (frameOf b))]; ]] /// The length of a buffer ``b`` is available as a machine integer ``len /// b`` or as a mathematical integer ``length b``, but both in ghost /// (proof) code only: just like in C, one cannot compute the length /// of a buffer at run-time. val len (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot U32.t let length (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot nat = U32.v (len b) /// The null pointer has length 0. val len_null (a:Type0) (rrel rel:srel a) :Lemma (len (mnull #a #rrel #rel) == 0ul) let length_null_1 (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (requires (length b =!= 0)) (ensures (g_is_null b == false)) [SMTPat (length b)] = len_null a rrel rel; null_unique b let length_null_2 (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (requires (g_is_null b == true)) (ensures (length b == 0)) [SMTPat (g_is_null b)] = len_null a rrel rel; null_unique b /// For functional correctness, buffers are reflected at the proof /// level using sequences, via ``as_seq b h``, which returns the /// contents of a given buffer ``b`` in a given heap ``h``. If ``b`` is not /// live in ``h``, then the result is unspecified. (* TODO: why not return a lseq and remove length_as_seq lemma? *) val as_seq (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :GTot (Seq.seq a) /// The contents of a buffer ``b`` has the same length as ``b`` itself. val length_as_seq (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :Lemma (Seq.length (as_seq h b) == length b) [SMTPat (Seq.length (as_seq h b))] /// ``get`` is an often-convenient shorthand to index the value of a /// given buffer in a given heap, for proof purposes. let get (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (p:mbuffer a rrel rel) (i:nat) :Ghost a (requires (i < length p)) (ensures (fun _ -> True)) = Seq.index (as_seq h p) i /// Injectivity in the first preorder val mbuffer_injectivity_in_first_preorder (_:unit) : Lemma (forall (a:Type0) (rrel1 rrel2 rel1 rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2). rrel1 =!= rrel2 ==> ~ (b1 === b2)) /// Before defining sub-buffer related API, we need to define the notion of "compatibility" /// /// /// Sub-buffers can be taken at a different preorder than their parent buffers /// But we need to ensure that the changes to the sub-buffer are compatible with the preorder /// of the parent buffer, and vice versa. (* * The quantifiers are fiercely guarded, so if you are working directly with them, * you may have to write additional asserts as triggers *) [@@"opaque_to_smt"] unfold let compatible_sub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t{U32.v i + U32.v len <= length b}) (sub_rel:srel a) = compatible_subseq_preorder (length b) rel (U32.v i) (U32.v i + U32.v len) sub_rel /// ``gsub`` is the way to carve a sub-buffer out of a given /// buffer. ``gsub b i len`` return the sub-buffer of ``b`` starting from /// offset ``i`` within ``b``, and with length ``len``. Of course ``i`` and /// ``len`` must fit within the length of ``b``. /// /// Further the clients can attach a preorder with the subbuffer (sub_rel), /// provided it is compatible /// /// ``gsub`` is the ghost version, for proof purposes. Its stateful /// counterpart is ``sub``, see below. val mgsub (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) :Ghost (mbuffer a rrel sub_rel) (requires (U32.v i + U32.v len <= length b)) (ensures (fun _ -> True)) // goffset /// A buffer is live exactly at the same time as all of its sub-buffers. val live_gsub (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b /\ compatible_sub b i len sub_rel)) (ensures (live h b <==> (live h (mgsub sub_rel b i len) /\ (exists h0 . {:pattern (live h0 b)} live h0 b)))) [SMTPatOr [ [SMTPat (live h (mgsub sub_rel b i len))]; [SMTPat (live h b); SMTPat (mgsub sub_rel b i len);] ]] val gsub_is_null (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (g_is_null (mgsub sub_rel b i len) <==> g_is_null b)) [SMTPat (g_is_null (mgsub sub_rel b i len))] /// The length of a sub-buffer is exactly the one provided at ``gsub``. val len_gsub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len':U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len' <= length b)) (ensures (len (mgsub sub_rel b i len') == len')) [SMTPatOr [ [SMTPat (len (mgsub sub_rel b i len'))]; [SMTPat (length (mgsub sub_rel b i len'))]; ]] val frameOf_gsub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (frameOf (mgsub sub_rel b i len) == frameOf b)) [SMTPat (frameOf (mgsub sub_rel b i len))] val as_addr_gsub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (as_addr (mgsub sub_rel b i len) == as_addr b)) [SMTPat (as_addr (mgsub sub_rel b i len))] val mgsub_inj (#a:Type0) (#rrel #rel:srel a) (sub_rel1 sub_rel2:srel a) (b1 b2:mbuffer a rrel rel) (i1 i2:U32.t) (len1 len2:U32.t) :Lemma (requires (U32.v i1 + U32.v len1 <= length b1 /\ U32.v i2 + U32.v len2 <= length b2 /\ mgsub sub_rel1 b1 i1 len1 === mgsub sub_rel2 b2 i2 len2)) (ensures (len1 == len2 /\ (b1 == b2 ==> i1 == i2) /\ ((i1 == i2 /\ length b1 == length b2) ==> b1 == b2))) /// Nesting two ``gsub`` collapses into one ``gsub``, transitively. val gsub_gsub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i1:U32.t) (len1:U32.t) (sub_rel1:srel a) (i2: U32.t) (len2: U32.t) (sub_rel2:srel a) :Lemma (requires (U32.v i1 + U32.v len1 <= length b /\ U32.v i2 + U32.v len2 <= U32.v len1)) (ensures (((compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2) ==> compatible_sub b (U32.add i1 i2) len2 sub_rel2) /\ mgsub sub_rel2 (mgsub sub_rel1 b i1 len1) i2 len2 == mgsub sub_rel2 b (U32.add i1 i2) len2)) [SMTPat (mgsub sub_rel2 (mgsub sub_rel1 b i1 len1) i2 len2)] /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. val gsub_zero_length (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (compatible_sub b 0ul (len b) rel /\ b == mgsub rel b 0ul (len b)) /// The contents of a sub-buffer is the corresponding slice of the /// contents of its enclosing buffer. val as_seq_gsub (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (as_seq h (mgsub sub_rel b i len) == Seq.slice (as_seq h b) (U32.v i) (U32.v i + U32.v len))) [SMTPat (as_seq h (mgsub sub_rel b i len))] /// Two live non-null buffers having the same region and address have /// their elements of the same type. val live_same_addresses_equal_types_and_preorders (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) ==> (a1 == a2 /\ rrel1 == rrel2)) /// # The modifies clause /// /// The modifies clause for regions, references and buffers. /// ========================================================== /// /// This module presents the modifies clause, a way to track the set /// of memory locations modified by a stateful Low* (or even F*) /// program. The basic principle of modifies clauses is that any /// location that is disjoint from a set of memory locations modified /// by an operation is preserved by that operation. /// /// We start by specifying a monoid of sets of memory locations. From /// a rough high-level view, ``loc`` is the type of sets of memory /// locations, equipped with an identity element ``loc_none``, /// representing the empty set, and an associative and commutative /// operator, ``loc_union``, representing the union of two sets of /// memory locations. /// /// Moreover, ``loc_union`` is idempotent, which is useful to cut SMT /// matching loops with ``modifies_trans`` and ``modifies_refl`` below. val loc : Type0 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) let loc_union_idem_1 (s1 s2: loc) : Lemma (loc_union s1 (loc_union s1 s2) == loc_union s1 s2) [SMTPat (loc_union s1 (loc_union s1 s2))] = loc_union_assoc s1 s1 s2 let loc_union_idem_2 (s1 s2: loc) : Lemma (loc_union (loc_union s1 s2) s2 == loc_union s1 s2) [SMTPat (loc_union (loc_union s1 s2) s2)] = loc_union_assoc s1 s2 s2 val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] /// ``loc_buffer b`` is the set of memory locations associated to a buffer ``b``. val loc_buffer_from_to (#a:Type0) (#rrel #rel:srel a) (b: mbuffer a rrel rel) (from to: U32.t) : GTot loc val loc_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot loc val loc_buffer_eq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) : Lemma (loc_buffer b == loc_buffer_from_to b 0ul (len b)) val loc_buffer_from_to_high (#a: Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) : Lemma (requires (length b <= U32.v to)) (ensures (loc_buffer_from_to b from to == loc_buffer_from_to b from (len b))) val loc_buffer_from_to_none (#a: Type) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (from to: U32.t) : Lemma (requires (g_is_null b \/ length b < U32.v from \/ U32.v to < U32.v from)) (ensures (loc_buffer_from_to b from to == loc_none)) val loc_buffer_from_to_mgsub (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (from to: U32.t) : Lemma (requires ( U32.v i + U32.v len <= length b /\ U32.v from <= U32.v to /\ U32.v to <= U32.v len )) (ensures ( loc_buffer_from_to (mgsub sub_rel b i len) from to == loc_buffer_from_to b (i `U32.add` from) (i `U32.add` to) )) val loc_buffer_mgsub_eq (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (loc_buffer (mgsub sub_rel b i len) == loc_buffer_from_to b i (i `U32.add` len))) val loc_buffer_null (a:Type0) (rrel rel:srel a) :Lemma (loc_buffer (mnull #a #rrel #rel) == loc_none) [SMTPat (loc_buffer (mnull #a #rrel #rel))] val loc_buffer_from_to_eq (#a:Type0) (#rrel #rel:srel a) (b: mbuffer a rrel rel) (from to: U32.t) : Lemma (requires (U32.v from <= U32.v to /\ U32.v to <= length b)) (ensures (loc_buffer_from_to b from to == loc_buffer (mgsub rel b from (to `U32.sub` from)))) [SMTPat (loc_buffer_from_to b from to)] val loc_buffer_mgsub_rel_eq (#a:Type0) (#rrel #rel:srel a) (b: mbuffer a rrel rel) (rel1 rel2: srel a) (i len: U32.t) : Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (loc_buffer (mgsub rel1 b i len) == loc_buffer (mgsub rel2 b i len))) [SMTPat (loc_buffer (mgsub rel1 b i len)); SMTPat (loc_buffer (mgsub rel2 b i len))] /// ``loc_addresses r n`` is the set of memory locations associated to a /// set of addresses ``n`` in a given region ``r``. val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc unfold let loc_addr_of_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot loc = loc_addresses false (frameOf b) (Set.singleton (as_addr b)) /// ``loc_regions r`` is the set of memory locations associated to a set /// ``r`` of regions. val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc /// ``loc_mreference b`` is the set of memory locations associated to a /// reference ``b``, which is actually the set of memory locations /// associated to the address of ``b``. unfold let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) unfold let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b)) /// ``loc_region_only r`` is the set of memory locations associated to a /// region ``r`` but not any region ``r'`` that extends ``r`` (in the sense /// of ``FStar.HyperStack.extends``.) unfold let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (Set.singleton r) /// ``loc_all_regions_from r`` is the set of all memory locations /// associated to a region ``r`` and any region ``r'`` that transitively /// extends ``r`` (in the sense of ``FStar.HyperStack.extends``, /// e.g. nested stack frames.) unfold let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (HS.mod_set (Set.singleton r)) /// We equip the ``loc`` monoid of sets of memory locations with an /// inclusion relation, ``loc_includes``, which is a preorder compatible /// with ``loc_union``. Although we consider sets of memory locations, /// we do not specify them using any F* set library such as /// ``FStar.Set``, ``FStar.TSet`` or ``FStar.GSet``, because ``loc_includes`` /// encompasses more than just set-theoretic inclusion. val loc_includes (s1 s2: loc) : GTot Type0 val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) let loc_includes_trans_backwards (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) [SMTPat (loc_includes s1 s3); SMTPat (loc_includes s2 s3)] = loc_includes_trans s1 s2 s3 val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) let loc_includes_union_l' (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) [SMTPat (loc_includes (loc_union s1 s2) s)] = loc_includes_union_l s1 s2 s let loc_includes_union_r' (s s1 s2: loc) : Lemma (loc_includes s (loc_union s1 s2) <==> (loc_includes s s1 /\ loc_includes s s2)) [SMTPat (loc_includes s (loc_union s1 s2))] = Classical.move_requires (loc_includes_union_r s s1) s2; Classical.move_requires (loc_includes_union_l s1 s2) s1; Classical.move_requires (loc_includes_union_l s1 s2) s2; Classical.move_requires (loc_includes_trans s (loc_union s1 s2)) s1; Classical.move_requires (loc_includes_trans s (loc_union s1 s2)) s2 val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] /// If a buffer ``b1`` includes a buffer ``b2`` in the sense of the buffer /// theory (see ``LowStar.Buffer.includes``), then so are their /// corresponding sets of memory locations. val loc_includes_gsub_buffer_r (l:loc) (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:UInt32.t) (len:UInt32.t) (sub_rel:srel a) : Lemma (requires (UInt32.v i + UInt32.v len <= (length b) /\ loc_includes l (loc_buffer b))) (ensures (loc_includes l (loc_buffer (mgsub sub_rel b i len)))) [SMTPat (loc_includes l (loc_buffer (mgsub sub_rel b i len)))] let loc_includes_gsub_buffer_r' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:UInt32.t) (len:UInt32.t) (sub_rel:srel a) :Lemma (requires (UInt32.v i + UInt32.v len <= (length b))) (ensures (loc_includes (loc_buffer b) (loc_buffer (mgsub sub_rel b i len)))) [SMTPat (mgsub sub_rel b i len)] = () val loc_includes_gsub_buffer_l (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i1:UInt32.t) (len1:UInt32.t) (sub_rel1:srel a) (i2:UInt32.t) (len2:UInt32.t) (sub_rel2:srel a) :Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 )) (ensures (loc_includes (loc_buffer (mgsub sub_rel1 b i1 len1)) (loc_buffer (mgsub sub_rel2 b i2 len2)))) [SMTPat (mgsub sub_rel1 b i1 len1); SMTPat (mgsub sub_rel2 b i2 len2)] val loc_includes_loc_buffer_loc_buffer_from_to (#a: _) (#rrel #rel: _) (b: mbuffer a rrel rel) (from to: U32.t) : Lemma (loc_includes (loc_buffer b) (loc_buffer_from_to b from to)) val loc_includes_loc_buffer_from_to (#a: _) (#rrel #rel: _) (b: mbuffer a rrel rel) (from1 to1 from2 to2: U32.t) : Lemma (requires (U32.v from1 <= U32.v from2 /\ U32.v to2 <= U32.v to1)) (ensures (loc_includes (loc_buffer_from_to b from1 to1) (loc_buffer_from_to b from2 to2))) /// If the contents of a buffer are equal in two given heaps, then so /// are the contents of any of its sub-buffers. val loc_includes_as_seq (#a:Type0) (#rrel #rel1 #rel2:srel a) (h1 h2:HS.mem) (larger:mbuffer a rrel rel1) (smaller:mbuffer a rrel rel2) :Lemma (requires (loc_includes (loc_buffer larger) (loc_buffer smaller) /\ as_seq h1 larger == as_seq h2 larger /\ (live h1 larger \/ live h1 smaller) /\ (live h2 larger \/ live h2 smaller))) (ensures (as_seq h1 smaller == as_seq h2 smaller)) /// Given a buffer ``b``, if its address is in a set ``s`` of addresses in /// the region of ``b``, then the set of memory locations corresponding /// to ``b`` is included in the set of memory locations corresponding to /// the addresses in ``s`` in region ``r``. /// /// In particular, the set of memory locations corresponding to a /// buffer is included in the set of memory locations corresponding to /// its region and address. val loc_includes_addresses_buffer (#a:Type0) (#rrel #rel:srel a) (preserve_liveness:bool) (r:HS.rid) (s:Set.set nat) (p:mbuffer a rrel rel) :Lemma (requires (frameOf p == r /\ Set.mem (as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))] let loc_includes_addresses_buffer' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (loc_includes (loc_addresses true (frameOf b) (Set.singleton (as_addr b))) (loc_buffer b)) [SMTPat (loc_buffer b)] = () /// The set of memory locations corresponding to a buffer is included /// in the set of memory locations corresponding to its region. val loc_includes_region_buffer (#a:Type0) (#rrel #rel:srel a) (preserve_liveness:bool) (s:Set.set HS.rid) (b:mbuffer a rrel rel) :Lemma (requires (Set.mem (frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))] let loc_includes_region_buffer' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (loc_includes (loc_regions true (Set.singleton (frameOf b))) (loc_buffer b)) [SMTPat (loc_buffer b)] = () /// If a region ``r`` is in a set of regions ``s``, then the set of memory /// locations corresponding to a set of addresses ``a`` in ``r`` is /// included in the set of memory locations corresponding to the /// regions in ``s``. /// /// In particular, the the set of memory locations corresponding to a /// set of addresses ``a`` in a given region ``r`` is included in the set /// of memory locations corresponding to region ``r``. val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))] let loc_includes_region_addresses' (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (loc_includes (loc_regions true (Set.singleton r)) (loc_addresses preserve_liveness r a)) [SMTPat (loc_addresses preserve_liveness r a)] = () /// If a set of region identifiers ``s1`` includes a set of region /// identifiers ``s2``, then so are their corresponding sets of memory /// locations. val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))] let loc_includes_region_region' (preserve_liveness: bool) (s: Set.set HS.rid) : Lemma (loc_includes (loc_regions false s) (loc_regions preserve_liveness s)) [SMTPat (loc_regions preserve_liveness s)] = () /// The following lemma can act as a cut when reasoning with sets of /// memory locations corresponding to sets of regions. val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))] /// If a set of addresses ``s1`` includes a set of addresses ``s2``, /// then so are their corresponding memory locations val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2))) let loc_includes_addresses_addresses_1 (preserve_liveness1 preserve_liveness2: bool) (r1 r2: HS.rid) (s1 s2: Set.set nat) : Lemma (requires (r1 == r2 /\ (preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r1 s1) (loc_addresses preserve_liveness2 r2 s2))) [SMTPat (loc_includes (loc_addresses preserve_liveness1 r1 s1) (loc_addresses preserve_liveness2 r2 s2))] = loc_includes_addresses_addresses preserve_liveness1 preserve_liveness2 r1 s1 s2 let loc_includes_addresses_addresses_2 (preserve_liveness: bool) (r: HS.rid) (s: Set.set nat) : Lemma (loc_includes (loc_addresses false r s) (loc_addresses preserve_liveness r s)) [SMTPat (loc_addresses preserve_liveness r s)] = () /// Patterns with loc_includes, union on the left let loc_includes_union_l_buffer (s1 s2:loc) (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (requires (loc_includes s1 (loc_buffer b) \/ loc_includes s2 (loc_buffer b))) (ensures (loc_includes (loc_union s1 s2) (loc_buffer b))) [SMTPat (loc_includes (loc_union s1 s2) (loc_buffer b))] = loc_includes_union_l s1 s2 (loc_buffer b) let loc_includes_union_l_addresses (s1 s2: loc) (prf: bool) (r: HS.rid) (a: Set.set nat) : Lemma (requires (loc_includes s1 (loc_addresses prf r a) \/ loc_includes s2 (loc_addresses prf r a))) (ensures (loc_includes (loc_union s1 s2) (loc_addresses prf r a))) [SMTPat (loc_includes (loc_union s1 s2) (loc_addresses prf r a))] = loc_includes_union_l s1 s2 (loc_addresses prf r a) let loc_includes_union_l_regions (s1 s2: loc) (prf: bool) (r: Set.set HS.rid) : Lemma (requires (loc_includes s1 (loc_regions prf r) \/ loc_includes s2 (loc_regions prf r))) (ensures (loc_includes (loc_union s1 s2) (loc_regions prf r))) [SMTPat (loc_includes (loc_union s1 s2) (loc_regions prf r))] = loc_includes_union_l s1 s2 (loc_regions prf r) /// Since inclusion encompasses more than just set-theoretic /// inclusion, we also need to specify disjointness accordingly, as a /// symmetric relation compatible with union. val loc_disjoint (s1 s2: loc) : GTot Type0 val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1)) let loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)] = Classical.move_requires (loc_disjoint_sym s1) s2; Classical.move_requires (loc_disjoint_sym s2) s1 val loc_disjoint_none_r (s: loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2: loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) /// If two sets of memory locations are disjoint, then so are any two /// included sets of memory locations. val loc_disjoint_includes (p1 p2 p1' p2' : loc) : Lemma (requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2)) (ensures (loc_disjoint p1' p2')) let loc_disjoint_union_r' (s s1 s2: loc) : Lemma (ensures (loc_disjoint s (loc_union s1 s2) <==> (loc_disjoint s s1 /\ loc_disjoint s s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] = Classical.move_requires (loc_disjoint_union_r s s1) s2; loc_includes_union_l s1 s2 s1; loc_includes_union_l s1 s2 s2; Classical.move_requires (loc_disjoint_includes s (loc_union s1 s2) s) s1; Classical.move_requires (loc_disjoint_includes s (loc_union s1 s2) s) s2 let loc_disjoint_includes_r (b1 : loc) (b2 b2': loc) : Lemma (requires (loc_includes b2 b2' /\ loc_disjoint b1 b2)) (ensures (loc_disjoint b1 b2')) [SMTPat (loc_disjoint b1 b2'); SMTPat (loc_includes b2 b2')] = loc_disjoint_includes b1 b2 b1 b2' val loc_disjoint_gsub_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (i1:UInt32.t) (len1:UInt32.t) (sub_rel1:srel a) (i2:UInt32.t) (len2:UInt32.t) (sub_rel2:srel a) :Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (length b) /\ UInt32.v i2 + UInt32.v len2 <= (length b) /\ (UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1))) (ensures (loc_disjoint (loc_buffer (mgsub sub_rel1 b i1 len1)) (loc_buffer (mgsub sub_rel2 b i2 len2)))) [SMTPat (mgsub sub_rel1 b i1 len1); SMTPat (mgsub sub_rel2 b i2 len2)] val loc_disjoint_loc_buffer_from_to (#a: _) (#rrel #rel: _) (b: mbuffer a rrel rel) (from1 to1 from2 to2: U32.t) : Lemma (requires (U32.v to1 <= U32.v from2 \/ U32.v to2 <= U32.v from1)) (ensures (loc_disjoint (loc_buffer_from_to b from1 to1) (loc_buffer_from_to b from2 to2))) /// If two sets of addresses correspond to different regions or are /// disjoint, then their corresponding sets of memory locations are /// disjoint. val loc_disjoint_addresses (preserve_liveness1 preserve_liveness2: bool) (r1 r2: HS.rid) (n1 n2: Set.set nat) : Lemma (requires (r1 <> r2 \/ Set.subset (Set.intersect n1 n2) Set.empty)) (ensures (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))) [SMTPat (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))] /// If two sets of region identifiers are disjoint, then so are their /// corresponding sets of memory locations. val loc_disjoint_regions (preserve_liveness1: bool) (preserve_liveness2: bool) (rs1 rs2: Set.set HS.rid) : Lemma (requires (Set.subset (Set.intersect rs1 rs2) Set.empty)) (ensures (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))) [SMTPat (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))] /// Some utilities to work with lists of buffers and locs (* buf_t is a `buffer` at some type `a` *) let buf_t = a:Type0 & rrel:srel a & rel:srel a & mbuffer a rrel rel (* A convenience to construct a buf_t *) [@@BigOps.__reduce__] let buf (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) : buf_t = (|a, rrel, rel, b|) (* A conjunction of liveness conditions on the buffers in `l` Implicitly reduced at typechecking time *) [@@"opaque_to_smt"] unfold let all_live (h:HS.mem) (l:list buf_t) : Type0 = BigOps.big_and #buf_t (fun (| _, _, _, b |) -> live h b) l (* Pairwise disjointness of locations; Implicitly reduced at typechecking time *) [@@"opaque_to_smt"] unfold let all_disjoint (l:list loc) : Type0 = BigOps.pairwise_and loc_disjoint l (* Union of a list of locations; Implicitly reduced at typechecking time *) [@@"opaque_to_smt"] unfold let loc_union_l (l:list loc) = BigOps.normal (List.Tot.fold_right_gtot l loc_union loc_none) (* * Same as all_disjoint, retaining for backward compatibility *) [@@"opaque_to_smt"] unfold let loc_pairwise_disjoint (l:list loc) :Type0 = BigOps.pairwise_and loc_disjoint l /// The modifies clauses proper. /// /// Let ``s`` be a set of memory locations, and ``h1`` and ``h2`` be two /// memory states. Then, ``s`` is modified from ``h1`` to ``h2`` only if, /// any memory location disjoint from ``s`` is preserved from ``h1`` into /// ``h2``. Elimination lemmas illustrating this principle follow. val modifies (s: loc) (h1 h2: HS.mem) : GTot Type0 /// If a region ``r`` is disjoint from a set ``s`` of memory locations /// which is modified, then its liveness is preserved. val modifies_live_region (s: loc) (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies s h1 h2 /\ loc_disjoint s (loc_region_only false r) /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) [SMTPatOr [ [SMTPat (modifies s h1 h2); SMTPat (HS.live_region h1 r)]; [SMTPat (modifies s h1 h2); SMTPat (HS.live_region h2 r)]; ]] /// If a reference ``b`` is disjoint from a set ``p`` of memory locations /// which is modified, then its liveness and contents are preserved. val modifies_mreference_elim (#t: Type) (#pre: Preorder.preorder t) (b: HS.mreference t pre) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_mreference b) p /\ HS.contains h b /\ modifies p h h' )) (ensures ( HS.contains h' b /\ HS.sel h b == HS.sel h' b )) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ]; [ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ] ] ] /// If a buffer ``b`` is disjoint from a set ``p`` of /// memory locations which is modified, then its liveness and contents /// are preserved. val modifies_buffer_elim (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:loc) (h h':HS.mem) :Lemma (requires (loc_disjoint (loc_buffer b) p /\ live h b /\ modifies p h h')) (ensures (live h' b /\ (as_seq h b == as_seq h' b))) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (as_seq h b) ] ; [ SMTPat (modifies p h h'); SMTPat (live h b) ]; [ SMTPat (modifies p h h'); SMTPat (as_seq h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (live h' b) ] ]] val modifies_buffer_from_to_elim (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (p:loc) (h h':HS.mem) :Lemma (requires (loc_disjoint (loc_buffer_from_to b from to) p /\ live h b /\ modifies p h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b)) (ensures (live h' b /\ Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to))) /// If the memory state does not change, then any memory location is /// modified (and, in particular, the empty set, ``loc_none``.) val modifies_refl (s: loc) (h: HS.mem) : Lemma (modifies s h h) [SMTPat (modifies s h h)] /// If a set ``s2`` of memory locations is modified, then so is any set /// ``s1`` that includes ``s2``. In other words, it is always possible to /// weaken a modifies clause by widening its set of memory locations. val modifies_loc_includes (s1: loc) (h h': HS.mem) (s2: loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) [SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')] /// Some memory locations are tagged as liveness-insensitive: the /// liveness preservation of a memory location only depends on its /// disjointness from the liveness-sensitive memory locations of a /// modifies clause. val address_liveness_insensitive_locs: loc val region_liveness_insensitive_locs: loc val address_liveness_insensitive_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (address_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val address_liveness_insensitive_addresses (r: HS.rid) (a: Set.set nat) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a))] val region_liveness_insensitive_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (region_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val region_liveness_insensitive_addresses (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a))] val region_liveness_insensitive_regions (rs: Set.set HS.rid) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs))] val region_liveness_insensitive_address_liveness_insensitive: squash (region_liveness_insensitive_locs `loc_includes` address_liveness_insensitive_locs) val modifies_liveness_insensitive_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies (loc_union l1 l2) h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies (loc_union l1 l2) h h');]; ]] (* TODO: pattern *) val modifies_liveness_insensitive_buffer (l1 l2:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ live h x)) (ensures (live h' x)) [SMTPatOr [ [SMTPat (live h x); SMTPat (modifies (loc_union l1 l2) h h');]; [SMTPat (live h' x); SMTPat (modifies (loc_union l1 l2) h h');]; ]] let modifies_liveness_insensitive_mreference_weak (l : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_mreference loc_none l h h' x let modifies_liveness_insensitive_buffer_weak (l:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ live h x)) (ensures (live h' x)) [SMTPatOr [ [SMTPat (live h x); SMTPat (modifies l h h');]; [SMTPat (live h' x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_buffer loc_none l h h' x val modifies_liveness_insensitive_region (l1 l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_region_only false x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h' x)]; ]] val modifies_liveness_insensitive_region_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [SMTPatOr [ [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h' (HS.frameOf x))]; ]] val modifies_liveness_insensitive_region_buffer (l1 l2:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (frameOf x))) (ensures (HS.live_region h' (frameOf x))) [SMTPatOr [ [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h (frameOf x))]; [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h' (frameOf x))]; ]] let modifies_liveness_insensitive_region_weak (l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' x)]; ]] = modifies_liveness_insensitive_region loc_none l2 h h' x let modifies_liveness_insensitive_region_mreference_weak (l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (HS.frameOf x))]; ]] = modifies_liveness_insensitive_region_mreference loc_none l2 h h' x let modifies_liveness_insensitive_region_buffer_weak (l2:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (frameOf x))) (ensures (HS.live_region h' (frameOf x))) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (frameOf x))]; ]] = modifies_liveness_insensitive_region_buffer loc_none l2 h h' x /// Modifies clauses are transitive. This lemma is the most general /// one. val modifies_trans (s12: loc) (h1 h2: HS.mem) (s23: loc) (h3: HS.mem) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3)) let modifies_trans_linear (l l_goal:loc) (h1 h2 h3:HS.mem) : Lemma (requires (modifies l h1 h2 /\ modifies l_goal h2 h3 /\ l_goal `loc_includes` l)) (ensures (modifies l_goal h1 h3)) [SMTPat (modifies l h1 h2); SMTPat (modifies l_goal h1 h3)] = modifies_trans l h1 h2 l_goal h3 /// Regions that are not live can be removed from sets of memory /// locations that are modified. val modifies_only_live_regions (rs: Set.set HS.rid) (l: loc) (h h' : HS.mem) : Lemma (requires ( modifies (loc_union (loc_regions false rs) l) h h' /\ (forall r . Set.mem r rs ==> (~ (HS.live_region h r))) )) (ensures (modifies l h h')) /// As a consequence, fresh regions can be removed from modifies /// clauses. val no_upd_fresh_region: r:HS.rid -> l:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (HS.fresh_region r h0 h1 /\ modifies (loc_union (loc_all_regions_from false r) l) h0 h1)) (ensures (modifies l h0 h1)) [SMTPat (HS.fresh_region r h0 h1); SMTPat (modifies l h0 h1)] val new_region_modifies (m0: HS.mem) (r0: HS.rid) (col: option int) : Lemma (requires (HST.is_eternal_region r0 /\ HS.live_region m0 r0 /\ (None? col \/ HS.is_heap_color (Some?.v col)))) (ensures ( let (_, m1) = HS.new_eternal_region m0 r0 col in modifies loc_none m0 m1 )) [SMTPat (HS.new_eternal_region m0 r0 col)] /// Stack discipline: any stack frame (and all its transitively /// extending regions) that is pushed, modified and popped can be /// removed from a modifies clause. /// AR: 01/29/2019: Removing the smt pattern from this lemma. /// Clients are no longer expected to call it explicitly, /// if you are having to, please raise an issue. val modifies_fresh_frame_popped (h0 h1: HS.mem) (s: loc) (h2 h3: HS.mem) : Lemma (requires ( HS.fresh_frame h0 h1 /\ modifies (loc_union (loc_all_regions_from false (HS.get_tip h1)) s) h1 h2 /\ (HS.get_tip h2) == (HS.get_tip h1) /\ HS.popped h2 h3 )) (ensures ( modifies s h0 h3 /\ (HS.get_tip h3) == HS.get_tip h0 )) /// Compatibility lemmas to rescue modifies clauses specified in the /// standard F* HyperStack library. val modifies_loc_regions_intro (rs: Set.set HS.rid) (h1 h2: HS.mem) : Lemma (requires (HS.modifies rs h1 h2)) (ensures (modifies (loc_regions true rs) h1 h2)) val modifies_loc_addresses_intro (r: HS.rid) (a: Set.set nat) (l: loc) (h1 h2: HS.mem) : Lemma (requires ( HS.live_region h2 r /\ modifies (loc_union (loc_region_only false r) l) h1 h2 /\ HS.modifies_ref r a h1 h2 )) (ensures (modifies (loc_union (loc_addresses true r a) l) h1 h2)) /// Modifies clauses for allocating a reference: nothing is /// modified. (In particular, a modifies clause does not track /// memory locations that are created.) val modifies_ralloc_post (#a: Type) (#rel: Preorder.preorder a) (i: HS.rid) (init: a) (h: HS.mem) (x: HST.mreference a rel) (h' : HS.mem) : Lemma (requires (HST.ralloc_post i init h x h')) (ensures (modifies loc_none h h')) [SMTPat (HST.ralloc_post i init h x h')] val modifies_salloc_post (#a: Type) (#rel: Preorder.preorder a) (init: a) (h: HS.mem) (x: HST.mreference a rel { HS.is_stack_region (HS.frameOf x) } ) (h' : HS.mem) : Lemma (requires (HST.salloc_post init h x h')) (ensures (modifies loc_none h h')) [SMTPat (HST.salloc_post init h x h')] /// Modifies clause for freeing a reference: the address is modified. val modifies_free (#a: Type) (#rel: Preorder.preorder a) (r: HS.mreference a rel { HS.is_mm r } ) (m: HS.mem { m `HS.contains` r } ) : Lemma (modifies (loc_freed_mreference r) m (HS.free r m)) [SMTPat (HS.free r m)] /// Another compatibility lemma val modifies_none_modifies (h1 h2: HS.mem) : Lemma (requires (HST.modifies_none h1 h2)) (ensures (modifies loc_none h1 h2)) [SMTPat (HST.modifies_none h1 h2)] /// Compatibility with HS.upd val modifies_upd (#t: Type) (#pre: Preorder.preorder t) (r: HS.mreference t pre) (v: t) (h: HS.mem) : Lemma (requires (HS.contains h r)) (ensures (modifies (loc_mreference r) h (HS.upd h r v))) [SMTPat (HS.upd h r v)] /// Introduction lemma for modifying loc_buffer_from_to val modifies_loc_buffer_from_to_intro (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) /// A memory ``h`` does not contain address ``a`` in region ``r``, denoted /// ``does_not_contain_addr h (r, a)``, only if, either region ``r`` is /// not live, or address ``a`` is unused in region ``r``. (* BEGIN TODO: move to FStar.Monotonic.HyperStack *) val does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : GTot Type0 val not_live_region_does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : Lemma (requires (~ (HS.live_region h (fst ra)))) (ensures (h `does_not_contain_addr` ra)) val unused_in_does_not_contain_addr (h: HS.mem) (#a: Type) (#rel: Preorder.preorder a) (r: HS.mreference a rel) : Lemma (requires (r `HS.unused_in` h)) (ensures (h `does_not_contain_addr` (HS.frameOf r, HS.as_addr r))) val addr_unused_in_does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : Lemma (requires (HS.live_region h (fst ra) ==> snd ra `Heap.addr_unused_in` (Map.sel (HS.get_hmap h) (fst ra)))) (ensures (h `does_not_contain_addr` ra)) val free_does_not_contain_addr (#a: Type0) (#rel: Preorder.preorder a) (r: HS.mreference a rel) (m: HS.mem) (x: HS.rid * nat) : Lemma (requires ( HS.is_mm r /\ m `HS.contains` r /\ fst x == HS.frameOf r /\ snd x == HS.as_addr r )) (ensures ( HS.free r m `does_not_contain_addr` x )) [SMTPat (HS.free r m `does_not_contain_addr` x)] val does_not_contain_addr_elim (#a: Type0) (#rel: Preorder.preorder a) (r: HS.mreference a rel) (m: HS.mem) (x: HS.rid * nat) : Lemma (requires ( m `does_not_contain_addr` x /\ HS.frameOf r == fst x /\ HS.as_addr r == snd x )) (ensures (~ (m `HS.contains` r))) (** END TODO *) /// Addresses that have not been allocated yet can be removed from /// modifies clauses. val modifies_only_live_addresses (r: HS.rid) (a: Set.set nat) (l: loc) (h h' : HS.mem) : Lemma (requires ( modifies (loc_union (loc_addresses false r a) l) h h' /\ (forall x . Set.mem x a ==> h `does_not_contain_addr` (r, x)) )) (ensures (modifies l h h')) (* Generic way to ensure that a buffer just allocated is disjoint from any other object, however the latter's liveness is defined. *) val loc_not_unused_in (h: HS.mem) : GTot loc val loc_unused_in (h: HS.mem) : GTot loc (* Shortcut notations with more handy names *) let loc_in (l: loc) (h: HS.mem) = loc_not_unused_in h `loc_includes` l let loc_not_in (l: loc) (h: HS.mem) = loc_unused_in h `loc_includes` l val loc_regions_unused_in (h: HS.mem) (rs: Set.set HS.rid) : Lemma (requires (forall r . Set.mem r rs ==> (~ (HS.live_region h r)))) (ensures (loc_unused_in h `loc_includes` loc_regions false rs)) val loc_unused_in_not_unused_in_disjoint (h: HS.mem) : Lemma (loc_disjoint (loc_unused_in h) (loc_not_unused_in h)) val not_live_region_loc_not_unused_in_disjoint (h0: HS.mem) (r: HS.rid) : Lemma (requires (~ (HS.live_region h0 r))) (ensures (loc_disjoint (loc_region_only false r) (loc_not_unused_in h0))) let fresh_frame_loc_not_unused_in_disjoint (h0 h1: HS.mem) : Lemma (requires (HS.fresh_frame h0 h1)) (ensures (loc_disjoint (loc_region_only false (HS.get_tip h1)) (loc_not_unused_in h0))) [SMTPat (HS.fresh_frame h0 h1)] = not_live_region_loc_not_unused_in_disjoint h0 (HS.get_tip h1) val live_loc_not_unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (live h b)) (ensures (loc_not_unused_in h `loc_includes` loc_addr_of_buffer b)) [SMTPat (live h b)] val unused_in_loc_unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (unused_in b h)) (ensures (loc_unused_in h `loc_includes` loc_addr_of_buffer b)) [SMTPat (unused_in b h)] val modifies_address_liveness_insensitive_unused_in (h h' : HS.mem) : Lemma (requires (modifies (address_liveness_insensitive_locs) h h')) (ensures (loc_not_unused_in h' `loc_includes` loc_not_unused_in h /\ loc_unused_in h `loc_includes` loc_unused_in h')) /// Addresses that have not been allocated yet can be removed from /// modifies clauses. val modifies_only_not_unused_in (l: loc) (h h' : HS.mem) : Lemma (requires (modifies (loc_union (loc_unused_in h) l) h h')) (ensures (modifies l h h')) val mreference_live_loc_not_unused_in (#t: Type) (#pre: Preorder.preorder t) (h: HS.mem) (r: HS.mreference t pre) : Lemma (requires (h `HS.contains` r)) (ensures (loc_not_unused_in h `loc_includes` loc_freed_mreference r /\ loc_not_unused_in h `loc_includes` loc_mreference r)) [SMTPatOr [ [SMTPat (HS.contains h r)]; [SMTPat (loc_not_unused_in h `loc_includes` loc_mreference r)]; [SMTPat (loc_not_unused_in h `loc_includes` loc_freed_mreference r)]; ]] val mreference_unused_in_loc_unused_in (#t: Type) (#pre: Preorder.preorder t) (h: HS.mem) (r: HS.mreference t pre) : Lemma (requires (r `HS.unused_in` h)) (ensures (loc_unused_in h `loc_includes` loc_freed_mreference r /\ loc_unused_in h `loc_includes` loc_mreference r)) [SMTPatOr [ [SMTPat (HS.unused_in r h)]; [SMTPat (loc_unused_in h `loc_includes` loc_mreference r)]; [SMTPat (loc_unused_in h `loc_includes` loc_freed_mreference r)]; ]] let unused_in_not_unused_in_disjoint_2 (l1 l2 l1' l2': loc) (h: HS.mem) : Lemma (requires (loc_unused_in h `loc_includes` l1 /\ loc_not_unused_in h `loc_includes` l2 /\ l1 `loc_includes` l1' /\ l2 `loc_includes` l2' )) (ensures (loc_disjoint l1' l2' )) [SMTPat (loc_disjoint l1' l2'); SMTPat (loc_unused_in h `loc_includes` l1); SMTPat (loc_not_unused_in h `loc_includes` l2)] = loc_includes_trans (loc_unused_in h) l1 l1' ; loc_includes_trans (loc_not_unused_in h) l2 l2' ; loc_unused_in_not_unused_in_disjoint h ; loc_disjoint_includes (loc_unused_in h) (loc_not_unused_in h) l1' l2' val modifies_loc_unused_in (l: loc) (h1 h2: HS.mem) (l' : loc) : Lemma (requires ( modifies l h1 h2 /\ address_liveness_insensitive_locs `loc_includes` l /\ loc_unused_in h2 `loc_includes` l' )) (ensures (loc_unused_in h1 `loc_includes` l')) [SMTPatOr [ [SMTPat (modifies l h1 h2); SMTPat (loc_unused_in h2 `loc_includes` l')]; [SMTPat (modifies l h1 h2); SMTPat (loc_unused_in h1 `loc_includes` l')]; ]] /// Shorthand: freshness let fresh_loc (l: loc) (h h' : HS.mem) : GTot Type0 = loc_unused_in h `loc_includes` l /\ loc_not_unused_in h' `loc_includes` l let ralloc_post_fresh_loc (#a:Type) (#rel:Preorder.preorder a) (i: HS.rid) (init:a) (m0: HS.mem) (x: HST.mreference a rel{HST.is_eternal_region (HS.frameOf x)}) (m1: HS.mem) : Lemma (requires (HST.ralloc_post i init m0 x m1)) (ensures (fresh_loc (loc_freed_mreference x) m0 m1)) [SMTPat (HST.ralloc_post i init m0 x m1)] = () //AR: this is needed for liveness across fresh_frame val fresh_frame_modifies (h0 h1: HS.mem) : Lemma (requires (HS.fresh_frame h0 h1)) (ensures (modifies loc_none h0 h1)) [SMTPat (HS.fresh_frame h0 h1)] val popped_modifies (h0 h1: HS.mem) : Lemma (requires (HS.popped h0 h1)) (ensures (modifies (loc_region_only false (HS.get_tip h0)) h0 h1)) [SMTPat (HS.popped h0 h1)] val modifies_remove_new_locs (l_fresh l_aux l_goal:loc) (h1 h2 h3:HS.mem) : Lemma (requires (fresh_loc l_fresh h1 h2 /\ modifies l_aux h1 h2 /\ l_goal `loc_includes` l_aux /\ modifies (loc_union l_fresh l_goal) h2 h3)) (ensures (modifies l_goal h1 h3)) [SMTPat (fresh_loc l_fresh h1 h2); SMTPat (modifies l_aux h1 h2); SMTPat (modifies l_goal h1 h3)] (* * AR: this lemma is framing the modifies clause across a fresh frame * one way to do it would have been to reuse the lemma modifies_remove_new_locs, * treating the fresh frame as another new location * however, the way library is set up, loc_region in any form cannot be considered * a fresh loc * so, we have a special lemma for fresh_frame *) let modifies_remove_fresh_frame (h1 h2 h3:HS.mem) (l:loc) : Lemma (requires (HS.fresh_frame h1 h2 /\ modifies (loc_union (loc_all_regions_from false (HS.get_tip h2)) l) h2 h3)) (ensures (modifies l h1 h3))
false
false
LowStar.Monotonic.Buffer.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val modifies_remove_fresh_frame (h1 h2 h3: HS.mem) (l: loc) : Lemma (requires (HS.fresh_frame h1 h2 /\ modifies (loc_union (loc_all_regions_from false (HS.get_tip h2)) l) h2 h3)) (ensures (modifies l h1 h3)) [SMTPat (modifies l h1 h3); SMTPat (HS.fresh_frame h1 h2)]
[]
LowStar.Monotonic.Buffer.modifies_remove_fresh_frame
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> h3: FStar.Monotonic.HyperStack.mem -> l: LowStar.Monotonic.Buffer.loc -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.fresh_frame h1 h2 /\ LowStar.Monotonic.Buffer.modifies (LowStar.Monotonic.Buffer.loc_union (LowStar.Monotonic.Buffer.loc_all_regions_from false (FStar.Monotonic.HyperStack.get_tip h2)) l) h2 h3) (ensures LowStar.Monotonic.Buffer.modifies l h1 h3) [ SMTPat (LowStar.Monotonic.Buffer.modifies l h1 h3); SMTPat (FStar.Monotonic.HyperStack.fresh_frame h1 h2) ]
{ "end_col": 39, "end_line": 1720, "start_col": 4, "start_line": 1719 }
FStar.HyperStack.ST.Stack
