effect
stringclasses 48
values | original_source_type
stringlengths 0
23k
| opens_and_abbrevs
listlengths 2
92
| isa_cross_project_example
bool 1
class | source_definition
stringlengths 9
57.9k
| partial_definition
stringlengths 7
23.3k
| is_div
bool 2
classes | is_type
null | is_proof
bool 2
classes | completed_definiton
stringlengths 1
250k
| dependencies
dict | effect_flags
sequencelengths 0
2
| ideal_premises
sequencelengths 0
236
| mutual_with
sequencelengths 0
11
| file_context
stringlengths 0
407k
| interleaved
bool 1
class | is_simply_typed
bool 2
classes | file_name
stringlengths 5
48
| vconfig
dict | is_simple_lemma
null | source_type
stringlengths 10
23k
| proof_features
sequencelengths 0
1
| name
stringlengths 8
95
| source
dict | verbose_type
stringlengths 1
7.42k
| source_range
dict |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Prims.Pure | val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let logxor x y = Mk (logxor (v x) (v y)) | val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z))
let logxor x y = | false | null | false | Mk (logxor (v x) (v y)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"FStar.UInt8.Mk",
"FStar.UInt.logxor",
"FStar.UInt8.n",
"FStar.UInt8.v"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
let sub_mod a b = Mk (sub_mod (v a) (v b))
let mul a b = Mk (mul (v a) (v b))
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
let mul_mod a b = Mk (mul_mod (v a) (v b))
let div a b = Mk (div (v a) (v b))
let rem a b = Mk (mod (v a) (v b))
let logand x y = Mk (logand (v x) (v y)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val logxor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logxor` v y == v z)) | [] | FStar.UInt8.logxor | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 40,
"end_line": 66,
"start_col": 17,
"start_line": 66
} |
Prims.Pure | val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let uint_to_t x = Mk x | val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x))
let uint_to_t x = | false | null | false | Mk x | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt.uint_t",
"FStar.UInt8.n",
"FStar.UInt8.Mk",
"FStar.UInt8.t"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val uint_to_t (x:uint_t n) : Pure t
(requires True)
(ensures (fun y -> v y = x)) | [] | FStar.UInt8.uint_to_t | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.UInt.uint_t FStar.UInt8.n -> Prims.Pure FStar.UInt8.t | {
"end_col": 22,
"end_line": 30,
"start_col": 18,
"start_line": 30
} |
Prims.Pure | val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let logor x y = Mk (logor (v x) (v y)) | val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z))
let logor x y = | false | null | false | Mk (logor (v x) (v y)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"FStar.UInt8.Mk",
"FStar.UInt.logor",
"FStar.UInt8.n",
"FStar.UInt8.v"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
let sub_mod a b = Mk (sub_mod (v a) (v b))
let mul a b = Mk (mul (v a) (v b))
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
let mul_mod a b = Mk (mul_mod (v a) (v b))
let div a b = Mk (div (v a) (v b))
let rem a b = Mk (mod (v a) (v b))
let logand x y = Mk (logand (v x) (v y))
let logxor x y = Mk (logxor (v x) (v y)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val logor (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logor` v y == v z)) | [] | FStar.UInt8.logor | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 38,
"end_line": 68,
"start_col": 16,
"start_line": 68
} |
Prims.Pure | val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lognot x = Mk (lognot (v x)) | val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z))
let lognot x = | false | null | false | Mk (lognot (v x)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"FStar.UInt8.Mk",
"FStar.UInt.lognot",
"FStar.UInt8.n",
"FStar.UInt8.v"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
let sub_mod a b = Mk (sub_mod (v a) (v b))
let mul a b = Mk (mul (v a) (v b))
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
let mul_mod a b = Mk (mul_mod (v a) (v b))
let div a b = Mk (div (v a) (v b))
let rem a b = Mk (mod (v a) (v b))
let logand x y = Mk (logand (v x) (v y))
let logxor x y = Mk (logxor (v x) (v y))
let logor x y = Mk (logor (v x) (v y)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lognot (x:t) : Pure t
(requires True)
(ensures (fun z -> lognot (v x) == v z)) | [] | FStar.UInt8.lognot | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 32,
"end_line": 70,
"start_col": 15,
"start_line": 70
} |
Prims.Pure | val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sub_mod a b = Mk (sub_mod (v a) (v b)) | val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
let sub_mod a b = | false | null | false | Mk (sub_mod (v a) (v b)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"FStar.UInt8.Mk",
"FStar.UInt.sub_mod",
"FStar.UInt8.n",
"FStar.UInt8.v"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sub_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) | [] | FStar.UInt8.sub_mod | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 42,
"end_line": 52,
"start_col": 18,
"start_line": 52
} |
Prims.Pure | val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_mod a b = Mk (add_mod (v a) (v b)) | val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
let add_mod a b = | false | null | false | Mk (add_mod (v a) (v b)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"FStar.UInt8.Mk",
"FStar.UInt.add_mod",
"FStar.UInt8.n",
"FStar.UInt8.v"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) | [] | FStar.UInt8.add_mod | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 42,
"end_line": 46,
"start_col": 18,
"start_line": 46
} |
Prims.Pure | val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let rem a b = Mk (mod (v a) (v b)) | val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
let rem a b = | false | null | false | Mk (mod (v a) (v b)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"Prims.b2t",
"Prims.op_disEquality",
"Prims.int",
"FStar.UInt8.v",
"FStar.UInt8.Mk",
"FStar.UInt.mod",
"FStar.UInt8.n"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
let sub_mod a b = Mk (sub_mod (v a) (v b))
let mul a b = Mk (mul (v a) (v b))
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
let mul_mod a b = Mk (mul_mod (v a) (v b))
let div a b = Mk (div (v a) (v b)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val rem (a:t) (b:t{v b <> 0}) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) | [] | FStar.UInt8.rem | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.UInt8.t{FStar.UInt8.v b <> 0} -> Prims.Pure FStar.UInt8.t | {
"end_col": 34,
"end_line": 62,
"start_col": 14,
"start_line": 62
} |
Prims.Pure | val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let shift_right a s = Mk (shift_right (v a) (UInt32.v s)) | val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
let shift_right a s = | false | null | false | Mk (shift_right (v a) (UInt32.v s)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"FStar.UInt32.t",
"FStar.UInt8.Mk",
"FStar.UInt.shift_right",
"FStar.UInt8.n",
"FStar.UInt8.v",
"FStar.UInt32.v"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
let sub_mod a b = Mk (sub_mod (v a) (v b))
let mul a b = Mk (mul (v a) (v b))
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
let mul_mod a b = Mk (mul_mod (v a) (v b))
let div a b = Mk (div (v a) (v b))
let rem a b = Mk (mod (v a) (v b))
let logand x y = Mk (logand (v x) (v y))
let logxor x y = Mk (logxor (v x) (v y))
let logor x y = Mk (logor (v x) (v y))
let lognot x = Mk (lognot (v x)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val shift_right (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c)) | [] | FStar.UInt8.shift_right | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 57,
"end_line": 72,
"start_col": 22,
"start_line": 72
} |
Prims.Pure | val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_mod a b = Mk (mul_mod (v a) (v b)) | val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
let mul_mod a b = | false | null | false | Mk (mul_mod (v a) (v b)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"FStar.UInt8.Mk",
"FStar.UInt.mul_mod",
"FStar.UInt8.n",
"FStar.UInt8.v"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
let sub_mod a b = Mk (sub_mod (v a) (v b))
let mul a b = Mk (mul (v a) (v b))
let mul_underspec a b = Mk (mul_underspec (v a) (v b)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_mod (a:t) (b:t) : Pure t
(requires True)
(ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) | [] | FStar.UInt8.mul_mod | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 42,
"end_line": 58,
"start_col": 18,
"start_line": 58
} |
Prims.Pure | val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let logand x y = Mk (logand (v x) (v y)) | val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z))
let logand x y = | false | null | false | Mk (logand (v x) (v y)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"FStar.UInt8.Mk",
"FStar.UInt.logand",
"FStar.UInt8.n",
"FStar.UInt8.v"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
let sub_mod a b = Mk (sub_mod (v a) (v b))
let mul a b = Mk (mul (v a) (v b))
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
let mul_mod a b = Mk (mul_mod (v a) (v b))
let div a b = Mk (div (v a) (v b))
let rem a b = Mk (mod (v a) (v b)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val logand (x:t) (y:t) : Pure t
(requires True)
(ensures (fun z -> v x `logand` v y = v z)) | [] | FStar.UInt8.logand | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 40,
"end_line": 64,
"start_col": 17,
"start_line": 64
} |
Prims.Pure | val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let shift_left a s = Mk (shift_left (v a) (UInt32.v s)) | val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
let shift_left a s = | false | null | false | Mk (shift_left (v a) (UInt32.v s)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"FStar.UInt32.t",
"FStar.UInt8.Mk",
"FStar.UInt.shift_left",
"FStar.UInt8.n",
"FStar.UInt8.v",
"FStar.UInt32.v"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
let sub_mod a b = Mk (sub_mod (v a) (v b))
let mul a b = Mk (mul (v a) (v b))
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
let mul_mod a b = Mk (mul_mod (v a) (v b))
let div a b = Mk (div (v a) (v b))
let rem a b = Mk (mod (v a) (v b))
let logand x y = Mk (logand (v x) (v y))
let logxor x y = Mk (logxor (v x) (v y))
let logor x y = Mk (logor (v x) (v y))
let lognot x = Mk (lognot (v x))
let shift_right a s = Mk (shift_right (v a) (UInt32.v s))
#push-options "--z3rlimit 80 --fuel 1" //AR: working around the interleaving semantics of pragmas | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 80,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val shift_left (a:t) (s:UInt32.t) : Pure t
(requires (UInt32.v s < n))
(ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c)) | [] | FStar.UInt8.shift_left | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t | {
"end_col": 55,
"end_line": 76,
"start_col": 21,
"start_line": 76
} |
Prims.Pure | val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c)) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let div a b = Mk (div (v a) (v b)) | val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c))
let div a b = | false | null | false | Mk (div (v a) (v b)) | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [] | [
"FStar.UInt8.t",
"Prims.b2t",
"Prims.op_disEquality",
"Prims.int",
"FStar.UInt8.v",
"FStar.UInt8.Mk",
"FStar.UInt.div",
"FStar.UInt8.n"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
let sub_mod a b = Mk (sub_mod (v a) (v b))
let mul a b = Mk (mul (v a) (v b))
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
let mul_mod a b = Mk (mul_mod (v a) (v b)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val div (a:t) (b:t{v b <> 0}) : Pure t
(requires (True))
(ensures (fun c -> v a / v b = v c)) | [] | FStar.UInt8.div | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.UInt8.t{FStar.UInt8.v b <> 0} -> Prims.Pure FStar.UInt8.t | {
"end_col": 34,
"end_line": 60,
"start_col": 14,
"start_line": 60
} |
FStar.Pervasives.Lemma | val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_sub_msbs a b
= from_vec_propriety (to_vec (v a)) 1;
from_vec_propriety (to_vec (v b)) 1;
from_vec_propriety (to_vec (v (sub_mod a b))) 1 | val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
let lemma_sub_msbs a b = | false | null | true | from_vec_propriety (to_vec (v a)) 1;
from_vec_propriety (to_vec (v b)) 1;
from_vec_propriety (to_vec (v (sub_mod a b))) 1 | {
"checked_file": "FStar.UInt8.fst.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "FStar.UInt8.fst"
} | [
"lemma"
] | [
"FStar.UInt8.t",
"FStar.UInt.from_vec_propriety",
"FStar.UInt8.n",
"FStar.UInt.to_vec",
"FStar.UInt8.v",
"FStar.UInt8.sub_mod",
"Prims.unit"
] | [] | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.UInt8
(**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****)
open FStar.UInt
open FStar.Mul
#set-options "--max_fuel 0 --max_ifuel 0"
type t : eqtype =
| Mk: v:uint_t n -> t
let v x = x.v
let uint_to_t x = Mk x
let uv_inv _ = ()
let vu_inv _ = ()
let v_inj _ _ = ()
let zero = uint_to_t 0
let one = uint_to_t 1
let add a b = Mk (add (v a) (v b))
let add_underspec a b = Mk (add_underspec (v a) (v b))
let add_mod a b = Mk (add_mod (v a) (v b))
let sub a b = Mk (sub (v a) (v b))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
let sub_mod a b = Mk (sub_mod (v a) (v b))
let mul a b = Mk (mul (v a) (v b))
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
let mul_mod a b = Mk (mul_mod (v a) (v b))
let div a b = Mk (div (v a) (v b))
let rem a b = Mk (mod (v a) (v b))
let logand x y = Mk (logand (v x) (v y))
let logxor x y = Mk (logxor (v x) (v y))
let logor x y = Mk (logor (v x) (v y))
let lognot x = Mk (lognot (v x))
let shift_right a s = Mk (shift_right (v a) (UInt32.v s))
#push-options "--z3rlimit 80 --fuel 1" //AR: working around the interleaving semantics of pragmas
let shift_left a s = Mk (shift_left (v a) (UInt32.v s)) | false | false | FStar.UInt8.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 80,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_sub_msbs (a:t) (b:t)
: Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b)))) | [] | FStar.UInt8.lemma_sub_msbs | {
"file_name": "ulib/FStar.UInt8.fst",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | a: FStar.UInt8.t -> b: FStar.UInt8.t
-> FStar.Pervasives.Lemma
(ensures
FStar.UInt.msb (FStar.UInt8.v a) = FStar.UInt.msb (FStar.UInt8.v b) ==>
(FStar.UInt8.v a < FStar.UInt8.v b <==>
FStar.UInt.msb (FStar.UInt8.v (FStar.UInt8.sub_mod a b)))) | {
"end_col": 53,
"end_line": 81,
"start_col": 6,
"start_line": 79
} |
Prims.Tot | val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0 | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Finv",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fsquare_times_inv #s h f =
match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True | val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f = | false | null | false | match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True | {
"checked_file": "Hacl.Impl.Curve25519.Finv.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Finv.fst"
} | [
"total"
] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Hacl.Impl.Curve25519.Fields.Core.f51_felem_fits",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Prims.l_True"
] | [] | module Hacl.Impl.Curve25519.Finv
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module ST = FStar.HyperStack.ST
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Hacl.Spec.Curve25519.Finv
module P = Spec.Curve25519
let _: squash (inversion field_spec) = allow_inversion field_spec
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options"
noextract
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0 | false | false | Hacl.Impl.Curve25519.Finv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0 | [] | Hacl.Impl.Curve25519.Finv.fsquare_times_inv | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | h: FStar.Monotonic.HyperStack.mem -> f: Hacl.Impl.Curve25519.Fields.Core.felem s -> Type0 | {
"end_col": 15,
"end_line": 26,
"start_col": 2,
"start_line": 24
} |
Prims.Tot | val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0 | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Finv",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fmuls_pre #s h f1 f2 =
match s with
| M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1)
| M64 -> True | val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0
let fmuls_pre #s h f1 f2 = | false | null | false | match s with
| M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1)
| M64 -> True | {
"checked_file": "Hacl.Impl.Curve25519.Finv.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Finv.fst"
} | [
"total"
] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"FStar.Monotonic.HyperStack.mem",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Prims.l_and",
"Hacl.Impl.Curve25519.Fields.Core.f51_felem_fits",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Prims.l_True"
] | [] | module Hacl.Impl.Curve25519.Finv
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module ST = FStar.HyperStack.ST
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Hacl.Spec.Curve25519.Finv
module P = Spec.Curve25519
let _: squash (inversion field_spec) = allow_inversion field_spec
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options"
noextract
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f =
match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True
val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
[@ Meta.Attribute.inline_ ]
let fsqr_s #s out f1 tmp =
C.fsqr #s out f1 tmp
noextract
val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0 | false | false | Hacl.Impl.Curve25519.Finv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0 | [] | Hacl.Impl.Curve25519.Finv.fmuls_pre | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
h: FStar.Monotonic.HyperStack.mem ->
f1: Hacl.Impl.Curve25519.Fields.Core.felem s ->
f2: Hacl.Impl.Curve25519.Fields.Core.felem s
-> Type0 | {
"end_col": 15,
"end_line": 55,
"start_col": 2,
"start_line": 53
} |
FStar.HyperStack.ST.Stack | val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1)) | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Finv",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fsqr_s #s out f1 tmp =
C.fsqr #s out f1 tmp | val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
let fsqr_s #s out f1 tmp = | true | null | false | C.fsqr #s out f1 tmp | {
"checked_file": "Hacl.Impl.Curve25519.Finv.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Finv.fst"
} | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide",
"Hacl.Impl.Curve25519.Fields.Core.fsqr",
"Prims.unit"
] | [] | module Hacl.Impl.Curve25519.Finv
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module ST = FStar.HyperStack.ST
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Hacl.Spec.Curve25519.Finv
module P = Spec.Curve25519
let _: squash (inversion field_spec) = allow_inversion field_spec
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options"
noextract
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f =
match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True
val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
[@ Meta.Attribute.inline_ ] | false | false | Hacl.Impl.Curve25519.Finv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1)) | [] | Hacl.Impl.Curve25519.Finv.fsqr_s | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
out: Hacl.Impl.Curve25519.Fields.Core.felem s ->
f1: Hacl.Impl.Curve25519.Fields.Core.felem s ->
tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide s
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 22,
"end_line": 47,
"start_col": 2,
"start_line": 47
} |
FStar.HyperStack.ST.Stack | val fmul_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> f2:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h f2 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out f2 \/ out == f2) /\
(disjoint out tmp) /\
(disjoint f1 f2 \/ f1 == f2) /\
disjoint f1 tmp /\
disjoint f2 tmp /\
fmuls_pre h f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f2)) | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Finv",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fmul_s #s out f1 f2 tmp =
C.fmul #s out f1 f2 tmp | val fmul_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> f2:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h f2 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out f2 \/ out == f2) /\
(disjoint out tmp) /\
(disjoint f1 f2 \/ f1 == f2) /\
disjoint f1 tmp /\
disjoint f2 tmp /\
fmuls_pre h f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
let fmul_s #s out f1 f2 tmp = | true | null | false | C.fmul #s out f1 f2 tmp | {
"checked_file": "Hacl.Impl.Curve25519.Finv.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Finv.fst"
} | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide2",
"Hacl.Impl.Curve25519.Fields.Core.fmul",
"Prims.unit"
] | [] | module Hacl.Impl.Curve25519.Finv
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module ST = FStar.HyperStack.ST
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Hacl.Spec.Curve25519.Finv
module P = Spec.Curve25519
let _: squash (inversion field_spec) = allow_inversion field_spec
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options"
noextract
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f =
match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True
val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
[@ Meta.Attribute.inline_ ]
let fsqr_s #s out f1 tmp =
C.fsqr #s out f1 tmp
noextract
val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0
let fmuls_pre #s h f1 f2 =
match s with
| M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1)
| M64 -> True
val fmul_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> f2:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h f2 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out f2 \/ out == f2) /\
(disjoint out tmp) /\
(disjoint f1 f2 \/ f1 == f2) /\
disjoint f1 tmp /\
disjoint f2 tmp /\
fmuls_pre h f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
[@ Meta.Attribute.inline_ ] | false | false | Hacl.Impl.Curve25519.Finv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fmul_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> f2:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h f2 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out f2 \/ out == f2) /\
(disjoint out tmp) /\
(disjoint f1 f2 \/ f1 == f2) /\
disjoint f1 tmp /\
disjoint f2 tmp /\
fmuls_pre h f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f2)) | [] | Hacl.Impl.Curve25519.Finv.fmul_s | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
out: Hacl.Impl.Curve25519.Fields.Core.felem s ->
f1: Hacl.Impl.Curve25519.Fields.Core.felem s ->
f2: Hacl.Impl.Curve25519.Fields.Core.felem s ->
tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide2 s
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 25,
"end_line": 79,
"start_col": 2,
"start_line": 79
} |
FStar.HyperStack.ST.Stack | val fsquare_times:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide s
-> n:size_t{v n > 0}
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
(disjoint o i \/ o == i) /\
disjoint o tmp /\
disjoint tmp i /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == S.pow (feval #s h0 i) (pow2 (v n))) | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Finv",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let fsquare_times #s o inp tmp n =
let h0 = ST.get() in
fsqr_s #s o inp tmp;
S.lemma_pow_one (feval h0 inp);
S.lemma_pow_add (feval h0 inp) 1 1;
assert_norm (pow2 1 = 2);
let inv (h:mem) (i:nat{i < v n}) =
modifies (loc o |+| loc tmp) h0 h /\
fsquare_times_inv #s h o /\
feval h o == S.pow (feval #s h0 inp) (pow2 (i + 1)) in
let h1 = ST.get () in
assert (inv h1 0);
Lib.Loops.for 0ul (n -! 1ul) inv
(fun i ->
let h2 = ST.get () in
fsqr_s #s o o tmp;
S.lemma_pow_add (feval #s h0 inp) (pow2 (v i + 1)) (pow2 (v i + 1));
Math.Lemmas.pow2_double_sum (v i + 1)) | val fsquare_times:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide s
-> n:size_t{v n > 0}
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
(disjoint o i \/ o == i) /\
disjoint o tmp /\
disjoint tmp i /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == S.pow (feval #s h0 i) (pow2 (v n)))
let fsquare_times #s o inp tmp n = | true | null | false | let h0 = ST.get () in
fsqr_s #s o inp tmp;
S.lemma_pow_one (feval h0 inp);
S.lemma_pow_add (feval h0 inp) 1 1;
assert_norm (pow2 1 = 2);
let inv (h: mem) (i: nat{i < v n}) =
modifies (loc o |+| loc tmp) h0 h /\ fsquare_times_inv #s h o /\
feval h o == S.pow (feval #s h0 inp) (pow2 (i + 1))
in
let h1 = ST.get () in
assert (inv h1 0);
Lib.Loops.for 0ul
(n -! 1ul)
inv
(fun i ->
let h2 = ST.get () in
fsqr_s #s o o tmp;
S.lemma_pow_add (feval #s h0 inp) (pow2 (v i + 1)) (pow2 (v i + 1));
Math.Lemmas.pow2_double_sum (v i + 1)) | {
"checked_file": "Hacl.Impl.Curve25519.Finv.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Finv.fst"
} | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide",
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Loops.for",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.op_Subtraction_Bang",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.Math.Lemmas.pow2_double_sum",
"Prims.op_Addition",
"Prims.unit",
"Hacl.Spec.Curve25519.Finv.lemma_pow_add",
"Hacl.Impl.Curve25519.Fields.Core.feval",
"Prims.pow2",
"Hacl.Impl.Curve25519.Finv.fsqr_s",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims._assert",
"Prims.nat",
"Prims.logical",
"Lib.Buffer.modifies",
"Lib.Buffer.op_Bar_Plus_Bar",
"Lib.Buffer.loc",
"Lib.Buffer.MUT",
"Hacl.Impl.Curve25519.Fields.Core.limb",
"Hacl.Impl.Curve25519.Fields.Core.wide",
"Hacl.Impl.Curve25519.Finv.fsquare_times_inv",
"Prims.eq2",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Finv.pow",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"Hacl.Spec.Curve25519.Finv.lemma_pow_one"
] | [] | module Hacl.Impl.Curve25519.Finv
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module ST = FStar.HyperStack.ST
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Hacl.Spec.Curve25519.Finv
module P = Spec.Curve25519
let _: squash (inversion field_spec) = allow_inversion field_spec
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options"
noextract
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f =
match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True
val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
[@ Meta.Attribute.inline_ ]
let fsqr_s #s out f1 tmp =
C.fsqr #s out f1 tmp
noextract
val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0
let fmuls_pre #s h f1 f2 =
match s with
| M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1)
| M64 -> True
val fmul_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> f2:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h f2 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out f2 \/ out == f2) /\
(disjoint out tmp) /\
(disjoint f1 f2 \/ f1 == f2) /\
disjoint f1 tmp /\
disjoint f2 tmp /\
fmuls_pre h f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
[@ Meta.Attribute.inline_ ]
let fmul_s #s out f1 f2 tmp =
C.fmul #s out f1 f2 tmp
val fsquare_times:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide s
-> n:size_t{v n > 0}
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
(disjoint o i \/ o == i) /\
disjoint o tmp /\
disjoint tmp i /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == S.pow (feval #s h0 i) (pow2 (v n))) | false | false | Hacl.Impl.Curve25519.Finv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val fsquare_times:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide s
-> n:size_t{v n > 0}
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
(disjoint o i \/ o == i) /\
disjoint o tmp /\
disjoint tmp i /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == S.pow (feval #s h0 i) (pow2 (v n))) | [] | Hacl.Impl.Curve25519.Finv.fsquare_times | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
o: Hacl.Impl.Curve25519.Fields.Core.felem s ->
i: Hacl.Impl.Curve25519.Fields.Core.felem s ->
tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide s ->
n: Lib.IntTypes.size_t{Lib.IntTypes.v n > 0}
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 42,
"end_line": 120,
"start_col": 34,
"start_line": 100
} |
FStar.HyperStack.ST.Stack | val finv3:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs /\
fsquare_times_inv h0 cs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let ts0 : felem s = gsub t1 (3ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 cs) 100 in
let t0 = P.fmul t0 (feval h0 cs) in
let t0 = S.fsquare_times t0 50 in
let t0 = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times t0 5 in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 ts0 == t0 /\ fsquare_times_inv h1 ts0)) | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Finv",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let finv3 #s t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2^200 - 2^100 *) fsquare_times #s t0 c tmp1 100ul;
(* 2^200 - 2^0 *) fmul_s #s t0 t0 c tmp;
(* 2^250 - 2^50 *) fsquare_times #s t0 t0 tmp1 50ul;
(* 2^250 - 2^0 *) fmul_s #s t0 t0 b tmp;
(* 2^255 - 2^5 *) fsquare_times #s t0 t0 tmp1 5ul | val finv3:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs /\
fsquare_times_inv h0 cs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let ts0 : felem s = gsub t1 (3ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 cs) 100 in
let t0 = P.fmul t0 (feval h0 cs) in
let t0 = S.fsquare_times t0 50 in
let t0 = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times t0 5 in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 ts0 == t0 /\ fsquare_times_inv h1 ts0))
let finv3 #s t1 tmp = | true | null | false | let h0 = ST.get () in
let a:felem s = sub t1 0ul (nlimb s) in
let b:felem s = sub t1 (nlimb s) (nlimb s) in
let c:felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0:felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1:felem_wide s = sub tmp 0ul (nwide s) in
fsquare_times #s t0 c tmp1 100ul;
fmul_s #s t0 t0 c tmp;
fsquare_times #s t0 t0 tmp1 50ul;
fmul_s #s t0 t0 b tmp;
fsquare_times #s t0 t0 tmp1 5ul | {
"checked_file": "Hacl.Impl.Curve25519.Finv.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Finv.fst"
} | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Lib.Buffer.lbuffer",
"Hacl.Impl.Curve25519.Fields.Core.limb",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Curve25519.Fields.Core.nlimb",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide2",
"Hacl.Impl.Curve25519.Finv.fsquare_times",
"Prims.unit",
"Hacl.Impl.Curve25519.Finv.fmul_s",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide",
"Lib.Buffer.sub",
"Lib.Buffer.MUT",
"Hacl.Impl.Curve25519.Fields.Core.wide",
"Lib.IntTypes.op_Plus_Dot",
"Hacl.Impl.Curve25519.Fields.Core.nwide",
"Lib.Buffer.lbuffer_t",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.Impl.Curve25519.Finv
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module ST = FStar.HyperStack.ST
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Hacl.Spec.Curve25519.Finv
module P = Spec.Curve25519
let _: squash (inversion field_spec) = allow_inversion field_spec
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options"
noextract
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f =
match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True
val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
[@ Meta.Attribute.inline_ ]
let fsqr_s #s out f1 tmp =
C.fsqr #s out f1 tmp
noextract
val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0
let fmuls_pre #s h f1 f2 =
match s with
| M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1)
| M64 -> True
val fmul_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> f2:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h f2 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out f2 \/ out == f2) /\
(disjoint out tmp) /\
(disjoint f1 f2 \/ f1 == f2) /\
disjoint f1 tmp /\
disjoint f2 tmp /\
fmuls_pre h f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
[@ Meta.Attribute.inline_ ]
let fmul_s #s out f1 f2 tmp =
C.fmul #s out f1 f2 tmp
val fsquare_times:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide s
-> n:size_t{v n > 0}
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
(disjoint o i \/ o == i) /\
disjoint o tmp /\
disjoint tmp i /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == S.pow (feval #s h0 i) (pow2 (v n)))
[@ Meta.Attribute.specialize ]
let fsquare_times #s o inp tmp n =
let h0 = ST.get() in
fsqr_s #s o inp tmp;
S.lemma_pow_one (feval h0 inp);
S.lemma_pow_add (feval h0 inp) 1 1;
assert_norm (pow2 1 = 2);
let inv (h:mem) (i:nat{i < v n}) =
modifies (loc o |+| loc tmp) h0 h /\
fsquare_times_inv #s h o /\
feval h o == S.pow (feval #s h0 inp) (pow2 (i + 1)) in
let h1 = ST.get () in
assert (inv h1 0);
Lib.Loops.for 0ul (n -! 1ul) inv
(fun i ->
let h2 = ST.get () in
fsqr_s #s o o tmp;
S.lemma_pow_add (feval #s h0 inp) (pow2 (v i + 1)) (pow2 (v i + 1));
Math.Lemmas.pow2_double_sum (v i + 1))
val finv1:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let a = S.fsquare_times (feval h0 i) 1 in
let t0 = S.fsquare_times a 2 in
let b = P.fmul t0 (feval h0 i) in
let a = P.fmul b a in
let t0 = S.fsquare_times a 1 in
let b = P.fmul t0 b in
let t0 = S.fsquare_times b 5 in
let b = P.fmul t0 b in
feval h1 as0 == a /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs))
[@ Meta.Attribute.inline_ ]
let finv1 #s i t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2 *) fsquare_times #s a i tmp1 1ul;
(* 8 *) fsquare_times #s t0 a tmp1 2ul;
(* 9 *) fmul_s #s b t0 i tmp;
(* 11 *) fmul_s #s a b a tmp;
(* 22 *) fsquare_times #s t0 a tmp1 1ul;
(* 2^5 - 2^0 = 31 *) fmul_s #s b t0 b tmp;
(* 2^10 - 2^5 *) fsquare_times #s t0 b tmp1 5ul;
(* 2^10 - 2^0 *) fmul_s #s b t0 b tmp
val finv2:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 bs) 10 in
let c = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times c 20 in
let t0 = P.fmul t0 c in
let t0 = S.fsquare_times t0 10 in
let b = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times b 50 in
let c = P.fmul t0 b in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs /\
feval h1 cs == c /\ fsquare_times_inv h1 cs))
[@ Meta.Attribute.inline_ ]
let finv2 #s t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2^20 - 2^10 *) fsquare_times #s t0 b tmp1 10ul;
(* 2^20 - 2^0 *) fmul_s #s c t0 b tmp;
(* 2^40 - 2^20 *) fsquare_times #s t0 c tmp1 20ul;
(* 2^40 - 2^0 *) fmul_s #s t0 t0 c tmp;
(* 2^50 - 2^10 *) fsquare_times #s t0 t0 tmp1 10ul;
(* 2^50 - 2^0 *) fmul_s #s b t0 b tmp;
(* 2^100 - 2^50 *) fsquare_times #s t0 b tmp1 50ul;
(* 2^100 - 2^0 *) fmul_s #s c t0 b tmp
val finv3:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs /\
fsquare_times_inv h0 cs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let ts0 : felem s = gsub t1 (3ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 cs) 100 in
let t0 = P.fmul t0 (feval h0 cs) in
let t0 = S.fsquare_times t0 50 in
let t0 = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times t0 5 in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 ts0 == t0 /\ fsquare_times_inv h1 ts0)) | false | false | Hacl.Impl.Curve25519.Finv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val finv3:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs /\
fsquare_times_inv h0 cs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let ts0 : felem s = gsub t1 (3ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 cs) 100 in
let t0 = P.fmul t0 (feval h0 cs) in
let t0 = S.fsquare_times t0 50 in
let t0 = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times t0 5 in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 ts0 == t0 /\ fsquare_times_inv h1 ts0)) | [] | Hacl.Impl.Curve25519.Finv.finv3 | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
t1:
Lib.Buffer.lbuffer (Hacl.Impl.Curve25519.Fields.Core.limb s)
(4ul *! Hacl.Impl.Curve25519.Fields.Core.nlimb s) ->
tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide2 s
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 51,
"end_line": 249,
"start_col": 21,
"start_line": 238
} |
FStar.HyperStack.ST.Stack | val finv1:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let a = S.fsquare_times (feval h0 i) 1 in
let t0 = S.fsquare_times a 2 in
let b = P.fmul t0 (feval h0 i) in
let a = P.fmul b a in
let t0 = S.fsquare_times a 1 in
let b = P.fmul t0 b in
let t0 = S.fsquare_times b 5 in
let b = P.fmul t0 b in
feval h1 as0 == a /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs)) | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Finv",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let finv1 #s i t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2 *) fsquare_times #s a i tmp1 1ul;
(* 8 *) fsquare_times #s t0 a tmp1 2ul;
(* 9 *) fmul_s #s b t0 i tmp;
(* 11 *) fmul_s #s a b a tmp;