val upd (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (i: U32.t) (v: a) : HST.Stack unit (requires (fun h -> live h b /\ U32.v i < length b /\ rel (as_seq h b) (Seq.upd (as_seq h b) (U32.v i) v))) (ensures (fun h _ h' -> (not (g_is_null b)) /\ modifies (loc_buffer b) h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v))
[ { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.Preorder", "short_module": "P" }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Monotonic", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let upd (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (v:a) : HST.Stack unit (requires (fun h -> live h b /\ U32.v i < length b /\ rel (as_seq h b) (Seq.upd (as_seq h b) (U32.v i) v))) (ensures (fun h _ h' -> (not (g_is_null b)) /\ modifies (loc_buffer b) h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) = let h = HST.get () in upd' b i v; g_upd_seq_as_seq b (Seq.upd (as_seq h b) (U32.v i) v) h
val upd (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (i: U32.t) (v: a) : HST.Stack unit (requires (fun h -> live h b /\ U32.v i < length b /\ rel (as_seq h b) (Seq.upd (as_seq h b) (U32.v i) v))) (ensures (fun h _ h' -> (not (g_is_null b)) /\ modifies (loc_buffer b) h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) let upd (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (i: U32.t) (v: a) : HST.Stack unit (requires (fun h -> live h b /\ U32.v i < length b /\ rel (as_seq h b) (Seq.upd (as_seq h b) (U32.v i) v))) (ensures (fun h _ h' -> (not (g_is_null b)) /\ modifies (loc_buffer b) h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v)) =
true
null
false
let h = HST.get () in upd' b i v; g_upd_seq_as_seq b (Seq.upd (as_seq h b) (U32.v i) v) h
{ "checked_file": "LowStar.Monotonic.Buffer.fsti.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.ModifiesGen.fsti.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "LowStar.Monotonic.Buffer.fsti" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "LowStar.Monotonic.Buffer.g_upd_seq_as_seq", "FStar.Seq.Base.upd", "LowStar.Monotonic.Buffer.as_seq", "FStar.UInt32.v", "Prims.unit", "LowStar.Monotonic.Buffer.upd'", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "Prims.b2t", "Prims.op_LessThan", "LowStar.Monotonic.Buffer.length", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.eq2", "FStar.Seq.Base.seq" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.Monotonic.Buffer module P = FStar.Preorder module G = FStar.Ghost module U32 = FStar.UInt32 module Seq = FStar.Seq module HS = FStar.HyperStack module HST = FStar.HyperStack.ST (* Most comments are taken from the Low* tutorial at: https://fstarlang.github.io/lowstar/html/LowStar.html *) (* Shorthand for preorder over sequences *) unfold let srel (a:Type0) = Preorder.preorder (Seq.seq a) (* * A compatibility relation between preorders of a sequence and its subsequence *) [@@"opaque_to_smt"] unfold let compatible_subseq_preorder (#a:Type0) (len:nat) (rel:srel a) (i:nat) (j:nat{i <= j /\ j <= len}) (sub_rel:srel a) = (forall (s1 s2:Seq.seq a). {:pattern (rel s1 s2); (sub_rel (Seq.slice s1 i j) (Seq.slice s2 i j))} //for any two sequences s1 and s2 (Seq.length s1 == len /\ Seq.length s2 == len /\ rel s1 s2) ==> //of length len, and related by rel (sub_rel (Seq.slice s1 i j) (Seq.slice s2 i j))) /\ //their slices [i, j) are related by sub_rel (forall (s s2:Seq.seq a). {:pattern (sub_rel (Seq.slice s i j) s2); (rel s (Seq.replace_subseq s i j s2))} //for any two sequences s and s2 (Seq.length s == len /\ Seq.length s2 == j - i /\ sub_rel (Seq.slice s i j) s2) ==> //such that s has length len and s2 has length (j - i), and the slice [i, j) of s is related to s2 by sub_rel (rel s (Seq.replace_subseq s i j s2))) //if we replace the slice [i, j) in s by s2, then s and the resulting buffer are related by rel /// Low* buffers /// ============== /// /// The workhorse of Low*, this module allows modeling C arrays on the /// stack and in the heap. At compilation time, KaRaMeL implements /// buffers using C arrays, i.e. if Low* type ``t`` is translated into C /// type ``u``, then Low* type ``buffer t`` is translated to C type ``u*``. /// /// The type is indexed by two preorders: /// rrel is the preorder with which the buffer is initially created /// rel is the preorder of the current buffer (which could be a sub-buffer of the original one) /// /// The buffer contents are constrained to evolve according to rel (* * rrel is part of the type for technical reasons * If we make it part of the implementation of the buffer type, * it bumps up the universe of buffer itself by one, * which is too restrictive (e.g. no buffers of buffers) * * We expect that clients will rarely work with this directly * Most of the times, they will use wrappers such as buffer, immutable buffer etc. *) val mbuffer (a:Type0) (rrel rel:srel a) :Tot Type0 /// The C ``NULL`` pointer is represented as the Low* ``null`` buffer. For /// any given type, there is exactly one ``null`` buffer of this type, /// just like there is exactly one C ``NULL`` pointer of any given type. /// /// The nullity test ``g_is_null`` is ghost, for proof purposes /// only. The corresponding stateful nullity test is ``is_null``, see /// below. (* FIXME: The nullity test for proof purposes is currently expressed as a ghost predicate, `g_is_null`, but it is scheduled to be replaced with equality with `null` *) val g_is_null (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot bool val mnull (#a:Type0) (#rrel #rel:srel a) :Tot (b:mbuffer a rrel rel {g_is_null b}) val null_unique (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (g_is_null b <==> b == mnull) /// ``unused_in b h`` holds only if buffer ``b`` has not been allocated /// yet. val unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :GTot Type0 /// ``live h b`` holds if, and only if, buffer ``b`` is currently /// allocated in ``h`` and has not been deallocated yet. /// /// This predicate corresponds to the C notion of "lifetime", and as /// such, is a prerequisite for all stateful operations on buffers /// (see below), per the C standard: /// /// If an object is referred to outside of its lifetime, the /// behavior is undefined. /// /// -- ISO/IEC 9899:2011, Section 6.2.4 paragraph 2 /// /// By contrast, it is not required for the ghost versions of those /// operators. val live (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :GTot Type0 /// The null pointer is always live. val live_null (a:Type0) (rrel rel:srel a) (h:HS.mem) :Lemma (live h (mnull #a #rrel #rel)) let live_is_null (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :Lemma (requires (g_is_null b == true)) (ensures (live h b)) [SMTPat (live h b)] = null_unique b; live_null a rrel rel h /// A live buffer has already been allocated. val live_not_unused_in (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :Lemma (requires (live h b /\ b `unused_in` h)) (ensures False) /// If two memories have equal domains, then liveness in one implies liveness in the other val lemma_live_equal_mem_domains (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h0 h1:HS.mem) :Lemma (requires (HST.equal_domains h0 h1 /\ live h0 b)) (ensures (live h1 b)) [SMTPat (HST.equal_domains h0 h1); SMTPat (live h1 b)] (* FIXME: the following definition is necessary to isolate the pattern because of unification. In other words, if we attached the pattern to `live_not_unused_in`, then we would not be able to use `FStar.Classical.forall_intro_`n and `FStar.Classical.move_requires` due to unification issues. Anyway, we plan to isolate patterns in a separate module to clean up the Z3 context. *) let live_not_unused_in' (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :Lemma (requires (live h b /\ b `unused_in` h)) (ensures False) [SMTPat (live h b); SMTPat (b `unused_in` h)] = live_not_unused_in h b /// Buffers live in the HyperStack model, which is an extension of /// the HyperHeap model, a hierarchical memory model that divides the /// heap into a tree of regions. This coarse-grained separation /// allows the programmer to state modifies clauses at the level of /// regions, rather than on individual buffers. /// /// The HyperHeap memory model is described: /// - in the 2016 POPL paper: https://www.fstar-lang.org/papers/mumon/ /// - in the relevant section of the F* tutorial: http://www.fstar-lang.org/tutorial/ /// /// ``frameOf b`` returns the identifier of the region in which the /// buffer ``b`` lives. val frameOf (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Tot HS.rid /// ``as_addr b`` returns the abstract address of the buffer in its /// region, as an allocation unit: two buffers that are allocated /// separately in the same region will actually have different /// addresses, but a sub-buffer of a buffer will actually have the /// same address as its enclosing buffer. val as_addr (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot nat /// A buffer is unused if, and only if, its address is unused. val unused_in_equiv (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (unused_in b h <==> (HS.live_region h (frameOf b) ==> as_addr b `Heap.addr_unused_in` (Map.sel (HS.get_hmap h) (frameOf b)))) /// If a buffer is live, then so is its region. val live_region_frameOf (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :Lemma (requires (live h b)) (ensures (HS.live_region h (frameOf b))) [SMTPatOr [ [SMTPat (live h b)]; [SMTPat (HS.live_region h (frameOf b))]; ]] /// The length of a buffer ``b`` is available as a machine integer ``len /// b`` or as a mathematical integer ``length b``, but both in ghost /// (proof) code only: just like in C, one cannot compute the length /// of a buffer at run-time. val len (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot U32.t let length (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot nat = U32.v (len b) /// The null pointer has length 0. val len_null (a:Type0) (rrel rel:srel a) :Lemma (len (mnull #a #rrel #rel) == 0ul) let length_null_1 (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (requires (length b =!= 0)) (ensures (g_is_null b == false)) [SMTPat (length b)] = len_null a rrel rel; null_unique b let length_null_2 (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (requires (g_is_null b == true)) (ensures (length b == 0)) [SMTPat (g_is_null b)] = len_null a rrel rel; null_unique b /// For functional correctness, buffers are reflected at the proof /// level using sequences, via ``as_seq b h``, which returns the /// contents of a given buffer ``b`` in a given heap ``h``. If ``b`` is not /// live in ``h``, then the result is unspecified. (* TODO: why not return a lseq and remove length_as_seq lemma? *) val as_seq (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :GTot (Seq.seq a) /// The contents of a buffer ``b`` has the same length as ``b`` itself. val length_as_seq (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) :Lemma (Seq.length (as_seq h b) == length b) [SMTPat (Seq.length (as_seq h b))] /// ``get`` is an often-convenient shorthand to index the value of a /// given buffer in a given heap, for proof purposes. let get (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (p:mbuffer a rrel rel) (i:nat) :Ghost a (requires (i < length p)) (ensures (fun _ -> True)) = Seq.index (as_seq h p) i /// Injectivity in the first preorder val mbuffer_injectivity_in_first_preorder (_:unit) : Lemma (forall (a:Type0) (rrel1 rrel2 rel1 rel2:srel a) (b1:mbuffer a rrel1 rel1) (b2:mbuffer a rrel2 rel2). rrel1 =!= rrel2 ==> ~ (b1 === b2)) /// Before defining sub-buffer related API, we need to define the notion of "compatibility" /// /// /// Sub-buffers can be taken at a different preorder than their parent buffers /// But we need to ensure that the changes to the sub-buffer are compatible with the preorder /// of the parent buffer, and vice versa. (* * The quantifiers are fiercely guarded, so if you are working directly with them, * you may have to write additional asserts as triggers *) [@@"opaque_to_smt"] unfold let compatible_sub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t{U32.v i + U32.v len <= length b}) (sub_rel:srel a) = compatible_subseq_preorder (length b) rel (U32.v i) (U32.v i + U32.v len) sub_rel /// ``gsub`` is the way to carve a sub-buffer out of a given /// buffer. ``gsub b i len`` return the sub-buffer of ``b`` starting from /// offset ``i`` within ``b``, and with length ``len``. Of course ``i`` and /// ``len`` must fit within the length of ``b``. /// /// Further the clients can attach a preorder with the subbuffer (sub_rel), /// provided it is compatible /// /// ``gsub`` is the ghost version, for proof purposes. Its stateful /// counterpart is ``sub``, see below. val mgsub (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) :Ghost (mbuffer a rrel sub_rel) (requires (U32.v i + U32.v len <= length b)) (ensures (fun _ -> True)) // goffset /// A buffer is live exactly at the same time as all of its sub-buffers. val live_gsub (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b /\ compatible_sub b i len sub_rel)) (ensures (live h b <==> (live h (mgsub sub_rel b i len) /\ (exists h0 . {:pattern (live h0 b)} live h0 b)))) [SMTPatOr [ [SMTPat (live h (mgsub sub_rel b i len))]; [SMTPat (live h b); SMTPat (mgsub sub_rel b i len);] ]] val gsub_is_null (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (g_is_null (mgsub sub_rel b i len) <==> g_is_null b)) [SMTPat (g_is_null (mgsub sub_rel b i len))] /// The length of a sub-buffer is exactly the one provided at ``gsub``. val len_gsub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len':U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len' <= length b)) (ensures (len (mgsub sub_rel b i len') == len')) [SMTPatOr [ [SMTPat (len (mgsub sub_rel b i len'))]; [SMTPat (length (mgsub sub_rel b i len'))]; ]] val frameOf_gsub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (frameOf (mgsub sub_rel b i len) == frameOf b)) [SMTPat (frameOf (mgsub sub_rel b i len))] val as_addr_gsub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (as_addr (mgsub sub_rel b i len) == as_addr b)) [SMTPat (as_addr (mgsub sub_rel b i len))] val mgsub_inj (#a:Type0) (#rrel #rel:srel a) (sub_rel1 sub_rel2:srel a) (b1 b2:mbuffer a rrel rel) (i1 i2:U32.t) (len1 len2:U32.t) :Lemma (requires (U32.v i1 + U32.v len1 <= length b1 /\ U32.v i2 + U32.v len2 <= length b2 /\ mgsub sub_rel1 b1 i1 len1 === mgsub sub_rel2 b2 i2 len2)) (ensures (len1 == len2 /\ (b1 == b2 ==> i1 == i2) /\ ((i1 == i2 /\ length b1 == length b2) ==> b1 == b2))) /// Nesting two ``gsub`` collapses into one ``gsub``, transitively. val gsub_gsub (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i1:U32.t) (len1:U32.t) (sub_rel1:srel a) (i2: U32.t) (len2: U32.t) (sub_rel2:srel a) :Lemma (requires (U32.v i1 + U32.v len1 <= length b /\ U32.v i2 + U32.v len2 <= U32.v len1)) (ensures (((compatible_sub b i1 len1 sub_rel1 /\ compatible_sub (mgsub sub_rel1 b i1 len1) i2 len2 sub_rel2) ==> compatible_sub b (U32.add i1 i2) len2 sub_rel2) /\ mgsub sub_rel2 (mgsub sub_rel1 b i1 len1) i2 len2 == mgsub sub_rel2 b (U32.add i1 i2) len2)) [SMTPat (mgsub sub_rel2 (mgsub sub_rel1 b i1 len1) i2 len2)] /// A buffer ``b`` is equal to its "largest" sub-buffer, at index 0 and /// length ``len b``. val gsub_zero_length (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (compatible_sub b 0ul (len b) rel /\ b == mgsub rel b 0ul (len b)) /// The contents of a sub-buffer is the corresponding slice of the /// contents of its enclosing buffer. val as_seq_gsub (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (sub_rel:srel a) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (as_seq h (mgsub sub_rel b i len) == Seq.slice (as_seq h b) (U32.v i) (U32.v i + U32.v len))) [SMTPat (as_seq h (mgsub sub_rel b i len))] /// Two live non-null buffers having the same region and address have /// their elements of the same type. val live_same_addresses_equal_types_and_preorders (#a1 #a2: Type0) (#rrel1 #rel1: srel a1) (#rrel2 #rel2: srel a2) (b1: mbuffer a1 rrel1 rel1) (b2: mbuffer a2 rrel2 rel2) (h: HS.mem) : Lemma ((frameOf b1 == frameOf b2 /\ as_addr b1 == as_addr b2 /\ live h b1 /\ live h b2 /\ (~ (g_is_null b1 /\ g_is_null b2))) ==> (a1 == a2 /\ rrel1 == rrel2)) /// # The modifies clause /// /// The modifies clause for regions, references and buffers. /// ========================================================== /// /// This module presents the modifies clause, a way to track the set /// of memory locations modified by a stateful Low* (or even F*) /// program. The basic principle of modifies clauses is that any /// location that is disjoint from a set of memory locations modified /// by an operation is preserved by that operation. /// /// We start by specifying a monoid of sets of memory locations. From /// a rough high-level view, ``loc`` is the type of sets of memory /// locations, equipped with an identity element ``loc_none``, /// representing the empty set, and an associative and commutative /// operator, ``loc_union``, representing the union of two sets of /// memory locations. /// /// Moreover, ``loc_union`` is idempotent, which is useful to cut SMT /// matching loops with ``modifies_trans`` and ``modifies_refl`` below. val loc : Type0 val loc_none: loc val loc_union (s1 s2: loc) : GTot loc val loc_union_idem (s: loc) : Lemma (loc_union s s == s) [SMTPat (loc_union s s)] val loc_union_comm (s1 s2: loc) : Lemma (loc_union s1 s2 == loc_union s2 s1) [SMTPat (loc_union s1 s2)] val loc_union_assoc (s1 s2 s3: loc) : Lemma (loc_union s1 (loc_union s2 s3) == loc_union (loc_union s1 s2) s3) let loc_union_idem_1 (s1 s2: loc) : Lemma (loc_union s1 (loc_union s1 s2) == loc_union s1 s2) [SMTPat (loc_union s1 (loc_union s1 s2))] = loc_union_assoc s1 s1 s2 let loc_union_idem_2 (s1 s2: loc) : Lemma (loc_union (loc_union s1 s2) s2 == loc_union s1 s2) [SMTPat (loc_union (loc_union s1 s2) s2)] = loc_union_assoc s1 s2 s2 val loc_union_loc_none_l (s: loc) : Lemma (loc_union loc_none s == s) [SMTPat (loc_union loc_none s)] val loc_union_loc_none_r (s: loc) : Lemma (loc_union s loc_none == s) [SMTPat (loc_union s loc_none)] /// ``loc_buffer b`` is the set of memory locations associated to a buffer ``b``. val loc_buffer_from_to (#a:Type0) (#rrel #rel:srel a) (b: mbuffer a rrel rel) (from to: U32.t) : GTot loc val loc_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot loc val loc_buffer_eq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) : Lemma (loc_buffer b == loc_buffer_from_to b 0ul (len b)) val loc_buffer_from_to_high (#a: Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) : Lemma (requires (length b <= U32.v to)) (ensures (loc_buffer_from_to b from to == loc_buffer_from_to b from (len b))) val loc_buffer_from_to_none (#a: Type) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (from to: U32.t) : Lemma (requires (g_is_null b \/ length b < U32.v from \/ U32.v to < U32.v from)) (ensures (loc_buffer_from_to b from to == loc_none)) val loc_buffer_from_to_mgsub (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) (from to: U32.t) : Lemma (requires ( U32.v i + U32.v len <= length b /\ U32.v from <= U32.v to /\ U32.v to <= U32.v len )) (ensures ( loc_buffer_from_to (mgsub sub_rel b i len) from to == loc_buffer_from_to b (i `U32.add` from) (i `U32.add` to) )) val loc_buffer_mgsub_eq (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:U32.t) :Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (loc_buffer (mgsub sub_rel b i len) == loc_buffer_from_to b i (i `U32.add` len))) val loc_buffer_null (a:Type0) (rrel rel:srel a) :Lemma (loc_buffer (mnull #a #rrel #rel) == loc_none) [SMTPat (loc_buffer (mnull #a #rrel #rel))] val loc_buffer_from_to_eq (#a:Type0) (#rrel #rel:srel a) (b: mbuffer a rrel rel) (from to: U32.t) : Lemma (requires (U32.v from <= U32.v to /\ U32.v to <= length b)) (ensures (loc_buffer_from_to b from to == loc_buffer (mgsub rel b from (to `U32.sub` from)))) [SMTPat (loc_buffer_from_to b from to)] val loc_buffer_mgsub_rel_eq (#a:Type0) (#rrel #rel:srel a) (b: mbuffer a rrel rel) (rel1 rel2: srel a) (i len: U32.t) : Lemma (requires (U32.v i + U32.v len <= length b)) (ensures (loc_buffer (mgsub rel1 b i len) == loc_buffer (mgsub rel2 b i len))) [SMTPat (loc_buffer (mgsub rel1 b i len)); SMTPat (loc_buffer (mgsub rel2 b i len))] /// ``loc_addresses r n`` is the set of memory locations associated to a /// set of addresses ``n`` in a given region ``r``. val loc_addresses (preserve_liveness: bool) (r: HS.rid) (n: Set.set nat) : GTot loc unfold let loc_addr_of_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :GTot loc = loc_addresses false (frameOf b) (Set.singleton (as_addr b)) /// ``loc_regions r`` is the set of memory locations associated to a set /// ``r`` of regions. val loc_regions (preserve_liveness: bool) (r: Set.set HS.rid) : GTot loc /// ``loc_mreference b`` is the set of memory locations associated to a /// reference ``b``, which is actually the set of memory locations /// associated to the address of ``b``. unfold let loc_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses true (HS.frameOf b) (Set.singleton (HS.as_addr b)) unfold let loc_freed_mreference (#a: Type) (#p: Preorder.preorder a) (b: HS.mreference a p) : GTot loc = loc_addresses false (HS.frameOf b) (Set.singleton (HS.as_addr b)) /// ``loc_region_only r`` is the set of memory locations associated to a /// region ``r`` but not any region ``r'`` that extends ``r`` (in the sense /// of ``FStar.HyperStack.extends``.) unfold let loc_region_only (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (Set.singleton r) /// ``loc_all_regions_from r`` is the set of all memory locations /// associated to a region ``r`` and any region ``r'`` that transitively /// extends ``r`` (in the sense of ``FStar.HyperStack.extends``, /// e.g. nested stack frames.) unfold let loc_all_regions_from (preserve_liveness: bool) (r: HS.rid) : GTot loc = loc_regions preserve_liveness (HS.mod_set (Set.singleton r)) /// We equip the ``loc`` monoid of sets of memory locations with an /// inclusion relation, ``loc_includes``, which is a preorder compatible /// with ``loc_union``. Although we consider sets of memory locations, /// we do not specify them using any F* set library such as /// ``FStar.Set``, ``FStar.TSet`` or ``FStar.GSet``, because ``loc_includes`` /// encompasses more than just set-theoretic inclusion. val loc_includes (s1 s2: loc) : GTot Type0 val loc_includes_refl (s: loc) : Lemma (loc_includes s s) [SMTPat (loc_includes s s)] val loc_includes_trans (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) let loc_includes_trans_backwards (s1 s2 s3: loc) : Lemma (requires (loc_includes s1 s2 /\ loc_includes s2 s3)) (ensures (loc_includes s1 s3)) [SMTPat (loc_includes s1 s3); SMTPat (loc_includes s2 s3)] = loc_includes_trans s1 s2 s3 val loc_includes_union_r (s s1 s2: loc) : Lemma (requires (loc_includes s s1 /\ loc_includes s s2)) (ensures (loc_includes s (loc_union s1 s2))) val loc_includes_union_l (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) let loc_includes_union_l' (s1 s2 s: loc) : Lemma (requires (loc_includes s1 s \/ loc_includes s2 s)) (ensures (loc_includes (loc_union s1 s2) s)) [SMTPat (loc_includes (loc_union s1 s2) s)] = loc_includes_union_l s1 s2 s let loc_includes_union_r' (s s1 s2: loc) : Lemma (loc_includes s (loc_union s1 s2) <==> (loc_includes s s1 /\ loc_includes s s2)) [SMTPat (loc_includes s (loc_union s1 s2))] = Classical.move_requires (loc_includes_union_r s s1) s2; Classical.move_requires (loc_includes_union_l s1 s2) s1; Classical.move_requires (loc_includes_union_l s1 s2) s2; Classical.move_requires (loc_includes_trans s (loc_union s1 s2)) s1; Classical.move_requires (loc_includes_trans s (loc_union s1 s2)) s2 val loc_includes_none (s: loc) : Lemma (loc_includes s loc_none) [SMTPat (loc_includes s loc_none)] /// If a buffer ``b1`` includes a buffer ``b2`` in the sense of the buffer /// theory (see ``LowStar.Buffer.includes``), then so are their /// corresponding sets of memory locations. val loc_includes_gsub_buffer_r (l:loc) (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:UInt32.t) (len:UInt32.t) (sub_rel:srel a) : Lemma (requires (UInt32.v i + UInt32.v len <= (length b) /\ loc_includes l (loc_buffer b))) (ensures (loc_includes l (loc_buffer (mgsub sub_rel b i len)))) [SMTPat (loc_includes l (loc_buffer (mgsub sub_rel b i len)))] let loc_includes_gsub_buffer_r' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:UInt32.t) (len:UInt32.t) (sub_rel:srel a) :Lemma (requires (UInt32.v i + UInt32.v len <= (length b))) (ensures (loc_includes (loc_buffer b) (loc_buffer (mgsub sub_rel b i len)))) [SMTPat (mgsub sub_rel b i len)] = () val loc_includes_gsub_buffer_l (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i1:UInt32.t) (len1:UInt32.t) (sub_rel1:srel a) (i2:UInt32.t) (len2:UInt32.t) (sub_rel2:srel a) :Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (length b) /\ UInt32.v i1 <= UInt32.v i2 /\ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1 + UInt32.v len1 )) (ensures (loc_includes (loc_buffer (mgsub sub_rel1 b i1 len1)) (loc_buffer (mgsub sub_rel2 b i2 len2)))) [SMTPat (mgsub sub_rel1 b i1 len1); SMTPat (mgsub sub_rel2 b i2 len2)] val loc_includes_loc_buffer_loc_buffer_from_to (#a: _) (#rrel #rel: _) (b: mbuffer a rrel rel) (from to: U32.t) : Lemma (loc_includes (loc_buffer b) (loc_buffer_from_to b from to)) val loc_includes_loc_buffer_from_to (#a: _) (#rrel #rel: _) (b: mbuffer a rrel rel) (from1 to1 from2 to2: U32.t) : Lemma (requires (U32.v from1 <= U32.v from2 /\ U32.v to2 <= U32.v to1)) (ensures (loc_includes (loc_buffer_from_to b from1 to1) (loc_buffer_from_to b from2 to2))) /// If the contents of a buffer are equal in two given heaps, then so /// are the contents of any of its sub-buffers. val loc_includes_as_seq (#a:Type0) (#rrel #rel1 #rel2:srel a) (h1 h2:HS.mem) (larger:mbuffer a rrel rel1) (smaller:mbuffer a rrel rel2) :Lemma (requires (loc_includes (loc_buffer larger) (loc_buffer smaller) /\ as_seq h1 larger == as_seq h2 larger /\ (live h1 larger \/ live h1 smaller) /\ (live h2 larger \/ live h2 smaller))) (ensures (as_seq h1 smaller == as_seq h2 smaller)) /// Given a buffer ``b``, if its address is in a set ``s`` of addresses in /// the region of ``b``, then the set of memory locations corresponding /// to ``b`` is included in the set of memory locations corresponding to /// the addresses in ``s`` in region ``r``. /// /// In particular, the set of memory locations corresponding to a /// buffer is included in the set of memory locations corresponding to /// its region and address. val loc_includes_addresses_buffer (#a:Type0) (#rrel #rel:srel a) (preserve_liveness:bool) (r:HS.rid) (s:Set.set nat) (p:mbuffer a rrel rel) :Lemma (requires (frameOf p == r /\ Set.mem (as_addr p) s)) (ensures (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))) [SMTPat (loc_includes (loc_addresses preserve_liveness r s) (loc_buffer p))] let loc_includes_addresses_buffer' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (loc_includes (loc_addresses true (frameOf b) (Set.singleton (as_addr b))) (loc_buffer b)) [SMTPat (loc_buffer b)] = () /// The set of memory locations corresponding to a buffer is included /// in the set of memory locations corresponding to its region. val loc_includes_region_buffer (#a:Type0) (#rrel #rel:srel a) (preserve_liveness:bool) (s:Set.set HS.rid) (b:mbuffer a rrel rel) :Lemma (requires (Set.mem (frameOf b) s)) (ensures (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))) [SMTPat (loc_includes (loc_regions preserve_liveness s) (loc_buffer b))] let loc_includes_region_buffer' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (loc_includes (loc_regions true (Set.singleton (frameOf b))) (loc_buffer b)) [SMTPat (loc_buffer b)] = () /// If a region ``r`` is in a set of regions ``s``, then the set of memory /// locations corresponding to a set of addresses ``a`` in ``r`` is /// included in the set of memory locations corresponding to the /// regions in ``s``. /// /// In particular, the the set of memory locations corresponding to a /// set of addresses ``a`` in a given region ``r`` is included in the set /// of memory locations corresponding to region ``r``. val loc_includes_region_addresses (preserve_liveness1: bool) (preserve_liveness2: bool) (s: Set.set HS.rid) (r: HS.rid) (a: Set.set nat) : Lemma (requires (Set.mem r s)) (ensures (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s) (loc_addresses preserve_liveness2 r a))] let loc_includes_region_addresses' (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (loc_includes (loc_regions true (Set.singleton r)) (loc_addresses preserve_liveness r a)) [SMTPat (loc_addresses preserve_liveness r a)] = () /// If a set of region identifiers ``s1`` includes a set of region /// identifiers ``s2``, then so are their corresponding sets of memory /// locations. val loc_includes_region_region (preserve_liveness1: bool) (preserve_liveness2: bool) (s1 s2: Set.set HS.rid) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))) [SMTPat (loc_includes (loc_regions preserve_liveness1 s1) (loc_regions preserve_liveness2 s2))] let loc_includes_region_region' (preserve_liveness: bool) (s: Set.set HS.rid) : Lemma (loc_includes (loc_regions false s) (loc_regions preserve_liveness s)) [SMTPat (loc_regions preserve_liveness s)] = () /// The following lemma can act as a cut when reasoning with sets of /// memory locations corresponding to sets of regions. val loc_includes_region_union_l (preserve_liveness: bool) (l: loc) (s1 s2: Set.set HS.rid) : Lemma (requires (loc_includes l (loc_regions preserve_liveness (Set.intersect s2 (Set.complement s1))))) (ensures (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))) [SMTPat (loc_includes (loc_union (loc_regions preserve_liveness s1) l) (loc_regions preserve_liveness s2))] /// If a set of addresses ``s1`` includes a set of addresses ``s2``, /// then so are their corresponding memory locations val loc_includes_addresses_addresses (preserve_liveness1 preserve_liveness2: bool) (r: HS.rid) (s1 s2: Set.set nat) : Lemma (requires ((preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r s1) (loc_addresses preserve_liveness2 r s2))) let loc_includes_addresses_addresses_1 (preserve_liveness1 preserve_liveness2: bool) (r1 r2: HS.rid) (s1 s2: Set.set nat) : Lemma (requires (r1 == r2 /\ (preserve_liveness1 ==> preserve_liveness2) /\ Set.subset s2 s1)) (ensures (loc_includes (loc_addresses preserve_liveness1 r1 s1) (loc_addresses preserve_liveness2 r2 s2))) [SMTPat (loc_includes (loc_addresses preserve_liveness1 r1 s1) (loc_addresses preserve_liveness2 r2 s2))] = loc_includes_addresses_addresses preserve_liveness1 preserve_liveness2 r1 s1 s2 let loc_includes_addresses_addresses_2 (preserve_liveness: bool) (r: HS.rid) (s: Set.set nat) : Lemma (loc_includes (loc_addresses false r s) (loc_addresses preserve_liveness r s)) [SMTPat (loc_addresses preserve_liveness r s)] = () /// Patterns with loc_includes, union on the left let loc_includes_union_l_buffer (s1 s2:loc) (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (requires (loc_includes s1 (loc_buffer b) \/ loc_includes s2 (loc_buffer b))) (ensures (loc_includes (loc_union s1 s2) (loc_buffer b))) [SMTPat (loc_includes (loc_union s1 s2) (loc_buffer b))] = loc_includes_union_l s1 s2 (loc_buffer b) let loc_includes_union_l_addresses (s1 s2: loc) (prf: bool) (r: HS.rid) (a: Set.set nat) : Lemma (requires (loc_includes s1 (loc_addresses prf r a) \/ loc_includes s2 (loc_addresses prf r a))) (ensures (loc_includes (loc_union s1 s2) (loc_addresses prf r a))) [SMTPat (loc_includes (loc_union s1 s2) (loc_addresses prf r a))] = loc_includes_union_l s1 s2 (loc_addresses prf r a) let loc_includes_union_l_regions (s1 s2: loc) (prf: bool) (r: Set.set HS.rid) : Lemma (requires (loc_includes s1 (loc_regions prf r) \/ loc_includes s2 (loc_regions prf r))) (ensures (loc_includes (loc_union s1 s2) (loc_regions prf r))) [SMTPat (loc_includes (loc_union s1 s2) (loc_regions prf r))] = loc_includes_union_l s1 s2 (loc_regions prf r) /// Since inclusion encompasses more than just set-theoretic /// inclusion, we also need to specify disjointness accordingly, as a /// symmetric relation compatible with union. val loc_disjoint (s1 s2: loc) : GTot Type0 val loc_disjoint_sym (s1 s2: loc) : Lemma (requires (loc_disjoint s1 s2)) (ensures (loc_disjoint s2 s1)) let loc_disjoint_sym' (s1 s2: loc) : Lemma (loc_disjoint s1 s2 <==> loc_disjoint s2 s1) [SMTPat (loc_disjoint s1 s2)] = Classical.move_requires (loc_disjoint_sym s1) s2; Classical.move_requires (loc_disjoint_sym s2) s1 val loc_disjoint_none_r (s: loc) : Lemma (ensures (loc_disjoint s loc_none)) [SMTPat (loc_disjoint s loc_none)] val loc_disjoint_union_r (s s1 s2: loc) : Lemma (requires (loc_disjoint s s1 /\ loc_disjoint s s2)) (ensures (loc_disjoint s (loc_union s1 s2))) /// If two sets of memory locations are disjoint, then so are any two /// included sets of memory locations. val loc_disjoint_includes (p1 p2 p1' p2' : loc) : Lemma (requires (loc_includes p1 p1' /\ loc_includes p2 p2' /\ loc_disjoint p1 p2)) (ensures (loc_disjoint p1' p2')) let loc_disjoint_union_r' (s s1 s2: loc) : Lemma (ensures (loc_disjoint s (loc_union s1 s2) <==> (loc_disjoint s s1 /\ loc_disjoint s s2))) [SMTPat (loc_disjoint s (loc_union s1 s2))] = Classical.move_requires (loc_disjoint_union_r s s1) s2; loc_includes_union_l s1 s2 s1; loc_includes_union_l s1 s2 s2; Classical.move_requires (loc_disjoint_includes s (loc_union s1 s2) s) s1; Classical.move_requires (loc_disjoint_includes s (loc_union s1 s2) s) s2 let loc_disjoint_includes_r (b1 : loc) (b2 b2': loc) : Lemma (requires (loc_includes b2 b2' /\ loc_disjoint b1 b2)) (ensures (loc_disjoint b1 b2')) [SMTPat (loc_disjoint b1 b2'); SMTPat (loc_includes b2 b2')] = loc_disjoint_includes b1 b2 b1 b2' val loc_disjoint_gsub_buffer (#a:Type0) (#rrel:srel a) (#rel:srel a) (b:mbuffer a rrel rel) (i1:UInt32.t) (len1:UInt32.t) (sub_rel1:srel a) (i2:UInt32.t) (len2:UInt32.t) (sub_rel2:srel a) :Lemma (requires (UInt32.v i1 + UInt32.v len1 <= (length b) /\ UInt32.v i2 + UInt32.v len2 <= (length b) /\ (UInt32.v i1 + UInt32.v len1 <= UInt32.v i2 \/ UInt32.v i2 + UInt32.v len2 <= UInt32.v i1))) (ensures (loc_disjoint (loc_buffer (mgsub sub_rel1 b i1 len1)) (loc_buffer (mgsub sub_rel2 b i2 len2)))) [SMTPat (mgsub sub_rel1 b i1 len1); SMTPat (mgsub sub_rel2 b i2 len2)] val loc_disjoint_loc_buffer_from_to (#a: _) (#rrel #rel: _) (b: mbuffer a rrel rel) (from1 to1 from2 to2: U32.t) : Lemma (requires (U32.v to1 <= U32.v from2 \/ U32.v to2 <= U32.v from1)) (ensures (loc_disjoint (loc_buffer_from_to b from1 to1) (loc_buffer_from_to b from2 to2))) /// If two sets of addresses correspond to different regions or are /// disjoint, then their corresponding sets of memory locations are /// disjoint. val loc_disjoint_addresses (preserve_liveness1 preserve_liveness2: bool) (r1 r2: HS.rid) (n1 n2: Set.set nat) : Lemma (requires (r1 <> r2 \/ Set.subset (Set.intersect n1 n2) Set.empty)) (ensures (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))) [SMTPat (loc_disjoint (loc_addresses preserve_liveness1 r1 n1) (loc_addresses preserve_liveness2 r2 n2))] /// If two sets of region identifiers are disjoint, then so are their /// corresponding sets of memory locations. val loc_disjoint_regions (preserve_liveness1: bool) (preserve_liveness2: bool) (rs1 rs2: Set.set HS.rid) : Lemma (requires (Set.subset (Set.intersect rs1 rs2) Set.empty)) (ensures (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))) [SMTPat (loc_disjoint (loc_regions preserve_liveness1 rs1) (loc_regions preserve_liveness2 rs2))] /// Some utilities to work with lists of buffers and locs (* buf_t is a `buffer` at some type `a` *) let buf_t = a:Type0 & rrel:srel a & rel:srel a & mbuffer a rrel rel (* A convenience to construct a buf_t *) [@@BigOps.__reduce__] let buf (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) : buf_t = (|a, rrel, rel, b|) (* A conjunction of liveness conditions on the buffers in `l` Implicitly reduced at typechecking time *) [@@"opaque_to_smt"] unfold let all_live (h:HS.mem) (l:list buf_t) : Type0 = BigOps.big_and #buf_t (fun (| _, _, _, b |) -> live h b) l (* Pairwise disjointness of locations; Implicitly reduced at typechecking time *) [@@"opaque_to_smt"] unfold let all_disjoint (l:list loc) : Type0 = BigOps.pairwise_and loc_disjoint l (* Union of a list of locations; Implicitly reduced at typechecking time *) [@@"opaque_to_smt"] unfold let loc_union_l (l:list loc) = BigOps.normal (List.Tot.fold_right_gtot l loc_union loc_none) (* * Same as all_disjoint, retaining for backward compatibility *) [@@"opaque_to_smt"] unfold let loc_pairwise_disjoint (l:list loc) :Type0 = BigOps.pairwise_and loc_disjoint l /// The modifies clauses proper. /// /// Let ``s`` be a set of memory locations, and ``h1`` and ``h2`` be two /// memory states. Then, ``s`` is modified from ``h1`` to ``h2`` only if, /// any memory location disjoint from ``s`` is preserved from ``h1`` into /// ``h2``. Elimination lemmas illustrating this principle follow. val modifies (s: loc) (h1 h2: HS.mem) : GTot Type0 /// If a region ``r`` is disjoint from a set ``s`` of memory locations /// which is modified, then its liveness is preserved. val modifies_live_region (s: loc) (h1 h2: HS.mem) (r: HS.rid) : Lemma (requires (modifies s h1 h2 /\ loc_disjoint s (loc_region_only false r) /\ HS.live_region h1 r)) (ensures (HS.live_region h2 r)) [SMTPatOr [ [SMTPat (modifies s h1 h2); SMTPat (HS.live_region h1 r)]; [SMTPat (modifies s h1 h2); SMTPat (HS.live_region h2 r)]; ]] /// If a reference ``b`` is disjoint from a set ``p`` of memory locations /// which is modified, then its liveness and contents are preserved. val modifies_mreference_elim (#t: Type) (#pre: Preorder.preorder t) (b: HS.mreference t pre) (p: loc) (h h': HS.mem) : Lemma (requires ( loc_disjoint (loc_mreference b) p /\ HS.contains h b /\ modifies p h h' )) (ensures ( HS.contains h' b /\ HS.sel h b == HS.sel h' b )) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (HS.sel h b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h b) ]; [ SMTPat (modifies p h h'); SMTPat (HS.sel h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (HS.contains h' b) ] ] ] /// If a buffer ``b`` is disjoint from a set ``p`` of /// memory locations which is modified, then its liveness and contents /// are preserved. val modifies_buffer_elim (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (p:loc) (h h':HS.mem) :Lemma (requires (loc_disjoint (loc_buffer b) p /\ live h b /\ modifies p h h')) (ensures (live h' b /\ (as_seq h b == as_seq h' b))) [SMTPatOr [ [ SMTPat (modifies p h h'); SMTPat (as_seq h b) ] ; [ SMTPat (modifies p h h'); SMTPat (live h b) ]; [ SMTPat (modifies p h h'); SMTPat (as_seq h' b) ] ; [ SMTPat (modifies p h h'); SMTPat (live h' b) ] ]] val modifies_buffer_from_to_elim (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (p:loc) (h h':HS.mem) :Lemma (requires (loc_disjoint (loc_buffer_from_to b from to) p /\ live h b /\ modifies p h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b)) (ensures (live h' b /\ Seq.slice (as_seq h b) (U32.v from) (U32.v to) == Seq.slice (as_seq h' b) (U32.v from) (U32.v to))) /// If the memory state does not change, then any memory location is /// modified (and, in particular, the empty set, ``loc_none``.) val modifies_refl (s: loc) (h: HS.mem) : Lemma (modifies s h h) [SMTPat (modifies s h h)] /// If a set ``s2`` of memory locations is modified, then so is any set /// ``s1`` that includes ``s2``. In other words, it is always possible to /// weaken a modifies clause by widening its set of memory locations. val modifies_loc_includes (s1: loc) (h h': HS.mem) (s2: loc) : Lemma (requires (modifies s2 h h' /\ loc_includes s1 s2)) (ensures (modifies s1 h h')) [SMTPat (modifies s1 h h'); SMTPat (modifies s2 h h')] /// Some memory locations are tagged as liveness-insensitive: the /// liveness preservation of a memory location only depends on its /// disjointness from the liveness-sensitive memory locations of a /// modifies clause. val address_liveness_insensitive_locs: loc val region_liveness_insensitive_locs: loc val address_liveness_insensitive_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (address_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val address_liveness_insensitive_addresses (r: HS.rid) (a: Set.set nat) : Lemma (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a)) [SMTPat (address_liveness_insensitive_locs `loc_includes` (loc_addresses true r a))] val region_liveness_insensitive_buffer (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :Lemma (region_liveness_insensitive_locs `loc_includes` (loc_buffer b)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_buffer b))] val region_liveness_insensitive_addresses (preserve_liveness: bool) (r: HS.rid) (a: Set.set nat) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_addresses preserve_liveness r a))] val region_liveness_insensitive_regions (rs: Set.set HS.rid) : Lemma (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs)) [SMTPat (region_liveness_insensitive_locs `loc_includes` (loc_regions true rs))] val region_liveness_insensitive_address_liveness_insensitive: squash (region_liveness_insensitive_locs `loc_includes` address_liveness_insensitive_locs) val modifies_liveness_insensitive_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies (loc_union l1 l2) h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies (loc_union l1 l2) h h');]; ]] (* TODO: pattern *) val modifies_liveness_insensitive_buffer (l1 l2:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ address_liveness_insensitive_locs `loc_includes` l2 /\ live h x)) (ensures (live h' x)) [SMTPatOr [ [SMTPat (live h x); SMTPat (modifies (loc_union l1 l2) h h');]; [SMTPat (live h' x); SMTPat (modifies (loc_union l1 l2) h h');]; ]] let modifies_liveness_insensitive_mreference_weak (l : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ h `HS.contains` x)) (ensures (h' `HS.contains` x)) [SMTPatOr [ [SMTPat (h `HS.contains` x); SMTPat (modifies l h h');]; [SMTPat (h' `HS.contains` x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_mreference loc_none l h h' x let modifies_liveness_insensitive_buffer_weak (l:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies l h h' /\ address_liveness_insensitive_locs `loc_includes` l /\ live h x)) (ensures (live h' x)) [SMTPatOr [ [SMTPat (live h x); SMTPat (modifies l h h');]; [SMTPat (live h' x); SMTPat (modifies l h h');]; ]] = modifies_liveness_insensitive_buffer loc_none l h h' x val modifies_liveness_insensitive_region (l1 l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_region_only false x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h' x)]; ]] val modifies_liveness_insensitive_region_mreference (l1 l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_mreference x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [SMTPatOr [ [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h' (HS.frameOf x))]; ]] val modifies_liveness_insensitive_region_buffer (l1 l2:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies (loc_union l1 l2) h h' /\ loc_disjoint l1 (loc_buffer x) /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (frameOf x))) (ensures (HS.live_region h' (frameOf x))) [SMTPatOr [ [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h (frameOf x))]; [SMTPat (modifies (loc_union l1 l2) h h'); SMTPat (HS.live_region h' (frameOf x))]; ]] let modifies_liveness_insensitive_region_weak (l2 : loc) (h h' : HS.mem) (x: HS.rid) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h x)) (ensures (HS.live_region h' x)) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h x)]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' x)]; ]] = modifies_liveness_insensitive_region loc_none l2 h h' x let modifies_liveness_insensitive_region_mreference_weak (l2 : loc) (h h' : HS.mem) (#t: Type) (#pre: Preorder.preorder t) (x: HS.mreference t pre) : Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (HS.frameOf x))) (ensures (HS.live_region h' (HS.frameOf x))) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (HS.frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (HS.frameOf x))]; ]] = modifies_liveness_insensitive_region_mreference loc_none l2 h h' x let modifies_liveness_insensitive_region_buffer_weak (l2:loc) (h h':HS.mem) (#a:Type0) (#rrel #rel:srel a) (x:mbuffer a rrel rel) :Lemma (requires (modifies l2 h h' /\ region_liveness_insensitive_locs `loc_includes` l2 /\ HS.live_region h (frameOf x))) (ensures (HS.live_region h' (frameOf x))) [SMTPatOr [ [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h (frameOf x))]; [SMTPat (modifies l2 h h'); SMTPat (HS.live_region h' (frameOf x))]; ]] = modifies_liveness_insensitive_region_buffer loc_none l2 h h' x /// Modifies clauses are transitive. This lemma is the most general /// one. val modifies_trans (s12: loc) (h1 h2: HS.mem) (s23: loc) (h3: HS.mem) : Lemma (requires (modifies s12 h1 h2 /\ modifies s23 h2 h3)) (ensures (modifies (loc_union s12 s23) h1 h3)) let modifies_trans_linear (l l_goal:loc) (h1 h2 h3:HS.mem) : Lemma (requires (modifies l h1 h2 /\ modifies l_goal h2 h3 /\ l_goal `loc_includes` l)) (ensures (modifies l_goal h1 h3)) [SMTPat (modifies l h1 h2); SMTPat (modifies l_goal h1 h3)] = modifies_trans l h1 h2 l_goal h3 /// Regions that are not live can be removed from sets of memory /// locations that are modified. val modifies_only_live_regions (rs: Set.set HS.rid) (l: loc) (h h' : HS.mem) : Lemma (requires ( modifies (loc_union (loc_regions false rs) l) h h' /\ (forall r . Set.mem r rs ==> (~ (HS.live_region h r))) )) (ensures (modifies l h h')) /// As a consequence, fresh regions can be removed from modifies /// clauses. val no_upd_fresh_region: r:HS.rid -> l:loc -> h0:HS.mem -> h1:HS.mem -> Lemma (requires (HS.fresh_region r h0 h1 /\ modifies (loc_union (loc_all_regions_from false r) l) h0 h1)) (ensures (modifies l h0 h1)) [SMTPat (HS.fresh_region r h0 h1); SMTPat (modifies l h0 h1)] val new_region_modifies (m0: HS.mem) (r0: HS.rid) (col: option int) : Lemma (requires (HST.is_eternal_region r0 /\ HS.live_region m0 r0 /\ (None? col \/ HS.is_heap_color (Some?.v col)))) (ensures ( let (_, m1) = HS.new_eternal_region m0 r0 col in modifies loc_none m0 m1 )) [SMTPat (HS.new_eternal_region m0 r0 col)] /// Stack discipline: any stack frame (and all its transitively /// extending regions) that is pushed, modified and popped can be /// removed from a modifies clause. /// AR: 01/29/2019: Removing the smt pattern from this lemma. /// Clients are no longer expected to call it explicitly, /// if you are having to, please raise an issue. val modifies_fresh_frame_popped (h0 h1: HS.mem) (s: loc) (h2 h3: HS.mem) : Lemma (requires ( HS.fresh_frame h0 h1 /\ modifies (loc_union (loc_all_regions_from false (HS.get_tip h1)) s) h1 h2 /\ (HS.get_tip h2) == (HS.get_tip h1) /\ HS.popped h2 h3 )) (ensures ( modifies s h0 h3 /\ (HS.get_tip h3) == HS.get_tip h0 )) /// Compatibility lemmas to rescue modifies clauses specified in the /// standard F* HyperStack library. val modifies_loc_regions_intro (rs: Set.set HS.rid) (h1 h2: HS.mem) : Lemma (requires (HS.modifies rs h1 h2)) (ensures (modifies (loc_regions true rs) h1 h2)) val modifies_loc_addresses_intro (r: HS.rid) (a: Set.set nat) (l: loc) (h1 h2: HS.mem) : Lemma (requires ( HS.live_region h2 r /\ modifies (loc_union (loc_region_only false r) l) h1 h2 /\ HS.modifies_ref r a h1 h2 )) (ensures (modifies (loc_union (loc_addresses true r a) l) h1 h2)) /// Modifies clauses for allocating a reference: nothing is /// modified. (In particular, a modifies clause does not track /// memory locations that are created.) val modifies_ralloc_post (#a: Type) (#rel: Preorder.preorder a) (i: HS.rid) (init: a) (h: HS.mem) (x: HST.mreference a rel) (h' : HS.mem) : Lemma (requires (HST.ralloc_post i init h x h')) (ensures (modifies loc_none h h')) [SMTPat (HST.ralloc_post i init h x h')] val modifies_salloc_post (#a: Type) (#rel: Preorder.preorder a) (init: a) (h: HS.mem) (x: HST.mreference a rel { HS.is_stack_region (HS.frameOf x) } ) (h' : HS.mem) : Lemma (requires (HST.salloc_post init h x h')) (ensures (modifies loc_none h h')) [SMTPat (HST.salloc_post init h x h')] /// Modifies clause for freeing a reference: the address is modified. val modifies_free (#a: Type) (#rel: Preorder.preorder a) (r: HS.mreference a rel { HS.is_mm r } ) (m: HS.mem { m `HS.contains` r } ) : Lemma (modifies (loc_freed_mreference r) m (HS.free r m)) [SMTPat (HS.free r m)] /// Another compatibility lemma val modifies_none_modifies (h1 h2: HS.mem) : Lemma (requires (HST.modifies_none h1 h2)) (ensures (modifies loc_none h1 h2)) [SMTPat (HST.modifies_none h1 h2)] /// Compatibility with HS.upd val modifies_upd (#t: Type) (#pre: Preorder.preorder t) (r: HS.mreference t pre) (v: t) (h: HS.mem) : Lemma (requires (HS.contains h r)) (ensures (modifies (loc_mreference r) h (HS.upd h r v))) [SMTPat (HS.upd h r v)] /// Introduction lemma for modifying loc_buffer_from_to val modifies_loc_buffer_from_to_intro (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (from to: U32.t) (l: loc) (h h' : HS.mem) : Lemma (requires ( let s = as_seq h b in let s' = as_seq h' b in live h b /\ modifies (loc_union l (loc_buffer b)) h h' /\ U32.v from <= U32.v to /\ U32.v to <= length b /\ Seq.slice s 0 (U32.v from) `Seq.equal` Seq.slice s' 0 (U32.v from) /\ Seq.slice s (U32.v to) (length b) `Seq.equal` Seq.slice s' (U32.v to) (length b) )) (ensures (modifies (loc_union l (loc_buffer_from_to b from to)) h h')) /// A memory ``h`` does not contain address ``a`` in region ``r``, denoted /// ``does_not_contain_addr h (r, a)``, only if, either region ``r`` is /// not live, or address ``a`` is unused in region ``r``. (* BEGIN TODO: move to FStar.Monotonic.HyperStack *) val does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : GTot Type0 val not_live_region_does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : Lemma (requires (~ (HS.live_region h (fst ra)))) (ensures (h `does_not_contain_addr` ra)) val unused_in_does_not_contain_addr (h: HS.mem) (#a: Type) (#rel: Preorder.preorder a) (r: HS.mreference a rel) : Lemma (requires (r `HS.unused_in` h)) (ensures (h `does_not_contain_addr` (HS.frameOf r, HS.as_addr r))) val addr_unused_in_does_not_contain_addr (h: HS.mem) (ra: HS.rid * nat) : Lemma (requires (HS.live_region h (fst ra) ==> snd ra `Heap.addr_unused_in` (Map.sel (HS.get_hmap h) (fst ra)))) (ensures (h `does_not_contain_addr` ra)) val free_does_not_contain_addr (#a: Type0) (#rel: Preorder.preorder a) (r: HS.mreference a rel) (m: HS.mem) (x: HS.rid * nat) : Lemma (requires ( HS.is_mm r /\ m `HS.contains` r /\ fst x == HS.frameOf r /\ snd x == HS.as_addr r )) (ensures ( HS.free r m `does_not_contain_addr` x )) [SMTPat (HS.free r m `does_not_contain_addr` x)] val does_not_contain_addr_elim (#a: Type0) (#rel: Preorder.preorder a) (r: HS.mreference a rel) (m: HS.mem) (x: HS.rid * nat) : Lemma (requires ( m `does_not_contain_addr` x /\ HS.frameOf r == fst x /\ HS.as_addr r == snd x )) (ensures (~ (m `HS.contains` r))) (** END TODO *) /// Addresses that have not been allocated yet can be removed from /// modifies clauses. val modifies_only_live_addresses (r: HS.rid) (a: Set.set nat) (l: loc) (h h' : HS.mem) : Lemma (requires ( modifies (loc_union (loc_addresses false r a) l) h h' /\ (forall x . Set.mem x a ==> h `does_not_contain_addr` (r, x)) )) (ensures (modifies l h h')) (* Generic way to ensure that a buffer just allocated is disjoint from any other object, however the latter's liveness is defined. *) val loc_not_unused_in (h: HS.mem) : GTot loc val loc_unused_in (h: HS.mem) : GTot loc (* Shortcut notations with more handy names *) let loc_in (l: loc) (h: HS.mem) = loc_not_unused_in h `loc_includes` l let loc_not_in (l: loc) (h: HS.mem) = loc_unused_in h `loc_includes` l val loc_regions_unused_in (h: HS.mem) (rs: Set.set HS.rid) : Lemma (requires (forall r . Set.mem r rs ==> (~ (HS.live_region h r)))) (ensures (loc_unused_in h `loc_includes` loc_regions false rs)) val loc_unused_in_not_unused_in_disjoint (h: HS.mem) : Lemma (loc_disjoint (loc_unused_in h) (loc_not_unused_in h)) val not_live_region_loc_not_unused_in_disjoint (h0: HS.mem) (r: HS.rid) : Lemma (requires (~ (HS.live_region h0 r))) (ensures (loc_disjoint (loc_region_only false r) (loc_not_unused_in h0))) let fresh_frame_loc_not_unused_in_disjoint (h0 h1: HS.mem) : Lemma (requires (HS.fresh_frame h0 h1)) (ensures (loc_disjoint (loc_region_only false (HS.get_tip h1)) (loc_not_unused_in h0))) [SMTPat (HS.fresh_frame h0 h1)] = not_live_region_loc_not_unused_in_disjoint h0 (HS.get_tip h1) val live_loc_not_unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (live h b)) (ensures (loc_not_unused_in h `loc_includes` loc_addr_of_buffer b)) [SMTPat (live h b)] val unused_in_loc_unused_in (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (unused_in b h)) (ensures (loc_unused_in h `loc_includes` loc_addr_of_buffer b)) [SMTPat (unused_in b h)] val modifies_address_liveness_insensitive_unused_in (h h' : HS.mem) : Lemma (requires (modifies (address_liveness_insensitive_locs) h h')) (ensures (loc_not_unused_in h' `loc_includes` loc_not_unused_in h /\ loc_unused_in h `loc_includes` loc_unused_in h')) /// Addresses that have not been allocated yet can be removed from /// modifies clauses. val modifies_only_not_unused_in (l: loc) (h h' : HS.mem) : Lemma (requires (modifies (loc_union (loc_unused_in h) l) h h')) (ensures (modifies l h h')) val mreference_live_loc_not_unused_in (#t: Type) (#pre: Preorder.preorder t) (h: HS.mem) (r: HS.mreference t pre) : Lemma (requires (h `HS.contains` r)) (ensures (loc_not_unused_in h `loc_includes` loc_freed_mreference r /\ loc_not_unused_in h `loc_includes` loc_mreference r)) [SMTPatOr [ [SMTPat (HS.contains h r)]; [SMTPat (loc_not_unused_in h `loc_includes` loc_mreference r)]; [SMTPat (loc_not_unused_in h `loc_includes` loc_freed_mreference r)]; ]] val mreference_unused_in_loc_unused_in (#t: Type) (#pre: Preorder.preorder t) (h: HS.mem) (r: HS.mreference t pre) : Lemma (requires (r `HS.unused_in` h)) (ensures (loc_unused_in h `loc_includes` loc_freed_mreference r /\ loc_unused_in h `loc_includes` loc_mreference r)) [SMTPatOr [ [SMTPat (HS.unused_in r h)]; [SMTPat (loc_unused_in h `loc_includes` loc_mreference r)]; [SMTPat (loc_unused_in h `loc_includes` loc_freed_mreference r)]; ]] let unused_in_not_unused_in_disjoint_2 (l1 l2 l1' l2': loc) (h: HS.mem) : Lemma (requires (loc_unused_in h `loc_includes` l1 /\ loc_not_unused_in h `loc_includes` l2 /\ l1 `loc_includes` l1' /\ l2 `loc_includes` l2' )) (ensures (loc_disjoint l1' l2' )) [SMTPat (loc_disjoint l1' l2'); SMTPat (loc_unused_in h `loc_includes` l1); SMTPat (loc_not_unused_in h `loc_includes` l2)] = loc_includes_trans (loc_unused_in h) l1 l1' ; loc_includes_trans (loc_not_unused_in h) l2 l2' ; loc_unused_in_not_unused_in_disjoint h ; loc_disjoint_includes (loc_unused_in h) (loc_not_unused_in h) l1' l2' val modifies_loc_unused_in (l: loc) (h1 h2: HS.mem) (l' : loc) : Lemma (requires ( modifies l h1 h2 /\ address_liveness_insensitive_locs `loc_includes` l /\ loc_unused_in h2 `loc_includes` l' )) (ensures (loc_unused_in h1 `loc_includes` l')) [SMTPatOr [ [SMTPat (modifies l h1 h2); SMTPat (loc_unused_in h2 `loc_includes` l')]; [SMTPat (modifies l h1 h2); SMTPat (loc_unused_in h1 `loc_includes` l')]; ]] /// Shorthand: freshness let fresh_loc (l: loc) (h h' : HS.mem) : GTot Type0 = loc_unused_in h `loc_includes` l /\ loc_not_unused_in h' `loc_includes` l let ralloc_post_fresh_loc (#a:Type) (#rel:Preorder.preorder a) (i: HS.rid) (init:a) (m0: HS.mem) (x: HST.mreference a rel{HST.is_eternal_region (HS.frameOf x)}) (m1: HS.mem) : Lemma (requires (HST.ralloc_post i init m0 x m1)) (ensures (fresh_loc (loc_freed_mreference x) m0 m1)) [SMTPat (HST.ralloc_post i init m0 x m1)] = () //AR: this is needed for liveness across fresh_frame val fresh_frame_modifies (h0 h1: HS.mem) : Lemma (requires (HS.fresh_frame h0 h1)) (ensures (modifies loc_none h0 h1)) [SMTPat (HS.fresh_frame h0 h1)] val popped_modifies (h0 h1: HS.mem) : Lemma (requires (HS.popped h0 h1)) (ensures (modifies (loc_region_only false (HS.get_tip h0)) h0 h1)) [SMTPat (HS.popped h0 h1)] val modifies_remove_new_locs (l_fresh l_aux l_goal:loc) (h1 h2 h3:HS.mem) : Lemma (requires (fresh_loc l_fresh h1 h2 /\ modifies l_aux h1 h2 /\ l_goal `loc_includes` l_aux /\ modifies (loc_union l_fresh l_goal) h2 h3)) (ensures (modifies l_goal h1 h3)) [SMTPat (fresh_loc l_fresh h1 h2); SMTPat (modifies l_aux h1 h2); SMTPat (modifies l_goal h1 h3)] (* * AR: this lemma is framing the modifies clause across a fresh frame * one way to do it would have been to reuse the lemma modifies_remove_new_locs, * treating the fresh frame as another new location * however, the way library is set up, loc_region in any form cannot be considered * a fresh loc * so, we have a special lemma for fresh_frame *) let modifies_remove_fresh_frame (h1 h2 h3:HS.mem) (l:loc) : Lemma (requires (HS.fresh_frame h1 h2 /\ modifies (loc_union (loc_all_regions_from false (HS.get_tip h2)) l) h2 h3)) (ensures (modifies l h1 h3)) [SMTPat (modifies l h1 h3); SMTPat (HS.fresh_frame h1 h2)] = loc_regions_unused_in h1 (HS.mod_set (Set.singleton (HS.get_tip h2))); modifies_only_not_unused_in l h1 h3 /// Legacy shorthands for disjointness and inclusion of buffers /// let disjoint (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :GTot Type0 = loc_disjoint (loc_buffer b1) (loc_buffer b2) let includes (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :GTot Type0 = loc_includes (loc_buffer b1) (loc_buffer b2) /\ (g_is_null b1 <==> g_is_null b2) val disjoint_neq (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (b1:mbuffer a1 rrel1 rel1) (b2:mbuffer a2 rrel2 rel2) :Lemma (requires (disjoint b1 b2 /\ U32.v (len b1) > 0)) (ensures (~(b1 === b2))) val empty_disjoint (#t1 #t2: Type) (#rrel1 #rel1: srel t1) (#rrel2 #rel2: srel t2) (b1: mbuffer t1 rrel1 rel1) (b2: mbuffer t2 rrel2 rel2) : Lemma (requires (length b1 == 0)) (ensures (disjoint b1 b2)) (* /// The liveness of a sub-buffer entails from the liveness /// of its enclosing buffer. val includes_live (#a:Type0) (#rrel #rel1 #rel2:srel a) (h:HS.mem) (larger:mbuffer a rrel rel1) (smaller:mbuffer a rrel rel2) :Lemma (requires (larger `includes` smaller)) (ensures (live h larger ==> live h smaller)) [SMTPatOr [ [SMTPat (includes larger smaller); SMTPat (live h larger)]; [SMTPat (includes larger smaller); SMTPat (live h smaller)]; ]] *) val includes_frameOf_as_addr (#a1 #a2:Type0) (#rrel1 #rel1:srel a1) (#rrel2 #rel2:srel a2) (larger:mbuffer a1 rrel1 rel1) (smaller:mbuffer a2 rrel2 rel2) :Lemma (requires (larger `includes` smaller)) (ensures (g_is_null larger == g_is_null smaller /\ frameOf larger == frameOf smaller /\ as_addr larger == as_addr smaller)) [SMTPat (larger `includes` smaller)] /// /// Useful shorthands for pointers, or maybe-null pointers inline_for_extraction type mpointer (a:Type0) (rrel:srel a) (rel:srel a) = b:mbuffer a rrel rel{length b == 1} inline_for_extraction type mpointer_or_null (a:Type0) (rrel:srel a) (rel:srel a) = b:mbuffer a rrel rel{if g_is_null b then True else length b == 1} unfold let deref (#a:Type0) (#rrel #rel:srel a) (h:HS.mem) (x:mpointer a rrel rel) = get h x 0 /// Two pointers having different contents are disjoint. This is valid /// only for pointers, i.e. buffers of size 1. val pointer_distinct_sel_disjoint (#a:Type0) (#rrel1 #rrel2 #rel1 #rel2:srel a) (b1:mpointer a rrel1 rel1) (b2:mpointer a rrel2 rel2) (h:HS.mem) :Lemma (requires (live h b1 /\ live h b2 /\ get h b1 0 =!= get h b2 0)) (ensures (disjoint b1 b2)) /// The following stateful operations on buffers do not change the /// memory, but, as required by the C standard, they all require the /// buffer in question to be live. /// The nullity test, ``is_null b``, which KaRaMeL compiles to C as ``b == NULL``. val is_null (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) :HST.Stack bool (requires (fun h -> live h b)) (ensures (fun h y h' -> h == h' /\ y == g_is_null b)) /// ``sub b i len`` constructs the sub-buffer of ``b`` starting from /// offset ``i`` with length ``len``. KaRaMeL extracts this operation as /// ``b + i`` (or, equivalently, ``&b[i]``.) val msub (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (len:Ghost.erased U32.t) :HST.Stack (mbuffer a rrel sub_rel) (requires (fun h -> U32.v i + U32.v (Ghost.reveal len) <= length b /\ compatible_sub b i (Ghost.reveal len) sub_rel /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub sub_rel b i (Ghost.reveal len))) /// ``offset b i`` construct the tail of the buffer ``b`` starting from /// offset ``i``, i.e. the sub-buffer of ``b`` starting from offset ``i`` /// with length ``U32.sub (len b) i``. KaRaMeL compiles it as ``b + i`` or /// ``&b[i]``. /// /// This stateful operation cannot be derived from ``sub``, because the /// length cannot be computed outside of proofs. val moffset (#a:Type0) (#rrel #rel:srel a) (sub_rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) :HST.Stack (mbuffer a rrel sub_rel) (requires (fun h -> U32.v i <= length b /\ compatible_sub b i (U32.sub (len b) i) sub_rel /\ live h b)) (ensures (fun h y h' -> h == h' /\ y == mgsub sub_rel b i (U32.sub (len b) i))) // goffset /// ``index b i`` reads the value of ``b`` at offset ``i`` from memory and /// returns it. KaRaMeL compiles it as b[i]. val index (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) :HST.Stack a (requires (fun h -> live h b /\ U32.v i < length b)) (ensures (fun h y h' -> h == h' /\ y == Seq.index (as_seq h b) (U32.v i))) /// The following stateful operations on buffers modify the memory, /// and, as usual, require the liveness of the buffer. /// ``g_upd_seq b s h`` updates the entire buffer `b`'s contents in /// heap `h` to correspond to the sequence `s` val g_upd_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (s:Seq.lseq a (length b)) (h:HS.mem{live h b}) :GTot HS.mem val lemma_g_upd_with_same_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (h:HS.mem) :Lemma (requires (live h b)) (ensures (g_upd_seq b (as_seq h b) h == h)) /// A lemma specifying `g_upd_seq` in terms of its effect on the /// buffer's underlying sequence val g_upd_seq_as_seq (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (s:Seq.lseq a (length b)) (h:HS.mem{live h b}) : Lemma (let h' = g_upd_seq b s h in (Seq.length s > 0 ==> not (g_is_null b)) /\ modifies (loc_buffer b) h h' /\ live h' b /\ HST.equal_domains h h' /\ as_seq h' b == s) /// ``g_upd b i v h`` updates the buffer `b` in heap `h` at location /// `i` writing ``v`` there. This is the spec analog of the stateful /// update `upd` below. let g_upd (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:nat{i < length b}) (v:a) (h:HS.mem{live h b}) : GTot HS.mem = g_upd_seq b (Seq.upd (as_seq h b) i v) h val g_upd_modifies_strong (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:nat{i < length b}) (v:a) (h:HS.mem{live h b}) : Lemma (modifies (loc_buffer_from_to b (U32.uint_to_t i) (U32.uint_to_t (i + 1))) h (g_upd b i v h)) /// ``upd b i v`` writes ``v`` to the memory, at offset ``i`` of /// buffer ``b``. KaRaMeL compiles it as ``b[i] = v``. val upd' (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (v:a) :HST.Stack unit (requires (fun h -> live h b /\ U32.v i < length b /\ rel (as_seq h b) (Seq.upd (as_seq h b) (U32.v i) v))) (ensures (fun h _ h' -> h' == g_upd b (U32.v i) v h)) inline_for_extraction let upd (#a:Type0) (#rrel #rel:srel a) (b:mbuffer a rrel rel) (i:U32.t) (v:a) : HST.Stack unit (requires (fun h -> live h b /\ U32.v i < length b /\ rel (as_seq h b) (Seq.upd (as_seq h b) (U32.v i) v))) (ensures (fun h _ h' -> (not (g_is_null b)) /\ modifies (loc_buffer b) h h' /\ live h' b /\
false
false
LowStar.Monotonic.Buffer.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val upd (#a: Type0) (#rrel #rel: srel a) (b: mbuffer a rrel rel) (i: U32.t) (v: a) : HST.Stack unit (requires (fun h -> live h b /\ U32.v i < length b /\ rel (as_seq h b) (Seq.upd (as_seq h b) (U32.v i) v))) (ensures (fun h _ h' -> (not (g_is_null b)) /\ modifies (loc_buffer b) h h' /\ live h' b /\ as_seq h' b == Seq.upd (as_seq h b) (U32.v i) v))
[]
LowStar.Monotonic.Buffer.upd
{ "file_name": "ulib/LowStar.Monotonic.Buffer.fsti", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> v: a -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 59, "end_line": 1909, "start_col": 3, "start_line": 1907 }
Prims.Tot
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Typing.FV", "short_module": "FV" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_exists_witness_singleton (st:st_term) = match st.term with | Tm_IntroExists { witnesses = [_] } -> true | _ -> false
let intro_exists_witness_singleton (st: st_term) =
false
null
false
match st.term with | Tm_IntroExists { witnesses = [_] } -> true | _ -> false
{ "checked_file": "Pulse.Checker.Exists.fsti.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Checker.Exists.fsti" }
[ "total" ]
[ "Pulse.Syntax.Base.st_term", "Pulse.Syntax.Base.__proj__Mkst_term__item__term", "Pulse.Syntax.Base.vprop", "Pulse.Syntax.Base.term", "Pulse.Syntax.Base.st_term'", "Prims.bool" ]
[]
module Pulse.Checker.Exists module T = FStar.Tactics.V2 open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Base val check_elim_exists (g:env) (pre:term) (pre_typing:tot_typing g pre tm_vprop) (post_hint:post_hint_opt g) (res_ppname:ppname) (t:st_term{Tm_ElimExists? t.term}) : T.Tac (checker_result_t g pre post_hint)
false
true
Pulse.Checker.Exists.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_exists_witness_singleton : st: Pulse.Syntax.Base.st_term -> Prims.bool
[]
Pulse.Checker.Exists.intro_exists_witness_singleton
{ "file_name": "lib/steel/pulse/Pulse.Checker.Exists.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
st: Pulse.Syntax.Base.st_term -> Prims.bool
{ "end_col": 14, "end_line": 21, "start_col": 2, "start_line": 19 }
Prims.Tot
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Typing.FV", "short_module": "FV" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Pure", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let intro_exists_vprop (st:st_term { Tm_IntroExists? st.term }) = match st.term with | Tm_IntroExists { p } -> p
let intro_exists_vprop (st: st_term{Tm_IntroExists? st.term}) =
false
null
false
match st.term with | Tm_IntroExists { p = p } -> p
{ "checked_file": "Pulse.Checker.Exists.fsti.checked", "dependencies": [ "Pulse.Typing.fst.checked", "Pulse.Syntax.fst.checked", "Pulse.Checker.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.Checker.Exists.fsti" }
[ "total" ]
[ "Pulse.Syntax.Base.st_term", "Prims.b2t", "Pulse.Syntax.Base.uu___is_Tm_IntroExists", "Pulse.Syntax.Base.__proj__Mkst_term__item__term", "Pulse.Syntax.Base.vprop", "Prims.list", "Pulse.Syntax.Base.term" ]
[]
module Pulse.Checker.Exists module T = FStar.Tactics.V2 open Pulse.Syntax open Pulse.Typing open Pulse.Checker.Base val check_elim_exists (g:env) (pre:term) (pre_typing:tot_typing g pre tm_vprop) (post_hint:post_hint_opt g) (res_ppname:ppname) (t:st_term{Tm_ElimExists? t.term}) : T.Tac (checker_result_t g pre post_hint) let intro_exists_witness_singleton (st:st_term) = match st.term with | Tm_IntroExists { witnesses = [_] } -> true | _ -> false
false
false
Pulse.Checker.Exists.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val intro_exists_vprop : st: Pulse.Syntax.Base.st_term{Tm_IntroExists? (Mkst_term?.term st)} -> Pulse.Syntax.Base.vprop
[]
Pulse.Checker.Exists.intro_exists_vprop
{ "file_name": "lib/steel/pulse/Pulse.Checker.Exists.fsti", "git_rev": "7fbb54e94dd4f48ff7cb867d3bae6889a635541e", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
st: Pulse.Syntax.Base.st_term{Tm_IntroExists? (Mkst_term?.term st)} -> Pulse.Syntax.Base.vprop
{ "end_col": 29, "end_line": 25, "start_col": 2, "start_line": 24 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let update_multi_pre (a:hash_alg) (prev:extra_state a) (blocks:bytes) = match a with | Blake2B | Blake2S -> (S.length blocks + prev) `less_than_max_input_length` a | _ -> true
let update_multi_pre (a: hash_alg) (prev: extra_state a) (blocks: bytes) =
false
null
false
match a with | Blake2B | Blake2S -> (S.length blocks + prev) `less_than_max_input_length` a | _ -> true
{ "checked_file": "Spec.Agile.Hash.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Agile.Hash.fsti" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Spec.Hash.Definitions.extra_state", "Spec.Hash.Definitions.bytes", "Spec.Hash.Definitions.less_than_max_input_length", "Prims.op_Addition", "FStar.Seq.Base.length", "Lib.IntTypes.uint8", "Prims.bool" ]
[]
module Spec.Agile.Hash module S = FStar.Seq include Spec.Hash.Definitions open FStar.Mul (** Hashes, agility, incrementality, streaming, and hash laws. For various historical reasons, this module serves two purposes. - For Merkle-Damgård algorithms (MD5, SHA1, SHA2), this module acts as a *definitional* specification. This *is* the spec of the MD algorithms, and low-level implementations (at least, historically) we shown to refine this specification. - For non-MD algorithms (Blake2, SHA3), this module serves a different purpose: it shows that Blake2 and SHA3 obey the hash laws (more on that below), and that therefore they can be suitably interpreted as behaving like hash algorithms in this agile specification. The agile hash therefore obeys the hash laws, because every algorithm does. This agile specification, in addition to establishing the high-level property that "all hash algorithms behave like hashes" (i.e., obey the hash laws), serves as a specification of the agile, multiplexing hash known as EverCrypt.Hash. The hash laws are as follows. - Any hash algorithm can be decomposed into an *incremental* specification, relying on: init, update_multi, update_last, finish. (The MD hashes specifically decompose update_last as padding + update but this is not generally true of all hashes.) See Spec.Hash.Incremental.Definitions.hash_incremental, along with the various proofs in Spec.Hash.Incremental.X that algorithm X is equivalent to its incremental specification. - The update_multi function, which processes n full blocks into the internal hash state (also known as the accumulator, borrowing from functional programming terminology for folds), takes the empty input as its neutral element. Concretely: update_multi acc empty == acc - The update_multi function is associative. Concretely: update_multi (update_multi acc blocks) blocks' == update_multi acc (blocks @ blocks') Proving the three hash laws is important: they are needed by the streaming functor (which turns a block-by-block implementation into a buffered implementation that can take arbitrary amounts of data) for functional correctness. (In the case of MD hashes, the proof of incrementality specifically relies on the two properties of update_multi, but this is not true in the general case.) The incremental specification (in lemmas/Spec.Hash.Incremental.Definitions) introduces a notion of "update_last" and then defines the hash as update_multi, update_last, finish. *) val init (a:hash_alg): init_t a let init_extra_state (a:hash_alg) : extra_state a = match a with | Blake2B | Blake2S -> 0 | _ -> () (* The individual update function. This is an implementation detail, and clients should reason in terms of update_multi to be fully agile. None of the hash laws refer to update. *) val update (a:md_alg): update_t a (* Because of blake2, we unfortunately have this precondition creeping up. *) let update_multi_pre (a:hash_alg) (prev:extra_state a) (blocks:bytes)
false
false
Spec.Agile.Hash.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val update_multi_pre : a: Spec.Hash.Definitions.hash_alg -> prev: Spec.Hash.Definitions.extra_state a -> blocks: Spec.Hash.Definitions.bytes -> Prims.bool
[]
Spec.Agile.Hash.update_multi_pre
{ "file_name": "specs/Spec.Agile.Hash.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg -> prev: Spec.Hash.Definitions.extra_state a -> blocks: Spec.Hash.Definitions.bytes -> Prims.bool
{ "end_col": 13, "end_line": 74, "start_col": 2, "start_line": 71 }
Prims.Tot
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hash (a:fixed_len_alg) (input:bytes{S.length input `less_than_max_input_length` a}) = hash' a input ()
let hash (a: fixed_len_alg) (input: bytes{(S.length input) `less_than_max_input_length` a}) =
false
null
false
hash' a input ()
{ "checked_file": "Spec.Agile.Hash.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Agile.Hash.fsti" }
[ "total" ]
[ "Spec.Hash.Definitions.fixed_len_alg", "Spec.Hash.Definitions.bytes", "Prims.b2t", "Spec.Hash.Definitions.less_than_max_input_length", "FStar.Seq.Base.length", "Lib.IntTypes.uint8", "Spec.Agile.Hash.hash'", "Lib.ByteSequence.lbytes", "Spec.Hash.Definitions.hash_length'" ]
[]
module Spec.Agile.Hash module S = FStar.Seq include Spec.Hash.Definitions open FStar.Mul (** Hashes, agility, incrementality, streaming, and hash laws. For various historical reasons, this module serves two purposes. - For Merkle-Damgård algorithms (MD5, SHA1, SHA2), this module acts as a *definitional* specification. This *is* the spec of the MD algorithms, and low-level implementations (at least, historically) we shown to refine this specification. - For non-MD algorithms (Blake2, SHA3), this module serves a different purpose: it shows that Blake2 and SHA3 obey the hash laws (more on that below), and that therefore they can be suitably interpreted as behaving like hash algorithms in this agile specification. The agile hash therefore obeys the hash laws, because every algorithm does. This agile specification, in addition to establishing the high-level property that "all hash algorithms behave like hashes" (i.e., obey the hash laws), serves as a specification of the agile, multiplexing hash known as EverCrypt.Hash. The hash laws are as follows. - Any hash algorithm can be decomposed into an *incremental* specification, relying on: init, update_multi, update_last, finish. (The MD hashes specifically decompose update_last as padding + update but this is not generally true of all hashes.) See Spec.Hash.Incremental.Definitions.hash_incremental, along with the various proofs in Spec.Hash.Incremental.X that algorithm X is equivalent to its incremental specification. - The update_multi function, which processes n full blocks into the internal hash state (also known as the accumulator, borrowing from functional programming terminology for folds), takes the empty input as its neutral element. Concretely: update_multi acc empty == acc - The update_multi function is associative. Concretely: update_multi (update_multi acc blocks) blocks' == update_multi acc (blocks @ blocks') Proving the three hash laws is important: they are needed by the streaming functor (which turns a block-by-block implementation into a buffered implementation that can take arbitrary amounts of data) for functional correctness. (In the case of MD hashes, the proof of incrementality specifically relies on the two properties of update_multi, but this is not true in the general case.) The incremental specification (in lemmas/Spec.Hash.Incremental.Definitions) introduces a notion of "update_last" and then defines the hash as update_multi, update_last, finish. *) val init (a:hash_alg): init_t a let init_extra_state (a:hash_alg) : extra_state a = match a with | Blake2B | Blake2S -> 0 | _ -> () (* The individual update function. This is an implementation detail, and clients should reason in terms of update_multi to be fully agile. None of the hash laws refer to update. *) val update (a:md_alg): update_t a (* Because of blake2, we unfortunately have this precondition creeping up. *) let update_multi_pre (a:hash_alg) (prev:extra_state a) (blocks:bytes) = match a with | Blake2B | Blake2S -> (S.length blocks + prev) `less_than_max_input_length` a | _ -> true (* Agile multi-block processing function shown to obey the hash laws. *) val update_multi (a:hash_alg) (hash:words_state a) (prev:extra_state a) (blocks:bytes_blocks a): Pure (words_state a) (requires update_multi_pre a prev blocks) (ensures fun _ -> True) val finish (a:hash_alg): Spec.Hash.Definitions.finish_t a val hash' (a:hash_alg) (input:bytes{S.length input `less_than_max_input_length` a}) (l: output_length a): Tot (Lib.ByteSequence.lbytes (Spec.Hash.Definitions.hash_length' a l)) unfold
false
false
Spec.Agile.Hash.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hash : a: Spec.Hash.Definitions.fixed_len_alg -> input: Spec.Hash.Definitions.bytes {Spec.Hash.Definitions.less_than_max_input_length (FStar.Seq.Base.length input) a} -> Lib.ByteSequence.lbytes (Spec.Hash.Definitions.hash_length' a ())
[]
Spec.Agile.Hash.hash
{ "file_name": "specs/Spec.Agile.Hash.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.fixed_len_alg -> input: Spec.Hash.Definitions.bytes {Spec.Hash.Definitions.less_than_max_input_length (FStar.Seq.Base.length input) a} -> Lib.ByteSequence.lbytes (Spec.Hash.Definitions.hash_length' a ())
{ "end_col": 18, "end_line": 93, "start_col": 2, "start_line": 93 }
Prims.Tot
val init_extra_state (a: hash_alg) : extra_state a
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "Spec.Agile", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let init_extra_state (a:hash_alg) : extra_state a = match a with | Blake2B | Blake2S -> 0 | _ -> ()
val init_extra_state (a: hash_alg) : extra_state a let init_extra_state (a: hash_alg) : extra_state a =
false
null
false
match a with | Blake2B | Blake2S -> 0 | _ -> ()
{ "checked_file": "Spec.Agile.Hash.fsti.checked", "dependencies": [ "Spec.Hash.Definitions.fst.checked", "prims.fst.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Agile.Hash.fsti" }
[ "total" ]
[ "Spec.Hash.Definitions.hash_alg", "Spec.Hash.Definitions.extra_state" ]
[]
module Spec.Agile.Hash module S = FStar.Seq include Spec.Hash.Definitions open FStar.Mul (** Hashes, agility, incrementality, streaming, and hash laws. For various historical reasons, this module serves two purposes. - For Merkle-Damgård algorithms (MD5, SHA1, SHA2), this module acts as a *definitional* specification. This *is* the spec of the MD algorithms, and low-level implementations (at least, historically) we shown to refine this specification. - For non-MD algorithms (Blake2, SHA3), this module serves a different purpose: it shows that Blake2 and SHA3 obey the hash laws (more on that below), and that therefore they can be suitably interpreted as behaving like hash algorithms in this agile specification. The agile hash therefore obeys the hash laws, because every algorithm does. This agile specification, in addition to establishing the high-level property that "all hash algorithms behave like hashes" (i.e., obey the hash laws), serves as a specification of the agile, multiplexing hash known as EverCrypt.Hash. The hash laws are as follows. - Any hash algorithm can be decomposed into an *incremental* specification, relying on: init, update_multi, update_last, finish. (The MD hashes specifically decompose update_last as padding + update but this is not generally true of all hashes.) See Spec.Hash.Incremental.Definitions.hash_incremental, along with the various proofs in Spec.Hash.Incremental.X that algorithm X is equivalent to its incremental specification. - The update_multi function, which processes n full blocks into the internal hash state (also known as the accumulator, borrowing from functional programming terminology for folds), takes the empty input as its neutral element. Concretely: update_multi acc empty == acc - The update_multi function is associative. Concretely: update_multi (update_multi acc blocks) blocks' == update_multi acc (blocks @ blocks') Proving the three hash laws is important: they are needed by the streaming functor (which turns a block-by-block implementation into a buffered implementation that can take arbitrary amounts of data) for functional correctness. (In the case of MD hashes, the proof of incrementality specifically relies on the two properties of update_multi, but this is not true in the general case.) The incremental specification (in lemmas/Spec.Hash.Incremental.Definitions) introduces a notion of "update_last" and then defines the hash as update_multi, update_last, finish. *) val init (a:hash_alg): init_t a
false
false
Spec.Agile.Hash.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val init_extra_state (a: hash_alg) : extra_state a
[]
Spec.Agile.Hash.init_extra_state
{ "file_name": "specs/Spec.Agile.Hash.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Spec.Hash.Definitions.hash_alg -> Spec.Hash.Definitions.extra_state a
{ "end_col": 11, "end_line": 58, "start_col": 52, "start_line": 56 }
Prims.Tot
val wrap_slice (#a: Type0) (s: Seq.seq a) (i: int) : Seq.seq a
[ { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Gcm_simplify", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.Simplify_Sha", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64.GCM_IV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let wrap_slice (#a:Type0) (s:Seq.seq a) (i:int) : Seq.seq a = Seq.slice s 0 (if 0 <= i && i <= Seq.length s then i else 0)
val wrap_slice (#a: Type0) (s: Seq.seq a) (i: int) : Seq.seq a let wrap_slice (#a: Type0) (s: Seq.seq a) (i: int) : Seq.seq a =
false
null
false
Seq.slice s 0 (if 0 <= i && i <= Seq.length s then i else 0)
{ "checked_file": "Vale.Wrapper.X64.GCM_IV.fst.checked", "dependencies": [ "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Stdcalls.X64.GCM_IV.fst.checked", "Vale.SHA.Simplify_Sha.fsti.checked", "Vale.Lib.BufferViewHelpers.fst.checked", "Vale.Interop.Views.fsti.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.Gcm_simplify.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Wrapper.X64.GCM_IV.fst" }
[ "total" ]
[ "FStar.Seq.Base.seq", "FStar.Integers.int", "FStar.Seq.Base.slice", "Prims.op_AmpAmp", "FStar.Integers.op_Less_Equals", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "FStar.Seq.Base.length", "Prims.bool", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual" ]
[]
module Vale.Wrapper.X64.GCM_IV open FStar.Mul open Vale.Stdcalls.X64.GCM_IV open Vale.AsLowStar.MemoryHelpers open Vale.X64.MemoryAdapters module V = Vale.X64.Decls open Vale.SHA.Simplify_Sha open Vale.AES.Gcm_simplify open Vale.AES.GCM_helpers open Vale.Arch.Types open Vale.AES.GHash open FStar.Integers open FStar.Int.Cast
false
false
Vale.Wrapper.X64.GCM_IV.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val wrap_slice (#a: Type0) (s: Seq.seq a) (i: int) : Seq.seq a
[]
Vale.Wrapper.X64.GCM_IV.wrap_slice
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.GCM_IV.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: FStar.Seq.Base.seq a -> i: FStar.Integers.int -> FStar.Seq.Base.seq a
{ "end_col": 62, "end_line": 17, "start_col": 2, "start_line": 17 }
FStar.Pervasives.Lemma
val length_aux5 (b: uint8_p) : Lemma (requires B.length b = 128) (ensures DV.length (get_downview b) % 16 = 0)
[ { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Gcm_simplify", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.Simplify_Sha", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64.GCM_IV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let length_aux5 (b:uint8_p) : Lemma (requires B.length b = 128) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db
val length_aux5 (b: uint8_p) : Lemma (requires B.length b = 128) (ensures DV.length (get_downview b) % 16 = 0) let length_aux5 (b: uint8_p) : Lemma (requires B.length b = 128) (ensures DV.length (get_downview b) % 16 = 0) =
false
null
true
let db = get_downview b in DV.length_eq db
{ "checked_file": "Vale.Wrapper.X64.GCM_IV.fst.checked", "dependencies": [ "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Stdcalls.X64.GCM_IV.fst.checked", "Vale.SHA.Simplify_Sha.fsti.checked", "Vale.Lib.BufferViewHelpers.fst.checked", "Vale.Interop.Views.fsti.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.Gcm_simplify.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Wrapper.X64.GCM_IV.fst" }
[ "lemma" ]
[ "Vale.Wrapper.X64.GCM_IV.uint8_p", "LowStar.BufferView.Down.length_eq", "FStar.UInt8.t", "LowStar.BufferView.Down.buffer", "Vale.Interop.Types.get_downview", "Vale.Arch.HeapTypes_s.TUInt8", "LowStar.Buffer.trivial_preorder", "Prims.unit", "Prims.b2t", "Prims.op_Equality", "Prims.int", "LowStar.Monotonic.Buffer.length", "Prims.squash", "FStar.Integers.op_Percent", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "LowStar.BufferView.Down.length", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Wrapper.X64.GCM_IV open FStar.Mul open Vale.Stdcalls.X64.GCM_IV open Vale.AsLowStar.MemoryHelpers open Vale.X64.MemoryAdapters module V = Vale.X64.Decls open Vale.SHA.Simplify_Sha open Vale.AES.Gcm_simplify open Vale.AES.GCM_helpers open Vale.Arch.Types open Vale.AES.GHash open FStar.Integers open FStar.Int.Cast let wrap_slice (#a:Type0) (s:Seq.seq a) (i:int) : Seq.seq a = Seq.slice s 0 (if 0 <= i && i <= Seq.length s then i else 0) let length_aux (b:uint8_p) (n:nat) : Lemma (requires B.length b = 16 * n) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db; FStar.Math.Lemmas.cancel_mul_mod n 16 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" let length_aux5 (b:uint8_p) : Lemma
false
false
Vale.Wrapper.X64.GCM_IV.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val length_aux5 (b: uint8_p) : Lemma (requires B.length b = 128) (ensures DV.length (get_downview b) % 16 = 0)
[]
Vale.Wrapper.X64.GCM_IV.length_aux5
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.GCM_IV.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.Wrapper.X64.GCM_IV.uint8_p -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.length b = 128) (ensures LowStar.BufferView.Down.length (Vale.Interop.Types.get_downview b) % 16 = 0)
{ "end_col": 19, "end_line": 32, "start_col": 49, "start_line": 30 }
FStar.Pervasives.Lemma
val length_aux (b: uint8_p) (n: nat) : Lemma (requires B.length b = 16 * n) (ensures DV.length (get_downview b) % 16 = 0)
[ { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Gcm_simplify", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.Simplify_Sha", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64.GCM_IV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let length_aux (b:uint8_p) (n:nat) : Lemma (requires B.length b = 16 * n) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db; FStar.Math.Lemmas.cancel_mul_mod n 16
val length_aux (b: uint8_p) (n: nat) : Lemma (requires B.length b = 16 * n) (ensures DV.length (get_downview b) % 16 = 0) let length_aux (b: uint8_p) (n: nat) : Lemma (requires B.length b = 16 * n) (ensures DV.length (get_downview b) % 16 = 0) =
false
null
true