(* 22 *) fsquare_times #s t0 a tmp1 1ul;
(* 2^5 - 2^0 = 31 *) fmul_s #s b t0 b tmp;
(* 2^10 - 2^5 *) fsquare_times #s t0 b tmp1 5ul;
(* 2^10 - 2^0 *) fmul_s #s b t0 b tmp | val finv1:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let a = S.fsquare_times (feval h0 i) 1 in
let t0 = S.fsquare_times a 2 in
let b = P.fmul t0 (feval h0 i) in
let a = P.fmul b a in
let t0 = S.fsquare_times a 1 in
let b = P.fmul t0 b in
let t0 = S.fsquare_times b 5 in
let b = P.fmul t0 b in
feval h1 as0 == a /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs))
let finv1 #s i t1 tmp = | true | null | false | let h0 = ST.get () in
let a:felem s = sub t1 0ul (nlimb s) in
let b:felem s = sub t1 (nlimb s) (nlimb s) in
let c:felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0:felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1:felem_wide s = sub tmp 0ul (nwide s) in
fsquare_times #s a i tmp1 1ul;
fsquare_times #s t0 a tmp1 2ul;
fmul_s #s b t0 i tmp;
fmul_s #s a b a tmp;
fsquare_times #s t0 a tmp1 1ul;
fmul_s #s b t0 b tmp;
fsquare_times #s t0 b tmp1 5ul;
fmul_s #s b t0 b tmp | {
"checked_file": "Hacl.Impl.Curve25519.Finv.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Finv.fst"
} | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Lib.Buffer.lbuffer",
"Hacl.Impl.Curve25519.Fields.Core.limb",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Curve25519.Fields.Core.nlimb",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide2",
"Hacl.Impl.Curve25519.Finv.fmul_s",
"Prims.unit",
"Hacl.Impl.Curve25519.Finv.fsquare_times",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide",
"Lib.Buffer.sub",
"Lib.Buffer.MUT",
"Hacl.Impl.Curve25519.Fields.Core.wide",
"Lib.IntTypes.op_Plus_Dot",
"Hacl.Impl.Curve25519.Fields.Core.nwide",
"Lib.Buffer.lbuffer_t",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.Impl.Curve25519.Finv
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module ST = FStar.HyperStack.ST
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Hacl.Spec.Curve25519.Finv
module P = Spec.Curve25519
let _: squash (inversion field_spec) = allow_inversion field_spec
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options"
noextract
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f =
match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True
val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
[@ Meta.Attribute.inline_ ]
let fsqr_s #s out f1 tmp =
C.fsqr #s out f1 tmp
noextract
val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0
let fmuls_pre #s h f1 f2 =
match s with
| M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1)
| M64 -> True
val fmul_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> f2:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h f2 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out f2 \/ out == f2) /\
(disjoint out tmp) /\
(disjoint f1 f2 \/ f1 == f2) /\
disjoint f1 tmp /\
disjoint f2 tmp /\
fmuls_pre h f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
[@ Meta.Attribute.inline_ ]
let fmul_s #s out f1 f2 tmp =
C.fmul #s out f1 f2 tmp
val fsquare_times:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide s
-> n:size_t{v n > 0}
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
(disjoint o i \/ o == i) /\
disjoint o tmp /\
disjoint tmp i /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == S.pow (feval #s h0 i) (pow2 (v n)))
[@ Meta.Attribute.specialize ]
let fsquare_times #s o inp tmp n =
let h0 = ST.get() in
fsqr_s #s o inp tmp;
S.lemma_pow_one (feval h0 inp);
S.lemma_pow_add (feval h0 inp) 1 1;
assert_norm (pow2 1 = 2);
let inv (h:mem) (i:nat{i < v n}) =
modifies (loc o |+| loc tmp) h0 h /\
fsquare_times_inv #s h o /\
feval h o == S.pow (feval #s h0 inp) (pow2 (i + 1)) in
let h1 = ST.get () in
assert (inv h1 0);
Lib.Loops.for 0ul (n -! 1ul) inv
(fun i ->
let h2 = ST.get () in
fsqr_s #s o o tmp;
S.lemma_pow_add (feval #s h0 inp) (pow2 (v i + 1)) (pow2 (v i + 1));
Math.Lemmas.pow2_double_sum (v i + 1))
val finv1:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let a = S.fsquare_times (feval h0 i) 1 in
let t0 = S.fsquare_times a 2 in
let b = P.fmul t0 (feval h0 i) in
let a = P.fmul b a in
let t0 = S.fsquare_times a 1 in
let b = P.fmul t0 b in
let t0 = S.fsquare_times b 5 in
let b = P.fmul t0 b in
feval h1 as0 == a /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs)) | false | false | Hacl.Impl.Curve25519.Finv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val finv1:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let a = S.fsquare_times (feval h0 i) 1 in
let t0 = S.fsquare_times a 2 in
let b = P.fmul t0 (feval h0 i) in
let a = P.fmul b a in
let t0 = S.fsquare_times a 1 in
let b = P.fmul t0 b in
let t0 = S.fsquare_times b 5 in
let b = P.fmul t0 b in
feval h1 as0 == a /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs)) | [] | Hacl.Impl.Curve25519.Finv.finv1 | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
i: Hacl.Impl.Curve25519.Fields.Core.felem s ->
t1:
Lib.Buffer.lbuffer (Hacl.Impl.Curve25519.Fields.Core.limb s)
(4ul *! Hacl.Impl.Curve25519.Fields.Core.nlimb s) ->
tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide2 s
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 39,
"end_line": 163,
"start_col": 23,
"start_line": 149
} |
FStar.HyperStack.ST.Stack | val finv0:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let a_s, t0_s = S.finv0 (feval h0 i) in
let a = gsub t1 0ul (nlimb s) in
let t0 = gsub t1 (3ul *! nlimb s) (nlimb s) in
fsquare_times_inv h1 a /\
fsquare_times_inv h1 t0 /\
(feval h1 a, feval h1 t0) == (a_s, t0_s))) | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Finv",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let finv0 #s i t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
finv1 #s i t1 tmp;
finv2 #s t1 tmp;
finv3 #s t1 tmp;
let h1 = ST.get () in
assert (fsquare_times_inv h1 t0);
assert (fsquare_times_inv h1 a);
assert (modifies (loc t1 |+| loc tmp) h0 h1);
assert ( (feval h1 a, feval h1 t0) == S.finv0 (feval h0 i)) | val finv0:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let a_s, t0_s = S.finv0 (feval h0 i) in
let a = gsub t1 0ul (nlimb s) in
let t0 = gsub t1 (3ul *! nlimb s) (nlimb s) in
fsquare_times_inv h1 a /\
fsquare_times_inv h1 t0 /\
(feval h1 a, feval h1 t0) == (a_s, t0_s)))
let finv0 #s i t1 tmp = | true | null | false | let h0 = ST.get () in
let a:felem s = sub t1 0ul (nlimb s) in
let b:felem s = sub t1 (nlimb s) (nlimb s) in
let c:felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0:felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
finv1 #s i t1 tmp;
finv2 #s t1 tmp;
finv3 #s t1 tmp;
let h1 = ST.get () in
assert (fsquare_times_inv h1 t0);
assert (fsquare_times_inv h1 a);
assert (modifies (loc t1 |+| loc tmp) h0 h1);
assert ((feval h1 a, feval h1 t0) == S.finv0 (feval h0 i)) | {
"checked_file": "Hacl.Impl.Curve25519.Finv.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Finv.fst"
} | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Lib.Buffer.lbuffer",
"Hacl.Impl.Curve25519.Fields.Core.limb",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Curve25519.Fields.Core.nlimb",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide2",
"Prims._assert",
"Prims.eq2",
"FStar.Pervasives.Native.tuple2",
"Spec.Curve25519.elem",
"FStar.Pervasives.Native.Mktuple2",
"Hacl.Impl.Curve25519.Fields.Core.feval",
"Hacl.Spec.Curve25519.Finv.finv0",
"Prims.unit",
"Lib.Buffer.modifies",
"Lib.Buffer.op_Bar_Plus_Bar",
"Lib.Buffer.loc",
"Lib.Buffer.MUT",
"Hacl.Impl.Curve25519.Fields.Core.wide",
"Hacl.Impl.Curve25519.Finv.fsquare_times_inv",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.Curve25519.Finv.finv3",
"Hacl.Impl.Curve25519.Finv.finv2",
"Hacl.Impl.Curve25519.Finv.finv1",
"Lib.Buffer.sub",
"Lib.Buffer.lbuffer_t"
] | [] | module Hacl.Impl.Curve25519.Finv
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module ST = FStar.HyperStack.ST
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Hacl.Spec.Curve25519.Finv
module P = Spec.Curve25519
let _: squash (inversion field_spec) = allow_inversion field_spec
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options"
noextract
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f =
match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True
val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
[@ Meta.Attribute.inline_ ]
let fsqr_s #s out f1 tmp =
C.fsqr #s out f1 tmp
noextract
val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0
let fmuls_pre #s h f1 f2 =
match s with
| M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1)
| M64 -> True
val fmul_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> f2:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h f2 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out f2 \/ out == f2) /\
(disjoint out tmp) /\
(disjoint f1 f2 \/ f1 == f2) /\
disjoint f1 tmp /\
disjoint f2 tmp /\
fmuls_pre h f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
[@ Meta.Attribute.inline_ ]
let fmul_s #s out f1 f2 tmp =
C.fmul #s out f1 f2 tmp
val fsquare_times:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide s
-> n:size_t{v n > 0}
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
(disjoint o i \/ o == i) /\
disjoint o tmp /\
disjoint tmp i /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == S.pow (feval #s h0 i) (pow2 (v n)))
[@ Meta.Attribute.specialize ]
let fsquare_times #s o inp tmp n =
let h0 = ST.get() in
fsqr_s #s o inp tmp;
S.lemma_pow_one (feval h0 inp);
S.lemma_pow_add (feval h0 inp) 1 1;
assert_norm (pow2 1 = 2);
let inv (h:mem) (i:nat{i < v n}) =
modifies (loc o |+| loc tmp) h0 h /\
fsquare_times_inv #s h o /\
feval h o == S.pow (feval #s h0 inp) (pow2 (i + 1)) in
let h1 = ST.get () in
assert (inv h1 0);
Lib.Loops.for 0ul (n -! 1ul) inv
(fun i ->
let h2 = ST.get () in
fsqr_s #s o o tmp;
S.lemma_pow_add (feval #s h0 inp) (pow2 (v i + 1)) (pow2 (v i + 1));
Math.Lemmas.pow2_double_sum (v i + 1))
val finv1:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let a = S.fsquare_times (feval h0 i) 1 in
let t0 = S.fsquare_times a 2 in
let b = P.fmul t0 (feval h0 i) in
let a = P.fmul b a in
let t0 = S.fsquare_times a 1 in
let b = P.fmul t0 b in
let t0 = S.fsquare_times b 5 in
let b = P.fmul t0 b in
feval h1 as0 == a /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs))
[@ Meta.Attribute.inline_ ]
let finv1 #s i t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2 *) fsquare_times #s a i tmp1 1ul;
(* 8 *) fsquare_times #s t0 a tmp1 2ul;
(* 9 *) fmul_s #s b t0 i tmp;
(* 11 *) fmul_s #s a b a tmp;
(* 22 *) fsquare_times #s t0 a tmp1 1ul;
(* 2^5 - 2^0 = 31 *) fmul_s #s b t0 b tmp;
(* 2^10 - 2^5 *) fsquare_times #s t0 b tmp1 5ul;
(* 2^10 - 2^0 *) fmul_s #s b t0 b tmp
val finv2:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 bs) 10 in
let c = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times c 20 in
let t0 = P.fmul t0 c in
let t0 = S.fsquare_times t0 10 in
let b = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times b 50 in
let c = P.fmul t0 b in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs /\
feval h1 cs == c /\ fsquare_times_inv h1 cs))
[@ Meta.Attribute.inline_ ]
let finv2 #s t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2^20 - 2^10 *) fsquare_times #s t0 b tmp1 10ul;
(* 2^20 - 2^0 *) fmul_s #s c t0 b tmp;
(* 2^40 - 2^20 *) fsquare_times #s t0 c tmp1 20ul;
(* 2^40 - 2^0 *) fmul_s #s t0 t0 c tmp;
(* 2^50 - 2^10 *) fsquare_times #s t0 t0 tmp1 10ul;
(* 2^50 - 2^0 *) fmul_s #s b t0 b tmp;
(* 2^100 - 2^50 *) fsquare_times #s t0 b tmp1 50ul;
(* 2^100 - 2^0 *) fmul_s #s c t0 b tmp
val finv3:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs /\
fsquare_times_inv h0 cs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let ts0 : felem s = gsub t1 (3ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 cs) 100 in
let t0 = P.fmul t0 (feval h0 cs) in
let t0 = S.fsquare_times t0 50 in
let t0 = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times t0 5 in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 ts0 == t0 /\ fsquare_times_inv h1 ts0))
[@ Meta.Attribute.inline_ ]
let finv3 #s t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2^200 - 2^100 *) fsquare_times #s t0 c tmp1 100ul;
(* 2^200 - 2^0 *) fmul_s #s t0 t0 c tmp;
(* 2^250 - 2^50 *) fsquare_times #s t0 t0 tmp1 50ul;
(* 2^250 - 2^0 *) fmul_s #s t0 t0 b tmp;
(* 2^255 - 2^5 *) fsquare_times #s t0 t0 tmp1 5ul
val finv0:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let a_s, t0_s = S.finv0 (feval h0 i) in
let a = gsub t1 0ul (nlimb s) in
let t0 = gsub t1 (3ul *! nlimb s) (nlimb s) in
fsquare_times_inv h1 a /\
fsquare_times_inv h1 t0 /\
(feval h1 a, feval h1 t0) == (a_s, t0_s))) | false | false | Hacl.Impl.Curve25519.Finv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val finv0:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let a_s, t0_s = S.finv0 (feval h0 i) in
let a = gsub t1 0ul (nlimb s) in
let t0 = gsub t1 (3ul *! nlimb s) (nlimb s) in
fsquare_times_inv h1 a /\
fsquare_times_inv h1 t0 /\
(feval h1 a, feval h1 t0) == (a_s, t0_s))) | [] | Hacl.Impl.Curve25519.Finv.finv0 | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
i: Hacl.Impl.Curve25519.Fields.Core.felem s ->
t1:
Lib.Buffer.lbuffer (Hacl.Impl.Curve25519.Fields.Core.limb s)
(4ul *! Hacl.Impl.Curve25519.Fields.Core.nlimb s) ->
tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide2 s
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 61,
"end_line": 285,
"start_col": 23,
"start_line": 272
} |
FStar.HyperStack.ST.Stack | val finv2:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 bs) 10 in
let c = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times c 20 in
let t0 = P.fmul t0 c in
let t0 = S.fsquare_times t0 10 in
let b = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times b 50 in
let c = P.fmul t0 b in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs /\
feval h1 cs == c /\ fsquare_times_inv h1 cs)) | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Finv",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let finv2 #s t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2^20 - 2^10 *) fsquare_times #s t0 b tmp1 10ul;
(* 2^20 - 2^0 *) fmul_s #s c t0 b tmp;
(* 2^40 - 2^20 *) fsquare_times #s t0 c tmp1 20ul;
(* 2^40 - 2^0 *) fmul_s #s t0 t0 c tmp;
(* 2^50 - 2^10 *) fsquare_times #s t0 t0 tmp1 10ul;
(* 2^50 - 2^0 *) fmul_s #s b t0 b tmp;
(* 2^100 - 2^50 *) fsquare_times #s t0 b tmp1 50ul;
(* 2^100 - 2^0 *) fmul_s #s c t0 b tmp | val finv2:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 bs) 10 in
let c = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times c 20 in
let t0 = P.fmul t0 c in
let t0 = S.fsquare_times t0 10 in
let b = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times b 50 in
let c = P.fmul t0 b in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs /\
feval h1 cs == c /\ fsquare_times_inv h1 cs))
let finv2 #s t1 tmp = | true | null | false | let h0 = ST.get () in
let a:felem s = sub t1 0ul (nlimb s) in
let b:felem s = sub t1 (nlimb s) (nlimb s) in
let c:felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0:felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1:felem_wide s = sub tmp 0ul (nwide s) in
fsquare_times #s t0 b tmp1 10ul;
fmul_s #s c t0 b tmp;
fsquare_times #s t0 c tmp1 20ul;
fmul_s #s t0 t0 c tmp;
fsquare_times #s t0 t0 tmp1 10ul;
fmul_s #s b t0 b tmp;
fsquare_times #s t0 b tmp1 50ul;
fmul_s #s c t0 b tmp | {
"checked_file": "Hacl.Impl.Curve25519.Finv.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Finv.fst"
} | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Lib.Buffer.lbuffer",
"Hacl.Impl.Curve25519.Fields.Core.limb",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Curve25519.Fields.Core.nlimb",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide2",
"Hacl.Impl.Curve25519.Finv.fmul_s",
"Prims.unit",
"Hacl.Impl.Curve25519.Finv.fsquare_times",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide",
"Lib.Buffer.sub",
"Lib.Buffer.MUT",
"Hacl.Impl.Curve25519.Fields.Core.wide",
"Lib.IntTypes.op_Plus_Dot",
"Hacl.Impl.Curve25519.Fields.Core.nwide",
"Lib.Buffer.lbuffer_t",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get"
] | [] | module Hacl.Impl.Curve25519.Finv
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module ST = FStar.HyperStack.ST
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Hacl.Spec.Curve25519.Finv
module P = Spec.Curve25519
let _: squash (inversion field_spec) = allow_inversion field_spec
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options"
noextract
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f =
match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True
val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
[@ Meta.Attribute.inline_ ]
let fsqr_s #s out f1 tmp =
C.fsqr #s out f1 tmp
noextract
val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0
let fmuls_pre #s h f1 f2 =
match s with
| M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1)
| M64 -> True
val fmul_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> f2:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h f2 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out f2 \/ out == f2) /\
(disjoint out tmp) /\
(disjoint f1 f2 \/ f1 == f2) /\
disjoint f1 tmp /\
disjoint f2 tmp /\
fmuls_pre h f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
[@ Meta.Attribute.inline_ ]
let fmul_s #s out f1 f2 tmp =
C.fmul #s out f1 f2 tmp
val fsquare_times:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide s
-> n:size_t{v n > 0}
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
(disjoint o i \/ o == i) /\
disjoint o tmp /\
disjoint tmp i /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == S.pow (feval #s h0 i) (pow2 (v n)))
[@ Meta.Attribute.specialize ]
let fsquare_times #s o inp tmp n =
let h0 = ST.get() in
fsqr_s #s o inp tmp;
S.lemma_pow_one (feval h0 inp);
S.lemma_pow_add (feval h0 inp) 1 1;
assert_norm (pow2 1 = 2);
let inv (h:mem) (i:nat{i < v n}) =
modifies (loc o |+| loc tmp) h0 h /\
fsquare_times_inv #s h o /\
feval h o == S.pow (feval #s h0 inp) (pow2 (i + 1)) in
let h1 = ST.get () in
assert (inv h1 0);
Lib.Loops.for 0ul (n -! 1ul) inv
(fun i ->
let h2 = ST.get () in
fsqr_s #s o o tmp;
S.lemma_pow_add (feval #s h0 inp) (pow2 (v i + 1)) (pow2 (v i + 1));
Math.Lemmas.pow2_double_sum (v i + 1))
val finv1:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let a = S.fsquare_times (feval h0 i) 1 in
let t0 = S.fsquare_times a 2 in
let b = P.fmul t0 (feval h0 i) in
let a = P.fmul b a in
let t0 = S.fsquare_times a 1 in
let b = P.fmul t0 b in