let db = get_downview b in DV.length_eq db; FStar.Math.Lemmas.cancel_mul_mod n 16
{ "checked_file": "Vale.Wrapper.X64.GCM_IV.fst.checked", "dependencies": [ "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Stdcalls.X64.GCM_IV.fst.checked", "Vale.SHA.Simplify_Sha.fsti.checked", "Vale.Lib.BufferViewHelpers.fst.checked", "Vale.Interop.Views.fsti.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.Gcm_simplify.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Wrapper.X64.GCM_IV.fst" }
[ "lemma" ]
[ "Vale.Wrapper.X64.GCM_IV.uint8_p", "FStar.Integers.nat", "FStar.Math.Lemmas.cancel_mul_mod", "Prims.unit", "LowStar.BufferView.Down.length_eq", "FStar.UInt8.t", "LowStar.BufferView.Down.buffer", "Vale.Interop.Types.get_downview", "Vale.Arch.HeapTypes_s.TUInt8", "LowStar.Buffer.trivial_preorder", "Prims.b2t", "Prims.op_Equality", "Prims.int", "LowStar.Monotonic.Buffer.length", "FStar.Integers.op_Star", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "Prims.squash", "FStar.Integers.op_Percent", "LowStar.BufferView.Down.length", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Wrapper.X64.GCM_IV open FStar.Mul open Vale.Stdcalls.X64.GCM_IV open Vale.AsLowStar.MemoryHelpers open Vale.X64.MemoryAdapters module V = Vale.X64.Decls open Vale.SHA.Simplify_Sha open Vale.AES.Gcm_simplify open Vale.AES.GCM_helpers open Vale.Arch.Types open Vale.AES.GHash open FStar.Integers open FStar.Int.Cast let wrap_slice (#a:Type0) (s:Seq.seq a) (i:int) : Seq.seq a = Seq.slice s 0 (if 0 <= i && i <= Seq.length s then i else 0) let length_aux (b:uint8_p) (n:nat) : Lemma
false
false
Vale.Wrapper.X64.GCM_IV.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val length_aux (b: uint8_p) (n: nat) : Lemma (requires B.length b = 16 * n) (ensures DV.length (get_downview b) % 16 = 0)
[]
Vale.Wrapper.X64.GCM_IV.length_aux
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.GCM_IV.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.Wrapper.X64.GCM_IV.uint8_p -> n: FStar.Integers.nat -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.length b = 16 * n) (ensures LowStar.BufferView.Down.length (Vale.Interop.Types.get_downview b) % 16 = 0)
{ "end_col": 41, "end_line": 24, "start_col": 49, "start_line": 21 }
FStar.Pervasives.Lemma
val lemma_same_seq_same_buffer_read (h0 h1: HS.mem) (b: uint8_p) : Lemma (requires B.live h0 b /\ B.live h1 b /\ B.length b == 128 /\ (B.as_seq h0 b) `Seq.equal` (B.as_seq h1 b)) (ensures (DV.length_eq (get_downview b); low_buffer_read TUInt8 TUInt128 h0 b 2 == low_buffer_read TUInt8 TUInt128 h1 b 2))
[ { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Gcm_simplify", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.Simplify_Sha", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64.GCM_IV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_same_seq_same_buffer_read (h0 h1:HS.mem) (b:uint8_p) : Lemma (requires B.live h0 b /\ B.live h1 b /\ B.length b == 128 /\ B.as_seq h0 b `Seq.equal` B.as_seq h1 b) (ensures ( DV.length_eq (get_downview b); low_buffer_read TUInt8 TUInt128 h0 b 2 == low_buffer_read TUInt8 TUInt128 h1 b 2) ) = let b_d = get_downview b in DV.length_eq b_d; let b_u = UV.mk_buffer b_d Vale.Interop.Views.up_view128 in lemma_dv_equal Vale.Interop.Views.down_view8 b h0 h1; lemma_uv_equal Vale.Interop.Views.up_view128 (get_downview b) h0 h1; UV.length_eq b_u; UV.as_seq_sel h0 b_u 2; UV.as_seq_sel h1 b_u 2
val lemma_same_seq_same_buffer_read (h0 h1: HS.mem) (b: uint8_p) : Lemma (requires B.live h0 b /\ B.live h1 b /\ B.length b == 128 /\ (B.as_seq h0 b) `Seq.equal` (B.as_seq h1 b)) (ensures (DV.length_eq (get_downview b); low_buffer_read TUInt8 TUInt128 h0 b 2 == low_buffer_read TUInt8 TUInt128 h1 b 2)) let lemma_same_seq_same_buffer_read (h0 h1: HS.mem) (b: uint8_p) : Lemma (requires B.live h0 b /\ B.live h1 b /\ B.length b == 128 /\ (B.as_seq h0 b) `Seq.equal` (B.as_seq h1 b)) (ensures (DV.length_eq (get_downview b); low_buffer_read TUInt8 TUInt128 h0 b 2 == low_buffer_read TUInt8 TUInt128 h1 b 2)) =
false
null
true
let b_d = get_downview b in DV.length_eq b_d; let b_u = UV.mk_buffer b_d Vale.Interop.Views.up_view128 in lemma_dv_equal Vale.Interop.Views.down_view8 b h0 h1; lemma_uv_equal Vale.Interop.Views.up_view128 (get_downview b) h0 h1; UV.length_eq b_u; UV.as_seq_sel h0 b_u 2; UV.as_seq_sel h1 b_u 2
{ "checked_file": "Vale.Wrapper.X64.GCM_IV.fst.checked", "dependencies": [ "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Stdcalls.X64.GCM_IV.fst.checked", "Vale.SHA.Simplify_Sha.fsti.checked", "Vale.Lib.BufferViewHelpers.fst.checked", "Vale.Interop.Views.fsti.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.Gcm_simplify.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Wrapper.X64.GCM_IV.fst" }
[ "lemma" ]
[ "FStar.Monotonic.HyperStack.mem", "Vale.Wrapper.X64.GCM_IV.uint8_p", "LowStar.BufferView.Up.as_seq_sel", "Vale.Def.Types_s.quad32", "Prims.unit", "LowStar.BufferView.Up.length_eq", "Vale.Lib.BufferViewHelpers.lemma_uv_equal", "FStar.UInt8.t", "Vale.Interop.Views.up_view128", "Vale.Interop.Types.get_downview", "Vale.Arch.HeapTypes_s.TUInt8", "LowStar.Buffer.trivial_preorder", "Vale.Lib.BufferViewHelpers.lemma_dv_equal", "Vale.Interop.Views.down_view8", "LowStar.BufferView.Up.buffer", "LowStar.BufferView.Up.mk_buffer", "LowStar.BufferView.Down.length_eq", "LowStar.BufferView.Down.buffer", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "Prims.eq2", "Prims.int", "LowStar.Monotonic.Buffer.length", "FStar.Seq.Base.equal", "LowStar.Monotonic.Buffer.as_seq", "Prims.squash", "Vale.Interop.Types.base_typ_as_type", "Vale.Arch.HeapTypes_s.TUInt128", "Vale.AsLowStar.MemoryHelpers.low_buffer_read", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module Vale.Wrapper.X64.GCM_IV open FStar.Mul open Vale.Stdcalls.X64.GCM_IV open Vale.AsLowStar.MemoryHelpers open Vale.X64.MemoryAdapters module V = Vale.X64.Decls open Vale.SHA.Simplify_Sha open Vale.AES.Gcm_simplify open Vale.AES.GCM_helpers open Vale.Arch.Types open Vale.AES.GHash open FStar.Integers open FStar.Int.Cast let wrap_slice (#a:Type0) (s:Seq.seq a) (i:int) : Seq.seq a = Seq.slice s 0 (if 0 <= i && i <= Seq.length s then i else 0) let length_aux (b:uint8_p) (n:nat) : Lemma (requires B.length b = 16 * n) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db; FStar.Math.Lemmas.cancel_mul_mod n 16 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" let length_aux5 (b:uint8_p) : Lemma (requires B.length b = 128) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db #push-options "--z3cliopt smt.arith.nl=true" inline_for_extraction val compute_iv_stdcall': iv:Ghost.erased supported_iv_LE -> iv_b:uint8_p -> num_bytes:uint64 -> len:uint64 -> j0_b:uint8_p -> iv_extra_b:uint8_p -> hkeys_b:uint8_p -> Stack unit (requires fun h0 -> B.disjoint iv_b j0_b /\ B.disjoint iv_b iv_extra_b /\ B.disjoint iv_b hkeys_b /\ (B.disjoint j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ B.disjoint j0_b hkeys_b /\ B.disjoint iv_extra_b hkeys_b /\ B.live h0 iv_b /\ B.live h0 j0_b /\ B.live h0 iv_extra_b /\ B.live h0 hkeys_b /\ B.length iv_b == 16 * UInt64.v len /\ B.length j0_b == 16 /\ B.length iv_extra_b == 16 /\ B.length hkeys_b == 128 /\ UInt64.v len * (128/8) <= UInt64.v num_bytes /\ UInt64.v num_bytes < UInt64.v len * (128/8) + 128/8 /\ 0 < 8 * UInt64.v num_bytes /\ 8 * UInt64.v num_bytes < pow2_64 /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ ( let db = get_downview hkeys_b in length_aux5 hkeys_b; DV.length_eq (get_downview hkeys_b); let ub = UV.mk_buffer db Vale.Interop.Views.up_view128 in hkeys_reqs_pub (UV.as_seq h0 ub) (reverse_bytes_quad32 (reverse_bytes_quad32 (low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2)))) /\ ( let in_d = get_downview iv_b in length_aux iv_b (UInt64.v len); let in_u = UV.mk_buffer in_d Vale.Interop.Views.up_view128 in let inout_d = get_downview iv_extra_b in length_aux iv_extra_b 1; let inout_u = UV.mk_buffer inout_d Vale.Interop.Views.up_view128 in let iv_raw_quads = Seq.append (UV.as_seq h0 in_u) (UV.as_seq h0 inout_u) in let iv_bytes_LE = wrap_slice (le_seq_quad32_to_bytes iv_raw_quads) (UInt64.v num_bytes) in Seq.equal iv_bytes_LE (Ghost.reveal iv) ) ) (ensures fun h0 _ h1 -> B.modifies (B.loc_buffer j0_b) h0 h1 /\ (DV.length_eq (get_downview hkeys_b); DV.length_eq (get_downview j0_b); let h_LE = reverse_bytes_quad32 (low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2) in low_buffer_read TUInt8 TUInt128 h1 j0_b 0 == compute_iv_BE h_LE (Ghost.reveal iv)) ) #pop-options #push-options "--z3cliopt smt.arith.nl=true" #set-options "--ext compat:normalizer_memo_ignore_cfg" inline_for_extraction let compute_iv_stdcall' iv iv_b num_bytes len j0_b iv_extra_b hkeys_b = let h0 = get() in DV.length_eq (get_downview iv_b); DV.length_eq (get_downview iv_extra_b); DV.length_eq (get_downview j0_b); DV.length_eq (get_downview hkeys_b); as_vale_buffer_len #TUInt8 #TUInt128 iv_b; as_vale_buffer_len #TUInt8 #TUInt128 iv_extra_b; as_vale_buffer_len #TUInt8 #TUInt128 j0_b; as_vale_buffer_len #TUInt8 #TUInt128 hkeys_b; bounded_buffer_addrs_all TUInt8 TUInt128 h0 iv_b; bounded_buffer_addrs_all TUInt8 TUInt128 h0 hkeys_b; let (x, _) = compute_iv_stdcall iv iv_b num_bytes len j0_b iv_extra_b hkeys_b () in () #pop-options #push-options "--z3cliopt smt.arith.nl=true" let lemma_slice_uv_extra (b:uint8_p) (b_start:uint8_p) (b_extra:uint8_p) (h:HS.mem) : Lemma (requires B.length b_start = B.length b / 16 * 16 /\ b_start == B.gsub b 0ul (UInt32.uint_to_t (B.length b_start)) /\ B.length b_extra = 16 /\ Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_start) (B.as_seq h b_extra)) 0 (B.length b)) ) (ensures ( let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in Seq.equal sf (seq_uint8_to_seq_nat8 (B.as_seq h b)) )) = let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in let b_f = seq_uint8_to_seq_nat8 (B.as_seq h b) in // if B.length b > B.length b_start then ( calc (==) { sf; (==) { DV.length_eq b_start_d; lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 b_start h; le_bytes_to_seq_quad32_to_bytes (UV.as_seq h b_start_u) } wrap_slice (le_seq_quad32_to_bytes (Seq.append (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (UV.as_seq h b_extra_u))) (B.length b); (==) { DV.length_eq b_extra_d; lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 b_extra h; le_bytes_to_seq_quad32_to_bytes (UV.as_seq h b_extra_u) } wrap_slice (le_seq_quad32_to_bytes (Seq.append (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))))) (B.length b); (==) { append_distributes_le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) } wrap_slice (Seq.append (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start)))) (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))))) (B.length b); (==) { le_seq_quad32_to_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start)); le_seq_quad32_to_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra)) } wrap_slice (Seq.append (seq_uint8_to_seq_nat8 (B.as_seq h b_start)) (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) (B.length b); (==) { Seq.lemma_eq_intro b_f (wrap_slice (Seq.append (seq_uint8_to_seq_nat8 (B.as_seq h b_start)) (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) (B.length b)) } b_f; } #pop-options let lemma_slice_sub (b:uint8_p) (b_sub:uint8_p) (b_extra:uint8_p) (h:HS.mem) : Lemma (requires B.length b_extra = 16 /\ B.length b_sub = B.length b / 16 * 16 /\ b_sub == B.gsub b 0ul (UInt32.uint_to_t (B.length b_sub)) /\ Seq.equal (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b_sub + B.length b % 16)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)) ) (ensures Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b)) ) = calc (==) { Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b); (==) { Seq.lemma_eq_intro (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b)) (Seq.append (B.as_seq h b_sub) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16))) } Seq.append (B.as_seq h b_sub) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)); (==) { } Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)); (==) { } Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b)); (==) { Seq.lemma_eq_intro (B.as_seq h b) (Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b))) } B.as_seq h b; } open Vale.Lib.BufferViewHelpers #push-options "--smtencoding.nl_arith_repr boxwrap" let lemma_same_seq_same_buffer_read (h0 h1:HS.mem) (b:uint8_p) : Lemma (requires B.live h0 b /\ B.live h1 b /\ B.length b == 128 /\ B.as_seq h0 b `Seq.equal` B.as_seq h1 b) (ensures ( DV.length_eq (get_downview b); low_buffer_read TUInt8 TUInt128 h0 b 2 == low_buffer_read TUInt8 TUInt128 h1 b 2)
false
false
Vale.Wrapper.X64.GCM_IV.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_same_seq_same_buffer_read (h0 h1: HS.mem) (b: uint8_p) : Lemma (requires B.live h0 b /\ B.live h1 b /\ B.length b == 128 /\ (B.as_seq h0 b) `Seq.equal` (B.as_seq h1 b)) (ensures (DV.length_eq (get_downview b); low_buffer_read TUInt8 TUInt128 h0 b 2 == low_buffer_read TUInt8 TUInt128 h1 b 2))
[]
Vale.Wrapper.X64.GCM_IV.lemma_same_seq_same_buffer_read
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.GCM_IV.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> b: Vale.Wrapper.X64.GCM_IV.uint8_p -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.live h0 b /\ LowStar.Monotonic.Buffer.live h1 b /\ LowStar.Monotonic.Buffer.length b == 128 /\ FStar.Seq.Base.equal (LowStar.Monotonic.Buffer.as_seq h0 b) (LowStar.Monotonic.Buffer.as_seq h1 b)) (ensures ([@@ FStar.Pervasives.inline_let ]let _ = LowStar.BufferView.Down.length_eq (Vale.Interop.Types.get_downview b) in Vale.AsLowStar.MemoryHelpers.low_buffer_read Vale.Arch.HeapTypes_s.TUInt8 Vale.Arch.HeapTypes_s.TUInt128 h0 b 2 == Vale.AsLowStar.MemoryHelpers.low_buffer_read Vale.Arch.HeapTypes_s.TUInt8 Vale.Arch.HeapTypes_s.TUInt128 h1 b 2))
{ "end_col": 25, "end_line": 240, "start_col": 4, "start_line": 232 }
FStar.Pervasives.Lemma
val lemma_slice_uv_extra (b b_start b_extra: uint8_p) (h: HS.mem) : Lemma (requires B.length b_start = (B.length b / 16) * 16 /\ b_start == B.gsub b 0ul (UInt32.uint_to_t (B.length b_start)) /\ B.length b_extra = 16 /\ Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_start) (B.as_seq h b_extra)) 0 (B.length b))) (ensures (let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in Seq.equal sf (seq_uint8_to_seq_nat8 (B.as_seq h b))))
[ { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Gcm_simplify", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.Simplify_Sha", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64.GCM_IV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_slice_uv_extra (b:uint8_p) (b_start:uint8_p) (b_extra:uint8_p) (h:HS.mem) : Lemma (requires B.length b_start = B.length b / 16 * 16 /\ b_start == B.gsub b 0ul (UInt32.uint_to_t (B.length b_start)) /\ B.length b_extra = 16 /\ Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_start) (B.as_seq h b_extra)) 0 (B.length b)) ) (ensures ( let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in Seq.equal sf (seq_uint8_to_seq_nat8 (B.as_seq h b)) )) = let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in let b_f = seq_uint8_to_seq_nat8 (B.as_seq h b) in // if B.length b > B.length b_start then ( calc (==) { sf; (==) { DV.length_eq b_start_d; lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 b_start h; le_bytes_to_seq_quad32_to_bytes (UV.as_seq h b_start_u) } wrap_slice (le_seq_quad32_to_bytes (Seq.append (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (UV.as_seq h b_extra_u))) (B.length b); (==) { DV.length_eq b_extra_d; lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 b_extra h; le_bytes_to_seq_quad32_to_bytes (UV.as_seq h b_extra_u) } wrap_slice (le_seq_quad32_to_bytes (Seq.append (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))))) (B.length b); (==) { append_distributes_le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) } wrap_slice (Seq.append (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start)))) (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))))) (B.length b); (==) { le_seq_quad32_to_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start)); le_seq_quad32_to_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra)) } wrap_slice (Seq.append (seq_uint8_to_seq_nat8 (B.as_seq h b_start)) (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) (B.length b); (==) { Seq.lemma_eq_intro b_f (wrap_slice (Seq.append (seq_uint8_to_seq_nat8 (B.as_seq h b_start)) (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) (B.length b)) } b_f; }
val lemma_slice_uv_extra (b b_start b_extra: uint8_p) (h: HS.mem) : Lemma (requires B.length b_start = (B.length b / 16) * 16 /\ b_start == B.gsub b 0ul (UInt32.uint_to_t (B.length b_start)) /\ B.length b_extra = 16 /\ Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_start) (B.as_seq h b_extra)) 0 (B.length b))) (ensures (let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in Seq.equal sf (seq_uint8_to_seq_nat8 (B.as_seq h b)))) let lemma_slice_uv_extra (b b_start b_extra: uint8_p) (h: HS.mem) : Lemma (requires B.length b_start = (B.length b / 16) * 16 /\ b_start == B.gsub b 0ul (UInt32.uint_to_t (B.length b_start)) /\ B.length b_extra = 16 /\ Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_start) (B.as_seq h b_extra)) 0 (B.length b))) (ensures (let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in Seq.equal sf (seq_uint8_to_seq_nat8 (B.as_seq h b)))) =
false
null
true
let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in let b_f = seq_uint8_to_seq_nat8 (B.as_seq h b) in calc ( == ) { sf; ( == ) { (DV.length_eq b_start_d; lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 b_start h; le_bytes_to_seq_quad32_to_bytes (UV.as_seq h b_start_u)) } wrap_slice (le_seq_quad32_to_bytes (Seq.append (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (UV.as_seq h b_extra_u))) (B.length b); ( == ) { (DV.length_eq b_extra_d; lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 b_extra h; le_bytes_to_seq_quad32_to_bytes (UV.as_seq h b_extra_u)) } wrap_slice (le_seq_quad32_to_bytes (Seq.append (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))))) (B.length b); ( == ) { append_distributes_le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 ( B.as_seq h b_start))) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) } wrap_slice (Seq.append (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start)))) (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra)) ))) (B.length b); ( == ) { (le_seq_quad32_to_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start)); le_seq_quad32_to_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) } wrap_slice (Seq.append (seq_uint8_to_seq_nat8 (B.as_seq h b_start)) (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) (B.length b); ( == ) { Seq.lemma_eq_intro b_f (wrap_slice (Seq.append (seq_uint8_to_seq_nat8 (B.as_seq h b_start)) (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) (B.length b)) } b_f; }
{ "checked_file": "Vale.Wrapper.X64.GCM_IV.fst.checked", "dependencies": [ "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Stdcalls.X64.GCM_IV.fst.checked", "Vale.SHA.Simplify_Sha.fsti.checked", "Vale.Lib.BufferViewHelpers.fst.checked", "Vale.Interop.Views.fsti.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.Gcm_simplify.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Wrapper.X64.GCM_IV.fst" }
[ "lemma" ]
[ "Vale.Wrapper.X64.GCM_IV.uint8_p", "FStar.Monotonic.HyperStack.mem", "FStar.Calc.calc_finish", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat8", "Prims.eq2", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Vale.Wrapper.X64.GCM_IV.wrap_slice", "Vale.Def.Words_s.nat8", "FStar.Seq.Base.append", "Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8", "LowStar.Monotonic.Buffer.as_seq", "FStar.UInt8.t", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.length", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Vale.Def.Types_s.quad32", "LowStar.BufferView.Up.as_seq", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes", "Vale.SHA.Simplify_Sha.lemma_seq_nat8_le_seq_quad32_to_bytes_uint32", "LowStar.BufferView.Down.length_eq", "Prims.squash", "Vale.Arch.Types.append_distributes_le_seq_quad32_to_bytes", "Vale.Arch.Types.le_seq_quad32_to_bytes_to_seq_quad32", "FStar.Seq.Base.lemma_eq_intro", "LowStar.BufferView.Up.buffer", "LowStar.BufferView.Up.mk_buffer", "Vale.Interop.Views.up_view128", "Vale.Interop.Types.get_downview", "Vale.Arch.HeapTypes_s.TUInt8", "LowStar.BufferView.Down.buffer", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Integers.op_Star", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "FStar.Integers.op_Slash", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.gsub", "FStar.UInt32.__uint_to_t", "FStar.UInt32.uint_to_t", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Pervasives.pattern" ]
[]
module Vale.Wrapper.X64.GCM_IV open FStar.Mul open Vale.Stdcalls.X64.GCM_IV open Vale.AsLowStar.MemoryHelpers open Vale.X64.MemoryAdapters module V = Vale.X64.Decls open Vale.SHA.Simplify_Sha open Vale.AES.Gcm_simplify open Vale.AES.GCM_helpers open Vale.Arch.Types open Vale.AES.GHash open FStar.Integers open FStar.Int.Cast let wrap_slice (#a:Type0) (s:Seq.seq a) (i:int) : Seq.seq a = Seq.slice s 0 (if 0 <= i && i <= Seq.length s then i else 0) let length_aux (b:uint8_p) (n:nat) : Lemma (requires B.length b = 16 * n) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db; FStar.Math.Lemmas.cancel_mul_mod n 16 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" let length_aux5 (b:uint8_p) : Lemma (requires B.length b = 128) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db #push-options "--z3cliopt smt.arith.nl=true" inline_for_extraction val compute_iv_stdcall': iv:Ghost.erased supported_iv_LE -> iv_b:uint8_p -> num_bytes:uint64 -> len:uint64 -> j0_b:uint8_p -> iv_extra_b:uint8_p -> hkeys_b:uint8_p -> Stack unit (requires fun h0 -> B.disjoint iv_b j0_b /\ B.disjoint iv_b iv_extra_b /\ B.disjoint iv_b hkeys_b /\ (B.disjoint j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ B.disjoint j0_b hkeys_b /\ B.disjoint iv_extra_b hkeys_b /\ B.live h0 iv_b /\ B.live h0 j0_b /\ B.live h0 iv_extra_b /\ B.live h0 hkeys_b /\ B.length iv_b == 16 * UInt64.v len /\ B.length j0_b == 16 /\ B.length iv_extra_b == 16 /\ B.length hkeys_b == 128 /\ UInt64.v len * (128/8) <= UInt64.v num_bytes /\ UInt64.v num_bytes < UInt64.v len * (128/8) + 128/8 /\ 0 < 8 * UInt64.v num_bytes /\ 8 * UInt64.v num_bytes < pow2_64 /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ ( let db = get_downview hkeys_b in length_aux5 hkeys_b; DV.length_eq (get_downview hkeys_b); let ub = UV.mk_buffer db Vale.Interop.Views.up_view128 in hkeys_reqs_pub (UV.as_seq h0 ub) (reverse_bytes_quad32 (reverse_bytes_quad32 (low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2)))) /\ ( let in_d = get_downview iv_b in length_aux iv_b (UInt64.v len); let in_u = UV.mk_buffer in_d Vale.Interop.Views.up_view128 in let inout_d = get_downview iv_extra_b in length_aux iv_extra_b 1; let inout_u = UV.mk_buffer inout_d Vale.Interop.Views.up_view128 in let iv_raw_quads = Seq.append (UV.as_seq h0 in_u) (UV.as_seq h0 inout_u) in let iv_bytes_LE = wrap_slice (le_seq_quad32_to_bytes iv_raw_quads) (UInt64.v num_bytes) in Seq.equal iv_bytes_LE (Ghost.reveal iv) ) ) (ensures fun h0 _ h1 -> B.modifies (B.loc_buffer j0_b) h0 h1 /\ (DV.length_eq (get_downview hkeys_b); DV.length_eq (get_downview j0_b); let h_LE = reverse_bytes_quad32 (low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2) in low_buffer_read TUInt8 TUInt128 h1 j0_b 0 == compute_iv_BE h_LE (Ghost.reveal iv)) ) #pop-options #push-options "--z3cliopt smt.arith.nl=true" #set-options "--ext compat:normalizer_memo_ignore_cfg" inline_for_extraction let compute_iv_stdcall' iv iv_b num_bytes len j0_b iv_extra_b hkeys_b = let h0 = get() in DV.length_eq (get_downview iv_b); DV.length_eq (get_downview iv_extra_b); DV.length_eq (get_downview j0_b); DV.length_eq (get_downview hkeys_b); as_vale_buffer_len #TUInt8 #TUInt128 iv_b; as_vale_buffer_len #TUInt8 #TUInt128 iv_extra_b; as_vale_buffer_len #TUInt8 #TUInt128 j0_b; as_vale_buffer_len #TUInt8 #TUInt128 hkeys_b; bounded_buffer_addrs_all TUInt8 TUInt128 h0 iv_b; bounded_buffer_addrs_all TUInt8 TUInt128 h0 hkeys_b; let (x, _) = compute_iv_stdcall iv iv_b num_bytes len j0_b iv_extra_b hkeys_b () in () #pop-options #push-options "--z3cliopt smt.arith.nl=true" let lemma_slice_uv_extra (b:uint8_p) (b_start:uint8_p) (b_extra:uint8_p) (h:HS.mem) : Lemma (requires B.length b_start = B.length b / 16 * 16 /\ b_start == B.gsub b 0ul (UInt32.uint_to_t (B.length b_start)) /\ B.length b_extra = 16 /\ Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_start) (B.as_seq h b_extra)) 0 (B.length b)) ) (ensures ( let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in Seq.equal sf (seq_uint8_to_seq_nat8 (B.as_seq h b))
false
false
Vale.Wrapper.X64.GCM_IV.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3", "smt.arith.nl=true" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_slice_uv_extra (b b_start b_extra: uint8_p) (h: HS.mem) : Lemma (requires B.length b_start = (B.length b / 16) * 16 /\ b_start == B.gsub b 0ul (UInt32.uint_to_t (B.length b_start)) /\ B.length b_extra = 16 /\ Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_start) (B.as_seq h b_extra)) 0 (B.length b))) (ensures (let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in Seq.equal sf (seq_uint8_to_seq_nat8 (B.as_seq h b))))
[]
Vale.Wrapper.X64.GCM_IV.lemma_slice_uv_extra
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.GCM_IV.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.Wrapper.X64.GCM_IV.uint8_p -> b_start: Vale.Wrapper.X64.GCM_IV.uint8_p -> b_extra: Vale.Wrapper.X64.GCM_IV.uint8_p -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.length b_start = (LowStar.Monotonic.Buffer.length b / 16) * 16 /\ b_start == LowStar.Buffer.gsub b 0ul (FStar.UInt32.uint_to_t (LowStar.Monotonic.Buffer.length b_start)) /\ LowStar.Monotonic.Buffer.length b_extra = 16 /\ FStar.Seq.Base.equal (LowStar.Monotonic.Buffer.as_seq h b) (FStar.Seq.Base.slice (FStar.Seq.Base.append (LowStar.Monotonic.Buffer.as_seq h b_start) (LowStar.Monotonic.Buffer.as_seq h b_extra)) 0 (LowStar.Monotonic.Buffer.length b))) (ensures (let b_start_d = Vale.Interop.Types.get_downview b_start in [@@ FStar.Pervasives.inline_let ]let _ = LowStar.BufferView.Down.length_eq (Vale.Interop.Types.get_downview b_start) in let b_start_u = LowStar.BufferView.Up.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = Vale.Interop.Types.get_downview b_extra in [@@ FStar.Pervasives.inline_let ]let _ = LowStar.BufferView.Down.length_eq (Vale.Interop.Types.get_downview b_extra) in let b_extra_u = LowStar.BufferView.Up.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = FStar.Seq.Base.append (LowStar.BufferView.Up.as_seq h b_start_u) (LowStar.BufferView.Up.as_seq h b_extra_u) in let sf = Vale.Wrapper.X64.GCM_IV.wrap_slice (Vale.Def.Types_s.le_seq_quad32_to_bytes suv) (LowStar.Monotonic.Buffer.length b) in FStar.Seq.Base.equal sf (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (LowStar.Monotonic.Buffer.as_seq h b))))
{ "end_col": 4, "end_line": 183, "start_col": 2, "start_line": 137 }
FStar.Pervasives.Lemma
val lemma_slice_sub (b b_sub b_extra: uint8_p) (h: HS.mem) : Lemma (requires B.length b_extra = 16 /\ B.length b_sub = (B.length b / 16) * 16 /\ b_sub == B.gsub b 0ul (UInt32.uint_to_t (B.length b_sub)) /\ Seq.equal (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b_sub + B.length b % 16)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16))) (ensures Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b)))
[ { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Gcm_simplify", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.Simplify_Sha", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64.GCM_IV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lemma_slice_sub (b:uint8_p) (b_sub:uint8_p) (b_extra:uint8_p) (h:HS.mem) : Lemma (requires B.length b_extra = 16 /\ B.length b_sub = B.length b / 16 * 16 /\ b_sub == B.gsub b 0ul (UInt32.uint_to_t (B.length b_sub)) /\ Seq.equal (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b_sub + B.length b % 16)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)) ) (ensures Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b)) ) = calc (==) { Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b); (==) { Seq.lemma_eq_intro (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b)) (Seq.append (B.as_seq h b_sub) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16))) } Seq.append (B.as_seq h b_sub) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)); (==) { } Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)); (==) { } Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b)); (==) { Seq.lemma_eq_intro (B.as_seq h b) (Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b))) } B.as_seq h b; }
val lemma_slice_sub (b b_sub b_extra: uint8_p) (h: HS.mem) : Lemma (requires B.length b_extra = 16 /\ B.length b_sub = (B.length b / 16) * 16 /\ b_sub == B.gsub b 0ul (UInt32.uint_to_t (B.length b_sub)) /\ Seq.equal (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b_sub + B.length b % 16)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16))) (ensures Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b))) let lemma_slice_sub (b b_sub b_extra: uint8_p) (h: HS.mem) : Lemma (requires B.length b_extra = 16 /\ B.length b_sub = (B.length b / 16) * 16 /\ b_sub == B.gsub b 0ul (UInt32.uint_to_t (B.length b_sub)) /\ Seq.equal (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b_sub + B.length b % 16)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16))) (ensures Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b))) =
false
null
true
calc ( == ) { Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b); ( == ) { Seq.lemma_eq_intro (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b)) (Seq.append (B.as_seq h b_sub) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16))) } Seq.append (B.as_seq h b_sub) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)); ( == ) { () } Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)); ( == ) { () } Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b)); ( == ) { Seq.lemma_eq_intro (B.as_seq h b) (Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b))) } B.as_seq h b; }
{ "checked_file": "Vale.Wrapper.X64.GCM_IV.fst.checked", "dependencies": [ "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Stdcalls.X64.GCM_IV.fst.checked", "Vale.SHA.Simplify_Sha.fsti.checked", "Vale.Lib.BufferViewHelpers.fst.checked", "Vale.Interop.Views.fsti.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.Gcm_simplify.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Wrapper.X64.GCM_IV.fst" }
[ "lemma" ]
[ "Vale.Wrapper.X64.GCM_IV.uint8_p", "FStar.Monotonic.HyperStack.mem", "FStar.Calc.calc_finish", "FStar.Seq.Base.seq", "FStar.UInt8.t", "Prims.eq2", "FStar.Seq.Base.slice", "FStar.Seq.Base.append", "LowStar.Monotonic.Buffer.as_seq", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.length", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "FStar.Integers.op_Percent", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Seq.Base.lemma_eq_intro", "Prims.squash", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Integers.op_Star", "FStar.Integers.op_Slash", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.gsub", "FStar.UInt32.__uint_to_t", "FStar.UInt32.uint_to_t", "FStar.Seq.Base.equal", "FStar.Integers.op_Plus", "FStar.Pervasives.pattern" ]
[]
module Vale.Wrapper.X64.GCM_IV open FStar.Mul open Vale.Stdcalls.X64.GCM_IV open Vale.AsLowStar.MemoryHelpers open Vale.X64.MemoryAdapters module V = Vale.X64.Decls open Vale.SHA.Simplify_Sha open Vale.AES.Gcm_simplify open Vale.AES.GCM_helpers open Vale.Arch.Types open Vale.AES.GHash open FStar.Integers open FStar.Int.Cast let wrap_slice (#a:Type0) (s:Seq.seq a) (i:int) : Seq.seq a = Seq.slice s 0 (if 0 <= i && i <= Seq.length s then i else 0) let length_aux (b:uint8_p) (n:nat) : Lemma (requires B.length b = 16 * n) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db; FStar.Math.Lemmas.cancel_mul_mod n 16 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" let length_aux5 (b:uint8_p) : Lemma (requires B.length b = 128) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db #push-options "--z3cliopt smt.arith.nl=true" inline_for_extraction val compute_iv_stdcall': iv:Ghost.erased supported_iv_LE -> iv_b:uint8_p -> num_bytes:uint64 -> len:uint64 -> j0_b:uint8_p -> iv_extra_b:uint8_p -> hkeys_b:uint8_p -> Stack unit (requires fun h0 -> B.disjoint iv_b j0_b /\ B.disjoint iv_b iv_extra_b /\ B.disjoint iv_b hkeys_b /\ (B.disjoint j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ B.disjoint j0_b hkeys_b /\ B.disjoint iv_extra_b hkeys_b /\ B.live h0 iv_b /\ B.live h0 j0_b /\ B.live h0 iv_extra_b /\ B.live h0 hkeys_b /\ B.length iv_b == 16 * UInt64.v len /\ B.length j0_b == 16 /\ B.length iv_extra_b == 16 /\ B.length hkeys_b == 128 /\ UInt64.v len * (128/8) <= UInt64.v num_bytes /\ UInt64.v num_bytes < UInt64.v len * (128/8) + 128/8 /\ 0 < 8 * UInt64.v num_bytes /\ 8 * UInt64.v num_bytes < pow2_64 /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ ( let db = get_downview hkeys_b in length_aux5 hkeys_b; DV.length_eq (get_downview hkeys_b); let ub = UV.mk_buffer db Vale.Interop.Views.up_view128 in hkeys_reqs_pub (UV.as_seq h0 ub) (reverse_bytes_quad32 (reverse_bytes_quad32 (low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2)))) /\ ( let in_d = get_downview iv_b in length_aux iv_b (UInt64.v len); let in_u = UV.mk_buffer in_d Vale.Interop.Views.up_view128 in let inout_d = get_downview iv_extra_b in length_aux iv_extra_b 1; let inout_u = UV.mk_buffer inout_d Vale.Interop.Views.up_view128 in let iv_raw_quads = Seq.append (UV.as_seq h0 in_u) (UV.as_seq h0 inout_u) in let iv_bytes_LE = wrap_slice (le_seq_quad32_to_bytes iv_raw_quads) (UInt64.v num_bytes) in Seq.equal iv_bytes_LE (Ghost.reveal iv) ) ) (ensures fun h0 _ h1 -> B.modifies (B.loc_buffer j0_b) h0 h1 /\ (DV.length_eq (get_downview hkeys_b); DV.length_eq (get_downview j0_b); let h_LE = reverse_bytes_quad32 (low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2) in low_buffer_read TUInt8 TUInt128 h1 j0_b 0 == compute_iv_BE h_LE (Ghost.reveal iv)) ) #pop-options #push-options "--z3cliopt smt.arith.nl=true" #set-options "--ext compat:normalizer_memo_ignore_cfg" inline_for_extraction let compute_iv_stdcall' iv iv_b num_bytes len j0_b iv_extra_b hkeys_b = let h0 = get() in DV.length_eq (get_downview iv_b); DV.length_eq (get_downview iv_extra_b); DV.length_eq (get_downview j0_b); DV.length_eq (get_downview hkeys_b); as_vale_buffer_len #TUInt8 #TUInt128 iv_b; as_vale_buffer_len #TUInt8 #TUInt128 iv_extra_b; as_vale_buffer_len #TUInt8 #TUInt128 j0_b; as_vale_buffer_len #TUInt8 #TUInt128 hkeys_b; bounded_buffer_addrs_all TUInt8 TUInt128 h0 iv_b; bounded_buffer_addrs_all TUInt8 TUInt128 h0 hkeys_b; let (x, _) = compute_iv_stdcall iv iv_b num_bytes len j0_b iv_extra_b hkeys_b () in () #pop-options #push-options "--z3cliopt smt.arith.nl=true" let lemma_slice_uv_extra (b:uint8_p) (b_start:uint8_p) (b_extra:uint8_p) (h:HS.mem) : Lemma (requires B.length b_start = B.length b / 16 * 16 /\ b_start == B.gsub b 0ul (UInt32.uint_to_t (B.length b_start)) /\ B.length b_extra = 16 /\ Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_start) (B.as_seq h b_extra)) 0 (B.length b)) ) (ensures ( let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in Seq.equal sf (seq_uint8_to_seq_nat8 (B.as_seq h b)) )) = let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in let b_f = seq_uint8_to_seq_nat8 (B.as_seq h b) in // if B.length b > B.length b_start then ( calc (==) { sf; (==) { DV.length_eq b_start_d; lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 b_start h; le_bytes_to_seq_quad32_to_bytes (UV.as_seq h b_start_u) } wrap_slice (le_seq_quad32_to_bytes (Seq.append (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (UV.as_seq h b_extra_u))) (B.length b); (==) { DV.length_eq b_extra_d; lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 b_extra h; le_bytes_to_seq_quad32_to_bytes (UV.as_seq h b_extra_u) } wrap_slice (le_seq_quad32_to_bytes (Seq.append (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))))) (B.length b); (==) { append_distributes_le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) } wrap_slice (Seq.append (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start)))) (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))))) (B.length b); (==) { le_seq_quad32_to_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start)); le_seq_quad32_to_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra)) } wrap_slice (Seq.append (seq_uint8_to_seq_nat8 (B.as_seq h b_start)) (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) (B.length b); (==) { Seq.lemma_eq_intro b_f (wrap_slice (Seq.append (seq_uint8_to_seq_nat8 (B.as_seq h b_start)) (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) (B.length b)) } b_f; } #pop-options let lemma_slice_sub (b:uint8_p) (b_sub:uint8_p) (b_extra:uint8_p) (h:HS.mem) : Lemma (requires B.length b_extra = 16 /\ B.length b_sub = B.length b / 16 * 16 /\ b_sub == B.gsub b 0ul (UInt32.uint_to_t (B.length b_sub)) /\ Seq.equal (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b_sub + B.length b % 16)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)) ) (ensures Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b))
false
false
Vale.Wrapper.X64.GCM_IV.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lemma_slice_sub (b b_sub b_extra: uint8_p) (h: HS.mem) : Lemma (requires B.length b_extra = 16 /\ B.length b_sub = (B.length b / 16) * 16 /\ b_sub == B.gsub b 0ul (UInt32.uint_to_t (B.length b_sub)) /\ Seq.equal (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b_sub + B.length b % 16)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16))) (ensures Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b)))
[]
Vale.Wrapper.X64.GCM_IV.lemma_slice_sub
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.GCM_IV.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Vale.Wrapper.X64.GCM_IV.uint8_p -> b_sub: Vale.Wrapper.X64.GCM_IV.uint8_p -> b_extra: Vale.Wrapper.X64.GCM_IV.uint8_p -> h: FStar.Monotonic.HyperStack.mem -> FStar.Pervasives.Lemma (requires LowStar.Monotonic.Buffer.length b_extra = 16 /\ LowStar.Monotonic.Buffer.length b_sub = (LowStar.Monotonic.Buffer.length b / 16) * 16 /\ b_sub == LowStar.Buffer.gsub b 0ul (FStar.UInt32.uint_to_t (LowStar.Monotonic.Buffer.length b_sub)) /\ FStar.Seq.Base.equal (FStar.Seq.Base.slice (LowStar.Monotonic.Buffer.as_seq h b) (LowStar.Monotonic.Buffer.length b_sub) (LowStar.Monotonic.Buffer.length b_sub + LowStar.Monotonic.Buffer.length b % 16)) (FStar.Seq.Base.slice (LowStar.Monotonic.Buffer.as_seq h b_extra) 0 (LowStar.Monotonic.Buffer.length b % 16))) (ensures FStar.Seq.Base.equal (LowStar.Monotonic.Buffer.as_seq h b) (FStar.Seq.Base.slice (FStar.Seq.Base.append (LowStar.Monotonic.Buffer.as_seq h b_sub) (LowStar.Monotonic.Buffer.as_seq h b_extra)) 0 (LowStar.Monotonic.Buffer.length b)))
{ "end_col": 3, "end_line": 218, "start_col": 2, "start_line": 197 }
FStar.HyperStack.ST.Stack
val compute_iv (a:algorithm) (key:Ghost.erased (Seq.seq nat32)) (iv_b:uint8_p) (num_bytes:UInt32.t) (j0_b:uint8_p) (extra_b:uint8_p) (hkeys_b:uint8_p) : Stack unit (requires fun h -> B.live h iv_b /\ B.live h extra_b /\ B.live h hkeys_b /\ B.live h j0_b /\ B.length j0_b == 16 /\ B.length extra_b == 16 /\ B.length hkeys_b == 128 /\ B.length iv_b == UInt32.v num_bytes /\ UInt32.v num_bytes > 0 /\ B.disjoint iv_b j0_b /\ B.disjoint iv_b extra_b /\ B.disjoint iv_b hkeys_b /\ (B.disjoint j0_b extra_b \/ j0_b == extra_b) /\ B.disjoint j0_b hkeys_b /\ B.disjoint hkeys_b extra_b /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ is_aes_key_LE a (Ghost.reveal key) /\ hkeys_reqs_pub (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h hkeys_b))) (reverse_bytes_quad32 (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0))) ) (ensures fun h0 _ h1 -> B.modifies (B.loc_buffer j0_b `B.loc_union` B.loc_buffer extra_b) h0 h1 /\ le_bytes_to_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h1 j0_b)) == compute_iv_BE (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0)) (seq_uint8_to_seq_nat8 (B.as_seq h0 iv_b)))
[ { "abbrev": false, "full_module": "Vale.Lib.BufferViewHelpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.Gcm_simplify", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.Simplify_Sha", "short_module": null }, { "abbrev": true, "full_module": "Vale.X64.Decls", "short_module": "V" }, { "abbrev": false, "full_module": "Vale.X64.MemoryAdapters", "short_module": null }, { "abbrev": false, "full_module": "Vale.AsLowStar.MemoryHelpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Stdcalls.X64.GCM_IV", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Interop.Base", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "LowStar.BufferView.Up", "short_module": "UV" }, { "abbrev": true, "full_module": "LowStar.BufferView.Down", "short_module": "DV" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let compute_iv a key full_iv_b num_bytes j0_b extra_b hkeys_b = let h0 = get() in let len = num_bytes / 16ul in let bytes_len = len * 16ul in let iv_b = B.sub full_iv_b 0ul bytes_len in B.blit full_iv_b bytes_len extra_b 0ul (num_bytes % 16ul); let h1 = get() in lemma_slice_sub full_iv_b iv_b extra_b h1; lemma_slice_uv_extra full_iv_b iv_b extra_b h1; DV.length_eq (get_downview hkeys_b); DV.length_eq (get_downview j0_b); lemma_same_seq_same_buffer_read h0 h1 hkeys_b; let aux () : Lemma (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0) == reverse_bytes_quad32 (low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2)) = let keys_quad = le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h0 hkeys_b)) in let h_BE = low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2 in lemma_hkeys_reqs_pub_priv keys_quad (reverse_bytes_quad32 (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0))); let db = get_downview hkeys_b in let ub = UV.mk_buffer db Vale.Interop.Views.up_view128 in calc (==) { le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h0 hkeys_b)); (==) { lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 hkeys_b h0 } le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes (UV.as_seq h0 ub)))); (==) { le_bytes_to_seq_quad32_to_bytes (UV.as_seq h0 ub) } UV.as_seq h0 ub; }; UV.as_seq_sel h0 ub 2; reveal_reverse_bytes_quad32 h_BE; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 h_BE) in aux(); let lemma_uv_key () : Lemma (let db = get_downview hkeys_b in length_aux5 hkeys_b; let ub = UV.mk_buffer db Vale.Interop.Views.up_view128 in Seq.length (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h1 hkeys_b))) == 8 /\ Seq.equal (UV.as_seq h1 ub) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h1 hkeys_b)))) = length_aux5 hkeys_b; let db = get_downview hkeys_b in let ub = UV.mk_buffer db Vale.Interop.Views.up_view128 in DV.length_eq db; UV.length_eq ub; calc (==) { le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h1 hkeys_b)); (==) { lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 hkeys_b h1 } le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes (UV.as_seq h1 ub)))); (==) { le_bytes_to_seq_quad32_to_bytes (UV.as_seq h1 ub) } UV.as_seq h1 ub; } in lemma_uv_key (); compute_iv_stdcall' (Ghost.hide (seq_uint8_to_seq_nat8 (B.as_seq h0 full_iv_b))) iv_b (uint32_to_uint64 num_bytes) (uint32_to_uint64 len) j0_b extra_b hkeys_b; let h2 = get() in gcm_simplify2 j0_b h2; le_bytes_to_quad32_to_bytes (compute_iv_BE (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0)) (seq_uint8_to_seq_nat8 (B.as_seq h0 full_iv_b)))