let t0 = S.fsquare_times b 5 in
let b = P.fmul t0 b in
feval h1 as0 == a /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs))
[@ Meta.Attribute.inline_ ]
let finv1 #s i t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2 *) fsquare_times #s a i tmp1 1ul;
(* 8 *) fsquare_times #s t0 a tmp1 2ul;
(* 9 *) fmul_s #s b t0 i tmp;
(* 11 *) fmul_s #s a b a tmp;
(* 22 *) fsquare_times #s t0 a tmp1 1ul;
(* 2^5 - 2^0 = 31 *) fmul_s #s b t0 b tmp;
(* 2^10 - 2^5 *) fsquare_times #s t0 b tmp1 5ul;
(* 2^10 - 2^0 *) fmul_s #s b t0 b tmp
val finv2:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 bs) 10 in
let c = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times c 20 in
let t0 = P.fmul t0 c in
let t0 = S.fsquare_times t0 10 in
let b = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times b 50 in
let c = P.fmul t0 b in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs /\
feval h1 cs == c /\ fsquare_times_inv h1 cs)) | false | false | Hacl.Impl.Curve25519.Finv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val finv2:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 bs) 10 in
let c = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times c 20 in
let t0 = P.fmul t0 c in
let t0 = S.fsquare_times t0 10 in
let b = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times b 50 in
let c = P.fmul t0 b in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs /\
feval h1 cs == c /\ fsquare_times_inv h1 cs)) | [] | Hacl.Impl.Curve25519.Finv.finv2 | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
t1:
Lib.Buffer.lbuffer (Hacl.Impl.Curve25519.Fields.Core.limb s)
(4ul *! Hacl.Impl.Curve25519.Fields.Core.nlimb s) ->
tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide2 s
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 40,
"end_line": 208,
"start_col": 21,
"start_line": 194
} |
FStar.HyperStack.ST.Stack | val finv:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
disjoint o i /\ disjoint i tmp /\
(disjoint o tmp) /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == P.fpow (feval #s h0 i) (pow2 255 - 21)) | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Finv",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let finv #s o i tmp =
push_frame();
let t1 = create (4ul *! nlimb s) (limb_zero s) in
let h0 = ST.get () in
finv0 #s i t1 tmp;
let a : felem s = sub t1 0ul (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
(* 2^255 - 21 *) fmul_s #s o t0 a tmp;
let h1 = ST.get () in
assert (feval h1 o == S.finv (feval h0 i));
pop_frame() | val finv:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
disjoint o i /\ disjoint i tmp /\
(disjoint o tmp) /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == P.fpow (feval #s h0 i) (pow2 255 - 21))
let finv #s o i tmp = | true | null | false | push_frame ();
let t1 = create (4ul *! nlimb s) (limb_zero s) in
let h0 = ST.get () in
finv0 #s i t1 tmp;
let a:felem s = sub t1 0ul (nlimb s) in
let t0:felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
fmul_s #s o t0 a tmp;
let h1 = ST.get () in
assert (feval h1 o == S.finv (feval h0 i));
pop_frame () | {
"checked_file": "Hacl.Impl.Curve25519.Finv.fst.checked",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"Lib.Loops.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Finv.fst"
} | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Hacl.Impl.Curve25519.Fields.Core.felem",
"Hacl.Impl.Curve25519.Fields.Core.felem_wide2",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Spec.Curve25519.elem",
"Hacl.Impl.Curve25519.Fields.Core.feval",
"Hacl.Spec.Curve25519.Finv.finv",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.Curve25519.Finv.fmul_s",
"Lib.Buffer.sub",
"Lib.Buffer.MUT",
"Hacl.Impl.Curve25519.Fields.Core.limb",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.Curve25519.Fields.Core.nlimb",
"Lib.Buffer.lbuffer_t",
"Hacl.Impl.Curve25519.Finv.finv0",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.mul",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Hacl.Impl.Curve25519.Fields.Core.limb_zero",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Impl.Curve25519.Finv
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module ST = FStar.HyperStack.ST
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Hacl.Spec.Curve25519.Finv
module P = Spec.Curve25519
let _: squash (inversion field_spec) = allow_inversion field_spec
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options"
noextract
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f =
match s with
| M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1)
| M64 -> True
val fsqr_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> tmp:felem_wide s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out tmp) /\
disjoint tmp f1 /\
fsquare_times_inv h f1)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
[@ Meta.Attribute.inline_ ]
let fsqr_s #s out f1 tmp =
C.fsqr #s out f1 tmp
noextract
val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0
let fmuls_pre #s h f1 f2 =
match s with
| M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1)
| M64 -> True
val fmul_s:
#s:field_spec
-> out:felem s
-> f1:felem s
-> f2:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h ->
live h out /\ live h f1 /\ live h f2 /\ live h tmp /\
(disjoint out f1 \/ out == f1) /\
(disjoint out f2 \/ out == f2) /\
(disjoint out tmp) /\
(disjoint f1 f2 \/ f1 == f2) /\
disjoint f1 tmp /\
disjoint f2 tmp /\
fmuls_pre h f1 f2)
(ensures fun h0 _ h1 ->
modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\
feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
[@ Meta.Attribute.inline_ ]
let fmul_s #s out f1 f2 tmp =
C.fmul #s out f1 f2 tmp
val fsquare_times:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide s
-> n:size_t{v n > 0}
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
(disjoint o i \/ o == i) /\
disjoint o tmp /\
disjoint tmp i /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == S.pow (feval #s h0 i) (pow2 (v n)))
[@ Meta.Attribute.specialize ]
let fsquare_times #s o inp tmp n =
let h0 = ST.get() in
fsqr_s #s o inp tmp;
S.lemma_pow_one (feval h0 inp);
S.lemma_pow_add (feval h0 inp) 1 1;
assert_norm (pow2 1 = 2);
let inv (h:mem) (i:nat{i < v n}) =
modifies (loc o |+| loc tmp) h0 h /\
fsquare_times_inv #s h o /\
feval h o == S.pow (feval #s h0 inp) (pow2 (i + 1)) in
let h1 = ST.get () in
assert (inv h1 0);
Lib.Loops.for 0ul (n -! 1ul) inv
(fun i ->
let h2 = ST.get () in
fsqr_s #s o o tmp;
S.lemma_pow_add (feval #s h0 inp) (pow2 (v i + 1)) (pow2 (v i + 1));
Math.Lemmas.pow2_double_sum (v i + 1))
val finv1:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let a = S.fsquare_times (feval h0 i) 1 in
let t0 = S.fsquare_times a 2 in
let b = P.fmul t0 (feval h0 i) in
let a = P.fmul b a in
let t0 = S.fsquare_times a 1 in
let b = P.fmul t0 b in
let t0 = S.fsquare_times b 5 in
let b = P.fmul t0 b in
feval h1 as0 == a /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs))
[@ Meta.Attribute.inline_ ]
let finv1 #s i t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2 *) fsquare_times #s a i tmp1 1ul;
(* 8 *) fsquare_times #s t0 a tmp1 2ul;
(* 9 *) fmul_s #s b t0 i tmp;
(* 11 *) fmul_s #s a b a tmp;
(* 22 *) fsquare_times #s t0 a tmp1 1ul;
(* 2^5 - 2^0 = 31 *) fmul_s #s b t0 b tmp;
(* 2^10 - 2^5 *) fsquare_times #s t0 b tmp1 5ul;
(* 2^10 - 2^0 *) fmul_s #s b t0 b tmp
val finv2:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 bs) 10 in
let c = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times c 20 in
let t0 = P.fmul t0 c in
let t0 = S.fsquare_times t0 10 in
let b = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times b 50 in
let c = P.fmul t0 b in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 bs == b /\ fsquare_times_inv h1 bs /\
feval h1 cs == c /\ fsquare_times_inv h1 cs))
[@ Meta.Attribute.inline_ ]
let finv2 #s t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2^20 - 2^10 *) fsquare_times #s t0 b tmp1 10ul;
(* 2^20 - 2^0 *) fmul_s #s c t0 b tmp;
(* 2^40 - 2^20 *) fsquare_times #s t0 c tmp1 20ul;
(* 2^40 - 2^0 *) fmul_s #s t0 t0 c tmp;
(* 2^50 - 2^10 *) fsquare_times #s t0 t0 tmp1 10ul;
(* 2^50 - 2^0 *) fmul_s #s b t0 b tmp;
(* 2^100 - 2^50 *) fsquare_times #s t0 b tmp1 50ul;
(* 2^100 - 2^0 *) fmul_s #s c t0 b tmp
val finv3:
#s:field_spec
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s ->
Stack unit
(requires fun h0 ->
live h0 t1 /\ live h0 tmp /\ disjoint t1 tmp /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
fsquare_times_inv h0 as0 /\ fsquare_times_inv h0 bs /\
fsquare_times_inv h0 cs))
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let as0 : felem s = gsub t1 0ul (nlimb s) in
let bs : felem s = gsub t1 (nlimb s) (nlimb s) in
let cs : felem s = gsub t1 (2ul *! nlimb s) (nlimb s) in
let ts0 : felem s = gsub t1 (3ul *! nlimb s) (nlimb s) in
let t0 = S.fsquare_times (feval h0 cs) 100 in
let t0 = P.fmul t0 (feval h0 cs) in
let t0 = S.fsquare_times t0 50 in
let t0 = P.fmul t0 (feval h0 bs) in
let t0 = S.fsquare_times t0 5 in
feval h1 as0 == feval h0 as0 /\ fsquare_times_inv h1 as0 /\
feval h1 ts0 == t0 /\ fsquare_times_inv h1 ts0))
[@ Meta.Attribute.inline_ ]
let finv3 #s t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
let tmp1 : felem_wide s = sub tmp 0ul (nwide s) in
(* 2^200 - 2^100 *) fsquare_times #s t0 c tmp1 100ul;
(* 2^200 - 2^0 *) fmul_s #s t0 t0 c tmp;
(* 2^250 - 2^50 *) fsquare_times #s t0 t0 tmp1 50ul;
(* 2^250 - 2^0 *) fmul_s #s t0 t0 b tmp;
(* 2^255 - 2^5 *) fsquare_times #s t0 t0 tmp1 5ul
val finv0:
#s:field_spec
-> i:felem s
-> t1:lbuffer (limb s) (4ul *! nlimb s)
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h0 ->
live h0 i /\ live h0 t1 /\ live h0 tmp /\
disjoint i t1 /\ disjoint i tmp /\ disjoint t1 tmp /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc t1 |+| loc tmp) h0 h1 /\
(let a_s, t0_s = S.finv0 (feval h0 i) in
let a = gsub t1 0ul (nlimb s) in
let t0 = gsub t1 (3ul *! nlimb s) (nlimb s) in
fsquare_times_inv h1 a /\
fsquare_times_inv h1 t0 /\
(feval h1 a, feval h1 t0) == (a_s, t0_s)))
[@ Meta.Attribute.inline_ ]
let finv0 #s i t1 tmp =
let h0 = ST.get () in
let a : felem s = sub t1 0ul (nlimb s) in
let b : felem s = sub t1 (nlimb s) (nlimb s) in
let c : felem s = sub t1 (2ul *! nlimb s) (nlimb s) in
let t0 : felem s = sub t1 (3ul *! nlimb s) (nlimb s) in
finv1 #s i t1 tmp;
finv2 #s t1 tmp;
finv3 #s t1 tmp;
let h1 = ST.get () in
assert (fsquare_times_inv h1 t0);
assert (fsquare_times_inv h1 a);
assert (modifies (loc t1 |+| loc tmp) h0 h1);
assert ( (feval h1 a, feval h1 t0) == S.finv0 (feval h0 i))
val finv:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
disjoint o i /\ disjoint i tmp /\
(disjoint o tmp) /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == P.fpow (feval #s h0 i) (pow2 255 - 21))
[@ Meta.Attribute.specialize ] | false | false | Hacl.Impl.Curve25519.Finv.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val finv:
#s:field_spec
-> o:felem s
-> i:felem s
-> tmp:felem_wide2 s
-> Stack unit
(requires fun h0 ->
live h0 o /\ live h0 i /\ live h0 tmp /\
disjoint o i /\ disjoint i tmp /\
(disjoint o tmp) /\
fsquare_times_inv h0 i)
(ensures fun h0 _ h1 ->
modifies (loc o |+| loc tmp) h0 h1 /\
fsquare_times_inv h1 o /\
feval h1 o == P.fpow (feval #s h0 i) (pow2 255 - 21)) | [] | Hacl.Impl.Curve25519.Finv.finv | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
o: Hacl.Impl.Curve25519.Fields.Core.felem s ->
i: Hacl.Impl.Curve25519.Fields.Core.felem s ->
tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide2 s
-> FStar.HyperStack.ST.Stack Prims.unit | {
"end_col": 13,
"end_line": 314,
"start_col": 2,
"start_line": 305
} |
Prims.Tot | val exp_mont_ladder (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0 | val exp_mont_ladder (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
let exp_mont_ladder (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t = | false | null | false | let r0, r1 = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0 | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.Native.tuple2",
"Lib.LoopCombinators.repeati",
"Lib.Exponentiation.exp_mont_ladder_f",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Exponentiation.Definition.one"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_mont_ladder (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t | [] | Lib.Exponentiation.exp_mont_ladder | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits}
-> t | {
"end_col": 4,
"end_line": 49,
"start_col": 95,
"start_line": 47
} |
Prims.Tot | val exp_lr (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one | val exp_lr (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
let exp_lr (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t = | false | null | false | Loops.repeati bBits (exp_lr_f k a bBits b) one | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Lib.LoopCombinators.repeati",
"Lib.Exponentiation.exp_lr_f",
"Lib.Exponentiation.Definition.one"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_lr (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t | [] | Lib.Exponentiation.exp_lr | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits}
-> t | {
"end_col": 48,
"end_line": 34,
"start_col": 2,
"start_line": 34
} |
Prims.Tot | val exp_mont_ladder_swap2 (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits})
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0 | val exp_mont_ladder_swap2 (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits})
: t
let exp_mont_ladder_swap2 (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits})
: t = | false | null | false | let r0, r1 = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0 | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.Native.tuple2",
"Lib.LoopCombinators.repeati",
"Lib.Exponentiation.exp_mont_ladder_swap2_f",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Exponentiation.Definition.one"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_mont_ladder_swap2 (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits})
: t | [] | Lib.Exponentiation.exp_mont_ladder_swap2 | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits}
-> t | {
"end_col": 4,
"end_line": 69,
"start_col": 101,
"start_line": 67
} |
Prims.Tot | val exp_mont_ladder_swap (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits})
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0 | val exp_mont_ladder_swap (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits})
: t
let exp_mont_ladder_swap (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits})
: t = | false | null | false | let r0, r1, sw = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let r0, r1 = cswap sw r0 r1 in
r0 | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.Native.tuple2",
"Lib.Exponentiation.cswap",
"FStar.Pervasives.Native.tuple3",
"Lib.LoopCombinators.repeati",
"Lib.Exponentiation.exp_mont_ladder_swap_f",
"FStar.Pervasives.Native.Mktuple3",
"Lib.Exponentiation.Definition.one"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_mont_ladder_swap (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits})
: t | [] | Lib.Exponentiation.exp_mont_ladder_swap | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits}
-> t | {
"end_col": 4,
"end_line": 86,
"start_col": 100,
"start_line": 83
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c) | let exp_rl_f
(#t: Type)
(k: comm_monoid t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(i: nat{i < bBits})
(acc, c: tuple2 t t)
: tuple2 t t = | false | null | false | let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c) | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Exponentiation.Definition.mul",
"Prims.op_Equality",
"Prims.int",
"Lib.Exponentiation.get_ith_bit",
"Prims.bool"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2 | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_rl_f : k: Lib.Exponentiation.Definition.comm_monoid t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
i: Prims.nat{i < bBits} ->
_: (t * t)
-> t * t | [] | Lib.Exponentiation.exp_rl_f | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
i: Prims.nat{i < bBits} ->
_: (t * t)
-> t * t | {
"end_col": 10,
"end_line": 17,
"start_col": 134,
"start_line": 14
} |
|
Prims.Tot | val exp_rl (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t | [
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc | val exp_rl (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
let exp_rl (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t = | false | null | false | let acc, c = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.Native.tuple2",
"Lib.LoopCombinators.repeati",
"Lib.Exponentiation.exp_rl_f",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Exponentiation.Definition.one"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_rl (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t | [] | Lib.Exponentiation.exp_rl | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits}
-> t | {
"end_col": 5,
"end_line": 21,
"start_col": 86,
"start_line": 19
} |
Prims.Tot | val cswap (#t: Type) (sw: nat) (r0 r1: t) : tuple2 t t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1) | val cswap (#t: Type) (sw: nat) (r0 r1: t) : tuple2 t t
let cswap (#t: Type) (sw: nat) (r0 r1: t) : tuple2 t t = | false | null | false | if sw = 1 then (r1, r0) else (r0, r1) | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"FStar.Pervasives.Native.Mktuple2",
"Prims.bool",
"FStar.Pervasives.Native.tuple2"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val cswap (#t: Type) (sw: nat) (r0 r1: t) : tuple2 t t | [] | Lib.Exponentiation.cswap | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | sw: Prims.nat -> r0: t -> r1: t -> t * t | {
"end_col": 39,
"end_line": 57,
"start_col": 2,
"start_line": 57
} |
Prims.Tot | val exp_pow2 (#t: Type) (k: comm_monoid t) (a: t) (b: nat) : t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a | val exp_pow2 (#t: Type) (k: comm_monoid t) (a: t) (b: nat) : t
let exp_pow2 (#t: Type) (k: comm_monoid t) (a: t) (b: nat) : t = | false | null | false | Loops.repeat b (sqr k) a | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Lib.LoopCombinators.repeat",
"Lib.Exponentiation.Definition.sqr"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_pow2 (#t: Type) (k: comm_monoid t) (a: t) (b: nat) : t | [] | Lib.Exponentiation.exp_pow2 | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> b: Prims.nat -> t | {
"end_col": 26,
"end_line": 94,
"start_col": 2,
"start_line": 94