val compute_iv (a:algorithm) (key:Ghost.erased (Seq.seq nat32)) (iv_b:uint8_p) (num_bytes:UInt32.t) (j0_b:uint8_p) (extra_b:uint8_p) (hkeys_b:uint8_p) : Stack unit (requires fun h -> B.live h iv_b /\ B.live h extra_b /\ B.live h hkeys_b /\ B.live h j0_b /\ B.length j0_b == 16 /\ B.length extra_b == 16 /\ B.length hkeys_b == 128 /\ B.length iv_b == UInt32.v num_bytes /\ UInt32.v num_bytes > 0 /\ B.disjoint iv_b j0_b /\ B.disjoint iv_b extra_b /\ B.disjoint iv_b hkeys_b /\ (B.disjoint j0_b extra_b \/ j0_b == extra_b) /\ B.disjoint j0_b hkeys_b /\ B.disjoint hkeys_b extra_b /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ is_aes_key_LE a (Ghost.reveal key) /\ hkeys_reqs_pub (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h hkeys_b))) (reverse_bytes_quad32 (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0))) ) (ensures fun h0 _ h1 -> B.modifies (B.loc_buffer j0_b `B.loc_union` B.loc_buffer extra_b) h0 h1 /\ le_bytes_to_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h1 j0_b)) == compute_iv_BE (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0)) (seq_uint8_to_seq_nat8 (B.as_seq h0 iv_b))) let compute_iv a key full_iv_b num_bytes j0_b extra_b hkeys_b =
true
null
false
let h0 = get () in let len = num_bytes / 16ul in let bytes_len = len * 16ul in let iv_b = B.sub full_iv_b 0ul bytes_len in B.blit full_iv_b bytes_len extra_b 0ul (num_bytes % 16ul); let h1 = get () in lemma_slice_sub full_iv_b iv_b extra_b h1; lemma_slice_uv_extra full_iv_b iv_b extra_b h1; DV.length_eq (get_downview hkeys_b); DV.length_eq (get_downview j0_b); lemma_same_seq_same_buffer_read h0 h1 hkeys_b; let aux () : Lemma (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0) == reverse_bytes_quad32 (low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2)) = let keys_quad = le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h0 hkeys_b)) in let h_BE = low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2 in lemma_hkeys_reqs_pub_priv keys_quad (reverse_bytes_quad32 (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0))); let db = get_downview hkeys_b in let ub = UV.mk_buffer db Vale.Interop.Views.up_view128 in calc ( == ) { le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h0 hkeys_b)); ( == ) { lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 hkeys_b h0 } le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes (UV.as_seq h0 ub)))); ( == ) { le_bytes_to_seq_quad32_to_bytes (UV.as_seq h0 ub) } UV.as_seq h0 ub; }; UV.as_seq_sel h0 ub 2; reveal_reverse_bytes_quad32 h_BE; reveal_reverse_bytes_quad32 (reverse_bytes_quad32 h_BE) in aux (); let lemma_uv_key () : Lemma (let db = get_downview hkeys_b in length_aux5 hkeys_b; let ub = UV.mk_buffer db Vale.Interop.Views.up_view128 in Seq.length (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h1 hkeys_b))) == 8 /\ Seq.equal (UV.as_seq h1 ub) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h1 hkeys_b)))) = length_aux5 hkeys_b; let db = get_downview hkeys_b in let ub = UV.mk_buffer db Vale.Interop.Views.up_view128 in DV.length_eq db; UV.length_eq ub; calc ( == ) { le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h1 hkeys_b)); ( == ) { lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 hkeys_b h1 } le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (seq_nat8_to_seq_uint8 (le_seq_quad32_to_bytes (UV.as_seq h1 ub)))); ( == ) { le_bytes_to_seq_quad32_to_bytes (UV.as_seq h1 ub) } UV.as_seq h1 ub; } in lemma_uv_key (); compute_iv_stdcall' (Ghost.hide (seq_uint8_to_seq_nat8 (B.as_seq h0 full_iv_b))) iv_b (uint32_to_uint64 num_bytes) (uint32_to_uint64 len) j0_b extra_b hkeys_b; let h2 = get () in gcm_simplify2 j0_b h2; le_bytes_to_quad32_to_bytes (compute_iv_BE (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0)) (seq_uint8_to_seq_nat8 (B.as_seq h0 full_iv_b)))
{ "checked_file": "Vale.Wrapper.X64.GCM_IV.fst.checked", "dependencies": [ "Vale.X64.MemoryAdapters.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.Stdcalls.X64.GCM_IV.fst.checked", "Vale.SHA.Simplify_Sha.fsti.checked", "Vale.Lib.BufferViewHelpers.fst.checked", "Vale.Interop.Views.fsti.checked", "Vale.AsLowStar.MemoryHelpers.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.Gcm_simplify.fsti.checked", "Vale.AES.GCM_helpers.fsti.checked", "prims.fst.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Integers.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.Wrapper.X64.GCM_IV.fst" }
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Vale.Def.Types_s.nat32", "Vale.Wrapper.X64.GCM_IV.uint8_p", "FStar.UInt32.t", "Vale.Arch.Types.le_bytes_to_quad32_to_bytes", "Vale.AES.GCM_s.compute_iv_BE", "Vale.AES.AES_s.aes_encrypt_LE", "FStar.Ghost.reveal", "Vale.Def.Words_s.Mkfour", "Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8", "LowStar.Monotonic.Buffer.as_seq", "FStar.UInt8.t", "LowStar.Buffer.trivial_preorder", "Prims.unit", "Vale.AES.Gcm_simplify.gcm_simplify2", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Vale.Wrapper.X64.GCM_IV.compute_iv_stdcall'", "FStar.Ghost.hide", "Vale.AES.GCM_s.supported_iv_LE", "FStar.Int.Cast.uint32_to_uint64", "Prims.l_True", "Prims.squash", "Prims.l_and", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "FStar.Seq.Base.equal", "LowStar.BufferView.Up.as_seq", "LowStar.BufferView.Up.mk_buffer", "Vale.Interop.Types.get_downview", "Vale.Arch.HeapTypes_s.TUInt8", "Vale.Interop.Views.up_view128", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Calc.calc_finish", "Prims.Cons", "FStar.Preorder.relation", "FStar.Calc.calc_step", "Vale.Def.Words.Seq_s.seq_nat8_to_seq_uint8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.SHA.Simplify_Sha.lemma_seq_nat8_le_seq_quad32_to_bytes_uint32", "Vale.Arch.Types.le_bytes_to_seq_quad32_to_bytes", "LowStar.BufferView.Up.length_eq", "LowStar.BufferView.Down.length_eq", "LowStar.BufferView.Up.buffer", "LowStar.BufferView.Down.buffer", "Vale.Wrapper.X64.GCM_IV.length_aux5", "Vale.Def.Words_s.nat32", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.AsLowStar.MemoryHelpers.low_buffer_read", "Vale.Arch.HeapTypes_s.TUInt128", "Vale.Def.Types_s.reveal_reverse_bytes_quad32", "LowStar.BufferView.Up.as_seq_sel", "Vale.AES.GHash.lemma_hkeys_reqs_pub_priv", "Vale.Interop.Types.base_typ_as_type", "Vale.Wrapper.X64.GCM_IV.lemma_same_seq_same_buffer_read", "Vale.Wrapper.X64.GCM_IV.lemma_slice_uv_extra", "Vale.Wrapper.X64.GCM_IV.lemma_slice_sub", "LowStar.Monotonic.Buffer.blit", "FStar.UInt32.__uint_to_t", "FStar.Integers.op_Percent", "FStar.Integers.Unsigned", "FStar.Integers.W32", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.sub", "FStar.Integers.int_t", "FStar.Integers.op_Star", "FStar.Integers.op_Slash" ]
[]
module Vale.Wrapper.X64.GCM_IV open FStar.Mul open Vale.Stdcalls.X64.GCM_IV open Vale.AsLowStar.MemoryHelpers open Vale.X64.MemoryAdapters module V = Vale.X64.Decls open Vale.SHA.Simplify_Sha open Vale.AES.Gcm_simplify open Vale.AES.GCM_helpers open Vale.Arch.Types open Vale.AES.GHash open FStar.Integers open FStar.Int.Cast let wrap_slice (#a:Type0) (s:Seq.seq a) (i:int) : Seq.seq a = Seq.slice s 0 (if 0 <= i && i <= Seq.length s then i else 0) let length_aux (b:uint8_p) (n:nat) : Lemma (requires B.length b = 16 * n) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db; FStar.Math.Lemmas.cancel_mul_mod n 16 #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0" let length_aux5 (b:uint8_p) : Lemma (requires B.length b = 128) (ensures DV.length (get_downview b) % 16 = 0) = let db = get_downview b in DV.length_eq db #push-options "--z3cliopt smt.arith.nl=true" inline_for_extraction val compute_iv_stdcall': iv:Ghost.erased supported_iv_LE -> iv_b:uint8_p -> num_bytes:uint64 -> len:uint64 -> j0_b:uint8_p -> iv_extra_b:uint8_p -> hkeys_b:uint8_p -> Stack unit (requires fun h0 -> B.disjoint iv_b j0_b /\ B.disjoint iv_b iv_extra_b /\ B.disjoint iv_b hkeys_b /\ (B.disjoint j0_b iv_extra_b \/ j0_b == iv_extra_b) /\ B.disjoint j0_b hkeys_b /\ B.disjoint iv_extra_b hkeys_b /\ B.live h0 iv_b /\ B.live h0 j0_b /\ B.live h0 iv_extra_b /\ B.live h0 hkeys_b /\ B.length iv_b == 16 * UInt64.v len /\ B.length j0_b == 16 /\ B.length iv_extra_b == 16 /\ B.length hkeys_b == 128 /\ UInt64.v len * (128/8) <= UInt64.v num_bytes /\ UInt64.v num_bytes < UInt64.v len * (128/8) + 128/8 /\ 0 < 8 * UInt64.v num_bytes /\ 8 * UInt64.v num_bytes < pow2_64 /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ ( let db = get_downview hkeys_b in length_aux5 hkeys_b; DV.length_eq (get_downview hkeys_b); let ub = UV.mk_buffer db Vale.Interop.Views.up_view128 in hkeys_reqs_pub (UV.as_seq h0 ub) (reverse_bytes_quad32 (reverse_bytes_quad32 (low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2)))) /\ ( let in_d = get_downview iv_b in length_aux iv_b (UInt64.v len); let in_u = UV.mk_buffer in_d Vale.Interop.Views.up_view128 in let inout_d = get_downview iv_extra_b in length_aux iv_extra_b 1; let inout_u = UV.mk_buffer inout_d Vale.Interop.Views.up_view128 in let iv_raw_quads = Seq.append (UV.as_seq h0 in_u) (UV.as_seq h0 inout_u) in let iv_bytes_LE = wrap_slice (le_seq_quad32_to_bytes iv_raw_quads) (UInt64.v num_bytes) in Seq.equal iv_bytes_LE (Ghost.reveal iv) ) ) (ensures fun h0 _ h1 -> B.modifies (B.loc_buffer j0_b) h0 h1 /\ (DV.length_eq (get_downview hkeys_b); DV.length_eq (get_downview j0_b); let h_LE = reverse_bytes_quad32 (low_buffer_read TUInt8 TUInt128 h0 hkeys_b 2) in low_buffer_read TUInt8 TUInt128 h1 j0_b 0 == compute_iv_BE h_LE (Ghost.reveal iv)) ) #pop-options #push-options "--z3cliopt smt.arith.nl=true" #set-options "--ext compat:normalizer_memo_ignore_cfg" inline_for_extraction let compute_iv_stdcall' iv iv_b num_bytes len j0_b iv_extra_b hkeys_b = let h0 = get() in DV.length_eq (get_downview iv_b); DV.length_eq (get_downview iv_extra_b); DV.length_eq (get_downview j0_b); DV.length_eq (get_downview hkeys_b); as_vale_buffer_len #TUInt8 #TUInt128 iv_b; as_vale_buffer_len #TUInt8 #TUInt128 iv_extra_b; as_vale_buffer_len #TUInt8 #TUInt128 j0_b; as_vale_buffer_len #TUInt8 #TUInt128 hkeys_b; bounded_buffer_addrs_all TUInt8 TUInt128 h0 iv_b; bounded_buffer_addrs_all TUInt8 TUInt128 h0 hkeys_b; let (x, _) = compute_iv_stdcall iv iv_b num_bytes len j0_b iv_extra_b hkeys_b () in () #pop-options #push-options "--z3cliopt smt.arith.nl=true" let lemma_slice_uv_extra (b:uint8_p) (b_start:uint8_p) (b_extra:uint8_p) (h:HS.mem) : Lemma (requires B.length b_start = B.length b / 16 * 16 /\ b_start == B.gsub b 0ul (UInt32.uint_to_t (B.length b_start)) /\ B.length b_extra = 16 /\ Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_start) (B.as_seq h b_extra)) 0 (B.length b)) ) (ensures ( let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in Seq.equal sf (seq_uint8_to_seq_nat8 (B.as_seq h b)) )) = let b_start_d = get_downview b_start in DV.length_eq (get_downview b_start); let b_start_u = UV.mk_buffer b_start_d Vale.Interop.Views.up_view128 in let b_extra_d = get_downview b_extra in DV.length_eq (get_downview b_extra); let b_extra_u = UV.mk_buffer b_extra_d Vale.Interop.Views.up_view128 in let suv = Seq.append (UV.as_seq h b_start_u) (UV.as_seq h b_extra_u) in let sf = wrap_slice (le_seq_quad32_to_bytes suv) (B.length b) in let b_f = seq_uint8_to_seq_nat8 (B.as_seq h b) in // if B.length b > B.length b_start then ( calc (==) { sf; (==) { DV.length_eq b_start_d; lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 b_start h; le_bytes_to_seq_quad32_to_bytes (UV.as_seq h b_start_u) } wrap_slice (le_seq_quad32_to_bytes (Seq.append (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (UV.as_seq h b_extra_u))) (B.length b); (==) { DV.length_eq b_extra_d; lemma_seq_nat8_le_seq_quad32_to_bytes_uint32 b_extra h; le_bytes_to_seq_quad32_to_bytes (UV.as_seq h b_extra_u) } wrap_slice (le_seq_quad32_to_bytes (Seq.append (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))))) (B.length b); (==) { append_distributes_le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start))) (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) } wrap_slice (Seq.append (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start)))) (le_seq_quad32_to_bytes (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))))) (B.length b); (==) { le_seq_quad32_to_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_start)); le_seq_quad32_to_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h b_extra)) } wrap_slice (Seq.append (seq_uint8_to_seq_nat8 (B.as_seq h b_start)) (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) (B.length b); (==) { Seq.lemma_eq_intro b_f (wrap_slice (Seq.append (seq_uint8_to_seq_nat8 (B.as_seq h b_start)) (seq_uint8_to_seq_nat8 (B.as_seq h b_extra))) (B.length b)) } b_f; } #pop-options let lemma_slice_sub (b:uint8_p) (b_sub:uint8_p) (b_extra:uint8_p) (h:HS.mem) : Lemma (requires B.length b_extra = 16 /\ B.length b_sub = B.length b / 16 * 16 /\ b_sub == B.gsub b 0ul (UInt32.uint_to_t (B.length b_sub)) /\ Seq.equal (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b_sub + B.length b % 16)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)) ) (ensures Seq.equal (B.as_seq h b) (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b)) ) = calc (==) { Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b); (==) { Seq.lemma_eq_intro (Seq.slice (Seq.append (B.as_seq h b_sub) (B.as_seq h b_extra)) 0 (B.length b)) (Seq.append (B.as_seq h b_sub) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16))) } Seq.append (B.as_seq h b_sub) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)); (==) { } Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b_extra) 0 (B.length b % 16)); (==) { } Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b)); (==) { Seq.lemma_eq_intro (B.as_seq h b) (Seq.append (Seq.slice (B.as_seq h b) 0 (B.length b_sub)) (Seq.slice (B.as_seq h b) (B.length b_sub) (B.length b))) } B.as_seq h b; } open Vale.Lib.BufferViewHelpers #push-options "--smtencoding.nl_arith_repr boxwrap" let lemma_same_seq_same_buffer_read (h0 h1:HS.mem) (b:uint8_p) : Lemma (requires B.live h0 b /\ B.live h1 b /\ B.length b == 128 /\ B.as_seq h0 b `Seq.equal` B.as_seq h1 b) (ensures ( DV.length_eq (get_downview b); low_buffer_read TUInt8 TUInt128 h0 b 2 == low_buffer_read TUInt8 TUInt128 h1 b 2) ) = let b_d = get_downview b in DV.length_eq b_d; let b_u = UV.mk_buffer b_d Vale.Interop.Views.up_view128 in lemma_dv_equal Vale.Interop.Views.down_view8 b h0 h1; lemma_uv_equal Vale.Interop.Views.up_view128 (get_downview b) h0 h1; UV.length_eq b_u; UV.as_seq_sel h0 b_u 2; UV.as_seq_sel h1 b_u 2 #pop-options
false
false
Vale.Wrapper.X64.GCM_IV.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val compute_iv (a:algorithm) (key:Ghost.erased (Seq.seq nat32)) (iv_b:uint8_p) (num_bytes:UInt32.t) (j0_b:uint8_p) (extra_b:uint8_p) (hkeys_b:uint8_p) : Stack unit (requires fun h -> B.live h iv_b /\ B.live h extra_b /\ B.live h hkeys_b /\ B.live h j0_b /\ B.length j0_b == 16 /\ B.length extra_b == 16 /\ B.length hkeys_b == 128 /\ B.length iv_b == UInt32.v num_bytes /\ UInt32.v num_bytes > 0 /\ B.disjoint iv_b j0_b /\ B.disjoint iv_b extra_b /\ B.disjoint iv_b hkeys_b /\ (B.disjoint j0_b extra_b \/ j0_b == extra_b) /\ B.disjoint j0_b hkeys_b /\ B.disjoint hkeys_b extra_b /\ pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ is_aes_key_LE a (Ghost.reveal key) /\ hkeys_reqs_pub (le_bytes_to_seq_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h hkeys_b))) (reverse_bytes_quad32 (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0))) ) (ensures fun h0 _ h1 -> B.modifies (B.loc_buffer j0_b `B.loc_union` B.loc_buffer extra_b) h0 h1 /\ le_bytes_to_quad32 (seq_uint8_to_seq_nat8 (B.as_seq h1 j0_b)) == compute_iv_BE (aes_encrypt_LE a (Ghost.reveal key) (Mkfour 0 0 0 0)) (seq_uint8_to_seq_nat8 (B.as_seq h0 iv_b)))
[]
Vale.Wrapper.X64.GCM_IV.compute_iv
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.GCM_IV.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Vale.AES.AES_common_s.algorithm -> key: FStar.Ghost.erased (FStar.Seq.Base.seq Vale.Def.Types_s.nat32) -> iv_b: Vale.Wrapper.X64.GCM_IV.uint8_p -> num_bytes: FStar.UInt32.t -> j0_b: Vale.Wrapper.X64.GCM_IV.uint8_p -> extra_b: Vale.Wrapper.X64.GCM_IV.uint8_p -> hkeys_b: Vale.Wrapper.X64.GCM_IV.uint8_p -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 52, "end_line": 318, "start_col": 63, "start_line": 244 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let proj_point = felem & felem & felem
let proj_point =
false
null
false
felem & felem & felem
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple3", "Spec.K256.PointOps.felem" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val proj_point : Type0
[]
Spec.K256.PointOps.proj_point
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 38, "end_line": 56, "start_col": 17, "start_line": 56 }
Prims.Tot
val scalar_is_high (x: qelem) : bool
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let scalar_is_high (x:qelem) : bool = x > q / 2
val scalar_is_high (x: qelem) : bool let scalar_is_high (x: qelem) : bool =
false
null
false
x > q / 2
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.qelem", "Prims.op_GreaterThan", "Prims.op_Division", "Spec.K256.PointOps.q", "Prims.bool" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val scalar_is_high (x: qelem) : bool
[]
Spec.K256.PointOps.scalar_is_high
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.qelem -> Prims.bool
{ "end_col": 47, "end_line": 48, "start_col": 38, "start_line": 48 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aff_point = felem & felem
let aff_point =
false
null
false
felem & felem
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.tuple2", "Spec.K256.PointOps.felem" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aff_point : Type0
[]
Spec.K256.PointOps.aff_point
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 29, "end_line": 55, "start_col": 16, "start_line": 55 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let felem = x:nat{x < prime}
let felem =
false
null
false
x: nat{x < prime}
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Spec.K256.PointOps.prime" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val felem : Type0
[]
Spec.K256.PointOps.felem
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 28, "end_line": 20, "start_col": 12, "start_line": 20 }
Prims.Tot
val aff_point_at_inf:aff_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aff_point_at_inf : aff_point = (zero, zero)
val aff_point_at_inf:aff_point let aff_point_at_inf:aff_point =
false
null
false
(zero, zero)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.Mktuple2", "Spec.K256.PointOps.felem", "Spec.K256.PointOps.zero" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aff_point_at_inf:aff_point
[]
Spec.K256.PointOps.aff_point_at_inf
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.K256.PointOps.aff_point
{ "end_col": 47, "end_line": 64, "start_col": 35, "start_line": 64 }
Prims.Tot
val is_fodd (x: nat) : bool
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_fodd (x:nat) : bool = x % 2 = 1
val is_fodd (x: nat) : bool let is_fodd (x: nat) : bool =
false
null
false
x % 2 = 1
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.bool" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_fodd (x: nat) : bool
[]
Spec.K256.PointOps.is_fodd
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Prims.nat -> Prims.bool
{ "end_col": 38, "end_line": 29, "start_col": 29, "start_line": 29 }
Prims.Tot
val to_aff_point (p: proj_point) : aff_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y)
val to_aff_point (p: proj_point) : aff_point let to_aff_point (p: proj_point) : aff_point =
false
null
false
let px, py, pz = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.proj_point", "Spec.K256.PointOps.felem", "FStar.Pervasives.Native.Mktuple2", "Spec.K256.PointOps.op_Star_Percent", "Spec.K256.PointOps.finv", "Spec.K256.PointOps.aff_point" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val to_aff_point (p: proj_point) : aff_point
[]
Spec.K256.PointOps.to_aff_point
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.proj_point -> Spec.K256.PointOps.aff_point
{ "end_col": 8, "end_line": 79, "start_col": 45, "start_line": 73 }
Prims.Tot
val to_proj_point (p: aff_point) : proj_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one)
val to_proj_point (p: aff_point) : proj_point let to_proj_point (p: aff_point) : proj_point =
false
null
false
let x, y = p in (x, y, one)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.aff_point", "Spec.K256.PointOps.felem", "FStar.Pervasives.Native.Mktuple3", "Spec.K256.PointOps.one", "Spec.K256.PointOps.proj_point" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y)
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val to_proj_point (p: aff_point) : proj_point
[]
Spec.K256.PointOps.to_proj_point
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.proj_point
{ "end_col": 31, "end_line": 82, "start_col": 46, "start_line": 81 }
Prims.Tot
val g:proj_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let g : proj_point = (g_x, g_y, one)
val g:proj_point let g:proj_point =
false
null
false
(g_x, g_y, one)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.Mktuple3", "Spec.K256.PointOps.felem", "Spec.K256.PointOps.g_x", "Spec.K256.PointOps.g_y", "Spec.K256.PointOps.one" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val g:proj_point
[]
Spec.K256.PointOps.g
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.K256.PointOps.proj_point
{ "end_col": 36, "end_line": 87, "start_col": 21, "start_line": 87 }
Prims.Tot
val q:q: pos{q < pow2 256}
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
val q:q: pos{q < pow2 256} let q:q: pos{q < pow2 256} =
false
null
false
assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order
false
false
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val q:q: pos{q < pow2 256}
[]
Spec.K256.PointOps.q
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
q: Prims.pos{q < Prims.pow2 256}
{ "end_col": 68, "end_line": 41, "start_col": 2, "start_line": 40 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ( /% ) (x y:felem) = x *% finv y
let op_Slash_Percent (x y: felem) =
false
null
false
x *% finv y
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.felem", "Spec.K256.PointOps.op_Star_Percent", "Spec.K256.PointOps.finv" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Slash_Percent : x: Spec.K256.PointOps.felem -> y: Spec.K256.PointOps.felem -> Spec.K256.PointOps.felem
[]
Spec.K256.PointOps.op_Slash_Percent
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.felem -> y: Spec.K256.PointOps.felem -> Spec.K256.PointOps.felem
{ "end_col": 36, "end_line": 34, "start_col": 25, "start_line": 34 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let qelem = x:nat{x < q}
let qelem =
false
null
false
x: nat{x < q}
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Spec.K256.PointOps.q" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val qelem : Type0
[]
Spec.K256.PointOps.qelem
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 24, "end_line": 43, "start_col": 12, "start_line": 43 }
Prims.Tot
val point_at_inf:proj_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_at_inf : proj_point = (zero, one, zero)
val point_at_inf:proj_point let point_at_inf:proj_point =
false
null
false
(zero, one, zero)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "FStar.Pervasives.Native.Mktuple3", "Spec.K256.PointOps.felem", "Spec.K256.PointOps.zero", "Spec.K256.PointOps.one" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_at_inf:proj_point
[]
Spec.K256.PointOps.point_at_inf
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.K256.PointOps.proj_point
{ "end_col": 49, "end_line": 65, "start_col": 32, "start_line": 65 }
Prims.Tot
val finv (x: felem) : felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
val finv (x: felem) : felem let finv (x: felem) : felem =
false
null
false
M.pow_mod #prime x (prime - 2)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.felem", "Lib.NatMod.pow_mod", "Spec.K256.PointOps.prime", "Prims.op_Subtraction" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val finv (x: felem) : felem
[]
Spec.K256.PointOps.finv
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.felem -> Spec.K256.PointOps.felem
{ "end_col": 59, "end_line": 27, "start_col": 29, "start_line": 27 }
Prims.Tot
val one:felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let one : felem = 1
val one:felem let one:felem =
false
null
false
1
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime}
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val one:felem
[]
Spec.K256.PointOps.one
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.K256.PointOps.felem
{ "end_col": 20, "end_line": 22, "start_col": 19, "start_line": 22 }
Prims.Tot
val is_aff_point_at_inf (p: aff_point) : bool
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero
val is_aff_point_at_inf (p: aff_point) : bool let is_aff_point_at_inf (p: aff_point) : bool =
false
null
false
let x, y = p in x = zero && y = zero
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.aff_point", "Spec.K256.PointOps.felem", "Prims.op_AmpAmp", "Prims.op_Equality", "Spec.K256.PointOps.zero", "Prims.bool" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero)
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_aff_point_at_inf (p: aff_point) : bool
[]
Spec.K256.PointOps.is_aff_point_at_inf
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.aff_point -> Prims.bool
{ "end_col": 40, "end_line": 68, "start_col": 46, "start_line": 67 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b
let is_on_curve (p: aff_point) =
false
null
false
let x, y = p in y *% y = x *% x *% x +% b
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.aff_point", "Spec.K256.PointOps.felem", "Prims.op_Equality", "Spec.K256.PointOps.op_Star_Percent", "Spec.K256.PointOps.op_Plus_Percent", "Spec.K256.PointOps.b", "Prims.bool" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_on_curve : p: Spec.K256.PointOps.aff_point -> Prims.bool
[]
Spec.K256.PointOps.is_on_curve
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.aff_point -> Prims.bool
{ "end_col": 43, "end_line": 62, "start_col": 31, "start_line": 61 }
Prims.Tot
val g_y:felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
val g_y:felem let g_y:felem =
false
null
false
0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val g_y:felem
[]
Spec.K256.PointOps.g_y
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.K256.PointOps.felem
{ "end_col": 84, "end_line": 86, "start_col": 18, "start_line": 86 }
Prims.Tot
val g_x:felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
val g_x:felem let g_x:felem =
false
null
false
0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one)
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val g_x:felem
[]
Spec.K256.PointOps.g_x
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.K256.PointOps.felem
{ "end_col": 84, "end_line": 85, "start_col": 18, "start_line": 85 }
Prims.Tot
val fadd (x y: felem) : felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fadd (x y:felem) : felem = (x + y) % prime
val fadd (x y: felem) : felem let fadd (x y: felem) : felem =
false
null
false
(x + y) % prime
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.felem", "Prims.op_Modulus", "Prims.op_Addition", "Spec.K256.PointOps.prime" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fadd (x y: felem) : felem
[]
Spec.K256.PointOps.fadd
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.felem -> y: Spec.K256.PointOps.felem -> Spec.K256.PointOps.felem
{ "end_col": 46, "end_line": 24, "start_col": 31, "start_line": 24 }
Prims.Tot
val aff_point_double (p: aff_point) : aff_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end
val aff_point_double (p: aff_point) : aff_point let aff_point_double (p: aff_point) : aff_point =
false
null
false
let px, py = p in if is_aff_point_at_inf p then p else if py = 0 then aff_point_at_inf else let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.aff_point", "Spec.K256.PointOps.felem", "Spec.K256.PointOps.is_aff_point_at_inf", "Prims.bool", "Prims.op_Equality", "Prims.int", "Spec.K256.PointOps.aff_point_at_inf", "FStar.Pervasives.Native.Mktuple2", "Spec.K256.PointOps.op_Subtraction_Percent", "Spec.K256.PointOps.op_Star_Percent", "Spec.K256.PointOps.op_Slash_Percent" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aff_point_double (p: aff_point) : aff_point
[]
Spec.K256.PointOps.aff_point_double
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point
{ "end_col": 5, "end_line": 101, "start_col": 48, "start_line": 91 }
Prims.Tot
val qnegate (x: qelem) : qelem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let qnegate (x:qelem) : qelem = (- x) % q
val qnegate (x: qelem) : qelem let qnegate (x: qelem) : qelem =
false
null
false
(- x) % q
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.qelem", "Prims.op_Modulus", "Prims.op_Minus", "Spec.K256.PointOps.q" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val qnegate (x: qelem) : qelem
[]
Spec.K256.PointOps.qnegate
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.qelem -> Spec.K256.PointOps.qelem
{ "end_col": 41, "end_line": 47, "start_col": 32, "start_line": 47 }
Prims.Tot
val qadd (x y: qelem) : qelem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let qadd (x y:qelem) : qelem = (x + y) % q
val qadd (x y: qelem) : qelem let qadd (x y: qelem) : qelem =
false
null
false
(x + y) % q
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.qelem", "Prims.op_Modulus", "Prims.op_Addition", "Spec.K256.PointOps.q" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val qadd (x y: qelem) : qelem
[]
Spec.K256.PointOps.qadd
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.qelem -> y: Spec.K256.PointOps.qelem -> Spec.K256.PointOps.qelem
{ "end_col": 42, "end_line": 44, "start_col": 31, "start_line": 44 }
Prims.Tot
val recover_y (x: felem) (is_odd: bool) : option felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let recover_y (x:felem) (is_odd:bool) : option felem = let y2 = x *% x *% x +% b in let y = fsqrt y2 in if y *% y <> y2 then None else begin let y = if is_fodd y <> is_odd then (prime - y) % prime else y in Some y end
val recover_y (x: felem) (is_odd: bool) : option felem let recover_y (x: felem) (is_odd: bool) : option felem =
false
null
false
let y2 = x *% x *% x +% b in let y = fsqrt y2 in if y *% y <> y2 then None else let y = if is_fodd y <> is_odd then (prime - y) % prime else y in Some y
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.felem", "Prims.bool", "Prims.op_disEquality", "Spec.K256.PointOps.op_Star_Percent", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.Some", "Spec.K256.PointOps.is_fodd", "Prims.op_Modulus", "Prims.op_Subtraction", "Spec.K256.PointOps.prime", "FStar.Pervasives.Native.option", "Spec.K256.PointOps.fsqrt", "Spec.K256.PointOps.op_Plus_Percent", "Spec.K256.PointOps.b" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3 let point_double (p:proj_point) : proj_point = let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3 let point_negate (p:proj_point) : proj_point = let x, y, z = p in x, (-y) % prime, z /// Point conversion between affine, projective and bytes representation let aff_point_load (b:BSeq.lbytes 64) : option aff_point = let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in let is_x_valid = pk_x < prime in let is_y_valid = pk_y < prime in let is_xy_on_curve = if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in if is_xy_on_curve then Some (pk_x, pk_y) else None let load_point (b:BSeq.lbytes 64) : option proj_point = match (aff_point_load b) with | Some p -> Some (to_proj_point p) | None -> None let point_inv_bytes (b:BSeq.lbytes 64) = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in px < prime && py < prime && is_on_curve (px, py) let load_point_nocheck (b:BSeq.lbytes 64{point_inv_bytes b}) : proj_point = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in to_proj_point (px, py) let aff_point_store (p:aff_point) : BSeq.lbytes 64 = let (px, py) = p in let pxb = BSeq.nat_to_bytes_be 32 px in let pxy = BSeq.nat_to_bytes_be 32 py in concat #uint8 #32 #32 pxb pxy let point_store (p:proj_point) : BSeq.lbytes 64 = aff_point_store (to_aff_point p)
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val recover_y (x: felem) (is_odd: bool) : option felem
[]
Spec.K256.PointOps.recover_y
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.felem -> is_odd: Prims.bool -> FStar.Pervasives.Native.option Spec.K256.PointOps.felem
{ "end_col": 14, "end_line": 212, "start_col": 54, "start_line": 206 }
Prims.Tot
val fsqrt (x: felem) : felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4)
val fsqrt (x: felem) : felem let fsqrt (x: felem) : felem =
false
null
false
M.pow_mod #prime x ((prime + 1) / 4)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.felem", "Lib.NatMod.pow_mod", "Spec.K256.PointOps.prime", "Prims.op_Division", "Prims.op_Addition" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsqrt (x: felem) : felem
[]
Spec.K256.PointOps.fsqrt
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.felem -> Spec.K256.PointOps.felem
{ "end_col": 66, "end_line": 28, "start_col": 30, "start_line": 28 }
Prims.Tot
val aff_point_add (p q: aff_point) : aff_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end
val aff_point_add (p q: aff_point) : aff_point let aff_point_add (p q: aff_point) : aff_point =
false
null
false
let px, py = p in let qx, qy = q in if is_aff_point_at_inf p then q else if is_aff_point_at_inf q then p else if p = q then aff_point_double p else if qx = px then aff_point_at_inf else let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.aff_point", "Spec.K256.PointOps.felem", "Spec.K256.PointOps.is_aff_point_at_inf", "Prims.bool", "Prims.op_Equality", "Spec.K256.PointOps.aff_point_double", "Spec.K256.PointOps.aff_point_at_inf", "FStar.Pervasives.Native.Mktuple2", "Spec.K256.PointOps.op_Subtraction_Percent", "Spec.K256.PointOps.op_Star_Percent", "Spec.K256.PointOps.op_Slash_Percent" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aff_point_add (p q: aff_point) : aff_point
[]
Spec.K256.PointOps.aff_point_add
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.aff_point -> q: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point
{ "end_col": 5, "end_line": 120, "start_col": 59, "start_line": 103 }
Prims.Tot
val fsub (x y: felem) : felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsub (x y:felem) : felem = (x - y) % prime
val fsub (x y: felem) : felem let fsub (x y: felem) : felem =
false
null
false
(x - y) % prime
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.felem", "Prims.op_Modulus", "Prims.op_Subtraction", "Spec.K256.PointOps.prime" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsub (x y: felem) : felem
[]
Spec.K256.PointOps.fsub
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.felem -> y: Spec.K256.PointOps.felem -> Spec.K256.PointOps.felem
{ "end_col": 46, "end_line": 25, "start_col": 31, "start_line": 25 }
Prims.Tot
val b:felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let b : felem = 7
val b:felem let b:felem =
false
null
false
7
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val b:felem
[]
Spec.K256.PointOps.b
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.K256.PointOps.felem
{ "end_col": 17, "end_line": 59, "start_col": 16, "start_line": 59 }
Prims.Tot
val point_add (p q: proj_point) : proj_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3
val point_add (p q: proj_point) : proj_point let point_add (p q: proj_point) : proj_point =
false
null
false
let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.proj_point", "Spec.K256.PointOps.felem", "FStar.Pervasives.Native.Mktuple3", "Spec.K256.PointOps.op_Plus_Percent", "Spec.K256.PointOps.op_Star_Percent", "Spec.K256.PointOps.op_Subtraction_Percent", "Spec.K256.PointOps.b" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_add (p q: proj_point) : proj_point
[]
Spec.K256.PointOps.point_add
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.proj_point -> q: Spec.K256.PointOps.proj_point -> Spec.K256.PointOps.proj_point
{ "end_col": 12, "end_line": 146, "start_col": 58, "start_line": 128 }
Prims.Tot
val fmul (x y: felem) : felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul (x y:felem) : felem = (x * y) % prime
val fmul (x y: felem) : felem let fmul (x y: felem) : felem =
false
null
false
(x * y) % prime
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.felem", "Prims.op_Modulus", "FStar.Mul.op_Star", "Spec.K256.PointOps.prime" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul (x y: felem) : felem
[]
Spec.K256.PointOps.fmul
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.felem -> y: Spec.K256.PointOps.felem -> Spec.K256.PointOps.felem
{ "end_col": 46, "end_line": 26, "start_col": 31, "start_line": 26 }
Prims.Tot
val aff_point_negate (p: aff_point) : aff_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime
val aff_point_negate (p: aff_point) : aff_point let aff_point_negate (p: aff_point) : aff_point =
false
null
false
let x, y = p in x, (- y) % prime
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.aff_point", "Spec.K256.PointOps.felem", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Modulus", "Prims.op_Minus", "Spec.K256.PointOps.prime" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aff_point_negate (p: aff_point) : aff_point
[]
Spec.K256.PointOps.aff_point_negate
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.aff_point -> Spec.K256.PointOps.aff_point
{ "end_col": 33, "end_line": 123, "start_col": 48, "start_line": 122 }
Prims.Tot
val qmul (x y: qelem) : qelem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let qmul (x y:qelem) : qelem = (x * y) % q
val qmul (x y: qelem) : qelem let qmul (x y: qelem) : qelem =
false
null
false
(x * y) % q
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.qelem", "Prims.op_Modulus", "FStar.Mul.op_Star", "Spec.K256.PointOps.q" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q}
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val qmul (x y: qelem) : qelem
[]
Spec.K256.PointOps.qmul
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.qelem -> y: Spec.K256.PointOps.qelem -> Spec.K256.PointOps.qelem
{ "end_col": 42, "end_line": 45, "start_col": 31, "start_line": 45 }
Prims.Tot
val zero:felem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let zero : felem = 0
val zero:felem let zero:felem =
false
null
false
0
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val zero:felem
[]
Spec.K256.PointOps.zero
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Spec.K256.PointOps.felem
{ "end_col": 20, "end_line": 21, "start_col": 19, "start_line": 21 }
Prims.Tot
val point_negate (p: proj_point) : proj_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_negate (p:proj_point) : proj_point = let x, y, z = p in x, (-y) % prime, z
val point_negate (p: proj_point) : proj_point let point_negate (p: proj_point) : proj_point =
false
null
false
let x, y, z = p in x, (- y) % prime, z
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.proj_point", "Spec.K256.PointOps.felem", "FStar.Pervasives.Native.Mktuple3", "Prims.op_Modulus", "Prims.op_Minus", "Spec.K256.PointOps.prime" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3 let point_double (p:proj_point) : proj_point = let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_negate (p: proj_point) : proj_point
[]
Spec.K256.PointOps.point_negate
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.proj_point -> Spec.K256.PointOps.proj_point
{ "end_col": 20, "end_line": 166, "start_col": 46, "start_line": 164 }
Prims.Tot
val is_proj_point_at_inf (p: proj_point) : bool
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero
val is_proj_point_at_inf (p: proj_point) : bool let is_proj_point_at_inf (p: proj_point) : bool =
false
null
false
let _, _, z = p in z = zero
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.proj_point", "Spec.K256.PointOps.felem", "Prims.op_Equality", "Spec.K256.PointOps.zero", "Prims.bool" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_proj_point_at_inf (p: proj_point) : bool
[]
Spec.K256.PointOps.is_proj_point_at_inf
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.proj_point -> Prims.bool
{ "end_col": 31, "end_line": 71, "start_col": 48, "start_line": 70 }
Prims.Tot
val point_double (p: proj_point) : proj_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_double (p:proj_point) : proj_point = let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3
val point_double (p: proj_point) : proj_point let point_double (p: proj_point) : proj_point =
false
null
false
let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.proj_point", "Spec.K256.PointOps.felem", "FStar.Pervasives.Native.Mktuple3", "Spec.K256.PointOps.op_Star_Percent", "Spec.K256.PointOps.op_Plus_Percent", "Spec.K256.PointOps.b", "Spec.K256.PointOps.op_Subtraction_Percent" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_double (p: proj_point) : proj_point
[]
Spec.K256.PointOps.point_double
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.proj_point -> Spec.K256.PointOps.proj_point
{ "end_col": 12, "end_line": 162, "start_col": 46, "start_line": 148 }
Prims.Tot
val qinv (x: qelem) : qelem
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
val qinv (x: qelem) : qelem let qinv (x: qelem) : qelem =
false
null
false
M.pow_mod #q x (q - 2)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.qelem", "Lib.NatMod.pow_mod", "Spec.K256.PointOps.q", "Prims.op_Subtraction" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q
false
true
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val qinv (x: qelem) : qelem
[]
Spec.K256.PointOps.qinv
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Spec.K256.PointOps.qelem -> Spec.K256.PointOps.qelem
{ "end_col": 51, "end_line": 46, "start_col": 29, "start_line": 46 }
Prims.Tot
val prime:(p: pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F})
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1
val prime:(p: pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) let prime:(p: pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) =
false
null
false
assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Prims.op_Subtraction", "Prims.pow2", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.op_LessThan" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field
false
false
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val prime:(p: pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F})
[]
Spec.K256.PointOps.prime
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Prims.pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}
{ "end_col": 24, "end_line": 18, "start_col": 2, "start_line": 15 }
Prims.Tot
val aff_point_store (p: aff_point) : BSeq.lbytes 64
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aff_point_store (p:aff_point) : BSeq.lbytes 64 = let (px, py) = p in let pxb = BSeq.nat_to_bytes_be 32 px in let pxy = BSeq.nat_to_bytes_be 32 py in concat #uint8 #32 #32 pxb pxy
val aff_point_store (p: aff_point) : BSeq.lbytes 64 let aff_point_store (p: aff_point) : BSeq.lbytes 64 =
false
null