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2 | let get_ith_bit (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) = | false | null | false | b / pow2 i % 2 | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.int"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_ith_bit : bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> Prims.int | [] | Lib.Exponentiation.get_ith_bit | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> Prims.int | {
"end_col": 16,
"end_line": 11,
"start_col": 2,
"start_line": 11
} |
|
Prims.Tot | val exp_lr_f
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(i: nat{i < bBits})
(acc: t)
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc | val exp_lr_f
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(i: nat{i < bBits})
(acc: t)
: t
let exp_lr_f
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(i: nat{i < bBits})
(acc: t)
: t = | false | null | false | let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Equality",
"Prims.int",
"Lib.Exponentiation.get_ith_bit",
"Prims.op_Subtraction",
"Prims.bool",
"Lib.Exponentiation.Definition.mul"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_lr_f
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(i: nat{i < bBits})
(acc: t)
: t | [] | Lib.Exponentiation.exp_lr_f | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
i: Prims.nat{i < bBits} ->
acc: t
-> t | {
"end_col": 5,
"end_line": 31,
"start_col": 115,
"start_line": 28
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1) | let exp_mont_ladder_f
(#t: Type)
(k: comm_monoid t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(i: nat{i < bBits})
(r0, r1: tuple2 t t)
: tuple2 t t = | false | null | false | if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.Native.tuple2",
"Prims.op_Equality",
"Prims.int",
"Lib.Exponentiation.get_ith_bit",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Exponentiation.Definition.mul",
"Prims.bool"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_mont_ladder_f : k: Lib.Exponentiation.Definition.comm_monoid t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
i: Prims.nat{i < bBits} ->
_: (t * t)
-> t * t | [] | Lib.Exponentiation.exp_mont_ladder_f | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
i: Prims.nat{i < bBits} ->
_: (t * t)
-> t * t | {
"end_col": 26,
"end_line": 45,
"start_col": 2,
"start_line": 42
} |
|
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l | let get_ith_lbits (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) (l: pos) = | false | null | false | b / pow2 i % pow2 l | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.int"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b)) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_ith_lbits : bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> l: Prims.pos
-> Prims.int | [] | Lib.Exponentiation.get_ith_lbits | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> l: Prims.pos
-> Prims.int | {
"end_col": 21,
"end_line": 101,
"start_col": 2,
"start_line": 101
} |
|
Prims.Tot | val mul_acc_pow_a_bits_l
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l) | val mul_acc_pow_a_bits_l
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t
let mul_acc_pow_a_bits_l
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t = | false | null | false | let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l) | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Prims.op_Division",
"Lib.Exponentiation.Definition.mul",
"Lib.Exponentiation.Definition.pow",
"Lib.Exponentiation.get_bits_l"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_acc_pow_a_bits_l
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t | [] | Lib.Exponentiation.mul_acc_pow_a_bits_l | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
l: Prims.pos ->
i: Prims.nat{i < bBits / l} ->
acc: t
-> t | {
"end_col": 26,
"end_line": 110,
"start_col": 139,
"start_line": 108
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1) | let exp_mont_ladder_swap2_f
(#t: Type)
(k: comm_monoid t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(i: nat{i < bBits})
(r0, r1: tuple2 t t)
: tuple2 t t = | false | null | false | let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1) | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Exponentiation.cswap",
"Lib.Exponentiation.Definition.mul",
"Prims.int",
"Lib.Exponentiation.get_ith_bit",
"Prims.op_Subtraction"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_mont_ladder_swap2_f : k: Lib.Exponentiation.Definition.comm_monoid t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
i: Prims.nat{i < bBits} ->
_: (t * t)
-> t * t | [] | Lib.Exponentiation.exp_mont_ladder_swap2_f | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
i: Prims.nat{i < bBits} ->
_: (t * t)
-> t * t | {
"end_col": 10,
"end_line": 65,
"start_col": 149,
"start_line": 60
} |
|
Prims.Tot | val exp_double_fw_f
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_double_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(l:pos) (i:nat{i < bBits / l}) (acc:t) : t
=
let acc1 = exp_fw_f k a2 bBits b2 l i acc in
mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1 | val exp_double_fw_f
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t
let exp_double_fw_f
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t = | false | null | false | let acc1 = exp_fw_f k a2 bBits b2 l i acc in
mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1 | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Prims.op_Division",
"Lib.Exponentiation.mul_acc_pow_a_bits_l",
"Lib.Exponentiation.exp_fw_f"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l)
let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let acc1 = exp_pow2 k acc l in
mul_acc_pow_a_bits_l k a bBits b l i acc1
let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let bits_c = get_ith_lbits bBits b (bBits / l * l) l in
pow k a bits_c
let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in
let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in
res
val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos ->
Lemma (exp_fw k a bBits b l == pow k a b)
/// Multi-Exponentiation
// Double exponentiation [a1^b1 `mul` a2^b2]
//-------------------------------------------
let exp_double_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits}) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_double_fw_f
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t | [] | Lib.Exponentiation.exp_double_fw_f | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a1: t ->
bBits: Prims.nat ->
b1: Prims.nat{b1 < Prims.pow2 bBits} ->
a2: t ->
b2: Prims.nat{b2 < Prims.pow2 bBits} ->
l: Prims.pos ->
i: Prims.nat{i < bBits / l} ->
acc: t
-> t | {
"end_col": 45,
"end_line": 141,
"start_col": 2,
"start_line": 139
} |
Prims.Tot | val exp_fw (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) : t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in
let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in
res | val exp_fw (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) : t
let exp_fw (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) : t = | false | null | false | let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in
let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in
res | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Lib.LoopCombinators.repeati",
"Prims.op_Division",
"Lib.Exponentiation.exp_fw_f",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Exponentiation.Definition.one",
"Prims.bool",
"Lib.Exponentiation.exp_fw_acc0"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l)
let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let acc1 = exp_pow2 k acc l in
mul_acc_pow_a_bits_l k a bBits b l i acc1
let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let bits_c = get_ith_lbits bBits b (bBits / l * l) l in
pow k a bits_c | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_fw (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) : t | [] | Lib.Exponentiation.exp_fw | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
l: Prims.pos
-> t | {
"end_col": 5,
"end_line": 124,
"start_col": 94,
"start_line": 121
} |
Prims.Tot | val exp_double_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos{bBits % l <> 0})
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in
let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in
mul acc_a1 acc_a2 | val exp_double_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos{bBits % l <> 0})
: t
let exp_double_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos{bBits % l <> 0})
: t = | false | null | false | let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in
let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in
mul acc_a1 acc_a2 | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Prims.op_disEquality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Exponentiation.Definition.mul",
"Lib.Exponentiation.exp_fw_acc0"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l)
let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let acc1 = exp_pow2 k acc l in
mul_acc_pow_a_bits_l k a bBits b l i acc1
let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let bits_c = get_ith_lbits bBits b (bBits / l * l) l in
pow k a bits_c
let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in
let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in
res
val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos ->
Lemma (exp_fw k a bBits b l == pow k a b)
/// Multi-Exponentiation
// Double exponentiation [a1^b1 `mul` a2^b2]
//-------------------------------------------
let exp_double_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(l:pos) (i:nat{i < bBits / l}) (acc:t) : t
=
let acc1 = exp_fw_f k a2 bBits b2 l i acc in
mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1
let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_double_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos{bBits % l <> 0})
: t | [] | Lib.Exponentiation.exp_double_fw_acc0 | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a1: t ->
bBits: Prims.nat ->
b1: Prims.nat{b1 < Prims.pow2 bBits} ->
a2: t ->
b2: Prims.nat{b2 < Prims.pow2 bBits} ->
l: Prims.pos{bBits % l <> 0}
-> t | {
"end_col": 19,
"end_line": 148,
"start_col": 64,
"start_line": 145
} |
Prims.Tot | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit) | let exp_mont_ladder_swap_f
(#t: Type)
(k: comm_monoid t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(i: nat{i < bBits})
(r0, r1, privbit: tuple3 t t nat)
: tuple3 t t nat = | false | null | false | let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit) | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.Mktuple3",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Exponentiation.Definition.mul",
"Lib.Exponentiation.cswap",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_Addition",
"Lib.Exponentiation.get_ith_bit",
"Prims.op_Subtraction"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_mont_ladder_swap_f : k: Lib.Exponentiation.Definition.comm_monoid t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
i: Prims.nat{i < bBits} ->
_: ((t * t) * Prims.nat)
-> (t * t) * Prims.nat | [] | Lib.Exponentiation.exp_mont_ladder_swap_f | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
i: Prims.nat{i < bBits} ->
_: ((t * t) * Prims.nat)
-> (t * t) * Prims.nat | {
"end_col": 15,
"end_line": 81,
"start_col": 165,
"start_line": 76
} |
|
Prims.Tot | val exp_fw_f
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let acc1 = exp_pow2 k acc l in
mul_acc_pow_a_bits_l k a bBits b l i acc1 | val exp_fw_f
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t
let exp_fw_f
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t = | false | null | false | let acc1 = exp_pow2 k acc l in
mul_acc_pow_a_bits_l k a bBits b l i acc1 | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Prims.op_Division",
"Lib.Exponentiation.mul_acc_pow_a_bits_l",
"Lib.Exponentiation.exp_pow2"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_fw_f
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t | [] | Lib.Exponentiation.exp_fw_f | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
l: Prims.pos ->
i: Prims.nat{i < bBits / l} ->
acc: t
-> t | {
"end_col": 43,
"end_line": 114,
"start_col": 127,
"start_line": 112
} |
Prims.Tot | val exp_double_fw
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos)
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_double_fw (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in
Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 | val exp_double_fw
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos)
: t
let exp_double_fw
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos)
: t = | false | null | false | let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in
Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Lib.LoopCombinators.repeati",
"Prims.op_Division",
"Lib.Exponentiation.exp_double_fw_f",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Exponentiation.Definition.one",
"Prims.bool",
"Lib.Exponentiation.exp_double_fw_acc0"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l)
let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let acc1 = exp_pow2 k acc l in
mul_acc_pow_a_bits_l k a bBits b l i acc1
let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let bits_c = get_ith_lbits bBits b (bBits / l * l) l in
pow k a bits_c
let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in
let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in
res
val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos ->
Lemma (exp_fw k a bBits b l == pow k a b)
/// Multi-Exponentiation
// Double exponentiation [a1^b1 `mul` a2^b2]
//-------------------------------------------
let exp_double_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(l:pos) (i:nat{i < bBits / l}) (acc:t) : t
=
let acc1 = exp_fw_f k a2 bBits b2 l i acc in
mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1
let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in
let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in
mul acc_a1 acc_a2
#push-options "--z3rlimit 20"
let exp_double_fw (#t:Type) (k:comm_monoid t) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_double_fw
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(l: pos)
: t | [] | Lib.Exponentiation.exp_double_fw | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a1: t ->
bBits: Prims.nat ->
b1: Prims.nat{b1 < Prims.pow2 bBits} ->
a2: t ->
b2: Prims.nat{b2 < Prims.pow2 bBits} ->
l: Prims.pos
-> t | {
"end_col": 72,
"end_line": 155,
"start_col": 48,
"start_line": 153
} |
Prims.Tot | val exp_four_fw
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos)
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_four_fw (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(a3:t) (b3:nat{b3 < pow2 bBits})
(a4:t) (b4:nat{b4 < pow2 bBits})
(l:pos) : t =
let acc0 =
if bBits % l = 0 then one
else exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l in
Loops.repeati (bBits / l)
(exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 | val exp_four_fw
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos)
: t
let exp_four_fw
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos)
: t = | false | null | false | let acc0 = if bBits % l = 0 then one else exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l in
Loops.repeati (bBits / l) (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0 | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Lib.LoopCombinators.repeati",
"Prims.op_Division",
"Lib.Exponentiation.exp_four_fw_f",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Exponentiation.Definition.one",
"Prims.bool",
"Lib.Exponentiation.exp_four_fw_acc0"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l)
let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let acc1 = exp_pow2 k acc l in
mul_acc_pow_a_bits_l k a bBits b l i acc1
let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let bits_c = get_ith_lbits bBits b (bBits / l * l) l in
pow k a bits_c
let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in
let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in
res
val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos ->
Lemma (exp_fw k a bBits b l == pow k a b)
/// Multi-Exponentiation
// Double exponentiation [a1^b1 `mul` a2^b2]
//-------------------------------------------
let exp_double_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(l:pos) (i:nat{i < bBits / l}) (acc:t) : t
=
let acc1 = exp_fw_f k a2 bBits b2 l i acc in
mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1
let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in
let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in
mul acc_a1 acc_a2
#push-options "--z3rlimit 20"
let exp_double_fw (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in
Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0
#pop-options
val exp_double_fw_lemma: #t:Type -> k:comm_monoid t
-> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits}
-> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos ->
Lemma (exp_double_fw k a1 bBits b1 a2 b2 l == mul (pow k a1 b1) (pow k a2 b2))
// [a1^b1 `mul` a2^b2 `mul` a3^b3 `mul` a4^b4]
//----------------------------------------------
let exp_four_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(a3:t) (b3:nat{b3 < pow2 bBits})
(a4:t) (b4:nat{b4 < pow2 bBits})
(l:pos) (i:nat{i < bBits / l}) (acc:t) : t
=
let acc = exp_fw_f k a4 bBits b4 l i acc in
let acc = mul_acc_pow_a_bits_l k a3 bBits b3 l i acc in
let acc = mul_acc_pow_a_bits_l k a2 bBits b2 l i acc in
let acc = mul_acc_pow_a_bits_l k a1 bBits b1 l i acc in
acc
let exp_four_fw_acc0 (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(a3:t) (b3:nat{b3 < pow2 bBits})
(a4:t) (b4:nat{b4 < pow2 bBits})
(l:pos{bBits % l <> 0}) : t =
let acc_a12 = exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in
let acc_a34 = exp_double_fw_acc0 k a3 bBits b3 a4 b4 l in
mul acc_a12 acc_a34
let exp_four_fw (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(a3:t) (b3:nat{b3 < pow2 bBits}) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_four_fw
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos)
: t | [] | Lib.Exponentiation.exp_four_fw | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a1: t ->
bBits: Prims.nat ->
b1: Prims.nat{b1 < Prims.pow2 bBits} ->
a2: t ->
b2: Prims.nat{b2 < Prims.pow2 bBits} ->
a3: t ->
b3: Prims.nat{b3 < Prims.pow2 bBits} ->
a4: t ->
b4: Prims.nat{b4 < Prims.pow2 bBits} ->
l: Prims.pos
-> t | {
"end_col": 58,
"end_line": 200,
"start_col": 15,
"start_line": 195
} |
Prims.Tot | val exp_four_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos{bBits % l <> 0})