false
let px, py = p in let pxb = BSeq.nat_to_bytes_be 32 px in let pxy = BSeq.nat_to_bytes_be 32 py in concat #uint8 #32 #32 pxb pxy
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.aff_point", "Spec.K256.PointOps.felem", "Lib.Sequence.concat", "Lib.IntTypes.uint8", "Lib.Sequence.seq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "Prims.nat", "Lib.Sequence.length", "Prims.l_or", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Multiply", "Lib.ByteSequence.nat_from_intseq_be", "Lib.ByteSequence.nat_to_bytes_be", "Lib.ByteSequence.lbytes" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3 let point_double (p:proj_point) : proj_point = let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3 let point_negate (p:proj_point) : proj_point = let x, y, z = p in x, (-y) % prime, z /// Point conversion between affine, projective and bytes representation let aff_point_load (b:BSeq.lbytes 64) : option aff_point = let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in let is_x_valid = pk_x < prime in let is_y_valid = pk_y < prime in let is_xy_on_curve = if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in if is_xy_on_curve then Some (pk_x, pk_y) else None let load_point (b:BSeq.lbytes 64) : option proj_point = match (aff_point_load b) with | Some p -> Some (to_proj_point p) | None -> None let point_inv_bytes (b:BSeq.lbytes 64) = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in px < prime && py < prime && is_on_curve (px, py) let load_point_nocheck (b:BSeq.lbytes 64{point_inv_bytes b}) : proj_point = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in to_proj_point (px, py)
false
false
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aff_point_store (p: aff_point) : BSeq.lbytes 64
[]
Spec.K256.PointOps.aff_point_store
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.aff_point -> Lib.ByteSequence.lbytes 64
{ "end_col": 31, "end_line": 200, "start_col": 52, "start_line": 196 }
Prims.Tot
val point_store (p: proj_point) : BSeq.lbytes 64
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_store (p:proj_point) : BSeq.lbytes 64 = aff_point_store (to_aff_point p)
val point_store (p: proj_point) : BSeq.lbytes 64 let point_store (p: proj_point) : BSeq.lbytes 64 =
false
null
false
aff_point_store (to_aff_point p)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Spec.K256.PointOps.proj_point", "Spec.K256.PointOps.aff_point_store", "Spec.K256.PointOps.to_aff_point", "Lib.ByteSequence.lbytes" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3 let point_double (p:proj_point) : proj_point = let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3 let point_negate (p:proj_point) : proj_point = let x, y, z = p in x, (-y) % prime, z /// Point conversion between affine, projective and bytes representation let aff_point_load (b:BSeq.lbytes 64) : option aff_point = let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in let is_x_valid = pk_x < prime in let is_y_valid = pk_y < prime in let is_xy_on_curve = if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in if is_xy_on_curve then Some (pk_x, pk_y) else None let load_point (b:BSeq.lbytes 64) : option proj_point = match (aff_point_load b) with | Some p -> Some (to_proj_point p) | None -> None let point_inv_bytes (b:BSeq.lbytes 64) = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in px < prime && py < prime && is_on_curve (px, py) let load_point_nocheck (b:BSeq.lbytes 64{point_inv_bytes b}) : proj_point = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in to_proj_point (px, py) let aff_point_store (p:aff_point) : BSeq.lbytes 64 = let (px, py) = p in let pxb = BSeq.nat_to_bytes_be 32 px in let pxy = BSeq.nat_to_bytes_be 32 py in concat #uint8 #32 #32 pxb pxy
false
false
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_store (p: proj_point) : BSeq.lbytes 64
[]
Spec.K256.PointOps.point_store
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
p: Spec.K256.PointOps.proj_point -> Lib.ByteSequence.lbytes 64
{ "end_col": 34, "end_line": 203, "start_col": 2, "start_line": 203 }
Prims.Tot
val load_point (b: BSeq.lbytes 64) : option proj_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_point (b:BSeq.lbytes 64) : option proj_point = match (aff_point_load b) with | Some p -> Some (to_proj_point p) | None -> None
val load_point (b: BSeq.lbytes 64) : option proj_point let load_point (b: BSeq.lbytes 64) : option proj_point =
false
null
false
match (aff_point_load b) with | Some p -> Some (to_proj_point p) | None -> None
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Lib.ByteSequence.lbytes", "Spec.K256.PointOps.aff_point_load", "Spec.K256.PointOps.aff_point", "FStar.Pervasives.Native.Some", "Spec.K256.PointOps.proj_point", "Spec.K256.PointOps.to_proj_point", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3 let point_double (p:proj_point) : proj_point = let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3 let point_negate (p:proj_point) : proj_point = let x, y, z = p in x, (-y) % prime, z /// Point conversion between affine, projective and bytes representation let aff_point_load (b:BSeq.lbytes 64) : option aff_point = let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in let is_x_valid = pk_x < prime in let is_y_valid = pk_y < prime in let is_xy_on_curve = if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in if is_xy_on_curve then Some (pk_x, pk_y) else None
false
false
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_point (b: BSeq.lbytes 64) : option proj_point
[]
Spec.K256.PointOps.load_point
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Lib.ByteSequence.lbytes 64 -> FStar.Pervasives.Native.option Spec.K256.PointOps.proj_point
{ "end_col": 16, "end_line": 182, "start_col": 2, "start_line": 180 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let point_inv_bytes (b:BSeq.lbytes 64) = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in px < prime && py < prime && is_on_curve (px, py)
let point_inv_bytes (b: BSeq.lbytes 64) =
false
null
false
let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in px < prime && py < prime && is_on_curve (px, py)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Lib.ByteSequence.lbytes", "Prims.op_AmpAmp", "Prims.op_LessThan", "Spec.K256.PointOps.prime", "Spec.K256.PointOps.is_on_curve", "FStar.Pervasives.Native.Mktuple2", "Spec.K256.PointOps.felem", "Prims.nat", "Prims.b2t", "Prims.pow2", "Prims.op_Multiply", "Lib.Sequence.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.sub", "Lib.ByteSequence.nat_from_bytes_be", "Lib.IntTypes.uint_t", "Prims.bool" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3 let point_double (p:proj_point) : proj_point = let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3 let point_negate (p:proj_point) : proj_point = let x, y, z = p in x, (-y) % prime, z /// Point conversion between affine, projective and bytes representation let aff_point_load (b:BSeq.lbytes 64) : option aff_point = let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in let is_x_valid = pk_x < prime in let is_y_valid = pk_y < prime in let is_xy_on_curve = if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in if is_xy_on_curve then Some (pk_x, pk_y) else None let load_point (b:BSeq.lbytes 64) : option proj_point = match (aff_point_load b) with | Some p -> Some (to_proj_point p) | None -> None
false
false
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val point_inv_bytes : b: Lib.ByteSequence.lbytes 64 -> Prims.bool
[]
Spec.K256.PointOps.point_inv_bytes
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Lib.ByteSequence.lbytes 64 -> Prims.bool
{ "end_col": 50, "end_line": 188, "start_col": 40, "start_line": 185 }
Prims.Tot
val aff_point_load (b: BSeq.lbytes 64) : option aff_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aff_point_load (b:BSeq.lbytes 64) : option aff_point = let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in let is_x_valid = pk_x < prime in let is_y_valid = pk_y < prime in let is_xy_on_curve = if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in if is_xy_on_curve then Some (pk_x, pk_y) else None
val aff_point_load (b: BSeq.lbytes 64) : option aff_point let aff_point_load (b: BSeq.lbytes 64) : option aff_point =
false
null
false
let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in let is_x_valid = pk_x < prime in let is_y_valid = pk_y < prime in let is_xy_on_curve = if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in if is_xy_on_curve then Some (pk_x, pk_y) else None
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Lib.ByteSequence.lbytes", "FStar.Pervasives.Native.Some", "Spec.K256.PointOps.aff_point", "FStar.Pervasives.Native.Mktuple2", "Spec.K256.PointOps.felem", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "Prims.op_AmpAmp", "Spec.K256.PointOps.is_on_curve", "Prims.op_LessThan", "Spec.K256.PointOps.prime", "Prims.nat", "Prims.b2t", "Prims.pow2", "Prims.op_Multiply", "Lib.Sequence.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.sub", "Lib.ByteSequence.nat_from_bytes_be", "Lib.IntTypes.uint_t" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3 let point_double (p:proj_point) : proj_point = let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3 let point_negate (p:proj_point) : proj_point = let x, y, z = p in x, (-y) % prime, z /// Point conversion between affine, projective and bytes representation
false
false
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aff_point_load (b: BSeq.lbytes 64) : option aff_point
[]
Spec.K256.PointOps.aff_point_load
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Lib.ByteSequence.lbytes 64 -> FStar.Pervasives.Native.option Spec.K256.PointOps.aff_point
{ "end_col": 52, "end_line": 177, "start_col": 58, "start_line": 170 }
Prims.Tot
val load_point_nocheck (b: BSeq.lbytes 64 {point_inv_bytes b}) : proj_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let load_point_nocheck (b:BSeq.lbytes 64{point_inv_bytes b}) : proj_point = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in to_proj_point (px, py)
val load_point_nocheck (b: BSeq.lbytes 64 {point_inv_bytes b}) : proj_point let load_point_nocheck (b: BSeq.lbytes 64 {point_inv_bytes b}) : proj_point =
false
null
false
let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in to_proj_point (px, py)
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Lib.ByteSequence.lbytes", "Prims.b2t", "Spec.K256.PointOps.point_inv_bytes", "Spec.K256.PointOps.to_proj_point", "FStar.Pervasives.Native.Mktuple2", "Spec.K256.PointOps.felem", "Prims.nat", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Multiply", "Lib.Sequence.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.sub", "Lib.ByteSequence.nat_from_bytes_be", "Lib.IntTypes.uint_t", "Spec.K256.PointOps.proj_point" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3 let point_double (p:proj_point) : proj_point = let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3 let point_negate (p:proj_point) : proj_point = let x, y, z = p in x, (-y) % prime, z /// Point conversion between affine, projective and bytes representation let aff_point_load (b:BSeq.lbytes 64) : option aff_point = let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in let is_x_valid = pk_x < prime in let is_y_valid = pk_y < prime in let is_xy_on_curve = if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in if is_xy_on_curve then Some (pk_x, pk_y) else None let load_point (b:BSeq.lbytes 64) : option proj_point = match (aff_point_load b) with | Some p -> Some (to_proj_point p) | None -> None let point_inv_bytes (b:BSeq.lbytes 64) = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in px < prime && py < prime && is_on_curve (px, py)
false
false
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val load_point_nocheck (b: BSeq.lbytes 64 {point_inv_bytes b}) : proj_point
[]
Spec.K256.PointOps.load_point_nocheck
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Lib.ByteSequence.lbytes 64 {Spec.K256.PointOps.point_inv_bytes b} -> Spec.K256.PointOps.proj_point
{ "end_col": 24, "end_line": 193, "start_col": 75, "start_line": 190 }
Prims.Tot
val aff_point_decompress (s: BSeq.lbytes 33) : option aff_point
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.NatMod", "short_module": "M" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "Spec.K256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let aff_point_decompress (s:BSeq.lbytes 33) : option aff_point = let s0 = Lib.RawIntTypes.u8_to_UInt8 s.[0] in if not (s0 = 0x02uy || s0 = 0x03uy) then None else begin let x = BSeq.nat_from_bytes_be (sub s 1 32) in let is_x_valid = x < prime in let is_y_odd = s0 = 0x03uy in if not is_x_valid then None else match (recover_y x is_y_odd) with | Some y -> Some (x, y) | None -> None end
val aff_point_decompress (s: BSeq.lbytes 33) : option aff_point let aff_point_decompress (s: BSeq.lbytes 33) : option aff_point =
false
null
false
let s0 = Lib.RawIntTypes.u8_to_UInt8 s.[ 0 ] in if not (s0 = 0x02uy || s0 = 0x03uy) then None else let x = BSeq.nat_from_bytes_be (sub s 1 32) in let is_x_valid = x < prime in let is_y_odd = s0 = 0x03uy in if not is_x_valid then None else match (recover_y x is_y_odd) with | Some y -> Some (x, y) | None -> None
{ "checked_file": "Spec.K256.PointOps.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.NatMod.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.K256.PointOps.fst" }
[ "total" ]
[ "Lib.ByteSequence.lbytes", "Prims.op_Negation", "Prims.op_BarBar", "Prims.op_Equality", "FStar.UInt8.t", "FStar.UInt8.__uint_to_t", "FStar.Pervasives.Native.None", "Spec.K256.PointOps.aff_point", "Prims.bool", "Spec.K256.PointOps.recover_y", "Spec.K256.PointOps.felem", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.option", "Prims.op_LessThan", "Spec.K256.PointOps.prime", "Prims.nat", "Prims.b2t", "Prims.pow2", "Prims.op_Multiply", "Lib.Sequence.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.sub", "Lib.ByteSequence.nat_from_bytes_be", "Lib.IntTypes.uint_t", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "FStar.UInt.size", "Lib.IntTypes.v", "Lib.Sequence.index", "FStar.UInt8.v", "Lib.RawIntTypes.u8_to_UInt8", "Lib.Sequence.op_String_Access" ]
[]
module Spec.K256.PointOps open FStar.Mul open Lib.IntTypes open Lib.Sequence module M = Lib.NatMod module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0" /// Finite field let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) = assert_norm (24 < pow2 256 - 0x1000003D1); assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1); assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F); pow2 256 - 0x1000003D1 let felem = x:nat{x < prime} let zero : felem = 0 let one : felem = 1 let fadd (x y:felem) : felem = (x + y) % prime let fsub (x y:felem) : felem = (x - y) % prime let fmul (x y:felem) : felem = (x * y) % prime let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2) let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4) let is_fodd (x:nat) : bool = x % 2 = 1 let ( +% ) = fadd let ( -% ) = fsub let ( *% ) = fmul let ( /% ) (x y:felem) = x *% finv y /// Scalar field // Group order let q : q:pos{q < pow2 256} = assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256); 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 let qelem = x:nat{x < q} let qadd (x y:qelem) : qelem = (x + y) % q let qmul (x y:qelem) : qelem = (x * y) % q let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2) let qnegate (x:qelem) : qelem = (- x) % q let scalar_is_high (x:qelem) : bool = x > q / 2 let ( +^ ) = qadd let ( *^ ) = qmul /// Elliptic curve let aff_point = felem & felem // Affine point let proj_point = felem & felem & felem // Projective coordinates // y * y = x * x * x + b let b : felem = 7 let is_on_curve (p:aff_point) = let x, y = p in y *% y = x *% x *% x +% b let aff_point_at_inf : aff_point = (zero, zero) // not on the curve! let point_at_inf : proj_point = (zero, one, zero) let is_aff_point_at_inf (p:aff_point) : bool = let (x, y) = p in x = zero && y = zero let is_proj_point_at_inf (p:proj_point) : bool = let (_, _, z) = p in z = zero let to_aff_point (p:proj_point) : aff_point = // if is_proj_point_at_inf p then aff_point_at_inf let (px, py, pz) = p in let zinv = finv pz in let x = px *% zinv in let y = py *% zinv in (x, y) let to_proj_point (p:aff_point) : proj_point = let (x, y) = p in (x, y, one) // Base point let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798 let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8 let g : proj_point = (g_x, g_y, one) /// Point addition in affine coordinates let aff_point_double (p:aff_point) : aff_point = let (px, py) = p in if is_aff_point_at_inf p then p else begin if py = 0 then aff_point_at_inf else begin let lambda = 3 *% px *% px /% (2 *% py) in let rx = lambda *% lambda -% px -% px in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end let aff_point_add (p:aff_point) (q:aff_point) : aff_point = let (px, py) = p in let (qx, qy) = q in if is_aff_point_at_inf p then q else begin if is_aff_point_at_inf q then p else begin if p = q then aff_point_double p else begin if qx = px then aff_point_at_inf else begin let lambda = (qy -% py) /% (qx -% px) in let rx = lambda *% lambda -% px -% qx in let ry = lambda *% (px -% rx) -% py in (rx, ry) end end end end let aff_point_negate (p:aff_point) : aff_point = let x, y = p in x, (-y) % prime /// Point addition and doubling in projective coordinates let point_add (p:proj_point) (q:proj_point) : proj_point = let x1, y1, z1 = p in let x2, y2, z2 = q in let xx = x1 *% x2 in let yy = y1 *% y2 in let zz = z1 *% z2 in let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in let bzz3 = 3 *% b *% zz in let yy_m_bzz3 = yy -% bzz3 in let yy_p_bzz3 = yy +% bzz3 in let byz3 = 3 *% b *% yz_pairs in let xx3 = 3 *% xx in let bxx9 = 3 *% b *% xx3 in let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in x3, y3, z3 let point_double (p:proj_point) : proj_point = let x, y, z = p in let yy = y *% y in let zz = z *% z in let xy2 = 2 *% x *% y in let bzz3 = 3 *% b *% zz in let bzz9 = 3 *% bzz3 in let yy_m_bzz9 = yy -% bzz9 in let yy_p_bzz3 = yy +% bzz3 in let yy_zz = yy *% zz in let t = 24 *% b *% yy_zz in let x3 = xy2 *% yy_m_bzz9 in let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in let z3 = yy *% y *% z *% 8 in x3, y3, z3 let point_negate (p:proj_point) : proj_point = let x, y, z = p in x, (-y) % prime, z /// Point conversion between affine, projective and bytes representation let aff_point_load (b:BSeq.lbytes 64) : option aff_point = let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in let is_x_valid = pk_x < prime in let is_y_valid = pk_y < prime in let is_xy_on_curve = if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in if is_xy_on_curve then Some (pk_x, pk_y) else None let load_point (b:BSeq.lbytes 64) : option proj_point = match (aff_point_load b) with | Some p -> Some (to_proj_point p) | None -> None let point_inv_bytes (b:BSeq.lbytes 64) = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in px < prime && py < prime && is_on_curve (px, py) let load_point_nocheck (b:BSeq.lbytes 64{point_inv_bytes b}) : proj_point = let px = BSeq.nat_from_bytes_be (sub b 0 32) in let py = BSeq.nat_from_bytes_be (sub b 32 32) in to_proj_point (px, py) let aff_point_store (p:aff_point) : BSeq.lbytes 64 = let (px, py) = p in let pxb = BSeq.nat_to_bytes_be 32 px in let pxy = BSeq.nat_to_bytes_be 32 py in concat #uint8 #32 #32 pxb pxy let point_store (p:proj_point) : BSeq.lbytes 64 = aff_point_store (to_aff_point p) let recover_y (x:felem) (is_odd:bool) : option felem = let y2 = x *% x *% x +% b in let y = fsqrt y2 in if y *% y <> y2 then None else begin let y = if is_fodd y <> is_odd then (prime - y) % prime else y in Some y end
false
false
Spec.K256.PointOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val aff_point_decompress (s: BSeq.lbytes 33) : option aff_point
[]
Spec.K256.PointOps.aff_point_decompress
{ "file_name": "specs/Spec.K256.PointOps.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
s: Lib.ByteSequence.lbytes 33 -> FStar.Pervasives.Native.option Spec.K256.PointOps.aff_point
{ "end_col": 24, "end_line": 227, "start_col": 64, "start_line": 215 }
FStar.HyperStack.ST.Stack
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Array_Access (#a:Type0) (#rrel #rel:B.srel a) = B.index #a #rrel #rel
let op_Array_Access (#a: Type0) (#rrel #rel: B.srel a) =
true
null
false
B.index #a #rrel #rel
{ "checked_file": "LowStar.BufferOps.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.BufferOps.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.index", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.length", "Prims.eq2", "FStar.Seq.Base.index", "LowStar.Monotonic.Buffer.as_seq" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.BufferOps (* Handy notations for LowStar.Buffer, so users can open this module instead of the whole LowStar.Buffer, to just bring these operators and notations into the scope without bringing any definition from LowStar.Buffer into the scope. *) module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module G = FStar.Ghost module Seq = FStar.Seq module B = LowStar.Buffer module L = FStar.List.Tot inline_for_extraction
false
false
LowStar.BufferOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Array_Access : b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> FStar.HyperStack.ST.Stack a
[]
LowStar.BufferOps.op_Array_Access
{ "file_name": "ulib/LowStar.BufferOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> FStar.HyperStack.ST.Stack a
{ "end_col": 76, "end_line": 33, "start_col": 55, "start_line": 33 }
FStar.HyperStack.ST.Stack
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let op_Array_Assignment (#a:Type0) (#rrel #rel:B.srel a) = B.upd #a #rrel #rel
let op_Array_Assignment (#a: Type0) (#rrel #rel: B.srel a) =
true
null
false
B.upd #a #rrel #rel
{ "checked_file": "LowStar.BufferOps.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.BufferOps.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.upd", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.length", "LowStar.Monotonic.Buffer.as_seq", "FStar.Seq.Base.upd", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.eq2", "FStar.Seq.Base.seq" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.BufferOps (* Handy notations for LowStar.Buffer, so users can open this module instead of the whole LowStar.Buffer, to just bring these operators and notations into the scope without bringing any definition from LowStar.Buffer into the scope. *) module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module G = FStar.Ghost module Seq = FStar.Seq module B = LowStar.Buffer module L = FStar.List.Tot inline_for_extraction unfold let op_Array_Access (#a:Type0) (#rrel #rel:B.srel a) = B.index #a #rrel #rel inline_for_extraction
false
false
LowStar.BufferOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Array_Assignment : b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> v: a -> FStar.HyperStack.ST.Stack Prims.unit
[]
LowStar.BufferOps.op_Array_Assignment
{ "file_name": "ulib/LowStar.BufferOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
b: LowStar.Monotonic.Buffer.mbuffer a rrel rel -> i: FStar.UInt32.t -> v: a -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 78, "end_line": 37, "start_col": 59, "start_line": 37 }
FStar.HyperStack.ST.Stack
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let blit (#a:Type0) (#rrel1 #rel1 #rrel2 #rel2:B.srel a) = B.blit #a #rrel1 #rel1 #rrel2 #rel2
let blit (#a: Type0) (#rrel1 #rel1 #rrel2 #rel2: B.srel a) =
true
null
false
B.blit #a #rrel1 #rel1 #rrel2 #rel2
{ "checked_file": "LowStar.BufferOps.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.BufferOps.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.blit", "LowStar.Monotonic.Buffer.mbuffer", "FStar.UInt32.t", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.UInt32.v", "LowStar.Monotonic.Buffer.length", "Prims.l_or", "LowStar.Monotonic.Buffer.loc_disjoint", "LowStar.Monotonic.Buffer.loc_buffer_from_to", "FStar.UInt32.add", "LowStar.Monotonic.Buffer.disjoint", "LowStar.Monotonic.Buffer.as_seq", "FStar.Seq.Properties.replace_subseq", "FStar.Seq.Base.slice", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer", "Prims.eq2", "FStar.Seq.Base.seq" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.BufferOps (* Handy notations for LowStar.Buffer, so users can open this module instead of the whole LowStar.Buffer, to just bring these operators and notations into the scope without bringing any definition from LowStar.Buffer into the scope. *) module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module G = FStar.Ghost module Seq = FStar.Seq module B = LowStar.Buffer module L = FStar.List.Tot inline_for_extraction unfold let op_Array_Access (#a:Type0) (#rrel #rel:B.srel a) = B.index #a #rrel #rel inline_for_extraction unfold let op_Array_Assignment (#a:Type0) (#rrel #rel:B.srel a) = B.upd #a #rrel #rel (* NOTE: DO NOT mark ( !* ) as inline_for_extraction, because it is specially treated by KaRaMeL to extract as *p instead of p[0] *) let ( !* ) (#a:Type0) (#rrel #rel:B.srel a) (p:B.mpointer a rrel rel): HST.Stack a (requires (fun h -> B.live h p)) (ensures (fun h0 x h1 -> B.live h1 p /\ x == B.get h0 p 0 /\ h1 == h0)) = B.index p 0ul (* NOTE: DO NOT mark ( *= ) as inline_for_extraction, because it is specially treated by KaRaMeL to extract as *p = v instead of p[0] = v *) let ( *= ) (#a:Type0) (#rrel #rel:B.srel a) (p:B.mpointer a rrel rel) (v:a) : HST.Stack unit (requires (fun h -> B.live h p /\ rel (B.as_seq h p) (Seq.upd (B.as_seq h p) 0 v))) (ensures (fun h0 _ h1 -> B.live h1 p /\ B.as_seq h1 p `Seq.equal` Seq.create 1 v /\ B.modifies (B.loc_buffer p) h0 h1 )) = B.upd p 0ul v // TODO: remove
false
false
LowStar.BufferOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val blit : src: LowStar.Monotonic.Buffer.mbuffer a rrel1 rrel2 -> idx_src: FStar.UInt32.t -> dst: LowStar.Monotonic.Buffer.mbuffer a rel1 rel2 -> idx_dst: FStar.UInt32.t -> len: FStar.UInt32.t -> FStar.HyperStack.ST.Stack Prims.unit
[]
LowStar.BufferOps.blit
{ "file_name": "ulib/LowStar.BufferOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
src: LowStar.Monotonic.Buffer.mbuffer a rrel1 rrel2 -> idx_src: FStar.UInt32.t -> dst: LowStar.Monotonic.Buffer.mbuffer a rel1 rel2 -> idx_dst: FStar.UInt32.t -> len: FStar.UInt32.t -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 94, "end_line": 63, "start_col": 59, "start_line": 63 }
FStar.HyperStack.ST.Stack
val op_Bang_Star (#a: Type0) (#rrel #rel: B.srel a) (p: B.mpointer a rrel rel) : HST.Stack a (requires (fun h -> B.live h p)) (ensures (fun h0 x h1 -> B.live h1 p /\ x == B.get h0 p 0 /\ h1 == h0))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ( !* ) (#a:Type0) (#rrel #rel:B.srel a) (p:B.mpointer a rrel rel): HST.Stack a (requires (fun h -> B.live h p)) (ensures (fun h0 x h1 -> B.live h1 p /\ x == B.get h0 p 0 /\ h1 == h0)) = B.index p 0ul
val op_Bang_Star (#a: Type0) (#rrel #rel: B.srel a) (p: B.mpointer a rrel rel) : HST.Stack a (requires (fun h -> B.live h p)) (ensures (fun h0 x h1 -> B.live h1 p /\ x == B.get h0 p 0 /\ h1 == h0)) let op_Bang_Star (#a: Type0) (#rrel #rel: B.srel a) (p: B.mpointer a rrel rel) : HST.Stack a (requires (fun h -> B.live h p)) (ensures (fun h0 x h1 -> B.live h1 p /\ x == B.get h0 p 0 /\ h1 == h0)) =
true
null
false
B.index p 0ul
{ "checked_file": "LowStar.BufferOps.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.BufferOps.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mpointer", "LowStar.Monotonic.Buffer.index", "FStar.UInt32.__uint_to_t", "FStar.Monotonic.HyperStack.mem", "LowStar.Monotonic.Buffer.live", "Prims.l_and", "Prims.eq2", "LowStar.Monotonic.Buffer.get" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.BufferOps (* Handy notations for LowStar.Buffer, so users can open this module instead of the whole LowStar.Buffer, to just bring these operators and notations into the scope without bringing any definition from LowStar.Buffer into the scope. *) module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module G = FStar.Ghost module Seq = FStar.Seq module B = LowStar.Buffer module L = FStar.List.Tot inline_for_extraction unfold let op_Array_Access (#a:Type0) (#rrel #rel:B.srel a) = B.index #a #rrel #rel inline_for_extraction unfold let op_Array_Assignment (#a:Type0) (#rrel #rel:B.srel a) = B.upd #a #rrel #rel (* NOTE: DO NOT mark ( !* ) as inline_for_extraction, because it is specially treated by KaRaMeL to extract as *p instead of p[0] *) let ( !* ) (#a:Type0) (#rrel #rel:B.srel a) (p:B.mpointer a rrel rel): HST.Stack a (requires (fun h -> B.live h p))
false
false
LowStar.BufferOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Bang_Star (#a: Type0) (#rrel #rel: B.srel a) (p: B.mpointer a rrel rel) : HST.Stack a (requires (fun h -> B.live h p)) (ensures (fun h0 x h1 -> B.live h1 p /\ x == B.get h0 p 0 /\ h1 == h0))
[]
LowStar.BufferOps.op_Bang_Star
{ "file_name": "ulib/LowStar.BufferOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: LowStar.Monotonic.Buffer.mpointer a rrel rel -> FStar.HyperStack.ST.Stack a
{ "end_col": 15, "end_line": 46, "start_col": 2, "start_line": 46 }
FStar.HyperStack.ST.Stack
val op_Star_Equals (#a: Type0) (#rrel #rel: B.srel a) (p: B.mpointer a rrel rel) (v: a) : HST.Stack unit (requires (fun h -> B.live h p /\ rel (B.as_seq h p) (Seq.upd (B.as_seq h p) 0 v))) (ensures (fun h0 _ h1 -> B.live h1 p /\ (B.as_seq h1 p) `Seq.equal` (Seq.create 1 v) /\ B.modifies (B.loc_buffer p) h0 h1))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "HST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "LowStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let ( *= ) (#a:Type0) (#rrel #rel:B.srel a) (p:B.mpointer a rrel rel) (v:a) : HST.Stack unit (requires (fun h -> B.live h p /\ rel (B.as_seq h p) (Seq.upd (B.as_seq h p) 0 v))) (ensures (fun h0 _ h1 -> B.live h1 p /\ B.as_seq h1 p `Seq.equal` Seq.create 1 v /\ B.modifies (B.loc_buffer p) h0 h1 )) = B.upd p 0ul v
val op_Star_Equals (#a: Type0) (#rrel #rel: B.srel a) (p: B.mpointer a rrel rel) (v: a) : HST.Stack unit (requires (fun h -> B.live h p /\ rel (B.as_seq h p) (Seq.upd (B.as_seq h p) 0 v))) (ensures (fun h0 _ h1 -> B.live h1 p /\ (B.as_seq h1 p) `Seq.equal` (Seq.create 1 v) /\ B.modifies (B.loc_buffer p) h0 h1)) let op_Star_Equals (#a: Type0) (#rrel #rel: B.srel a) (p: B.mpointer a rrel rel) (v: a) : HST.Stack unit (requires (fun h -> B.live h p /\ rel (B.as_seq h p) (Seq.upd (B.as_seq h p) 0 v))) (ensures (fun h0 _ h1 -> B.live h1 p /\ (B.as_seq h1 p) `Seq.equal` (Seq.create 1 v) /\ B.modifies (B.loc_buffer p) h0 h1)) =
true
null
false
B.upd p 0ul v
{ "checked_file": "LowStar.BufferOps.fst.checked", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "LowStar.BufferOps.fst" }
[]
[ "LowStar.Monotonic.Buffer.srel", "LowStar.Monotonic.Buffer.mpointer", "LowStar.Monotonic.Buffer.upd", "FStar.UInt32.__uint_to_t", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "LowStar.Monotonic.Buffer.live", "LowStar.Monotonic.Buffer.as_seq", "FStar.Seq.Base.upd", "FStar.Seq.Base.equal", "FStar.Seq.Base.create", "LowStar.Monotonic.Buffer.modifies", "LowStar.Monotonic.Buffer.loc_buffer" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module LowStar.BufferOps (* Handy notations for LowStar.Buffer, so users can open this module instead of the whole LowStar.Buffer, to just bring these operators and notations into the scope without bringing any definition from LowStar.Buffer into the scope. *) module HS = FStar.HyperStack module HST = FStar.HyperStack.ST module U32 = FStar.UInt32 module G = FStar.Ghost module Seq = FStar.Seq module B = LowStar.Buffer module L = FStar.List.Tot inline_for_extraction unfold let op_Array_Access (#a:Type0) (#rrel #rel:B.srel a) = B.index #a #rrel #rel inline_for_extraction unfold let op_Array_Assignment (#a:Type0) (#rrel #rel:B.srel a) = B.upd #a #rrel #rel (* NOTE: DO NOT mark ( !* ) as inline_for_extraction, because it is specially treated by KaRaMeL to extract as *p instead of p[0] *) let ( !* ) (#a:Type0) (#rrel #rel:B.srel a) (p:B.mpointer a rrel rel): HST.Stack a (requires (fun h -> B.live h p)) (ensures (fun h0 x h1 -> B.live h1 p /\ x == B.get h0 p 0 /\ h1 == h0)) = B.index p 0ul (* NOTE: DO NOT mark ( *= ) as inline_for_extraction, because it is specially treated by KaRaMeL to extract as *p = v instead of p[0] = v *) let ( *= ) (#a:Type0) (#rrel #rel:B.srel a) (p:B.mpointer a rrel rel) (v:a) : HST.Stack unit (requires (fun h -> B.live h p /\ rel (B.as_seq h p) (Seq.upd (B.as_seq h p) 0 v))) (ensures (fun h0 _ h1 -> B.live h1 p /\ B.as_seq h1 p `Seq.equal` Seq.create 1 v /\ B.modifies (B.loc_buffer p) h0 h1
false
false
LowStar.BufferOps.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val op_Star_Equals (#a: Type0) (#rrel #rel: B.srel a) (p: B.mpointer a rrel rel) (v: a) : HST.Stack unit (requires (fun h -> B.live h p /\ rel (B.as_seq h p) (Seq.upd (B.as_seq h p) 0 v))) (ensures (fun h0 _ h1 -> B.live h1 p /\ (B.as_seq h1 p) `Seq.equal` (Seq.create 1 v) /\ B.modifies (B.loc_buffer p) h0 h1))
[]
LowStar.BufferOps.op_Star_Equals
{ "file_name": "ulib/LowStar.BufferOps.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: LowStar.Monotonic.Buffer.mpointer a rrel rel -> v: a -> FStar.HyperStack.ST.Stack Prims.unit
{ "end_col": 15, "end_line": 58, "start_col": 2, "start_line": 58 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_key = 32
let size_key =
false
null
false
32
{ "checked_file": "Spec.SecretBox.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "Spec.Poly1305.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.SecretBox.fst" }
[ "total" ]
[]
[]
module Spec.SecretBox open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
false
true
Spec.SecretBox.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_key : Prims.int
[]
Spec.SecretBox.size_key
{ "file_name": "specs/Spec.SecretBox.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 17, "end_line": 11, "start_col": 15, "start_line": 11 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_block = 64
let size_block =
false
null
false
64
{ "checked_file": "Spec.SecretBox.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "Spec.Poly1305.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.SecretBox.fst" }
[ "total" ]
[]
[]
module Spec.SecretBox open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" (* Constants *) let size_key = 32 (* in bytes *)
false
true
Spec.SecretBox.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_block : Prims.int
[]
Spec.SecretBox.size_block
{ "file_name": "specs/Spec.SecretBox.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 19, "end_line": 13, "start_col": 17, "start_line": 13 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_tag = 16
let size_tag =
false
null
false
16
{ "checked_file": "Spec.SecretBox.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "Spec.Poly1305.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.SecretBox.fst" }
[ "total" ]
[]
[]
module Spec.SecretBox open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" (* Constants *) let size_key = 32 (* in bytes *) let size_nonce = 24 (* in bytes *)
false
true
Spec.SecretBox.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_tag : Prims.int
[]
Spec.SecretBox.size_tag
{ "file_name": "specs/Spec.SecretBox.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 17, "end_line": 14, "start_col": 15, "start_line": 14 }
Prims.Tot
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let size_nonce = 24
let size_nonce =
false
null
false
24
{ "checked_file": "Spec.SecretBox.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "Spec.Poly1305.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.SecretBox.fst" }
[ "total" ]
[]
[]
module Spec.SecretBox open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" (* Constants *)
false
true
Spec.SecretBox.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val size_nonce : Prims.int
[]
Spec.SecretBox.size_nonce
{ "file_name": "specs/Spec.SecretBox.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Prims.int
{ "end_col": 19, "end_line": 12, "start_col": 17, "start_line": 12 }
Prims.Tot
val get_len0 (len: nat) : r: size_nat{r <= 32}
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let get_len0 (len:nat) : r:size_nat{r <= 32} = if len <= 32 then len else 32
val get_len0 (len: nat) : r: size_nat{r <= 32} let get_len0 (len: nat) : r: size_nat{r <= 32} =
false
null
false
if len <= 32 then len else 32
{ "checked_file": "Spec.SecretBox.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "Spec.Poly1305.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.SecretBox.fst" }
[ "total" ]
[ "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.bool", "Lib.IntTypes.size_nat", "Prims.b2t" ]
[]
module Spec.SecretBox open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" (* Constants *) let size_key = 32 (* in bytes *) let size_nonce = 24 (* in bytes *) let size_block = 64 (* in bytes *) let size_tag = 16 (* in bytes *) type key = lbytes size_key type aekey = lbytes (size_key + size_key) type nonce = lbytes size_nonce type tag = lbytes size_tag let secretbox_init (k:key) (n:nonce) : key & aekey = let n0 : lbytes 16 = sub n 0 16 in let n1 : lbytes 8 = sub n 16 8 in let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in (subkey,aekey)
false
false
Spec.SecretBox.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val get_len0 (len: nat) : r: size_nat{r <= 32}
[]
Spec.SecretBox.get_len0
{ "file_name": "specs/Spec.SecretBox.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
len: Prims.nat -> r: Lib.IntTypes.size_nat{r <= 32}
{ "end_col": 31, "end_line": 29, "start_col": 2, "start_line": 29 }
Prims.Tot
val secretbox_init (k: key) (n: nonce) : key & aekey
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let secretbox_init (k:key) (n:nonce) : key & aekey = let n0 : lbytes 16 = sub n 0 16 in let n1 : lbytes 8 = sub n 16 8 in let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in (subkey,aekey)
val secretbox_init (k: key) (n: nonce) : key & aekey let secretbox_init (k: key) (n: nonce) : key & aekey =
false
null
false
let n0:lbytes 16 = sub n 0 16 in let n1:lbytes 8 = sub n 16 8 in let subkey:lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in let aekey:lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in (subkey, aekey)
{ "checked_file": "Spec.SecretBox.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "Spec.Poly1305.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.SecretBox.fst" }
[ "total" ]
[ "Spec.SecretBox.key", "Spec.SecretBox.nonce", "FStar.Pervasives.Native.Mktuple2", "Spec.SecretBox.aekey", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Salsa20.salsa20_key_block0", "Spec.Salsa20.hsalsa20", "Lib.Sequence.sub", "Lib.IntTypes.uint_t", "Spec.SecretBox.size_nonce", "FStar.Pervasives.Native.tuple2" ]
[]
module Spec.SecretBox open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" (* Constants *) let size_key = 32 (* in bytes *) let size_nonce = 24 (* in bytes *) let size_block = 64 (* in bytes *) let size_tag = 16 (* in bytes *) type key = lbytes size_key type aekey = lbytes (size_key + size_key) type nonce = lbytes size_nonce type tag = lbytes size_tag
false
true
Spec.SecretBox.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val secretbox_init (k: key) (n: nonce) : key & aekey
[]
Spec.SecretBox.secretbox_init
{ "file_name": "specs/Spec.SecretBox.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.SecretBox.key -> n: Spec.SecretBox.nonce -> Spec.SecretBox.key * Spec.SecretBox.aekey
{ "end_col": 16, "end_line": 26, "start_col": 52, "start_line": 21 }
Prims.Tot
val secretbox_easy (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t}) : c: bytes{length c = size_tag + length m}
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let secretbox_easy (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : c:bytes{length c = size_tag + length m} = let (tg,c) = secretbox_detached k n m in Seq.append tg c
val secretbox_easy (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t}) : c: bytes{length c = size_tag + length m} let secretbox_easy (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t}) : c: bytes{length c = size_tag + length m} =
false
null
false
let tg, c = secretbox_detached k n m in Seq.append tg c
{ "checked_file": "Spec.SecretBox.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "Spec.Poly1305.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.SecretBox.fst" }
[ "total" ]
[ "Spec.SecretBox.key", "Spec.SecretBox.nonce", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.SecretBox.size_block", "Lib.IntTypes.max_size_t", "Spec.SecretBox.tag", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.append", "Prims.int", "Prims.op_Addition", "Spec.SecretBox.size_tag", "FStar.Pervasives.Native.tuple2", "Lib.Sequence.seq", "Lib.IntTypes.int_t", "Spec.SecretBox.secretbox_detached" ]
[]
module Spec.SecretBox open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" (* Constants *) let size_key = 32 (* in bytes *) let size_nonce = 24 (* in bytes *) let size_block = 64 (* in bytes *) let size_tag = 16 (* in bytes *) type key = lbytes size_key type aekey = lbytes (size_key + size_key) type nonce = lbytes size_nonce type tag = lbytes size_tag let secretbox_init (k:key) (n:nonce) : key & aekey = let n0 : lbytes 16 = sub n 0 16 in let n1 : lbytes 8 = sub n 16 8 in let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in (subkey,aekey) let get_len0 (len:nat) : r:size_nat{r <= 32} = if len <= 32 then len else 32 let secretbox_detached (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : (tag & c:bytes{length c = length m}) = let (subkey,aekey) = secretbox_init k n in let n1 = sub n 16 8 in let mkey = sub aekey 0 32 in let ekey0 = sub aekey 32 32 in let mlen0 = get_len0 (length m) in let m0 = Seq.slice m 0 mlen0 in let m1 = Seq.slice m mlen0 (length m) in let block0 = create 32 (u8 0) in let block0 = update_sub block0 0 mlen0 m0 in let block0 = map2 (^.) block0 ekey0 in let c0 = sub block0 0 mlen0 in let c1 = Spec.Salsa20.salsa20_encrypt_bytes subkey n1 1 m1 in let c = Seq.append c0 c1 in let tg = Spec.Poly1305.poly1305_mac c mkey in (tg, c) let secretbox_open_detached (k:key) (n:nonce) (tg:tag) (c:bytes{length c / size_block <= max_size_t}) : option (m:bytes{length m = length c}) = let (subkey,aekey) = secretbox_init k n in let n1 = sub n 16 8 in let mkey = sub aekey 0 32 in let ekey0 = sub aekey 32 32 in let tg' = Spec.Poly1305.poly1305_mac c mkey in if Lib.ByteSequence.lbytes_eq tg tg' then ( let clen0 = get_len0 (length c) in let c0 = Seq.slice c 0 clen0 in let c1 = Seq.slice c clen0 (length c) in let block0 = create 32 (u8 0) in let block0 = update_sub block0 0 clen0 c0 in let block0 = map2 (^.) block0 ekey0 in let m0 = sub block0 0 clen0 in let m1 = Spec.Salsa20.salsa20_decrypt_bytes subkey n1 1 c1 in let m = Seq.append m0 m1 in Some m) else None
false
false
Spec.SecretBox.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val secretbox_easy (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t}) : c: bytes{length c = size_tag + length m}
[]
Spec.SecretBox.secretbox_easy
{ "file_name": "specs/Spec.SecretBox.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.SecretBox.key -> n: Spec.SecretBox.nonce -> m: Lib.ByteSequence.bytes {Lib.Sequence.length m / Spec.SecretBox.size_block <= Lib.IntTypes.max_size_t} -> c: Lib.ByteSequence.bytes{Lib.Sequence.length c = Spec.SecretBox.size_tag + Lib.Sequence.length m}
{ "end_col": 17, "end_line": 77, "start_col": 127, "start_line": 75 }
Prims.Tot
val secretbox_open_easy (k: key) (n: nonce) (c: bytes{length c >= size_tag /\ (length c - size_tag) / size_block <= max_size_t}) : option (m: bytes{length m = length c - size_tag})
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let secretbox_open_easy (k:key) (n:nonce) (c:bytes{length c >= size_tag /\ (length c - size_tag) / size_block <= max_size_t}) : option (m:bytes{length m = length c - size_tag}) = let tg = Seq.slice c 0 size_tag in let e = Seq.slice c size_tag (length c) in secretbox_open_detached k n tg e
val secretbox_open_easy (k: key) (n: nonce) (c: bytes{length c >= size_tag /\ (length c - size_tag) / size_block <= max_size_t}) : option (m: bytes{length m = length c - size_tag}) let secretbox_open_easy (k: key) (n: nonce) (c: bytes{length c >= size_tag /\ (length c - size_tag) / size_block <= max_size_t}) : option (m: bytes{length m = length c - size_tag}) =
false
null
false
let tg = Seq.slice c 0 size_tag in let e = Seq.slice c size_tag (length c) in secretbox_open_detached k n tg e
{ "checked_file": "Spec.SecretBox.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "Spec.Poly1305.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.SecretBox.fst" }
[ "total" ]
[ "Spec.SecretBox.key", "Spec.SecretBox.nonce", "Lib.ByteSequence.bytes", "Prims.l_and", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.SecretBox.size_tag", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Prims.op_Subtraction", "Spec.SecretBox.size_block", "Lib.IntTypes.max_size_t", "Spec.SecretBox.secretbox_open_detached", "FStar.Seq.Base.seq", "Lib.IntTypes.int_t", "FStar.Seq.Base.slice", "FStar.Pervasives.Native.option", "Prims.op_Equality", "Prims.int" ]
[]
module Spec.SecretBox open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" (* Constants *) let size_key = 32 (* in bytes *) let size_nonce = 24 (* in bytes *) let size_block = 64 (* in bytes *) let size_tag = 16 (* in bytes *) type key = lbytes size_key type aekey = lbytes (size_key + size_key) type nonce = lbytes size_nonce type tag = lbytes size_tag let secretbox_init (k:key) (n:nonce) : key & aekey = let n0 : lbytes 16 = sub n 0 16 in let n1 : lbytes 8 = sub n 16 8 in let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in (subkey,aekey) let get_len0 (len:nat) : r:size_nat{r <= 32} = if len <= 32 then len else 32 let secretbox_detached (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : (tag & c:bytes{length c = length m}) = let (subkey,aekey) = secretbox_init k n in let n1 = sub n 16 8 in let mkey = sub aekey 0 32 in let ekey0 = sub aekey 32 32 in let mlen0 = get_len0 (length m) in let m0 = Seq.slice m 0 mlen0 in let m1 = Seq.slice m mlen0 (length m) in let block0 = create 32 (u8 0) in let block0 = update_sub block0 0 mlen0 m0 in let block0 = map2 (^.) block0 ekey0 in let c0 = sub block0 0 mlen0 in let c1 = Spec.Salsa20.salsa20_encrypt_bytes subkey n1 1 m1 in let c = Seq.append c0 c1 in let tg = Spec.Poly1305.poly1305_mac c mkey in (tg, c) let secretbox_open_detached (k:key) (n:nonce) (tg:tag) (c:bytes{length c / size_block <= max_size_t}) : option (m:bytes{length m = length c}) = let (subkey,aekey) = secretbox_init k n in let n1 = sub n 16 8 in let mkey = sub aekey 0 32 in let ekey0 = sub aekey 32 32 in let tg' = Spec.Poly1305.poly1305_mac c mkey in if Lib.ByteSequence.lbytes_eq tg tg' then ( let clen0 = get_len0 (length c) in let c0 = Seq.slice c 0 clen0 in let c1 = Seq.slice c clen0 (length c) in let block0 = create 32 (u8 0) in let block0 = update_sub block0 0 clen0 c0 in let block0 = map2 (^.) block0 ekey0 in let m0 = sub block0 0 clen0 in let m1 = Spec.Salsa20.salsa20_decrypt_bytes subkey n1 1 c1 in let m = Seq.append m0 m1 in Some m) else None let secretbox_easy (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : c:bytes{length c = size_tag + length m} = let (tg,c) = secretbox_detached k n m in Seq.append tg c
false
false
Spec.SecretBox.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val secretbox_open_easy (k: key) (n: nonce) (c: bytes{length c >= size_tag /\ (length c - size_tag) / size_block <= max_size_t}) : option (m: bytes{length m = length c - size_tag})
[]
Spec.SecretBox.secretbox_open_easy
{ "file_name": "specs/Spec.SecretBox.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.SecretBox.key -> n: Spec.SecretBox.nonce -> c: Lib.ByteSequence.bytes { Lib.Sequence.length c >= Spec.SecretBox.size_tag /\ (Lib.Sequence.length c - Spec.SecretBox.size_tag) / Spec.SecretBox.size_block <= Lib.IntTypes.max_size_t } -> FStar.Pervasives.Native.option (m: Lib.ByteSequence.bytes {Lib.Sequence.length m = Lib.Sequence.length c - Spec.SecretBox.size_tag})
{ "end_col": 34, "end_line": 82, "start_col": 178, "start_line": 79 }
Prims.Tot
val secretbox_detached (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t}) : (tag & c: bytes{length c = length m})
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let secretbox_detached (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : (tag & c:bytes{length c = length m}) = let (subkey,aekey) = secretbox_init k n in let n1 = sub n 16 8 in let mkey = sub aekey 0 32 in let ekey0 = sub aekey 32 32 in let mlen0 = get_len0 (length m) in let m0 = Seq.slice m 0 mlen0 in let m1 = Seq.slice m mlen0 (length m) in let block0 = create 32 (u8 0) in let block0 = update_sub block0 0 mlen0 m0 in let block0 = map2 (^.) block0 ekey0 in let c0 = sub block0 0 mlen0 in let c1 = Spec.Salsa20.salsa20_encrypt_bytes subkey n1 1 m1 in let c = Seq.append c0 c1 in let tg = Spec.Poly1305.poly1305_mac c mkey in (tg, c)
val secretbox_detached (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t}) : (tag & c: bytes{length c = length m}) let secretbox_detached (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t}) : (tag & c: bytes{length c = length m}) =
false
null
false
let subkey, aekey = secretbox_init k n in let n1 = sub n 16 8 in let mkey = sub aekey 0 32 in let ekey0 = sub aekey 32 32 in let mlen0 = get_len0 (length m) in let m0 = Seq.slice m 0 mlen0 in let m1 = Seq.slice m mlen0 (length m) in let block0 = create 32 (u8 0) in let block0 = update_sub block0 0 mlen0 m0 in let block0 = map2 ( ^. ) block0 ekey0 in let c0 = sub block0 0 mlen0 in let c1 = Spec.Salsa20.salsa20_encrypt_bytes subkey n1 1 m1 in let c = Seq.append c0 c1 in let tg = Spec.Poly1305.poly1305_mac c mkey in (tg, c)
{ "checked_file": "Spec.SecretBox.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "Spec.Poly1305.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.SecretBox.fst" }
[ "total" ]
[ "Spec.SecretBox.key", "Spec.SecretBox.nonce", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.SecretBox.size_block", "Lib.IntTypes.max_size_t", "Spec.SecretBox.aekey", "FStar.Pervasives.Native.Mktuple2", "Spec.SecretBox.tag", "Prims.op_Equality", "Prims.nat", "Spec.Poly1305.tag", "Spec.Poly1305.poly1305_mac", "FStar.Seq.Base.seq", "Lib.IntTypes.int_t", "FStar.Seq.Base.append", "Lib.Sequence.seq", "Prims.eq2", "Spec.Salsa20.salsa20_encrypt_bytes", "Lib.Sequence.lseq", "Prims.l_and", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.l_Forall", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.l_imp", "Lib.IntTypes.logxor", "Lib.Sequence.map2", "Lib.IntTypes.op_Hat_Dot", "Lib.Sequence.update_sub", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.Sequence.create", "Lib.IntTypes.u8", "Prims.op_Subtraction", "Prims.pow2", "Spec.SecretBox.get_len0", "Spec.SecretBox.size_key", "Spec.SecretBox.size_nonce", "FStar.Pervasives.Native.tuple2", "Spec.SecretBox.secretbox_init" ]
[]
module Spec.SecretBox open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" (* Constants *) let size_key = 32 (* in bytes *) let size_nonce = 24 (* in bytes *) let size_block = 64 (* in bytes *) let size_tag = 16 (* in bytes *) type key = lbytes size_key type aekey = lbytes (size_key + size_key) type nonce = lbytes size_nonce type tag = lbytes size_tag let secretbox_init (k:key) (n:nonce) : key & aekey = let n0 : lbytes 16 = sub n 0 16 in let n1 : lbytes 8 = sub n 16 8 in let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in (subkey,aekey) let get_len0 (len:nat) : r:size_nat{r <= 32} = if len <= 32 then len else 32
false
false
Spec.SecretBox.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val secretbox_detached (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t}) : (tag & c: bytes{length c = length m})
[]
Spec.SecretBox.secretbox_detached
{ "file_name": "specs/Spec.SecretBox.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.SecretBox.key -> n: Spec.SecretBox.nonce -> m: Lib.ByteSequence.bytes {Lib.Sequence.length m / Spec.SecretBox.size_block <= Lib.IntTypes.max_size_t} -> Spec.SecretBox.tag * c: Lib.ByteSequence.bytes{Lib.Sequence.length c = Lib.Sequence.length m}
{ "end_col": 9, "end_line": 50, "start_col": 128, "start_line": 31 }
Prims.Tot
val secretbox_open_detached (k: key) (n: nonce) (tg: tag) (c: bytes{length c / size_block <= max_size_t}) : option (m: bytes{length m = length c})
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let secretbox_open_detached (k:key) (n:nonce) (tg:tag) (c:bytes{length c / size_block <= max_size_t}) : option (m:bytes{length m = length c}) = let (subkey,aekey) = secretbox_init k n in let n1 = sub n 16 8 in let mkey = sub aekey 0 32 in let ekey0 = sub aekey 32 32 in let tg' = Spec.Poly1305.poly1305_mac c mkey in if Lib.ByteSequence.lbytes_eq tg tg' then ( let clen0 = get_len0 (length c) in let c0 = Seq.slice c 0 clen0 in let c1 = Seq.slice c clen0 (length c) in let block0 = create 32 (u8 0) in let block0 = update_sub block0 0 clen0 c0 in let block0 = map2 (^.) block0 ekey0 in let m0 = sub block0 0 clen0 in let m1 = Spec.Salsa20.salsa20_decrypt_bytes subkey n1 1 c1 in let m = Seq.append m0 m1 in Some m) else None
val secretbox_open_detached (k: key) (n: nonce) (tg: tag) (c: bytes{length c / size_block <= max_size_t}) : option (m: bytes{length m = length c}) let secretbox_open_detached (k: key) (n: nonce) (tg: tag) (c: bytes{length c / size_block <= max_size_t}) : option (m: bytes{length m = length c}) =
false
null
false
let subkey, aekey = secretbox_init k n in let n1 = sub n 16 8 in let mkey = sub aekey 0 32 in let ekey0 = sub aekey 32 32 in let tg' = Spec.Poly1305.poly1305_mac c mkey in if Lib.ByteSequence.lbytes_eq tg tg' then (let clen0 = get_len0 (length c) in let c0 = Seq.slice c 0 clen0 in let c1 = Seq.slice c clen0 (length c) in let block0 = create 32 (u8 0) in let block0 = update_sub block0 0 clen0 c0 in let block0 = map2 ( ^. ) block0 ekey0 in let m0 = sub block0 0 clen0 in let m1 = Spec.Salsa20.salsa20_decrypt_bytes subkey n1 1 c1 in let m = Seq.append m0 m1 in Some m) else None
{ "checked_file": "Spec.SecretBox.fst.checked", "dependencies": [ "Spec.Salsa20.fst.checked", "Spec.Poly1305.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.SecretBox.fst" }
[ "total" ]
[ "Spec.SecretBox.key", "Spec.SecretBox.nonce", "Spec.SecretBox.tag", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.SecretBox.size_block", "Lib.IntTypes.max_size_t", "Spec.SecretBox.aekey", "Lib.ByteSequence.lbytes_eq", "Spec.SecretBox.size_tag", "FStar.Pervasives.Native.Some", "Prims.op_Equality", "Prims.nat", "FStar.Seq.Base.seq", "Lib.IntTypes.int_t", "FStar.Seq.Base.append", "Lib.Sequence.seq", "Prims.eq2", "Spec.Salsa20.salsa20_decrypt_bytes", "Lib.Sequence.lseq", "Prims.l_and", "Lib.Sequence.to_seq", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.l_Forall", "Prims.op_LessThan", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.index", "Lib.Sequence.sub", "Prims.l_imp", "Lib.IntTypes.logxor", "Lib.Sequence.map2", "Lib.IntTypes.op_Hat_Dot", "Lib.Sequence.update_sub", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Lib.Sequence.create", "Lib.IntTypes.u8", "Prims.op_Subtraction", "Prims.pow2", "Spec.SecretBox.get_len0", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "Spec.Poly1305.tag", "Spec.Poly1305.poly1305_mac", "Spec.SecretBox.size_key", "Spec.SecretBox.size_nonce", "FStar.Pervasives.Native.tuple2", "Spec.SecretBox.secretbox_init" ]
[]
module Spec.SecretBox open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" (* Constants *) let size_key = 32 (* in bytes *) let size_nonce = 24 (* in bytes *) let size_block = 64 (* in bytes *) let size_tag = 16 (* in bytes *) type key = lbytes size_key type aekey = lbytes (size_key + size_key) type nonce = lbytes size_nonce type tag = lbytes size_tag let secretbox_init (k:key) (n:nonce) : key & aekey = let n0 : lbytes 16 = sub n 0 16 in let n1 : lbytes 8 = sub n 16 8 in let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in (subkey,aekey) let get_len0 (len:nat) : r:size_nat{r <= 32} = if len <= 32 then len else 32 let secretbox_detached (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : (tag & c:bytes{length c = length m}) = let (subkey,aekey) = secretbox_init k n in let n1 = sub n 16 8 in let mkey = sub aekey 0 32 in let ekey0 = sub aekey 32 32 in let mlen0 = get_len0 (length m) in let m0 = Seq.slice m 0 mlen0 in let m1 = Seq.slice m mlen0 (length m) in let block0 = create 32 (u8 0) in let block0 = update_sub block0 0 mlen0 m0 in let block0 = map2 (^.) block0 ekey0 in let c0 = sub block0 0 mlen0 in let c1 = Spec.Salsa20.salsa20_encrypt_bytes subkey n1 1 m1 in let c = Seq.append c0 c1 in let tg = Spec.Poly1305.poly1305_mac c mkey in (tg, c)
false
false
Spec.SecretBox.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val secretbox_open_detached (k: key) (n: nonce) (tg: tag) (c: bytes{length c / size_block <= max_size_t}) : option (m: bytes{length m = length c})
[]
Spec.SecretBox.secretbox_open_detached
{ "file_name": "specs/Spec.SecretBox.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
k: Spec.SecretBox.key -> n: Spec.SecretBox.nonce -> tg: Spec.SecretBox.tag -> c: Lib.ByteSequence.bytes {Lib.Sequence.length c / Spec.SecretBox.size_block <= Lib.IntTypes.max_size_t} -> FStar.Pervasives.Native.option (m: Lib.ByteSequence.bytes{Lib.Sequence.length m = Lib.Sequence.length c})
{ "end_col": 11, "end_line": 73, "start_col": 143, "start_line": 52 }
Prims.Tot
val state: b:lbuffer uint8 48ul{ recallable b }
[ { "abbrev": true, "full_module": "Spec.Frodo.Random", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let state = gcmalloc HyperStack.root 0uy 48ul
val state: b:lbuffer uint8 48ul{ recallable b } let state =
false
null
false
gcmalloc HyperStack.root 0uy 48ul
{ "checked_file": "Hacl.Frodo.Random.fst.checked", "dependencies": [ "Spec.Frodo.Random.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.RandomBuffer.System.fsti.checked", "Lib.IntTypes.fst.checked", "Lib.IntTypes.fst.checked", "Lib.Buffer.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.Frodo.Random.fst" }
[ "total" ]
[ "LowStar.Buffer.gcmalloc", "FStar.UInt8.t", "FStar.Monotonic.HyperHeap.root", "FStar.UInt8.__uint_to_t", "FStar.UInt32.__uint_to_t", "LowStar.Monotonic.Buffer.mbuffer", "LowStar.Buffer.trivial_preorder", "Prims.l_and", "Prims.eq2", "Prims.nat", "LowStar.Monotonic.Buffer.length", "FStar.UInt32.v", "Prims.b2t", "Prims.op_Negation", "LowStar.Monotonic.Buffer.g_is_null", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Monotonic.Buffer.recallable" ]
[]
module Hacl.Frodo.Random open FStar.HyperStack.All open LowStar.Buffer open Lib.IntTypes open Lib.Buffer module S = Spec.Frodo.Random (* Stub stateless implementation on top of Lib.RandomBuffer.System. Intended to be replaced for KATs with include/rng.c *) friend Lib.IntTypes #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
false
false
Hacl.Frodo.Random.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val state: b:lbuffer uint8 48ul{ recallable b }
[]
Hacl.Frodo.Random.state
{ "file_name": "code/frodo/Hacl.Frodo.Random.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 48ul {Lib.Buffer.recallable b}
{ "end_col": 45, "end_line": 19, "start_col": 12, "start_line": 19 }
Prims.Tot
val secret_int (#sl:sl u#c) (l:lattice_element sl) (s:sw) : Type0
[ { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.IFC", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let secret_int (#sl:sl) (l:lattice_element sl) (s:sw) : Type0 = protected l (int_t s)
val secret_int (#sl:sl u#c) (l:lattice_element sl) (s:sw) : Type0 let secret_int (#sl: sl) (l: lattice_element sl) (s: sw) : Type0 =
false
null
false
protected l (int_t s)
{ "checked_file": "FStar.ConstantTime.Integers.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked", "FStar.IFC.fsti.checked" ], "interface_file": true, "source_file": "FStar.ConstantTime.Integers.fst" }
[ "total" ]
[ "FStar.IFC.sl", "FStar.IFC.lattice_element", "FStar.ConstantTime.Integers.sw", "FStar.IFC.protected", "FStar.Integers.int_t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.ConstantTime.Integers (** This module provides a refinement of FStar.IFC providing an interface restricted only to constant-time operations on integers. In contrast, FStar.IFC provides a general monadic information-flow control framework, which need not be restricted to constant-time operations. *) open FStar.IFC open FStar.Integers /// A `secret_int l s` is a machine-integer at secrecy level `l` and /// signedness/width `s`. let secret_int (#sl:sl) (l:lattice_element sl)
false
false
FStar.ConstantTime.Integers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val secret_int (#sl:sl u#c) (l:lattice_element sl) (s:sw) : Type0
[]
FStar.ConstantTime.Integers.secret_int
{ "file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
l: FStar.IFC.lattice_element sl -> s: FStar.ConstantTime.Integers.sw -> Type0
{ "end_col": 25, "end_line": 35, "start_col": 4, "start_line": 35 }
Prims.GTot
val hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x}) : GTot (secret_int l s)
[ { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.IFC", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x}) : GTot (secret_int l s) = return l (u x)
val hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x}) : GTot (secret_int l s) let hide (#sl: sl) (#l: lattice_element sl) (#s: sw) (x: int{within_bounds s x}) : GTot (secret_int l s) =
false
null
false
return l (u x)
{ "checked_file": "FStar.ConstantTime.Integers.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked", "FStar.IFC.fsti.checked" ], "interface_file": true, "source_file": "FStar.ConstantTime.Integers.fst" }
[ "sometrivial" ]
[ "FStar.IFC.sl", "FStar.IFC.lattice_element", "FStar.ConstantTime.Integers.sw", "FStar.Integers.int", "FStar.Integers.within_bounds", "FStar.IFC.return", "FStar.Integers.int_t", "FStar.Integers.u", "FStar.ConstantTime.Integers.secret_int" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.ConstantTime.Integers (** This module provides a refinement of FStar.IFC providing an interface restricted only to constant-time operations on integers. In contrast, FStar.IFC provides a general monadic information-flow control framework, which need not be restricted to constant-time operations. *) open FStar.IFC open FStar.Integers /// A `secret_int l s` is a machine-integer at secrecy level `l` and /// signedness/width `s`. let secret_int (#sl:sl) (l:lattice_element sl) (s:sw) : Type0 = protected l (int_t s) /// A `secret_int l s` can be seen as an int in spec let reveal (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:secret_int l s) : GTot (y:int{within_bounds s y}) = v (reveal x) /// `hide` is the inverse of `reveal`, proving that `secret_int` is injective let hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x})
false
false
FStar.ConstantTime.Integers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x}) : GTot (secret_int l s)
[]
FStar.ConstantTime.Integers.hide
{ "file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.Integers.int{FStar.Integers.within_bounds s x} -> Prims.GTot (FStar.ConstantTime.Integers.secret_int l s)
{ "end_col": 18, "end_line": 48, "start_col": 4, "start_line": 48 }
Prims.GTot
val reveal (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:secret_int l s) : GTot (y:int{within_bounds s y})
[ { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.IFC", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let reveal (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:secret_int l s) : GTot (y:int{within_bounds s y}) = v (reveal x)
val reveal (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:secret_int l s) : GTot (y:int{within_bounds s y}) let reveal (#sl: sl) (#l: lattice_element sl) (#s: sw) (x: secret_int l s) : GTot (y: int{within_bounds s y}) =
false
null
false
v (reveal x)
{ "checked_file": "FStar.ConstantTime.Integers.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked", "FStar.IFC.fsti.checked" ], "interface_file": true, "source_file": "FStar.ConstantTime.Integers.fst" }
[ "sometrivial" ]
[ "FStar.IFC.sl", "FStar.IFC.lattice_element", "FStar.ConstantTime.Integers.sw", "FStar.ConstantTime.Integers.secret_int", "FStar.Integers.v", "FStar.IFC.reveal", "FStar.Integers.int_t", "FStar.Integers.int", "FStar.Integers.within_bounds" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.ConstantTime.Integers (** This module provides a refinement of FStar.IFC providing an interface restricted only to constant-time operations on integers. In contrast, FStar.IFC provides a general monadic information-flow control framework, which need not be restricted to constant-time operations. *) open FStar.IFC open FStar.Integers /// A `secret_int l s` is a machine-integer at secrecy level `l` and /// signedness/width `s`. let secret_int (#sl:sl) (l:lattice_element sl) (s:sw) : Type0 = protected l (int_t s) /// A `secret_int l s` can be seen as an int in spec let reveal (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:secret_int l s)
false
false
FStar.ConstantTime.Integers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val reveal (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:secret_int l s) : GTot (y:int{within_bounds s y})
[]
FStar.ConstantTime.Integers.reveal
{ "file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.ConstantTime.Integers.secret_int l s -> Prims.GTot (y: FStar.Integers.int{FStar.Integers.within_bounds s y})
{ "end_col": 17, "end_line": 43, "start_col": 5, "start_line": 43 }
Prims.Tot
val promote (#sl:sl) (#l0:lattice_element sl) (#s:sw) (x:secret_int l0 s) (l1:lattice_element sl) : Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x})
[ { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.IFC", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let promote #sl #l0 #s x l1 = join (return #_ #(secret_int l0 s) l1 x)
val promote (#sl:sl) (#l0:lattice_element sl) (#s:sw) (x:secret_int l0 s) (l1:lattice_element sl) : Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x}) let promote #sl #l0 #s x l1 =
false
null
false
join (return #_ #(secret_int l0 s) l1 x)
{ "checked_file": "FStar.ConstantTime.Integers.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked", "FStar.IFC.fsti.checked" ], "interface_file": true, "source_file": "FStar.ConstantTime.Integers.fst" }
[ "total" ]
[ "FStar.IFC.sl", "FStar.IFC.lattice_element", "FStar.ConstantTime.Integers.sw", "FStar.ConstantTime.Integers.secret_int", "FStar.IFC.join", "FStar.Integers.int_t", "FStar.IFC.return", "FStar.IFC.lub", "Prims.eq2", "FStar.Integers.int", "Prims.l_or", "FStar.Integers.within_bounds", "FStar.ConstantTime.Integers.reveal" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.ConstantTime.Integers (** This module provides a refinement of FStar.IFC providing an interface restricted only to constant-time operations on integers. In contrast, FStar.IFC provides a general monadic information-flow control framework, which need not be restricted to constant-time operations. *) open FStar.IFC open FStar.Integers /// A `secret_int l s` is a machine-integer at secrecy level `l` and /// signedness/width `s`. let secret_int (#sl:sl) (l:lattice_element sl) (s:sw) : Type0 = protected l (int_t s) /// A `secret_int l s` can be seen as an int in spec let reveal (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:secret_int l s) : GTot (y:int{within_bounds s y}) = v (reveal x) /// `hide` is the inverse of `reveal`, proving that `secret_int` is injective let hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x}) : GTot (secret_int l s) = return l (u x) let reveal_hide #sl #l #s x = () let hide_reveal #sl #l #s x = ()
false
false
FStar.ConstantTime.Integers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val promote (#sl:sl) (#l0:lattice_element sl) (#s:sw) (x:secret_int l0 s) (l1:lattice_element sl) : Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x})
[]
FStar.ConstantTime.Integers.promote
{ "file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.ConstantTime.Integers.secret_int l0 s -> l1: FStar.IFC.lattice_element sl -> y: FStar.ConstantTime.Integers.secret_int (FStar.IFC.lub l1 l0) s {FStar.ConstantTime.Integers.reveal y == FStar.ConstantTime.Integers.reveal x}
{ "end_col": 44, "end_line": 54, "start_col": 4, "start_line": 54 }
Prims.Tot
val addition (#sl:sl) (#l:lattice_element sl) (#s:sw) (x : secret_int l s) (y : secret_int l s {ok ( + ) (m x) (m y)}) : Tot (z:secret_int l s{m z == m x + m y})
[ { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.IFC", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let addition #sl (#l:lattice_element sl) #s (x : secret_int l s) (y : secret_int l s {ok ( + ) (m x) (m y)}) : Tot (z:secret_int l s{m z == m x + m y}) = let>> a = x in let>> b = y in return l (a + b)
val addition (#sl:sl) (#l:lattice_element sl) (#s:sw) (x : secret_int l s) (y : secret_int l s {ok ( + ) (m x) (m y)}) : Tot (z:secret_int l s{m z == m x + m y}) let addition #sl (#l: lattice_element sl) #s (x: secret_int l s) (y: secret_int l s {ok ( + ) (m x) (m y)}) : Tot (z: secret_int l s {m z == m x + m y}) =
false
null
false
let>> a = x in let>> b = y in return l (a + b)
{ "checked_file": "FStar.ConstantTime.Integers.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked", "FStar.IFC.fsti.checked" ], "interface_file": true, "source_file": "FStar.ConstantTime.Integers.fst" }
[ "total" ]
[ "FStar.IFC.sl", "FStar.IFC.lattice_element", "FStar.ConstantTime.Integers.sw", "FStar.ConstantTime.Integers.secret_int", "FStar.Integers.ok", "FStar.Integers.op_Plus", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "FStar.ConstantTime.Integers.m", "FStar.IFC.op_let_Greater_Greater", "FStar.Integers.int_t", "FStar.IFC.lub", "Prims.eq2", "FStar.IFC.reveal", "FStar.IFC.return", "FStar.IFC.protected" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.ConstantTime.Integers (** This module provides a refinement of FStar.IFC providing an interface restricted only to constant-time operations on integers. In contrast, FStar.IFC provides a general monadic information-flow control framework, which need not be restricted to constant-time operations. *) open FStar.IFC open FStar.Integers /// A `secret_int l s` is a machine-integer at secrecy level `l` and /// signedness/width `s`. let secret_int (#sl:sl) (l:lattice_element sl) (s:sw) : Type0 = protected l (int_t s) /// A `secret_int l s` can be seen as an int in spec let reveal (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:secret_int l s) : GTot (y:int{within_bounds s y}) = v (reveal x) /// `hide` is the inverse of `reveal`, proving that `secret_int` is injective let hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x}) : GTot (secret_int l s) = return l (u x) let reveal_hide #sl #l #s x = () let hide_reveal #sl #l #s x = () let promote #sl #l0 #s x l1 = join (return #_ #(secret_int l0 s) l1 x) ////////////////////////////////////////////////////////////////////////////////////////// /// The remainder of this module provides liftings of specific integers operations /// to work on secret integers, i.e., only those that respect the constant time guarantees /// and do not break confidentiality. /// /// Note, with our choice of representation, it is impossible to /// implement functions that break basic IFC guarantees, e.g., we /// cannot implement a boolean comparison function on secret_ints noextract inline_for_extraction let addition #sl (#l:lattice_element sl) #s (x : secret_int l s) (y : secret_int l s {ok ( + ) (m x) (m y)})
false
false
FStar.ConstantTime.Integers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val addition (#sl:sl) (#l:lattice_element sl) (#s:sw) (x : secret_int l s) (y : secret_int l s {ok ( + ) (m x) (m y)}) : Tot (z:secret_int l s{m z == m x + m y})
[]
FStar.ConstantTime.Integers.addition
{ "file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.ConstantTime.Integers.secret_int l s -> y: FStar.ConstantTime.Integers.secret_int l s { FStar.Integers.ok FStar.Integers.op_Plus (FStar.ConstantTime.Integers.m x) (FStar.ConstantTime.Integers.m y) } -> z: FStar.ConstantTime.Integers.secret_int l s { FStar.ConstantTime.Integers.m z == FStar.ConstantTime.Integers.m x + FStar.ConstantTime.Integers.m y }
{ "end_col": 22, "end_line": 72, "start_col": 6, "start_line": 70 }
Prims.Tot
val addition_mod (#sl:sl) (#l:lattice_element sl) (#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128}) (x : secret_int l sw) (y : secret_int l sw) : Tot (z:secret_int l sw { m z == m x +% m y } )
[ { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.IFC", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.ConstantTime", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let addition_mod (#sl:sl) (#l:lattice_element sl) (#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128}) (x : secret_int l sw) (y : secret_int l sw) : Tot (z:secret_int l sw { m z == m x +% m y } ) = let>> a = x in let>> b = y in return l (a +% b)
val addition_mod (#sl:sl) (#l:lattice_element sl) (#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128}) (x : secret_int l sw) (y : secret_int l sw) : Tot (z:secret_int l sw { m z == m x +% m y } ) let addition_mod (#sl: sl) (#l: lattice_element sl) (#sw: _{Unsigned? sw /\ width_of_sw sw <> W128}) (x y: secret_int l sw) : Tot (z: secret_int l sw {m z == m x +% m y}) =
false
null
false
let>> a = x in let>> b = y in return l (a +% b)
{ "checked_file": "FStar.ConstantTime.Integers.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Integers.fst.checked", "FStar.IFC.fsti.checked" ], "interface_file": true, "source_file": "FStar.ConstantTime.Integers.fst" }
[ "total" ]
[ "FStar.IFC.sl", "FStar.IFC.lattice_element", "FStar.Integers.signed_width", "Prims.l_and", "Prims.b2t", "FStar.Integers.uu___is_Unsigned", "Prims.op_disEquality", "FStar.Integers.width", "FStar.Integers.width_of_sw", "FStar.Integers.W128", "FStar.ConstantTime.Integers.secret_int", "FStar.IFC.op_let_Greater_Greater", "FStar.Integers.int_t", "FStar.IFC.lub", "Prims.eq2", "FStar.IFC.reveal", "FStar.IFC.return", "FStar.Integers.op_Plus_Percent", "FStar.IFC.protected", "FStar.ConstantTime.Integers.m" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.ConstantTime.Integers (** This module provides a refinement of FStar.IFC providing an interface restricted only to constant-time operations on integers. In contrast, FStar.IFC provides a general monadic information-flow control framework, which need not be restricted to constant-time operations. *) open FStar.IFC open FStar.Integers /// A `secret_int l s` is a machine-integer at secrecy level `l` and /// signedness/width `s`. let secret_int (#sl:sl) (l:lattice_element sl) (s:sw) : Type0 = protected l (int_t s) /// A `secret_int l s` can be seen as an int in spec let reveal (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:secret_int l s) : GTot (y:int{within_bounds s y}) = v (reveal x) /// `hide` is the inverse of `reveal`, proving that `secret_int` is injective let hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x}) : GTot (secret_int l s) = return l (u x) let reveal_hide #sl #l #s x = () let hide_reveal #sl #l #s x = () let promote #sl #l0 #s x l1 = join (return #_ #(secret_int l0 s) l1 x) ////////////////////////////////////////////////////////////////////////////////////////// /// The remainder of this module provides liftings of specific integers operations /// to work on secret integers, i.e., only those that respect the constant time guarantees /// and do not break confidentiality. /// /// Note, with our choice of representation, it is impossible to /// implement functions that break basic IFC guarantees, e.g., we /// cannot implement a boolean comparison function on secret_ints noextract inline_for_extraction let addition #sl (#l:lattice_element sl) #s (x : secret_int l s) (y : secret_int l s {ok ( + ) (m x) (m y)}) : Tot (z:secret_int l s{m z == m x + m y}) = let>> a = x in let>> b = y in return l (a + b) noextract inline_for_extraction let addition_mod (#sl:sl) (#l:lattice_element sl) (#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128}) (x : secret_int l sw) (y : secret_int l sw)
false
false
FStar.ConstantTime.Integers.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val addition_mod (#sl:sl) (#l:lattice_element sl) (#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128}) (x : secret_int l sw) (y : secret_int l sw) : Tot (z:secret_int l sw { m z == m x +% m y } )
[]
FStar.ConstantTime.Integers.addition_mod
{ "file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.ConstantTime.Integers.secret_int l sw -> y: FStar.ConstantTime.Integers.secret_int l sw -> z: FStar.ConstantTime.Integers.secret_int l sw { FStar.ConstantTime.Integers.m z == FStar.ConstantTime.Integers.m x +% FStar.ConstantTime.Integers.m y }
{ "end_col": 23, "end_line": 84, "start_col": 6, "start_line": 82 }
Prims.Tot
val mul_wide_add2_st: #t:limb_t -> mul_wide_add2_t t
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_add2_st #t = match t with | U32 -> mul_wide_add2_u32 | U64 -> mul_wide_add2_u64
val mul_wide_add2_st: #t:limb_t -> mul_wide_add2_t t let mul_wide_add2_st #t =
false
null
false
match t with | U32 -> mul_wide_add2_u32 | U64 -> mul_wide_add2_u64
{ "checked_file": "Hacl.Bignum.Base.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.Intrinsics.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Base.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Base.mul_wide_add2_u32", "Hacl.Bignum.Base.mul_wide_add2_u64", "Hacl.Bignum.Base.mul_wide_add2_t" ]
[]
module Hacl.Bignum.Base open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions include Hacl.Spec.Bignum.Base module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag), and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) let addcarry_st #t c_in a b out = Lib.IntTypes.Intrinsics.add_carry c_in a b out (** unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) let subborrow_st c_in a b out = Lib.IntTypes.Intrinsics.sub_borrow c_in a b out inline_for_extraction noextract let mul_wide_add_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in) val mul_wide_add_u32: mul_wide_add_t U32 [@CInline] let mul_wide_add_u32 a b c_in out = lemma_mul_wide_add a b c_in (u32 0); let res = to_u64 a *! to_u64 b +! to_u64 c_in in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul) val mul_wide_add_u64: mul_wide_add_t U64 [@CInline] let mul_wide_add_u64 a b c_in out = lemma_mul_wide_add a b c_in (u64 0); let res = mul64_wide a b +! to_u128 c_in in out.(0ul) <- to_u64 res; to_u64 (res >>. 64ul) inline_for_extraction noextract val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t let mul_wide_add_st #t = match t with | U32 -> mul_wide_add_u32 | U64 -> mul_wide_add_u64 inline_for_extraction noextract let mul_wide_add2_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add2 a b c_in (LSeq.index (as_seq h0 out) 0)) val mul_wide_add2_u32: mul_wide_add2_t U32 [@CInline] let mul_wide_add2_u32 a b c_in out = let out0 = out.(0ul) in lemma_mul_wide_add a b c_in out0; let res = to_u64 a *! to_u64 b +! to_u64 c_in +! to_u64 out0 in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul) val mul_wide_add2_u64: mul_wide_add2_t U64 [@CInline] let mul_wide_add2_u64 a b c_in out = let out0 = out.(0ul) in lemma_mul_wide_add a b c_in out0; let res = mul64_wide a b +! to_u128 c_in +! to_u128 out0 in out.(0ul) <- to_u64 res; to_u64 (res >>. 64ul) inline_for_extraction noextract val mul_wide_add2_st: #t:limb_t -> mul_wide_add2_t t
false
false
Hacl.Bignum.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_add2_st: #t:limb_t -> mul_wide_add2_t t
[]
Hacl.Bignum.Base.mul_wide_add2_st
{ "file_name": "code/bignum/Hacl.Bignum.Base.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.Base.mul_wide_add2_t t
{ "end_col": 28, "end_line": 131, "start_col": 2, "start_line": 129 }
Prims.Tot
val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_add_st #t = match t with | U32 -> mul_wide_add_u32 | U64 -> mul_wide_add_u64
val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t let mul_wide_add_st #t =
false
null
false
match t with | U32 -> mul_wide_add_u32 | U64 -> mul_wide_add_u64
{ "checked_file": "Hacl.Bignum.Base.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.Intrinsics.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Base.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Base.mul_wide_add_u32", "Hacl.Bignum.Base.mul_wide_add_u64", "Hacl.Bignum.Base.mul_wide_add_t" ]
[]
module Hacl.Bignum.Base open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions include Hacl.Spec.Bignum.Base module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag), and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) let addcarry_st #t c_in a b out = Lib.IntTypes.Intrinsics.add_carry c_in a b out (** unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) let subborrow_st c_in a b out = Lib.IntTypes.Intrinsics.sub_borrow c_in a b out inline_for_extraction noextract let mul_wide_add_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in) val mul_wide_add_u32: mul_wide_add_t U32 [@CInline] let mul_wide_add_u32 a b c_in out = lemma_mul_wide_add a b c_in (u32 0); let res = to_u64 a *! to_u64 b +! to_u64 c_in in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul) val mul_wide_add_u64: mul_wide_add_t U64 [@CInline] let mul_wide_add_u64 a b c_in out = lemma_mul_wide_add a b c_in (u64 0); let res = mul64_wide a b +! to_u128 c_in in out.(0ul) <- to_u64 res; to_u64 (res >>. 64ul) inline_for_extraction noextract val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t
false
false
Hacl.Bignum.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t
[]
Hacl.Bignum.Base.mul_wide_add_st
{ "file_name": "code/bignum/Hacl.Bignum.Base.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.Base.mul_wide_add_t t
{ "end_col": 27, "end_line": 91, "start_col": 2, "start_line": 89 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_add_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in)
let mul_wide_add_t (t: limb_t) =
false
null
false
a: limb t -> b: limb t -> c_in: limb t -> out: lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in )
{ "checked_file": "Hacl.Bignum.Base.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.Intrinsics.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Base.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Prims.l_and", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.index", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.Base.mul_wide_add" ]
[]
module Hacl.Bignum.Base open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions include Hacl.Spec.Bignum.Base module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag), and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) let addcarry_st #t c_in a b out = Lib.IntTypes.Intrinsics.add_carry c_in a b out (** unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) let subborrow_st c_in a b out = Lib.IntTypes.Intrinsics.sub_borrow c_in a b out inline_for_extraction noextract
false
true
Hacl.Bignum.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_add_t : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.Base.mul_wide_add_t
{ "file_name": "code/bignum/Hacl.Bignum.Base.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 67, "end_line": 65, "start_col": 4, "start_line": 58 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_add2_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add2 a b c_in (LSeq.index (as_seq h0 out) 0))
let mul_wide_add2_t (t: limb_t) =
false
null
false
a: limb t -> b: limb t -> c_in: limb t -> out: lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add2 a b c_in (LSeq.index (as_seq h0 out) 0))
{ "checked_file": "Hacl.Bignum.Base.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.Intrinsics.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Base.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "FStar.Monotonic.HyperStack.mem", "Lib.Buffer.live", "Lib.Buffer.MUT", "Prims.l_and", "Lib.Buffer.modifies", "Lib.Buffer.loc", "Prims.eq2", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Pervasives.Native.Mktuple2", "Lib.Sequence.index", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Hacl.Spec.Bignum.Base.mul_wide_add2" ]
[]
module Hacl.Bignum.Base open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions include Hacl.Spec.Bignum.Base module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag), and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) let addcarry_st #t c_in a b out = Lib.IntTypes.Intrinsics.add_carry c_in a b out (** unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) let subborrow_st c_in a b out = Lib.IntTypes.Intrinsics.sub_borrow c_in a b out inline_for_extraction noextract let mul_wide_add_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in) val mul_wide_add_u32: mul_wide_add_t U32 [@CInline] let mul_wide_add_u32 a b c_in out = lemma_mul_wide_add a b c_in (u32 0); let res = to_u64 a *! to_u64 b +! to_u64 c_in in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul) val mul_wide_add_u64: mul_wide_add_t U64 [@CInline] let mul_wide_add_u64 a b c_in out = lemma_mul_wide_add a b c_in (u64 0); let res = mul64_wide a b +! to_u128 c_in in out.(0ul) <- to_u64 res; to_u64 (res >>. 64ul) inline_for_extraction noextract val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t let mul_wide_add_st #t = match t with | U32 -> mul_wide_add_u32 | U64 -> mul_wide_add_u64 inline_for_extraction noextract
false
true
Hacl.Bignum.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_add2_t : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.Base.mul_wide_add2_t
{ "file_name": "code/bignum/Hacl.Bignum.Base.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 99, "end_line": 103, "start_col": 4, "start_line": 96 }
Prims.Tot
val mul_wide_add_u64: mul_wide_add_t U64
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_add_u64 a b c_in out = lemma_mul_wide_add a b c_in (u64 0); let res = mul64_wide a b +! to_u128 c_in in out.(0ul) <- to_u64 res; to_u64 (res >>. 64ul)
val mul_wide_add_u64: mul_wide_add_t U64 let mul_wide_add_u64 a b c_in out =
false
null
false
lemma_mul_wide_add a b c_in (u64 0); let res = mul64_wide a b +! to_u128 c_in in out.(0ul) <- to_u64 res; to_u64 (res >>. 64ul)
{ "checked_file": "Hacl.Bignum.Base.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.Intrinsics.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Base.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.U64", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.to_u64", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Prims.unit", "Lib.Buffer.op_Array_Assignment", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.mul64_wide", "Lib.IntTypes.to_u128", "Hacl.Spec.Bignum.Base.lemma_mul_wide_add", "Lib.IntTypes.u64" ]
[]