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_four_fw_acc0 (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(a3:t) (b3:nat{b3 < pow2 bBits})
(a4:t) (b4:nat{b4 < pow2 bBits})
(l:pos{bBits % l <> 0}) : t =
let acc_a12 = exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in
let acc_a34 = exp_double_fw_acc0 k a3 bBits b3 a4 b4 l in
mul acc_a12 acc_a34 | val exp_four_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos{bBits % l <> 0})
: t
let exp_four_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos{bBits % l <> 0})
: t = | false | null | false | let acc_a12 = exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in
let acc_a34 = exp_double_fw_acc0 k a3 bBits b3 a4 b4 l in
mul acc_a12 acc_a34 | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Prims.op_disEquality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Exponentiation.Definition.mul",
"Lib.Exponentiation.exp_double_fw_acc0"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l)
let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let acc1 = exp_pow2 k acc l in
mul_acc_pow_a_bits_l k a bBits b l i acc1
let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let bits_c = get_ith_lbits bBits b (bBits / l * l) l in
pow k a bits_c
let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in
let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in
res
val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos ->
Lemma (exp_fw k a bBits b l == pow k a b)
/// Multi-Exponentiation
// Double exponentiation [a1^b1 `mul` a2^b2]
//-------------------------------------------
let exp_double_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(l:pos) (i:nat{i < bBits / l}) (acc:t) : t
=
let acc1 = exp_fw_f k a2 bBits b2 l i acc in
mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1
let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in
let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in
mul acc_a1 acc_a2
#push-options "--z3rlimit 20"
let exp_double_fw (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in
Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0
#pop-options
val exp_double_fw_lemma: #t:Type -> k:comm_monoid t
-> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits}
-> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos ->
Lemma (exp_double_fw k a1 bBits b1 a2 b2 l == mul (pow k a1 b1) (pow k a2 b2))
// [a1^b1 `mul` a2^b2 `mul` a3^b3 `mul` a4^b4]
//----------------------------------------------
let exp_four_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(a3:t) (b3:nat{b3 < pow2 bBits})
(a4:t) (b4:nat{b4 < pow2 bBits})
(l:pos) (i:nat{i < bBits / l}) (acc:t) : t
=
let acc = exp_fw_f k a4 bBits b4 l i acc in
let acc = mul_acc_pow_a_bits_l k a3 bBits b3 l i acc in
let acc = mul_acc_pow_a_bits_l k a2 bBits b2 l i acc in
let acc = mul_acc_pow_a_bits_l k a1 bBits b1 l i acc in
acc
let exp_four_fw_acc0 (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(a3:t) (b3:nat{b3 < pow2 bBits}) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_four_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos{bBits % l <> 0})
: t | [] | Lib.Exponentiation.exp_four_fw_acc0 | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a1: t ->
bBits: Prims.nat ->
b1: Prims.nat{b1 < Prims.pow2 bBits} ->
a2: t ->
b2: Prims.nat{b2 < Prims.pow2 bBits} ->
a3: t ->
b3: Prims.nat{b3 < Prims.pow2 bBits} ->
a4: t ->
b4: Prims.nat{b4 < Prims.pow2 bBits} ->
l: Prims.pos{bBits % l <> 0}
-> t | {
"end_col": 21,
"end_line": 188,
"start_col": 31,
"start_line": 185
} |
Prims.Tot | val exp_four_fw_f
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_four_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(a3:t) (b3:nat{b3 < pow2 bBits})
(a4:t) (b4:nat{b4 < pow2 bBits})
(l:pos) (i:nat{i < bBits / l}) (acc:t) : t
=
let acc = exp_fw_f k a4 bBits b4 l i acc in
let acc = mul_acc_pow_a_bits_l k a3 bBits b3 l i acc in
let acc = mul_acc_pow_a_bits_l k a2 bBits b2 l i acc in
let acc = mul_acc_pow_a_bits_l k a1 bBits b1 l i acc in
acc | val exp_four_fw_f
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t
let exp_four_fw_f
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t = | false | null | false | let acc = exp_fw_f k a4 bBits b4 l i acc in
let acc = mul_acc_pow_a_bits_l k a3 bBits b3 l i acc in
let acc = mul_acc_pow_a_bits_l k a2 bBits b2 l i acc in
let acc = mul_acc_pow_a_bits_l k a1 bBits b1 l i acc in
acc | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Prims.op_Division",
"Lib.Exponentiation.mul_acc_pow_a_bits_l",
"Lib.Exponentiation.exp_fw_f"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l)
let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let acc1 = exp_pow2 k acc l in
mul_acc_pow_a_bits_l k a bBits b l i acc1
let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let bits_c = get_ith_lbits bBits b (bBits / l * l) l in
pow k a bits_c
let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in
let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in
res
val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos ->
Lemma (exp_fw k a bBits b l == pow k a b)
/// Multi-Exponentiation
// Double exponentiation [a1^b1 `mul` a2^b2]
//-------------------------------------------
let exp_double_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(l:pos) (i:nat{i < bBits / l}) (acc:t) : t
=
let acc1 = exp_fw_f k a2 bBits b2 l i acc in
mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1
let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in
let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in
mul acc_a1 acc_a2
#push-options "--z3rlimit 20"
let exp_double_fw (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) : t =
let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in
Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0
#pop-options
val exp_double_fw_lemma: #t:Type -> k:comm_monoid t
-> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits}
-> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos ->
Lemma (exp_double_fw k a1 bBits b1 a2 b2 l == mul (pow k a1 b1) (pow k a2 b2))
// [a1^b1 `mul` a2^b2 `mul` a3^b3 `mul` a4^b4]
//----------------------------------------------
let exp_four_fw_f (#t:Type) (k:comm_monoid t)
(a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits})
(a2:t) (b2:nat{b2 < pow2 bBits})
(a3:t) (b3:nat{b3 < pow2 bBits})
(a4:t) (b4:nat{b4 < pow2 bBits}) | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_four_fw_f
(#t: Type)
(k: comm_monoid t)
(a1: t)
(bBits: nat)
(b1: nat{b1 < pow2 bBits})
(a2: t)
(b2: nat{b2 < pow2 bBits})
(a3: t)
(b3: nat{b3 < pow2 bBits})
(a4: t)
(b4: nat{b4 < pow2 bBits})
(l: pos)
(i: nat{i < bBits / l})
(acc: t)
: t | [] | Lib.Exponentiation.exp_four_fw_f | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a1: t ->
bBits: Prims.nat ->
b1: Prims.nat{b1 < Prims.pow2 bBits} ->
a2: t ->
b2: Prims.nat{b2 < Prims.pow2 bBits} ->
a3: t ->
b3: Prims.nat{b3 < Prims.pow2 bBits} ->
a4: t ->
b4: Prims.nat{b4 < Prims.pow2 bBits} ->
l: Prims.pos ->
i: Prims.nat{i < bBits / l} ->
acc: t
-> t | {
"end_col": 5,
"end_line": 178,
"start_col": 2,
"start_line": 173
} |
Prims.Tot | val exp_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos{bBits % l <> 0})
: t | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t =
let bits_c = get_ith_lbits bBits b (bBits / l * l) l in
pow k a bits_c | val exp_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos{bBits % l <> 0})
: t
let exp_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos{bBits % l <> 0})
: t = | false | null | false | let bits_c = get_ith_lbits bBits b ((bBits / l) * l) l in
pow k a bits_c | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Lib.Exponentiation.Definition.comm_monoid",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Prims.op_disEquality",
"Prims.int",
"Prims.op_Modulus",
"Lib.Exponentiation.Definition.pow",
"Lib.Exponentiation.get_ith_lbits",
"FStar.Mul.op_Star",
"Prims.op_Division"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let bits_l = get_bits_l bBits b l i in
mul acc (pow k a bits_l)
let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t =
let acc1 = exp_pow2 k acc l in
mul_acc_pow_a_bits_l k a bBits b l i acc1 | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val exp_fw_acc0
(#t: Type)
(k: comm_monoid t)
(a: t)
(bBits: nat)
(b: nat{b < pow2 bBits})
(l: pos{bBits % l <> 0})
: t | [] | Lib.Exponentiation.exp_fw_acc0 | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
k: Lib.Exponentiation.Definition.comm_monoid t ->
a: t ->
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
l: Prims.pos{bBits % l <> 0}
-> t | {
"end_col": 16,
"end_line": 119,
"start_col": 115,
"start_line": 117
} |
Prims.Tot | val get_bits_l (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l})
: r: nat{r < pow2 l} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Exponentiation.Definition",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l | val get_bits_l (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l})
: r: nat{r < pow2 l}
let get_bits_l (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l})
: r: nat{r < pow2 l} = | false | null | false | Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l);
assert (l * (i + 1) <= l * (bBits / l));
get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l | {
"checked_file": "Lib.Exponentiation.fsti.checked",
"dependencies": [
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Lib.Exponentiation.fsti"
} | [
"total"
] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.pos",
"Prims.op_Division",
"Lib.Exponentiation.get_ith_lbits",
"Prims.op_Subtraction",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Prims.unit",
"Prims._assert",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.Math.Lemmas.lemma_mult_le_left"
] | [] | module Lib.Exponentiation
open FStar.Mul
module Loops = Lib.LoopCombinators
include Lib.Exponentiation.Definition
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) =
b / pow2 i % 2
//a right-to-left binary method
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in
let c = mul c c in
(acc, c)
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in
acc
val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_rl k a bBits b == pow k a b)
//a left-to-right binary method
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t =
let acc = mul acc acc in
let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in
acc
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_lr k a bBits b == pow k a b)
// Montgomery ladder for exponentiation
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then
(mul r0 r0, mul r1 r0)
else
(mul r0 r1, mul r1 r1)
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in
r0
val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder k a bBits b == pow k a b)
// Montgomery ladder for exponentiation with cswap
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
// cswap -> step -> cswap -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let r0, r1 = cswap bit r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
let r0, r1 = cswap bit r0 r1 in
(r0, r1)
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in
r0
val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
// cswap -> step -> cswap -> step -> cswap -> ..
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in
let sw = (bit + privbit) % 2 in
let r0, r1 = cswap sw r0 r1 in
let r0, r1 = (mul r0 r0, mul r1 r0) in
(r0, r1, bit)
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t =
let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in
let (r0, r1) = cswap sw r0 r1 in
r0
val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} ->
Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
// a fixed window method
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t =
Loops.repeat b (sqr k) a
val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat ->
Lemma (exp_pow2 k a b == pow k a (pow2 b))
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) =
b / pow2 i % pow2 l | false | false | Lib.Exponentiation.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val get_bits_l (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l})
: r: nat{r < pow2 l} | [] | Lib.Exponentiation.get_bits_l | {
"file_name": "lib/Lib.Exponentiation.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
bBits: Prims.nat ->
b: Prims.nat{b < Prims.pow2 bBits} ->
l: Prims.pos ->
i: Prims.nat{i < bBits / l}
-> r: Prims.nat{r < Prims.pow2 l} | {
"end_col": 57,
"end_line": 106,
"start_col": 2,
"start_line": 104
} |
Prims.Tot | val size32_u16_le:size32 serialize_u16_le | [
{
"abbrev": false,
"full_module": "LowParse.SLow.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size32_u16_le: size32 serialize_u16_le =
assert_norm (size32_constant_precond serialize_u16_le 2ul);
size32_constant serialize_u16_le 2ul () | val size32_u16_le:size32 serialize_u16_le
let size32_u16_le:size32 serialize_u16_le = | false | null | false | assert_norm (size32_constant_precond serialize_u16_le 2ul);
size32_constant serialize_u16_le 2ul () | {
"checked_file": "LowParse.SLow.BoundedInt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BoundedInt.fsti.checked",
"LowParse.SLow.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.BoundedInt.fsti"
} | [
"total"
] | [
"LowParse.SLow.Base.size32_constant",
"LowParse.Spec.Int.parse_u16_kind",
"FStar.UInt16.t",
"LowParse.Spec.BoundedInt.parse_u16_le",
"LowParse.Spec.BoundedInt.serialize_u16_le",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"LowParse.SLow.Base.size32_constant_precond"
] | [] | module LowParse.SLow.BoundedInt
include LowParse.Spec.BoundedInt
include LowParse.SLow.Base
(* bounded integers *)
inline_for_extraction
val parse32_bounded_integer_1
: (parser32 (parse_bounded_integer 1))
inline_for_extraction
val parse32_bounded_integer_2
: (parser32 (parse_bounded_integer 2))
inline_for_extraction
val parse32_bounded_integer_3
: (parser32 (parse_bounded_integer 3))
inline_for_extraction
val parse32_bounded_integer_4
: (parser32 (parse_bounded_integer 4))
inline_for_extraction
noextract
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
= match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4
inline_for_extraction
val serialize32_bounded_integer_1
: (serializer32 (serialize_bounded_integer 1))
inline_for_extraction
val serialize32_bounded_integer_2
: (serializer32 (serialize_bounded_integer 2))
inline_for_extraction
val serialize32_bounded_integer_3
: (serializer32 (serialize_bounded_integer 3))
inline_for_extraction
val serialize32_bounded_integer_4
: (serializer32 (serialize_bounded_integer 4))
inline_for_extraction
noextract
let serialize32_bounded_integer
(sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz))
= match sz with
| 1 -> serialize32_bounded_integer_1
| 2 -> serialize32_bounded_integer_2
| 3 -> serialize32_bounded_integer_3
| 4 -> serialize32_bounded_integer_4
#push-options "--max_fuel 0"
inline_for_extraction
val parse32_bounded_integer_le_1
: parser32 (parse_bounded_integer_le 1)
inline_for_extraction
val parse32_bounded_integer_le_2
: parser32 (parse_bounded_integer_le 2)
inline_for_extraction
val parse32_bounded_integer_le_3
: parser32 (parse_bounded_integer_le 3)
inline_for_extraction
val parse32_bounded_integer_le_4
: parser32 (parse_bounded_integer_le 4)
inline_for_extraction
noextract
let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
= match sz with
| 1 -> parse32_bounded_integer_le_1
| 2 -> parse32_bounded_integer_le_2
| 3 -> parse32_bounded_integer_le_3
| 4 -> parse32_bounded_integer_le_4
inline_for_extraction
val parse32_u16_le : parser32 parse_u16_le
inline_for_extraction
val parse32_u32_le : parser32 parse_u32_le
#pop-options
inline_for_extraction
val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1)
inline_for_extraction
val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2)
inline_for_extraction
val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3)
inline_for_extraction
val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4)
inline_for_extraction
noextract
let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz))
= match sz with
| 1 -> serialize32_bounded_integer_le_1
| 2 -> serialize32_bounded_integer_le_2
| 3 -> serialize32_bounded_integer_le_3
| 4 -> serialize32_bounded_integer_le_4
inline_for_extraction
val serialize32_u16_le : serializer32 serialize_u16_le
inline_for_extraction
val serialize32_u32_le : serializer32 serialize_u32_le
inline_for_extraction | false | true | LowParse.SLow.BoundedInt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size32_u16_le:size32 serialize_u16_le | [] | LowParse.SLow.BoundedInt.size32_u16_le | {
"file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.SLow.Base.size32 LowParse.Spec.BoundedInt.serialize_u16_le | {
"end_col": 41,
"end_line": 124,
"start_col": 2,
"start_line": 123
} |
Prims.Tot | val size32_u32_le:size32 serialize_u32_le | [
{
"abbrev": false,
"full_module": "LowParse.SLow.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let size32_u32_le: size32 serialize_u32_le =
assert_norm (size32_constant_precond serialize_u32_le 4ul);
size32_constant serialize_u32_le 4ul () | val size32_u32_le:size32 serialize_u32_le
let size32_u32_le:size32 serialize_u32_le = | false | null | false | assert_norm (size32_constant_precond serialize_u32_le 4ul);
size32_constant serialize_u32_le 4ul () | {
"checked_file": "LowParse.SLow.BoundedInt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BoundedInt.fsti.checked",
"LowParse.SLow.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.BoundedInt.fsti"
} | [
"total"
] | [
"LowParse.SLow.Base.size32_constant",
"LowParse.Spec.Int.parse_u32_kind",
"FStar.UInt32.t",
"LowParse.Spec.BoundedInt.parse_u32_le",
"LowParse.Spec.BoundedInt.serialize_u32_le",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"LowParse.SLow.Base.size32_constant_precond"
] | [] | module LowParse.SLow.BoundedInt
include LowParse.Spec.BoundedInt
include LowParse.SLow.Base
(* bounded integers *)
inline_for_extraction
val parse32_bounded_integer_1
: (parser32 (parse_bounded_integer 1))
inline_for_extraction
val parse32_bounded_integer_2
: (parser32 (parse_bounded_integer 2))
inline_for_extraction
val parse32_bounded_integer_3
: (parser32 (parse_bounded_integer 3))
inline_for_extraction
val parse32_bounded_integer_4
: (parser32 (parse_bounded_integer 4))
inline_for_extraction
noextract
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
= match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4
inline_for_extraction
val serialize32_bounded_integer_1
: (serializer32 (serialize_bounded_integer 1))
inline_for_extraction