module Hacl.Bignum.Base open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions include Hacl.Spec.Bignum.Base module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag), and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) let addcarry_st #t c_in a b out = Lib.IntTypes.Intrinsics.add_carry c_in a b out (** unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) let subborrow_st c_in a b out = Lib.IntTypes.Intrinsics.sub_borrow c_in a b out inline_for_extraction noextract let mul_wide_add_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in) val mul_wide_add_u32: mul_wide_add_t U32 [@CInline] let mul_wide_add_u32 a b c_in out = lemma_mul_wide_add a b c_in (u32 0); let res = to_u64 a *! to_u64 b +! to_u64 c_in in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul) val mul_wide_add_u64: mul_wide_add_t U64 [@CInline]
false
true
Hacl.Bignum.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_add_u64: mul_wide_add_t U64
[]
Hacl.Bignum.Base.mul_wide_add_u64
{ "file_name": "code/bignum/Hacl.Bignum.Base.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.Base.mul_wide_add_t Lib.IntTypes.U64
{ "end_col": 23, "end_line": 83, "start_col": 2, "start_line": 80 }
Prims.Tot
val mul_wide_add2_u64: mul_wide_add2_t U64
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_add2_u64 a b c_in out = let out0 = out.(0ul) in lemma_mul_wide_add a b c_in out0; let res = mul64_wide a b +! to_u128 c_in +! to_u128 out0 in out.(0ul) <- to_u64 res; to_u64 (res >>. 64ul)
val mul_wide_add2_u64: mul_wide_add2_t U64 let mul_wide_add2_u64 a b c_in out =
false
null
false
let out0 = out.(0ul) in lemma_mul_wide_add a b c_in out0; let res = mul64_wide a b +! to_u128 c_in +! to_u128 out0 in out.(0ul) <- to_u64 res; to_u64 (res >>. 64ul)
{ "checked_file": "Hacl.Bignum.Base.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.Intrinsics.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Base.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.U64", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.to_u64", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Prims.unit", "Lib.Buffer.op_Array_Assignment", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.mul64_wide", "Lib.IntTypes.to_u128", "Hacl.Spec.Bignum.Base.lemma_mul_wide_add", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT" ]
[]
module Hacl.Bignum.Base open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions include Hacl.Spec.Bignum.Base module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag), and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) let addcarry_st #t c_in a b out = Lib.IntTypes.Intrinsics.add_carry c_in a b out (** unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) let subborrow_st c_in a b out = Lib.IntTypes.Intrinsics.sub_borrow c_in a b out inline_for_extraction noextract let mul_wide_add_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in) val mul_wide_add_u32: mul_wide_add_t U32 [@CInline] let mul_wide_add_u32 a b c_in out = lemma_mul_wide_add a b c_in (u32 0); let res = to_u64 a *! to_u64 b +! to_u64 c_in in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul) val mul_wide_add_u64: mul_wide_add_t U64 [@CInline] let mul_wide_add_u64 a b c_in out = lemma_mul_wide_add a b c_in (u64 0); let res = mul64_wide a b +! to_u128 c_in in out.(0ul) <- to_u64 res; to_u64 (res >>. 64ul) inline_for_extraction noextract val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t let mul_wide_add_st #t = match t with | U32 -> mul_wide_add_u32 | U64 -> mul_wide_add_u64 inline_for_extraction noextract let mul_wide_add2_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add2 a b c_in (LSeq.index (as_seq h0 out) 0)) val mul_wide_add2_u32: mul_wide_add2_t U32 [@CInline] let mul_wide_add2_u32 a b c_in out = let out0 = out.(0ul) in lemma_mul_wide_add a b c_in out0; let res = to_u64 a *! to_u64 b +! to_u64 c_in +! to_u64 out0 in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul) val mul_wide_add2_u64: mul_wide_add2_t U64
false
true
Hacl.Bignum.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_add2_u64: mul_wide_add2_t U64
[]
Hacl.Bignum.Base.mul_wide_add2_u64
{ "file_name": "code/bignum/Hacl.Bignum.Base.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.Base.mul_wide_add2_t Lib.IntTypes.U64
{ "end_col": 23, "end_line": 123, "start_col": 36, "start_line": 118 }
Prims.Tot
val mul_wide_add_u32: mul_wide_add_t U32
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_add_u32 a b c_in out = lemma_mul_wide_add a b c_in (u32 0); let res = to_u64 a *! to_u64 b +! to_u64 c_in in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul)
val mul_wide_add_u32: mul_wide_add_t U32 let mul_wide_add_u32 a b c_in out =
false
null
false
lemma_mul_wide_add a b c_in (u32 0); let res = to_u64 a *! to_u64 b +! to_u64 c_in in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul)
{ "checked_file": "Hacl.Bignum.Base.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.Intrinsics.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Base.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.U32", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.to_u32", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Prims.unit", "Lib.Buffer.op_Array_Assignment", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.to_u64", "Hacl.Spec.Bignum.Base.lemma_mul_wide_add", "Lib.IntTypes.u32" ]
[]
module Hacl.Bignum.Base open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions include Hacl.Spec.Bignum.Base module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag), and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) let addcarry_st #t c_in a b out = Lib.IntTypes.Intrinsics.add_carry c_in a b out (** unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) let subborrow_st c_in a b out = Lib.IntTypes.Intrinsics.sub_borrow c_in a b out inline_for_extraction noextract let mul_wide_add_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in) val mul_wide_add_u32: mul_wide_add_t U32 [@CInline]
false
true
Hacl.Bignum.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_add_u32: mul_wide_add_t U32
[]
Hacl.Bignum.Base.mul_wide_add_u32
{ "file_name": "code/bignum/Hacl.Bignum.Base.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.Base.mul_wide_add_t Lib.IntTypes.U32
{ "end_col": 23, "end_line": 74, "start_col": 2, "start_line": 71 }
Prims.Tot
val mul_wide_add2_u32: mul_wide_add2_t U32
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_wide_add2_u32 a b c_in out = let out0 = out.(0ul) in lemma_mul_wide_add a b c_in out0; let res = to_u64 a *! to_u64 b +! to_u64 c_in +! to_u64 out0 in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul)
val mul_wide_add2_u32: mul_wide_add2_t U32 let mul_wide_add2_u32 a b c_in out =
false
null
false
let out0 = out.(0ul) in lemma_mul_wide_add a b c_in out0; let res = to_u64 a *! to_u64 b +! to_u64 c_in +! to_u64 out0 in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul)
{ "checked_file": "Hacl.Bignum.Base.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.Intrinsics.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Base.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb", "Lib.IntTypes.U32", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.to_u32", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Greater_Greater_Dot", "Prims.unit", "Lib.Buffer.op_Array_Assignment", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.to_u64", "Hacl.Spec.Bignum.Base.lemma_mul_wide_add", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT" ]
[]
module Hacl.Bignum.Base open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions include Hacl.Spec.Bignum.Base module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag), and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) let addcarry_st #t c_in a b out = Lib.IntTypes.Intrinsics.add_carry c_in a b out (** unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) let subborrow_st c_in a b out = Lib.IntTypes.Intrinsics.sub_borrow c_in a b out inline_for_extraction noextract let mul_wide_add_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in) val mul_wide_add_u32: mul_wide_add_t U32 [@CInline] let mul_wide_add_u32 a b c_in out = lemma_mul_wide_add a b c_in (u32 0); let res = to_u64 a *! to_u64 b +! to_u64 c_in in out.(0ul) <- to_u32 res; to_u32 (res >>. 32ul) val mul_wide_add_u64: mul_wide_add_t U64 [@CInline] let mul_wide_add_u64 a b c_in out = lemma_mul_wide_add a b c_in (u64 0); let res = mul64_wide a b +! to_u128 c_in in out.(0ul) <- to_u64 res; to_u64 (res >>. 64ul) inline_for_extraction noextract val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t let mul_wide_add_st #t = match t with | U32 -> mul_wide_add_u32 | U64 -> mul_wide_add_u64 inline_for_extraction noextract let mul_wide_add2_t (t:limb_t) = a:limb t -> b:limb t -> c_in:limb t -> out:lbuffer (limb t) 1ul -> Stack (limb t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add2 a b c_in (LSeq.index (as_seq h0 out) 0)) val mul_wide_add2_u32: mul_wide_add2_t U32
false
true
Hacl.Bignum.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_wide_add2_u32: mul_wide_add2_t U32
[]
Hacl.Bignum.Base.mul_wide_add2_u32
{ "file_name": "code/bignum/Hacl.Bignum.Base.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Hacl.Bignum.Base.mul_wide_add2_t Lib.IntTypes.U32
{ "end_col": 23, "end_line": 113, "start_col": 36, "start_line": 108 }
FStar.HyperStack.ST.Stack
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let subborrow_st c_in a b out = Lib.IntTypes.Intrinsics.sub_borrow c_in a b out
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) let subborrow_st c_in a b out =
true
null
false
Lib.IntTypes.Intrinsics.sub_borrow c_in a b out
{ "checked_file": "Hacl.Bignum.Base.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.Intrinsics.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Base.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Spec.Bignum.Base.carry", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.Intrinsics.sub_borrow", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC" ]
[]
module Hacl.Bignum.Base open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions include Hacl.Spec.Bignum.Base module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag), and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) let addcarry_st #t c_in a b out = Lib.IntTypes.Intrinsics.add_carry c_in a b out (** unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
false
false
Hacl.Bignum.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
[]
Hacl.Bignum.Base.subborrow_st
{ "file_name": "code/bignum/Hacl.Bignum.Base.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c_in: Hacl.Spec.Bignum.Base.carry t -> a: Hacl.Bignum.Definitions.limb t -> b: Hacl.Bignum.Definitions.limb t -> out: Lib.Buffer.lbuffer (Hacl.Bignum.Definitions.limb t) 1ul -> FStar.HyperStack.ST.Stack (Hacl.Spec.Bignum.Base.carry t)
{ "end_col": 49, "end_line": 53, "start_col": 2, "start_line": 53 }
FStar.HyperStack.ST.Stack
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
[ { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Spec.Bignum.Base", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let addcarry_st #t c_in a b out = Lib.IntTypes.Intrinsics.add_carry c_in a b out
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) let addcarry_st #t c_in a b out =
true
null
false
Lib.IntTypes.Intrinsics.add_carry c_in a b out
{ "checked_file": "Hacl.Bignum.Base.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.Intrinsics.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Base.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Base.fst" }
[]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Spec.Bignum.Base.carry", "Hacl.Bignum.Definitions.limb", "Lib.Buffer.lbuffer", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.Intrinsics.add_carry", "Lib.IntTypes.uint_t", "Lib.IntTypes.SEC" ]
[]
module Hacl.Bignum.Base open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum.Definitions include Hacl.Spec.Bignum.Base module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" (** unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out) Description Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag), and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag). *) inline_for_extraction noextract val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
false
false
Hacl.Bignum.Base.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul -> Stack (carry t) (requires fun h -> live h out) (ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
[]
Hacl.Bignum.Base.addcarry_st
{ "file_name": "code/bignum/Hacl.Bignum.Base.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
c_in: Hacl.Spec.Bignum.Base.carry t -> a: Hacl.Bignum.Definitions.limb t -> b: Hacl.Bignum.Definitions.limb t -> out: Lib.Buffer.lbuffer (Hacl.Bignum.Definitions.limb t) 1ul -> FStar.HyperStack.ST.Stack (Hacl.Spec.Bignum.Base.carry t)
{ "end_col": 48, "end_line": 35, "start_col": 2, "start_line": 35 }
Prims.GTot
val indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x }) : GTot (x: a { p x })
[ { "abbrev": false, "full_module": "FStar.Squash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x }) : GTot (x: a { p x }) = let w = indefinite_description_tot a p in let x = Ghost.reveal w in x
val indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x }) : GTot (x: a { p x }) let indefinite_description_ghost (a: Type) (p: (a -> prop){exists x. p x}) : GTot (x: a{p x}) =
false
null
false
let w = indefinite_description_tot a p in let x = Ghost.reveal w in x
{ "checked_file": "FStar.IndefiniteDescription.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.IndefiniteDescription.fst" }
[ "sometrivial" ]
[ "Prims.prop", "Prims.l_Exists", "FStar.Ghost.reveal", "FStar.Ghost.erased", "FStar.IndefiniteDescription.indefinite_description_tot" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.IndefiniteDescription /// Indefinite description is an axiom that allows picking a witness /// for existentially quantified predicate. See the interface for more /// context. /// open FStar.Classical open FStar.Squash (** The main axiom: Given a classical proof of [exists x. p x], we can exhibit an erased (computationally irrelevant) a witness [x:erased a] validating [p x]. *) irreducible let indefinite_description_tot (a:Type) (p:(a -> prop) { exists x. p x }) : Tot (w:Ghost.erased a{ p w }) = admit() //this is an axiom (** A version in ghost is easily derivable *) let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x })
false
false
FStar.IndefiniteDescription.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x }) : GTot (x: a { p x })
[]
FStar.IndefiniteDescription.indefinite_description_ghost
{ "file_name": "ulib/FStar.IndefiniteDescription.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: Type -> p: (_: a -> Prims.prop){exists (x: a). p x} -> Prims.GTot (x: a{p x})
{ "end_col": 5, "end_line": 42, "start_col": 3, "start_line": 40 }
Prims.GTot
val elim_squash (#p:Type u#a) (s:squash p) : GTot p
[ { "abbrev": false, "full_module": "FStar.Squash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let elim_squash (#p:Type u#a) (s:squash p) : GTot p = let uu : squash (x:p & squash trivial) = bind_squash s (fun x -> return_squash (| x, return_squash T |)) in give_proof (return_squash uu); indefinite_description_ghost p (fun _ -> squash trivial)
val elim_squash (#p:Type u#a) (s:squash p) : GTot p let elim_squash (#p: Type u#a) (s: squash p) : GTot p =
false
null
false
let uu:squash (x: p & squash trivial) = bind_squash s (fun x -> return_squash (| x, return_squash T |)) in give_proof (return_squash uu); indefinite_description_ghost p (fun _ -> squash trivial)
{ "checked_file": "FStar.IndefiniteDescription.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.IndefiniteDescription.fst" }
[ "sometrivial" ]
[ "Prims.squash", "FStar.IndefiniteDescription.indefinite_description_ghost", "Prims.trivial", "Prims.prop", "Prims.unit", "FStar.Squash.give_proof", "Prims.dtuple2", "FStar.Squash.return_squash", "FStar.Squash.bind_squash", "Prims.Mkdtuple2", "Prims.T" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.IndefiniteDescription /// Indefinite description is an axiom that allows picking a witness /// for existentially quantified predicate. See the interface for more /// context. /// open FStar.Classical open FStar.Squash (** The main axiom: Given a classical proof of [exists x. p x], we can exhibit an erased (computationally irrelevant) a witness [x:erased a] validating [p x]. *) irreducible let indefinite_description_tot (a:Type) (p:(a -> prop) { exists x. p x }) : Tot (w:Ghost.erased a{ p w }) = admit() //this is an axiom (** A version in ghost is easily derivable *) let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x }) : GTot (x: a { p x }) = let w = indefinite_description_tot a p in let x = Ghost.reveal w in x (** Indefinite description entails the a strong form of the excluded middle, i.e., one can case-analyze the truth of a proposition (only in [Ghost]) *) let strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) = let aux (p: Type0) : Lemma (exists b. b = true <==> p) = give_proof (bind_squash (get_proof (l_or p (~p))) (fun (b: l_or p (~p)) -> bind_squash b (fun (b': Prims.sum p (~p)) -> match b' with | Prims.Left hp -> give_witness hp; exists_intro (fun b -> b = true <==> p) true; get_proof (exists b. b = true <==> p) | Prims.Right hnp -> give_witness hnp; exists_intro (fun b -> b = true <==> p) false; get_proof (exists b. b = true <==> p)))) in aux p; indefinite_description_ghost bool (fun b -> b = true <==> p) (** We also can combine this with a the classical tautology converting with a [forall] and an [exists] to extract a witness of validity of [p] from a classical proof that [p] is not universally invalid. Note, F*+SMT can easily prove, since it is just classical logic: [(~(forall n. ~(p n))) ==> (exists n. p n) ] *) let stronger_markovs_principle (p: (nat -> GTot bool)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) = indefinite_description_ghost _ (fun n -> p n==true) (** A variant of the previous lemma, but for a [prop] rather than a boolean predicate *) let stronger_markovs_principle_prop (p: (nat -> GTot prop)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) = indefinite_description_ghost _ p (** A proof for squash p can be eliminated to get p in the Ghost effect *)
false
false
FStar.IndefiniteDescription.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val elim_squash (#p:Type u#a) (s:squash p) : GTot p
[]
FStar.IndefiniteDescription.elim_squash
{ "file_name": "ulib/FStar.IndefiniteDescription.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
s: Prims.squash p -> Prims.GTot p
{ "end_col": 58, "end_line": 89, "start_col": 53, "start_line": 85 }
Prims.Ghost
val stronger_markovs_principle_prop (p: (nat -> GTot prop)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n))
[ { "abbrev": false, "full_module": "FStar.Squash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let stronger_markovs_principle_prop (p: (nat -> GTot prop)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) = indefinite_description_ghost _ p
val stronger_markovs_principle_prop (p: (nat -> GTot prop)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) let stronger_markovs_principle_prop (p: (nat -> GTot prop)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) =
false
null
false
indefinite_description_ghost _ p
{ "checked_file": "FStar.IndefiniteDescription.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.IndefiniteDescription.fst" }
[]
[ "Prims.nat", "Prims.prop", "FStar.IndefiniteDescription.indefinite_description_ghost", "Prims.l_not", "Prims.l_Forall" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.IndefiniteDescription /// Indefinite description is an axiom that allows picking a witness /// for existentially quantified predicate. See the interface for more /// context. /// open FStar.Classical open FStar.Squash (** The main axiom: Given a classical proof of [exists x. p x], we can exhibit an erased (computationally irrelevant) a witness [x:erased a] validating [p x]. *) irreducible let indefinite_description_tot (a:Type) (p:(a -> prop) { exists x. p x }) : Tot (w:Ghost.erased a{ p w }) = admit() //this is an axiom (** A version in ghost is easily derivable *) let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x }) : GTot (x: a { p x }) = let w = indefinite_description_tot a p in let x = Ghost.reveal w in x (** Indefinite description entails the a strong form of the excluded middle, i.e., one can case-analyze the truth of a proposition (only in [Ghost]) *) let strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) = let aux (p: Type0) : Lemma (exists b. b = true <==> p) = give_proof (bind_squash (get_proof (l_or p (~p))) (fun (b: l_or p (~p)) -> bind_squash b (fun (b': Prims.sum p (~p)) -> match b' with | Prims.Left hp -> give_witness hp; exists_intro (fun b -> b = true <==> p) true; get_proof (exists b. b = true <==> p) | Prims.Right hnp -> give_witness hnp; exists_intro (fun b -> b = true <==> p) false; get_proof (exists b. b = true <==> p)))) in aux p; indefinite_description_ghost bool (fun b -> b = true <==> p) (** We also can combine this with a the classical tautology converting with a [forall] and an [exists] to extract a witness of validity of [p] from a classical proof that [p] is not universally invalid. Note, F*+SMT can easily prove, since it is just classical logic: [(~(forall n. ~(p n))) ==> (exists n. p n) ] *) let stronger_markovs_principle (p: (nat -> GTot bool)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) = indefinite_description_ghost _ (fun n -> p n==true) (** A variant of the previous lemma, but for a [prop] rather than a boolean predicate *) let stronger_markovs_principle_prop (p: (nat -> GTot prop))
false
false
FStar.IndefiniteDescription.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val stronger_markovs_principle_prop (p: (nat -> GTot prop)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n))
[]
FStar.IndefiniteDescription.stronger_markovs_principle_prop
{ "file_name": "ulib/FStar.IndefiniteDescription.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: (_: Prims.nat -> Prims.GTot Prims.prop) -> Prims.Ghost Prims.nat
{ "end_col": 36, "end_line": 80, "start_col": 4, "start_line": 80 }
Prims.Ghost
val stronger_markovs_principle (p: (nat -> GTot bool)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n))
[ { "abbrev": false, "full_module": "FStar.Squash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let stronger_markovs_principle (p: (nat -> GTot bool)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) = indefinite_description_ghost _ (fun n -> p n==true)
val stronger_markovs_principle (p: (nat -> GTot bool)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) let stronger_markovs_principle (p: (nat -> GTot bool)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) =
false
null
false
indefinite_description_ghost _ (fun n -> p n == true)
{ "checked_file": "FStar.IndefiniteDescription.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.IndefiniteDescription.fst" }
[]
[ "Prims.nat", "Prims.bool", "FStar.IndefiniteDescription.indefinite_description_ghost", "Prims.eq2", "Prims.prop", "Prims.l_not", "Prims.l_Forall", "Prims.b2t" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.IndefiniteDescription /// Indefinite description is an axiom that allows picking a witness /// for existentially quantified predicate. See the interface for more /// context. /// open FStar.Classical open FStar.Squash (** The main axiom: Given a classical proof of [exists x. p x], we can exhibit an erased (computationally irrelevant) a witness [x:erased a] validating [p x]. *) irreducible let indefinite_description_tot (a:Type) (p:(a -> prop) { exists x. p x }) : Tot (w:Ghost.erased a{ p w }) = admit() //this is an axiom (** A version in ghost is easily derivable *) let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x }) : GTot (x: a { p x }) = let w = indefinite_description_tot a p in let x = Ghost.reveal w in x (** Indefinite description entails the a strong form of the excluded middle, i.e., one can case-analyze the truth of a proposition (only in [Ghost]) *) let strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) = let aux (p: Type0) : Lemma (exists b. b = true <==> p) = give_proof (bind_squash (get_proof (l_or p (~p))) (fun (b: l_or p (~p)) -> bind_squash b (fun (b': Prims.sum p (~p)) -> match b' with | Prims.Left hp -> give_witness hp; exists_intro (fun b -> b = true <==> p) true; get_proof (exists b. b = true <==> p) | Prims.Right hnp -> give_witness hnp; exists_intro (fun b -> b = true <==> p) false; get_proof (exists b. b = true <==> p)))) in aux p; indefinite_description_ghost bool (fun b -> b = true <==> p) (** We also can combine this with a the classical tautology converting with a [forall] and an [exists] to extract a witness of validity of [p] from a classical proof that [p] is not universally invalid. Note, F*+SMT can easily prove, since it is just classical logic: [(~(forall n. ~(p n))) ==> (exists n. p n) ] *) let stronger_markovs_principle (p: (nat -> GTot bool))
false
false
FStar.IndefiniteDescription.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val stronger_markovs_principle (p: (nat -> GTot bool)) : Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n))
[]
FStar.IndefiniteDescription.stronger_markovs_principle
{ "file_name": "ulib/FStar.IndefiniteDescription.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: (_: Prims.nat -> Prims.GTot Prims.bool) -> Prims.Ghost Prims.nat
{ "end_col": 55, "end_line": 74, "start_col": 4, "start_line": 74 }
Prims.GTot
val strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p})
[ { "abbrev": false, "full_module": "FStar.Squash", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) = let aux (p: Type0) : Lemma (exists b. b = true <==> p) = give_proof (bind_squash (get_proof (l_or p (~p))) (fun (b: l_or p (~p)) -> bind_squash b (fun (b': Prims.sum p (~p)) -> match b' with | Prims.Left hp -> give_witness hp; exists_intro (fun b -> b = true <==> p) true; get_proof (exists b. b = true <==> p) | Prims.Right hnp -> give_witness hnp; exists_intro (fun b -> b = true <==> p) false; get_proof (exists b. b = true <==> p)))) in aux p; indefinite_description_ghost bool (fun b -> b = true <==> p)
val strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) let strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) =
false
null
false
let aux (p: Type0) : Lemma (exists b. b = true <==> p) = give_proof (bind_squash (get_proof (l_or p (~p))) (fun (b: l_or p (~p)) -> bind_squash b (fun (b': Prims.sum p (~p)) -> match b' with | Prims.Left hp -> give_witness hp; exists_intro (fun b -> b = true <==> p) true; get_proof (exists b. b = true <==> p) | Prims.Right hnp -> give_witness hnp; exists_intro (fun b -> b = true <==> p) false; get_proof (exists b. b = true <==> p)))) in aux p; indefinite_description_ghost bool (fun b -> b = true <==> p)
{ "checked_file": "FStar.IndefiniteDescription.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.IndefiniteDescription.fst" }
[ "sometrivial" ]
[ "FStar.IndefiniteDescription.indefinite_description_ghost", "Prims.bool", "Prims.l_iff", "Prims.b2t", "Prims.op_Equality", "Prims.prop", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_Exists", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Squash.give_proof", "FStar.Squash.bind_squash", "Prims.l_or", "Prims.l_not", "FStar.Squash.get_proof", "Prims.sum", "FStar.Classical.exists_intro", "FStar.Classical.give_witness" ]
[]
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.IndefiniteDescription /// Indefinite description is an axiom that allows picking a witness /// for existentially quantified predicate. See the interface for more /// context. /// open FStar.Classical open FStar.Squash (** The main axiom: Given a classical proof of [exists x. p x], we can exhibit an erased (computationally irrelevant) a witness [x:erased a] validating [p x]. *) irreducible let indefinite_description_tot (a:Type) (p:(a -> prop) { exists x. p x }) : Tot (w:Ghost.erased a{ p w }) = admit() //this is an axiom (** A version in ghost is easily derivable *) let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x }) : GTot (x: a { p x }) = let w = indefinite_description_tot a p in let x = Ghost.reveal w in x (** Indefinite description entails the a strong form of the excluded middle, i.e., one can case-analyze the truth of a proposition
false
false
FStar.IndefiniteDescription.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p})
[]
FStar.IndefiniteDescription.strong_excluded_middle
{ "file_name": "ulib/FStar.IndefiniteDescription.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
p: Type0 -> Prims.GTot (b: Prims.bool{b = true <==> p})
{ "end_col": 62, "end_line": 64, "start_col": 73, "start_line": 47 }
Prims.Tot
val div_mod (#m: pos{1 < m}) (a b: nat_mod m) : nat_mod m
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let div_mod (#m:pos{1 < m}) (a:nat_mod m) (b:nat_mod m) : nat_mod m = mul_mod a (inv_mod b)
val div_mod (#m: pos{1 < m}) (a b: nat_mod m) : nat_mod m let div_mod (#m: pos{1 < m}) (a b: nat_mod m) : nat_mod m =
false
null
false
mul_mod a (inv_mod b)
{ "checked_file": "Lib.NatMod.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Fermat.fsti.checked", "FStar.Math.Euclid.fsti.checked" ], "interface_file": false, "source_file": "Lib.NatMod.fsti" }
[ "total" ]
[ "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Lib.NatMod.nat_mod", "Lib.NatMod.mul_mod", "Lib.NatMod.inv_mod" ]
[]
module Lib.NatMod open FStar.Mul module Fermat = FStar.Math.Fermat module Euclid = FStar.Math.Euclid module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 10 --fuel 0 --ifuel 0" let mk_nat_comm_monoid : LE.comm_monoid int = { LE.one = 1; LE.mul = FStar.Mul.op_Star; LE.lemma_one = Math.Lemmas.mul_one_right_is_same; LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right; LE.lemma_mul_comm = Math.Lemmas.swap_mul; } let rec pow (x:int) (n:nat) : Tot int = if n = 0 then 1 else x * pow x (n - 1) val lemma_pow0: a:int -> Lemma (pow a 0 = 1) val lemma_pow1: a:int -> Lemma (pow a 1 = a) val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b) val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)] val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)] val lemma_pow_nat_is_pow: a:int -> b:nat -> Lemma (pow a b == LE.pow mk_nat_comm_monoid a b) val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0) val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1) val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m)) val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m)) val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b)) val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n) val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n) let nat_mod (m:pos) = n:nat{n < m} let one_mod (#m:pos) : nat_mod m = 1 % m let mul_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = a * b % m let add_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a + b) % m let sub_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a - b) % m val lemma_mul_mod_one: #m:pos -> a:nat_mod m -> Lemma (mul_mod a one_mod == a) val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c)) val lemma_mul_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m -> Lemma (mul_mod a b == mul_mod b a) let mk_nat_mod_comm_monoid (m:pos) : LE.comm_monoid (nat_mod m) = { LE.one = one_mod; LE.mul = mul_mod; LE.lemma_one = lemma_mul_mod_one; LE.lemma_mul_assoc = lemma_mul_mod_assoc; LE.lemma_mul_comm = lemma_mul_mod_comm; } inline_for_extraction let rec pow_mod_ (#m:pos{1 < m}) (a:nat_mod m) (b:nat) : Tot (nat_mod m) (decreases b) = if b = 0 then 1 else if b % 2 = 0 then pow_mod_ (mul_mod a a) (b / 2) else mul_mod a (pow_mod_ (mul_mod a a) (b / 2)) val pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> nat_mod m val pow_mod_def: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow_mod a b == pow_mod_ a b) val lemma_pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow a b % m == pow_mod #m a b) val lemma_pow_nat_mod_is_pow: #n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (pow a b % n == LE.pow (mk_nat_mod_comm_monoid n) a b) val lemma_add_mod_one: #m:pos -> a:nat_mod m -> Lemma (add_mod a 0 == a) val lemma_add_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (add_mod (add_mod a b) c == add_mod a (add_mod b c)) val lemma_add_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m -> Lemma (add_mod a b == add_mod b a) val lemma_mod_distributivity_add_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod a (add_mod b c) == add_mod (mul_mod a b) (mul_mod a c)) val lemma_mod_distributivity_add_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (add_mod a b) c == add_mod (mul_mod a c) (mul_mod b c)) val lemma_mod_distributivity_sub_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod a (sub_mod b c) == sub_mod (mul_mod a b) (mul_mod a c)) val lemma_mod_distributivity_sub_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (sub_mod a b) c == sub_mod (mul_mod a c) (mul_mod b c)) let prime = m:pos{1 < m /\ Euclid.is_prime m}
false
false
Lib.NatMod.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val div_mod (#m: pos{1 < m}) (a b: nat_mod m) : nat_mod m
[]
Lib.NatMod.div_mod
{ "file_name": "lib/Lib.NatMod.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> Lib.NatMod.nat_mod m
{ "end_col": 91, "end_line": 115, "start_col": 70, "start_line": 115 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let prime = m:pos{1 < m /\ Euclid.is_prime m}
let prime =
false
null
false
m: pos{1 < m /\ Euclid.is_prime m}
{ "checked_file": "Lib.NatMod.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Fermat.fsti.checked", "FStar.Math.Euclid.fsti.checked" ], "interface_file": false, "source_file": "Lib.NatMod.fsti" }
[ "total" ]
[ "Prims.pos", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Math.Euclid.is_prime" ]
[]
module Lib.NatMod open FStar.Mul module Fermat = FStar.Math.Fermat module Euclid = FStar.Math.Euclid module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 10 --fuel 0 --ifuel 0" let mk_nat_comm_monoid : LE.comm_monoid int = { LE.one = 1; LE.mul = FStar.Mul.op_Star; LE.lemma_one = Math.Lemmas.mul_one_right_is_same; LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right; LE.lemma_mul_comm = Math.Lemmas.swap_mul; } let rec pow (x:int) (n:nat) : Tot int = if n = 0 then 1 else x * pow x (n - 1) val lemma_pow0: a:int -> Lemma (pow a 0 = 1) val lemma_pow1: a:int -> Lemma (pow a 1 = a) val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b) val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)] val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)] val lemma_pow_nat_is_pow: a:int -> b:nat -> Lemma (pow a b == LE.pow mk_nat_comm_monoid a b) val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0) val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1) val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m)) val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m)) val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b)) val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n) val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n) let nat_mod (m:pos) = n:nat{n < m} let one_mod (#m:pos) : nat_mod m = 1 % m let mul_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = a * b % m let add_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a + b) % m let sub_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a - b) % m val lemma_mul_mod_one: #m:pos -> a:nat_mod m -> Lemma (mul_mod a one_mod == a) val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c)) val lemma_mul_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m -> Lemma (mul_mod a b == mul_mod b a) let mk_nat_mod_comm_monoid (m:pos) : LE.comm_monoid (nat_mod m) = { LE.one = one_mod; LE.mul = mul_mod; LE.lemma_one = lemma_mul_mod_one; LE.lemma_mul_assoc = lemma_mul_mod_assoc; LE.lemma_mul_comm = lemma_mul_mod_comm; } inline_for_extraction let rec pow_mod_ (#m:pos{1 < m}) (a:nat_mod m) (b:nat) : Tot (nat_mod m) (decreases b) = if b = 0 then 1 else if b % 2 = 0 then pow_mod_ (mul_mod a a) (b / 2) else mul_mod a (pow_mod_ (mul_mod a a) (b / 2)) val pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> nat_mod m val pow_mod_def: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow_mod a b == pow_mod_ a b) val lemma_pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow a b % m == pow_mod #m a b) val lemma_pow_nat_mod_is_pow: #n:pos{1 < n} -> a:nat_mod n -> b:nat -> Lemma (pow a b % n == LE.pow (mk_nat_mod_comm_monoid n) a b) val lemma_add_mod_one: #m:pos -> a:nat_mod m -> Lemma (add_mod a 0 == a) val lemma_add_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (add_mod (add_mod a b) c == add_mod a (add_mod b c)) val lemma_add_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m -> Lemma (add_mod a b == add_mod b a) val lemma_mod_distributivity_add_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod a (add_mod b c) == add_mod (mul_mod a b) (mul_mod a c)) val lemma_mod_distributivity_add_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (add_mod a b) c == add_mod (mul_mod a c) (mul_mod b c)) val lemma_mod_distributivity_sub_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod a (sub_mod b c) == sub_mod (mul_mod a b) (mul_mod a c)) val lemma_mod_distributivity_sub_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (sub_mod a b) c == sub_mod (mul_mod a c) (mul_mod b c))
false
true
Lib.NatMod.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val prime : Type0
[]
Lib.NatMod.prime
{ "file_name": "lib/Lib.NatMod.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 45, "end_line": 113, "start_col": 12, "start_line": 113 }
Prims.Tot
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let nat_mod (m:pos) = n:nat{n < m}
let nat_mod (m: pos) =
false
null
false
n: nat{n < m}
{ "checked_file": "Lib.NatMod.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Fermat.fsti.checked", "FStar.Math.Euclid.fsti.checked" ], "interface_file": false, "source_file": "Lib.NatMod.fsti" }
[ "total" ]
[ "Prims.pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan" ]
[]
module Lib.NatMod open FStar.Mul module Fermat = FStar.Math.Fermat module Euclid = FStar.Math.Euclid module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 10 --fuel 0 --ifuel 0" let mk_nat_comm_monoid : LE.comm_monoid int = { LE.one = 1; LE.mul = FStar.Mul.op_Star; LE.lemma_one = Math.Lemmas.mul_one_right_is_same; LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right; LE.lemma_mul_comm = Math.Lemmas.swap_mul; } let rec pow (x:int) (n:nat) : Tot int = if n = 0 then 1 else x * pow x (n - 1) val lemma_pow0: a:int -> Lemma (pow a 0 = 1) val lemma_pow1: a:int -> Lemma (pow a 1 = a) val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b) val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)] val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)] val lemma_pow_nat_is_pow: a:int -> b:nat -> Lemma (pow a b == LE.pow mk_nat_comm_monoid a b) val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0) val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1) val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m)) val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m)) val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b)) val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n) val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
false
true
Lib.NatMod.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val nat_mod : m: Prims.pos -> Type0
[]
Lib.NatMod.nat_mod
{ "file_name": "lib/Lib.NatMod.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Prims.pos -> Type0
{ "end_col": 34, "end_line": 51, "start_col": 22, "start_line": 51 }
Prims.Tot
val mk_nat_mod_comm_monoid (m: pos) : LE.comm_monoid (nat_mod m)
[ { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "FStar.Math.Euclid", "short_module": "Euclid" }, { "abbrev": true, "full_module": "FStar.Math.Fermat", "short_module": "Fermat" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_nat_mod_comm_monoid (m:pos) : LE.comm_monoid (nat_mod m) = { LE.one = one_mod; LE.mul = mul_mod; LE.lemma_one = lemma_mul_mod_one; LE.lemma_mul_assoc = lemma_mul_mod_assoc; LE.lemma_mul_comm = lemma_mul_mod_comm; }
val mk_nat_mod_comm_monoid (m: pos) : LE.comm_monoid (nat_mod m) let mk_nat_mod_comm_monoid (m: pos) : LE.comm_monoid (nat_mod m) =
false
null
false
{ LE.one = one_mod; LE.mul = mul_mod; LE.lemma_one = lemma_mul_mod_one; LE.lemma_mul_assoc = lemma_mul_mod_assoc; LE.lemma_mul_comm = lemma_mul_mod_comm }
{ "checked_file": "Lib.NatMod.fsti.checked", "dependencies": [ "prims.fst.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Math.Fermat.fsti.checked", "FStar.Math.Euclid.fsti.checked" ], "interface_file": false, "source_file": "Lib.NatMod.fsti" }
[ "total" ]
[ "Prims.pos", "Lib.Exponentiation.Definition.Mkcomm_monoid", "Lib.NatMod.nat_mod", "Lib.NatMod.one_mod", "Lib.NatMod.mul_mod", "Lib.NatMod.lemma_mul_mod_one", "Lib.NatMod.lemma_mul_mod_assoc", "Lib.NatMod.lemma_mul_mod_comm", "Lib.Exponentiation.Definition.comm_monoid" ]
[]
module Lib.NatMod open FStar.Mul module Fermat = FStar.Math.Fermat module Euclid = FStar.Math.Euclid module LE = Lib.Exponentiation.Definition #set-options "--z3rlimit 10 --fuel 0 --ifuel 0" let mk_nat_comm_monoid : LE.comm_monoid int = { LE.one = 1; LE.mul = FStar.Mul.op_Star; LE.lemma_one = Math.Lemmas.mul_one_right_is_same; LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right; LE.lemma_mul_comm = Math.Lemmas.swap_mul; } let rec pow (x:int) (n:nat) : Tot int = if n = 0 then 1 else x * pow x (n - 1) val lemma_pow0: a:int -> Lemma (pow a 0 = 1) val lemma_pow1: a:int -> Lemma (pow a 1 = a) val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b) val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)] val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)] val lemma_pow_nat_is_pow: a:int -> b:nat -> Lemma (pow a b == LE.pow mk_nat_comm_monoid a b) val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0) val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1) val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m)) val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m)) val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b)) val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n) val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n) let nat_mod (m:pos) = n:nat{n < m} let one_mod (#m:pos) : nat_mod m = 1 % m let mul_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = a * b % m let add_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a + b) % m let sub_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a - b) % m val lemma_mul_mod_one: #m:pos -> a:nat_mod m -> Lemma (mul_mod a one_mod == a) val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m -> Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c)) val lemma_mul_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m -> Lemma (mul_mod a b == mul_mod b a)
false
false
Lib.NatMod.fsti
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_nat_mod_comm_monoid (m: pos) : LE.comm_monoid (nat_mod m)
[]
Lib.NatMod.mk_nat_mod_comm_monoid
{ "file_name": "lib/Lib.NatMod.fsti", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
m: Prims.pos -> Lib.Exponentiation.Definition.comm_monoid (Lib.NatMod.nat_mod m)
{ "end_col": 41, "end_line": 71, "start_col": 2, "start_line": 67 }