val serialize32_bounded_integer_2
: (serializer32 (serialize_bounded_integer 2))
inline_for_extraction
val serialize32_bounded_integer_3
: (serializer32 (serialize_bounded_integer 3))
inline_for_extraction
val serialize32_bounded_integer_4
: (serializer32 (serialize_bounded_integer 4))
inline_for_extraction
noextract
let serialize32_bounded_integer
(sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz))
= match sz with
| 1 -> serialize32_bounded_integer_1
| 2 -> serialize32_bounded_integer_2
| 3 -> serialize32_bounded_integer_3
| 4 -> serialize32_bounded_integer_4
#push-options "--max_fuel 0"
inline_for_extraction
val parse32_bounded_integer_le_1
: parser32 (parse_bounded_integer_le 1)
inline_for_extraction
val parse32_bounded_integer_le_2
: parser32 (parse_bounded_integer_le 2)
inline_for_extraction
val parse32_bounded_integer_le_3
: parser32 (parse_bounded_integer_le 3)
inline_for_extraction
val parse32_bounded_integer_le_4
: parser32 (parse_bounded_integer_le 4)
inline_for_extraction
noextract
let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
= match sz with
| 1 -> parse32_bounded_integer_le_1
| 2 -> parse32_bounded_integer_le_2
| 3 -> parse32_bounded_integer_le_3
| 4 -> parse32_bounded_integer_le_4
inline_for_extraction
val parse32_u16_le : parser32 parse_u16_le
inline_for_extraction
val parse32_u32_le : parser32 parse_u32_le
#pop-options
inline_for_extraction
val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1)
inline_for_extraction
val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2)
inline_for_extraction
val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3)
inline_for_extraction
val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4)
inline_for_extraction
noextract
let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz))
= match sz with
| 1 -> serialize32_bounded_integer_le_1
| 2 -> serialize32_bounded_integer_le_2
| 3 -> serialize32_bounded_integer_le_3
| 4 -> serialize32_bounded_integer_le_4
inline_for_extraction
val serialize32_u16_le : serializer32 serialize_u16_le
inline_for_extraction
val serialize32_u32_le : serializer32 serialize_u32_le
inline_for_extraction
let size32_u16_le: size32 serialize_u16_le =
assert_norm (size32_constant_precond serialize_u16_le 2ul);
size32_constant serialize_u16_le 2ul ()
inline_for_extraction | false | true | LowParse.SLow.BoundedInt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val size32_u32_le:size32 serialize_u32_le | [] | LowParse.SLow.BoundedInt.size32_u32_le | {
"file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | LowParse.SLow.Base.size32 LowParse.Spec.BoundedInt.serialize_u32_le | {
"end_col": 41,
"end_line": 129,
"start_col": 2,
"start_line": 128
} |
Prims.Tot | val parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz)) | [
{
"abbrev": false,
"full_module": "LowParse.SLow.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
= match sz with
| 1 -> parse32_bounded_integer_le_1
| 2 -> parse32_bounded_integer_le_2
| 3 -> parse32_bounded_integer_le_3
| 4 -> parse32_bounded_integer_le_4 | val parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz)) = | false | null | false | match sz with
| 1 -> parse32_bounded_integer_le_1
| 2 -> parse32_bounded_integer_le_2
| 3 -> parse32_bounded_integer_le_3
| 4 -> parse32_bounded_integer_le_4 | {
"checked_file": "LowParse.SLow.BoundedInt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BoundedInt.fsti.checked",
"LowParse.SLow.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.BoundedInt.fsti"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.SLow.BoundedInt.parse32_bounded_integer_le_1",
"LowParse.SLow.BoundedInt.parse32_bounded_integer_le_2",
"LowParse.SLow.BoundedInt.parse32_bounded_integer_le_3",
"LowParse.SLow.BoundedInt.parse32_bounded_integer_le_4",
"LowParse.SLow.Base.parser32",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer_le"
] | [] | module LowParse.SLow.BoundedInt
include LowParse.Spec.BoundedInt
include LowParse.SLow.Base
(* bounded integers *)
inline_for_extraction
val parse32_bounded_integer_1
: (parser32 (parse_bounded_integer 1))
inline_for_extraction
val parse32_bounded_integer_2
: (parser32 (parse_bounded_integer 2))
inline_for_extraction
val parse32_bounded_integer_3
: (parser32 (parse_bounded_integer 3))
inline_for_extraction
val parse32_bounded_integer_4
: (parser32 (parse_bounded_integer 4))
inline_for_extraction
noextract
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
= match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4
inline_for_extraction
val serialize32_bounded_integer_1
: (serializer32 (serialize_bounded_integer 1))
inline_for_extraction
val serialize32_bounded_integer_2
: (serializer32 (serialize_bounded_integer 2))
inline_for_extraction
val serialize32_bounded_integer_3
: (serializer32 (serialize_bounded_integer 3))
inline_for_extraction
val serialize32_bounded_integer_4
: (serializer32 (serialize_bounded_integer 4))
inline_for_extraction
noextract
let serialize32_bounded_integer
(sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz))
= match sz with
| 1 -> serialize32_bounded_integer_1
| 2 -> serialize32_bounded_integer_2
| 3 -> serialize32_bounded_integer_3
| 4 -> serialize32_bounded_integer_4
#push-options "--max_fuel 0"
inline_for_extraction
val parse32_bounded_integer_le_1
: parser32 (parse_bounded_integer_le 1)
inline_for_extraction
val parse32_bounded_integer_le_2
: parser32 (parse_bounded_integer_le 2)
inline_for_extraction
val parse32_bounded_integer_le_3
: parser32 (parse_bounded_integer_le 3)
inline_for_extraction
val parse32_bounded_integer_le_4
: parser32 (parse_bounded_integer_le 4)
inline_for_extraction
noextract | false | false | LowParse.SLow.BoundedInt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz)) | [] | LowParse.SLow.BoundedInt.parse32_bounded_integer_le | {
"file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | sz: LowParse.Spec.BoundedInt.integer_size
-> LowParse.SLow.Base.parser32 (LowParse.Spec.BoundedInt.parse_bounded_integer_le sz) | {
"end_col": 37,
"end_line": 84,
"start_col": 2,
"start_line": 80
} |
Prims.Tot | val parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) | [
{
"abbrev": false,
"full_module": "LowParse.SLow.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
= match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4 | val parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) = | false | null | false | match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4 | {
"checked_file": "LowParse.SLow.BoundedInt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BoundedInt.fsti.checked",
"LowParse.SLow.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.BoundedInt.fsti"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.SLow.BoundedInt.parse32_bounded_integer_1",
"LowParse.SLow.BoundedInt.parse32_bounded_integer_2",
"LowParse.SLow.BoundedInt.parse32_bounded_integer_3",
"LowParse.SLow.BoundedInt.parse32_bounded_integer_4",
"LowParse.SLow.Base.parser32",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer"
] | [] | module LowParse.SLow.BoundedInt
include LowParse.Spec.BoundedInt
include LowParse.SLow.Base
(* bounded integers *)
inline_for_extraction
val parse32_bounded_integer_1
: (parser32 (parse_bounded_integer 1))
inline_for_extraction
val parse32_bounded_integer_2
: (parser32 (parse_bounded_integer 2))
inline_for_extraction
val parse32_bounded_integer_3
: (parser32 (parse_bounded_integer 3))
inline_for_extraction
val parse32_bounded_integer_4
: (parser32 (parse_bounded_integer 4))
inline_for_extraction
noextract | false | false | LowParse.SLow.BoundedInt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) | [] | LowParse.SLow.BoundedInt.parse32_bounded_integer | {
"file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | sz: LowParse.Spec.BoundedInt.integer_size
-> LowParse.SLow.Base.parser32 (LowParse.Spec.BoundedInt.parse_bounded_integer sz) | {
"end_col": 34,
"end_line": 30,
"start_col": 2,
"start_line": 26
} |
Prims.Tot | val serialize32_bounded_integer (sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz)) | [
{
"abbrev": false,
"full_module": "LowParse.SLow.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_integer
(sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz))
= match sz with
| 1 -> serialize32_bounded_integer_1
| 2 -> serialize32_bounded_integer_2
| 3 -> serialize32_bounded_integer_3
| 4 -> serialize32_bounded_integer_4 | val serialize32_bounded_integer (sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz))
let serialize32_bounded_integer (sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz)) = | false | null | false | match sz with
| 1 -> serialize32_bounded_integer_1
| 2 -> serialize32_bounded_integer_2
| 3 -> serialize32_bounded_integer_3
| 4 -> serialize32_bounded_integer_4 | {
"checked_file": "LowParse.SLow.BoundedInt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BoundedInt.fsti.checked",
"LowParse.SLow.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.BoundedInt.fsti"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer_1",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer_2",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer_3",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer_4",
"LowParse.SLow.Base.serializer32",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer",
"LowParse.Spec.BoundedInt.serialize_bounded_integer"
] | [] | module LowParse.SLow.BoundedInt
include LowParse.Spec.BoundedInt
include LowParse.SLow.Base
(* bounded integers *)
inline_for_extraction
val parse32_bounded_integer_1
: (parser32 (parse_bounded_integer 1))
inline_for_extraction
val parse32_bounded_integer_2
: (parser32 (parse_bounded_integer 2))
inline_for_extraction
val parse32_bounded_integer_3
: (parser32 (parse_bounded_integer 3))
inline_for_extraction
val parse32_bounded_integer_4
: (parser32 (parse_bounded_integer 4))
inline_for_extraction
noextract
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
= match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4
inline_for_extraction
val serialize32_bounded_integer_1
: (serializer32 (serialize_bounded_integer 1))
inline_for_extraction
val serialize32_bounded_integer_2
: (serializer32 (serialize_bounded_integer 2))
inline_for_extraction
val serialize32_bounded_integer_3
: (serializer32 (serialize_bounded_integer 3))
inline_for_extraction
val serialize32_bounded_integer_4
: (serializer32 (serialize_bounded_integer 4))
inline_for_extraction
noextract
let serialize32_bounded_integer
(sz: integer_size) | false | false | LowParse.SLow.BoundedInt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_integer (sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz)) | [] | LowParse.SLow.BoundedInt.serialize32_bounded_integer | {
"file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | sz: LowParse.Spec.BoundedInt.integer_size
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.BoundedInt.serialize_bounded_integer sz) | {
"end_col": 38,
"end_line": 57,
"start_col": 2,
"start_line": 53
} |
Prims.Tot | val serialize32_bounded_integer_le (sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer_le sz)) | [
{
"abbrev": false,
"full_module": "LowParse.SLow.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz))
= match sz with
| 1 -> serialize32_bounded_integer_le_1
| 2 -> serialize32_bounded_integer_le_2
| 3 -> serialize32_bounded_integer_le_3
| 4 -> serialize32_bounded_integer_le_4 | val serialize32_bounded_integer_le (sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer_le sz))
let serialize32_bounded_integer_le (sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer_le sz)) = | false | null | false | match sz with
| 1 -> serialize32_bounded_integer_le_1
| 2 -> serialize32_bounded_integer_le_2
| 3 -> serialize32_bounded_integer_le_3
| 4 -> serialize32_bounded_integer_le_4 | {
"checked_file": "LowParse.SLow.BoundedInt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BoundedInt.fsti.checked",
"LowParse.SLow.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.BoundedInt.fsti"
} | [
"total"
] | [
"LowParse.Spec.BoundedInt.integer_size",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer_le_1",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer_le_2",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer_le_3",
"LowParse.SLow.BoundedInt.serialize32_bounded_integer_le_4",
"LowParse.SLow.Base.serializer32",
"LowParse.Spec.BoundedInt.parse_bounded_integer_kind",
"LowParse.Spec.BoundedInt.bounded_integer",
"LowParse.Spec.BoundedInt.parse_bounded_integer_le",
"LowParse.Spec.BoundedInt.serialize_bounded_integer_le"
] | [] | module LowParse.SLow.BoundedInt
include LowParse.Spec.BoundedInt
include LowParse.SLow.Base
(* bounded integers *)
inline_for_extraction
val parse32_bounded_integer_1
: (parser32 (parse_bounded_integer 1))
inline_for_extraction
val parse32_bounded_integer_2
: (parser32 (parse_bounded_integer 2))
inline_for_extraction
val parse32_bounded_integer_3
: (parser32 (parse_bounded_integer 3))
inline_for_extraction
val parse32_bounded_integer_4
: (parser32 (parse_bounded_integer 4))
inline_for_extraction
noextract
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
= match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4
inline_for_extraction
val serialize32_bounded_integer_1
: (serializer32 (serialize_bounded_integer 1))
inline_for_extraction
val serialize32_bounded_integer_2
: (serializer32 (serialize_bounded_integer 2))
inline_for_extraction
val serialize32_bounded_integer_3
: (serializer32 (serialize_bounded_integer 3))
inline_for_extraction
val serialize32_bounded_integer_4
: (serializer32 (serialize_bounded_integer 4))
inline_for_extraction
noextract
let serialize32_bounded_integer
(sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz))
= match sz with
| 1 -> serialize32_bounded_integer_1
| 2 -> serialize32_bounded_integer_2
| 3 -> serialize32_bounded_integer_3
| 4 -> serialize32_bounded_integer_4
#push-options "--max_fuel 0"
inline_for_extraction
val parse32_bounded_integer_le_1
: parser32 (parse_bounded_integer_le 1)
inline_for_extraction
val parse32_bounded_integer_le_2
: parser32 (parse_bounded_integer_le 2)
inline_for_extraction
val parse32_bounded_integer_le_3
: parser32 (parse_bounded_integer_le 3)
inline_for_extraction
val parse32_bounded_integer_le_4
: parser32 (parse_bounded_integer_le 4)
inline_for_extraction
noextract
let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
= match sz with
| 1 -> parse32_bounded_integer_le_1
| 2 -> parse32_bounded_integer_le_2
| 3 -> parse32_bounded_integer_le_3
| 4 -> parse32_bounded_integer_le_4
inline_for_extraction
val parse32_u16_le : parser32 parse_u16_le
inline_for_extraction
val parse32_u32_le : parser32 parse_u32_le
#pop-options
inline_for_extraction
val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1)
inline_for_extraction
val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2)
inline_for_extraction
val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3)
inline_for_extraction
val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4)
inline_for_extraction
noextract | false | false | LowParse.SLow.BoundedInt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_integer_le (sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer_le sz)) | [] | LowParse.SLow.BoundedInt.serialize32_bounded_integer_le | {
"file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | sz: LowParse.Spec.BoundedInt.integer_size
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.BoundedInt.serialize_bounded_integer_le sz) | {
"end_col": 41,
"end_line": 113,
"start_col": 2,
"start_line": 109
} |
Prims.Tot | val parse32_bounded_int32
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_int32
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
= fun input -> (
if max32 `U32.lt` 256ul
then parse32_bounded_int32_1 min32 max32 input
else if max32 `U32.lt` 65536ul
then parse32_bounded_int32_2 min32 max32 input
else if max32 `U32.lt` 16777216ul
then parse32_bounded_int32_3 min32 max32 input
else parse32_bounded_int32_4 min32 max32 input
) | val parse32_bounded_int32
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
let parse32_bounded_int32
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) = | false | null | false | fun input ->
(if max32 `U32.lt` 256ul
then parse32_bounded_int32_1 min32 max32 input
else
if max32 `U32.lt` 65536ul
then parse32_bounded_int32_2 min32 max32 input
else
if max32 `U32.lt` 16777216ul
then parse32_bounded_int32_3 min32 max32 input
else parse32_bounded_int32_4 min32 max32 input) | {
"checked_file": "LowParse.SLow.BoundedInt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BoundedInt.fsti.checked",
"LowParse.SLow.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.BoundedInt.fsti"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"LowParse.SLow.Base.bytes32",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"LowParse.SLow.BoundedInt.parse32_bounded_int32_1",
"Prims.bool",
"LowParse.SLow.BoundedInt.parse32_bounded_int32_2",
"LowParse.SLow.BoundedInt.parse32_bounded_int32_3",
"LowParse.SLow.BoundedInt.parse32_bounded_int32_4",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.BoundedInt.parse_bounded_int32_kind",
"LowParse.Spec.BoundedInt.parse_bounded_int32",
"LowParse.SLow.Base.parser32"
] | [] | module LowParse.SLow.BoundedInt
include LowParse.Spec.BoundedInt
include LowParse.SLow.Base
(* bounded integers *)
inline_for_extraction
val parse32_bounded_integer_1
: (parser32 (parse_bounded_integer 1))
inline_for_extraction
val parse32_bounded_integer_2
: (parser32 (parse_bounded_integer 2))
inline_for_extraction
val parse32_bounded_integer_3
: (parser32 (parse_bounded_integer 3))
inline_for_extraction
val parse32_bounded_integer_4
: (parser32 (parse_bounded_integer 4))
inline_for_extraction
noextract
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
= match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4
inline_for_extraction
val serialize32_bounded_integer_1
: (serializer32 (serialize_bounded_integer 1))
inline_for_extraction
val serialize32_bounded_integer_2
: (serializer32 (serialize_bounded_integer 2))
inline_for_extraction
val serialize32_bounded_integer_3
: (serializer32 (serialize_bounded_integer 3))
inline_for_extraction
val serialize32_bounded_integer_4
: (serializer32 (serialize_bounded_integer 4))
inline_for_extraction
noextract
let serialize32_bounded_integer
(sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz))
= match sz with
| 1 -> serialize32_bounded_integer_1
| 2 -> serialize32_bounded_integer_2
| 3 -> serialize32_bounded_integer_3
| 4 -> serialize32_bounded_integer_4
#push-options "--max_fuel 0"
inline_for_extraction
val parse32_bounded_integer_le_1
: parser32 (parse_bounded_integer_le 1)
inline_for_extraction
val parse32_bounded_integer_le_2
: parser32 (parse_bounded_integer_le 2)
inline_for_extraction
val parse32_bounded_integer_le_3
: parser32 (parse_bounded_integer_le 3)
inline_for_extraction
val parse32_bounded_integer_le_4
: parser32 (parse_bounded_integer_le 4)
inline_for_extraction
noextract
let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
= match sz with
| 1 -> parse32_bounded_integer_le_1
| 2 -> parse32_bounded_integer_le_2
| 3 -> parse32_bounded_integer_le_3
| 4 -> parse32_bounded_integer_le_4
inline_for_extraction
val parse32_u16_le : parser32 parse_u16_le
inline_for_extraction
val parse32_u32_le : parser32 parse_u32_le
#pop-options
inline_for_extraction
val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1)
inline_for_extraction
val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2)
inline_for_extraction
val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3)
inline_for_extraction
val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4)
inline_for_extraction
noextract
let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz))
= match sz with
| 1 -> serialize32_bounded_integer_le_1
| 2 -> serialize32_bounded_integer_le_2
| 3 -> serialize32_bounded_integer_le_3
| 4 -> serialize32_bounded_integer_le_4
inline_for_extraction
val serialize32_u16_le : serializer32 serialize_u16_le
inline_for_extraction
val serialize32_u32_le : serializer32 serialize_u32_le
inline_for_extraction
let size32_u16_le: size32 serialize_u16_le =
assert_norm (size32_constant_precond serialize_u16_le 2ul);
size32_constant serialize_u16_le 2ul ()
inline_for_extraction
let size32_u32_le: size32 serialize_u32_le =
assert_norm (size32_constant_precond serialize_u32_le 4ul);
size32_constant serialize_u32_le 4ul ()
module U32 = FStar.UInt32
val parse32_bounded_int32_1
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_2
(min32: U32.t)
(max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_3
(min32: U32.t)
(max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_4
(min32: U32.t)
(max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
inline_for_extraction
let parse32_bounded_int32
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) | false | false | LowParse.SLow.BoundedInt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_int32
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) | [] | LowParse.SLow.BoundedInt.parse32_bounded_int32 | {
"file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min32: FStar.UInt32.t ->
max32:
FStar.UInt32.t
{ 0 < FStar.UInt32.v max32 /\ FStar.UInt32.v min32 <= FStar.UInt32.v max32 /\
FStar.UInt32.v max32 < 4294967296 }
-> LowParse.SLow.Base.parser32 (LowParse.Spec.BoundedInt.parse_bounded_int32 (FStar.UInt32.v min32
)
(FStar.UInt32.v max32)) | {
"end_col": 3,
"end_line": 166,
"start_col": 2,
"start_line": 158
} |
Prims.Tot | val parse32_bounded_int32_le
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32))) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let parse32_bounded_int32_le
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
= fun input -> (
if max32 `U32.lt` 256ul
then parse32_bounded_int32_le_1 min32 max32 input
else if max32 `U32.lt` 65536ul
then parse32_bounded_int32_le_2 min32 max32 input
else if max32 `U32.lt` 16777216ul
then parse32_bounded_int32_le_3 min32 max32 input
else parse32_bounded_int32_le_4 min32 max32 input
) | val parse32_bounded_int32_le
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
let parse32_bounded_int32_le
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32))) = | false | null | false | fun input ->
(if max32 `U32.lt` 256ul
then parse32_bounded_int32_le_1 min32 max32 input
else
if max32 `U32.lt` 65536ul
then parse32_bounded_int32_le_2 min32 max32 input
else
if max32 `U32.lt` 16777216ul
then parse32_bounded_int32_le_3 min32 max32 input
else parse32_bounded_int32_le_4 min32 max32 input) | {
"checked_file": "LowParse.SLow.BoundedInt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BoundedInt.fsti.checked",
"LowParse.SLow.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.BoundedInt.fsti"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"LowParse.SLow.Base.bytes32",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"LowParse.SLow.BoundedInt.parse32_bounded_int32_le_1",
"Prims.bool",
"LowParse.SLow.BoundedInt.parse32_bounded_int32_le_2",
"LowParse.SLow.BoundedInt.parse32_bounded_int32_le_3",
"LowParse.SLow.BoundedInt.parse32_bounded_int32_le_4",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"LowParse.Spec.BoundedInt.bounded_int32",
"LowParse.SLow.Base.parser32_correct",
"LowParse.Spec.BoundedInt.parse_bounded_int32_kind",
"LowParse.Spec.BoundedInt.parse_bounded_int32_le",
"LowParse.SLow.Base.parser32"
] | [] | module LowParse.SLow.BoundedInt
include LowParse.Spec.BoundedInt
include LowParse.SLow.Base
(* bounded integers *)
inline_for_extraction
val parse32_bounded_integer_1
: (parser32 (parse_bounded_integer 1))
inline_for_extraction
val parse32_bounded_integer_2
: (parser32 (parse_bounded_integer 2))
inline_for_extraction
val parse32_bounded_integer_3
: (parser32 (parse_bounded_integer 3))
inline_for_extraction
val parse32_bounded_integer_4
: (parser32 (parse_bounded_integer 4))
inline_for_extraction
noextract
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
= match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4
inline_for_extraction
val serialize32_bounded_integer_1
: (serializer32 (serialize_bounded_integer 1))
inline_for_extraction
val serialize32_bounded_integer_2
: (serializer32 (serialize_bounded_integer 2))
inline_for_extraction
val serialize32_bounded_integer_3
: (serializer32 (serialize_bounded_integer 3))
inline_for_extraction
val serialize32_bounded_integer_4
: (serializer32 (serialize_bounded_integer 4))
inline_for_extraction
noextract
let serialize32_bounded_integer
(sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz))
= match sz with
| 1 -> serialize32_bounded_integer_1
| 2 -> serialize32_bounded_integer_2
| 3 -> serialize32_bounded_integer_3
| 4 -> serialize32_bounded_integer_4
#push-options "--max_fuel 0"
inline_for_extraction
val parse32_bounded_integer_le_1
: parser32 (parse_bounded_integer_le 1)
inline_for_extraction
val parse32_bounded_integer_le_2
: parser32 (parse_bounded_integer_le 2)
inline_for_extraction
val parse32_bounded_integer_le_3
: parser32 (parse_bounded_integer_le 3)
inline_for_extraction
val parse32_bounded_integer_le_4
: parser32 (parse_bounded_integer_le 4)
inline_for_extraction
noextract
let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
= match sz with
| 1 -> parse32_bounded_integer_le_1
| 2 -> parse32_bounded_integer_le_2
| 3 -> parse32_bounded_integer_le_3
| 4 -> parse32_bounded_integer_le_4
inline_for_extraction
val parse32_u16_le : parser32 parse_u16_le
inline_for_extraction
val parse32_u32_le : parser32 parse_u32_le
#pop-options
inline_for_extraction
val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1)
inline_for_extraction
val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2)
inline_for_extraction
val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3)
inline_for_extraction
val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4)
inline_for_extraction
noextract
let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz))
= match sz with
| 1 -> serialize32_bounded_integer_le_1
| 2 -> serialize32_bounded_integer_le_2
| 3 -> serialize32_bounded_integer_le_3
| 4 -> serialize32_bounded_integer_le_4
inline_for_extraction
val serialize32_u16_le : serializer32 serialize_u16_le
inline_for_extraction
val serialize32_u32_le : serializer32 serialize_u32_le
inline_for_extraction
let size32_u16_le: size32 serialize_u16_le =
assert_norm (size32_constant_precond serialize_u16_le 2ul);
size32_constant serialize_u16_le 2ul ()
inline_for_extraction
let size32_u32_le: size32 serialize_u32_le =
assert_norm (size32_constant_precond serialize_u32_le 4ul);
size32_constant serialize_u32_le 4ul ()
module U32 = FStar.UInt32
val parse32_bounded_int32_1
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_2
(min32: U32.t)
(max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_3
(min32: U32.t)
(max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_4
(min32: U32.t)
(max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
inline_for_extraction
let parse32_bounded_int32
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
= fun input -> (
if max32 `U32.lt` 256ul
then parse32_bounded_int32_1 min32 max32 input
else if max32 `U32.lt` 65536ul
then parse32_bounded_int32_2 min32 max32 input
else if max32 `U32.lt` 16777216ul
then parse32_bounded_int32_3 min32 max32 input
else parse32_bounded_int32_4 min32 max32 input
)
val serialize32_bounded_int32_1
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_2
(min32: U32.t)
(max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_3
(min32: U32.t)
(max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_4
(min32: U32.t)
(max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
inline_for_extraction
let serialize32_bounded_int32
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
= fun input -> (
if max32 `U32.lt` 256ul
then serialize32_bounded_int32_1 min32 max32 input
else if max32 `U32.lt` 65536ul
then serialize32_bounded_int32_2 min32 max32 input
else if max32 `U32.lt` 16777216ul
then serialize32_bounded_int32_3 min32 max32 input
else serialize32_bounded_int32_4 min32 max32 input
)
val parse32_bounded_int32_le_1
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 })
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_le_2
(min32: U32.t)
(max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 })
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_le_3
(min32: U32.t)
(max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 })
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_le_4
(min32: U32.t)
(max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
inline_for_extraction
let parse32_bounded_int32_le
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) | false | false | LowParse.SLow.BoundedInt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val parse32_bounded_int32_le
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32))) | [] | LowParse.SLow.BoundedInt.parse32_bounded_int32_le | {
"file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min32: FStar.UInt32.t ->
max32:
FStar.UInt32.t
{ 0 < FStar.UInt32.v max32 /\ FStar.UInt32.v min32 <= FStar.UInt32.v max32 /\
FStar.UInt32.v max32 < 4294967296 }
-> LowParse.SLow.Base.parser32 (LowParse.Spec.BoundedInt.parse_bounded_int32_le (FStar.UInt32.v min32
)
(FStar.UInt32.v max32)) | {
"end_col": 3,
"end_line": 237,
"start_col": 2,
"start_line": 229
} |
Prims.Tot | val serialize32_bounded_int32
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_int32
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
= fun input -> (
if max32 `U32.lt` 256ul
then serialize32_bounded_int32_1 min32 max32 input
else if max32 `U32.lt` 65536ul
then serialize32_bounded_int32_2 min32 max32 input
else if max32 `U32.lt` 16777216ul
then serialize32_bounded_int32_3 min32 max32 input
else serialize32_bounded_int32_4 min32 max32 input
) | val serialize32_bounded_int32
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
let serialize32_bounded_int32
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) = | false | null | false | fun input ->
(if max32 `U32.lt` 256ul
then serialize32_bounded_int32_1 min32 max32 input
else
if max32 `U32.lt` 65536ul
then serialize32_bounded_int32_2 min32 max32 input
else
if max32 `U32.lt` 16777216ul
then serialize32_bounded_int32_3 min32 max32 input
else serialize32_bounded_int32_4 min32 max32 input) | {
"checked_file": "LowParse.SLow.BoundedInt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BoundedInt.fsti.checked",
"LowParse.SLow.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.BoundedInt.fsti"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.BoundedInt.bounded_int32",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"LowParse.SLow.BoundedInt.serialize32_bounded_int32_1",
"Prims.bool",
"LowParse.SLow.BoundedInt.serialize32_bounded_int32_2",
"LowParse.SLow.BoundedInt.serialize32_bounded_int32_3",
"LowParse.SLow.BoundedInt.serialize32_bounded_int32_4",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.BoundedInt.parse_bounded_int32_kind",
"LowParse.Spec.BoundedInt.parse_bounded_int32",
"LowParse.Spec.BoundedInt.serialize_bounded_int32",
"LowParse.SLow.Base.serializer32"
] | [] | module LowParse.SLow.BoundedInt
include LowParse.Spec.BoundedInt
include LowParse.SLow.Base
(* bounded integers *)
inline_for_extraction
val parse32_bounded_integer_1
: (parser32 (parse_bounded_integer 1))
inline_for_extraction
val parse32_bounded_integer_2
: (parser32 (parse_bounded_integer 2))
inline_for_extraction
val parse32_bounded_integer_3
: (parser32 (parse_bounded_integer 3))
inline_for_extraction
val parse32_bounded_integer_4
: (parser32 (parse_bounded_integer 4))
inline_for_extraction
noextract
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
= match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4
inline_for_extraction
val serialize32_bounded_integer_1
: (serializer32 (serialize_bounded_integer 1))
inline_for_extraction
val serialize32_bounded_integer_2
: (serializer32 (serialize_bounded_integer 2))
inline_for_extraction
val serialize32_bounded_integer_3
: (serializer32 (serialize_bounded_integer 3))
inline_for_extraction
val serialize32_bounded_integer_4
: (serializer32 (serialize_bounded_integer 4))
inline_for_extraction
noextract
let serialize32_bounded_integer
(sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz))
= match sz with
| 1 -> serialize32_bounded_integer_1
| 2 -> serialize32_bounded_integer_2
| 3 -> serialize32_bounded_integer_3
| 4 -> serialize32_bounded_integer_4
#push-options "--max_fuel 0"
inline_for_extraction
val parse32_bounded_integer_le_1
: parser32 (parse_bounded_integer_le 1)
inline_for_extraction
val parse32_bounded_integer_le_2
: parser32 (parse_bounded_integer_le 2)
inline_for_extraction
val parse32_bounded_integer_le_3
: parser32 (parse_bounded_integer_le 3)
inline_for_extraction
val parse32_bounded_integer_le_4
: parser32 (parse_bounded_integer_le 4)
inline_for_extraction
noextract
let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
= match sz with
| 1 -> parse32_bounded_integer_le_1
| 2 -> parse32_bounded_integer_le_2
| 3 -> parse32_bounded_integer_le_3
| 4 -> parse32_bounded_integer_le_4
inline_for_extraction
val parse32_u16_le : parser32 parse_u16_le
inline_for_extraction
val parse32_u32_le : parser32 parse_u32_le
#pop-options
inline_for_extraction
val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1)
inline_for_extraction
val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2)
inline_for_extraction
val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3)
inline_for_extraction
val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4)
inline_for_extraction
noextract
let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz))
= match sz with
| 1 -> serialize32_bounded_integer_le_1
| 2 -> serialize32_bounded_integer_le_2
| 3 -> serialize32_bounded_integer_le_3
| 4 -> serialize32_bounded_integer_le_4
inline_for_extraction
val serialize32_u16_le : serializer32 serialize_u16_le
inline_for_extraction
val serialize32_u32_le : serializer32 serialize_u32_le
inline_for_extraction
let size32_u16_le: size32 serialize_u16_le =
assert_norm (size32_constant_precond serialize_u16_le 2ul);
size32_constant serialize_u16_le 2ul ()
inline_for_extraction
let size32_u32_le: size32 serialize_u32_le =
assert_norm (size32_constant_precond serialize_u32_le 4ul);
size32_constant serialize_u32_le 4ul ()
module U32 = FStar.UInt32
val parse32_bounded_int32_1
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_2
(min32: U32.t)
(max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_3
(min32: U32.t)
(max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_4
(min32: U32.t)
(max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
inline_for_extraction
let parse32_bounded_int32
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
= fun input -> (
if max32 `U32.lt` 256ul
then parse32_bounded_int32_1 min32 max32 input
else if max32 `U32.lt` 65536ul
then parse32_bounded_int32_2 min32 max32 input
else if max32 `U32.lt` 16777216ul
then parse32_bounded_int32_3 min32 max32 input
else parse32_bounded_int32_4 min32 max32 input
)
val serialize32_bounded_int32_1
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_2
(min32: U32.t)
(max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_3
(min32: U32.t)
(max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_4
(min32: U32.t)
(max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
inline_for_extraction
let serialize32_bounded_int32
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) | false | false | LowParse.SLow.BoundedInt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_int32
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) | [] | LowParse.SLow.BoundedInt.serialize32_bounded_int32 | {
"file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min32: FStar.UInt32.t ->
max32:
FStar.UInt32.t
{ 0 < FStar.UInt32.v max32 /\ FStar.UInt32.v min32 <= FStar.UInt32.v max32 /\
FStar.UInt32.v max32 < 4294967296 }
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.BoundedInt.serialize_bounded_int32 (FStar.UInt32.v
min32)
(FStar.UInt32.v max32)) | {
"end_col": 3,
"end_line": 201,
"start_col": 2,
"start_line": 193
} |
Prims.Tot | val serialize32_bounded_int32_le
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (serializer32 (serialize_bounded_int32_le (U32.v min32) (U32.v max32))) | [
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "LowParse.SLow.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec.BoundedInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.SLow",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let serialize32_bounded_int32_le
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (serializer32 (serialize_bounded_int32_le (U32.v min32) (U32.v max32)))
= fun input -> (
if max32 `U32.lt` 256ul
then serialize32_bounded_int32_le_1 min32 max32 input
else if max32 `U32.lt` 65536ul
then serialize32_bounded_int32_le_2 min32 max32 input
else if max32 `U32.lt` 16777216ul
then serialize32_bounded_int32_le_3 min32 max32 input
else serialize32_bounded_int32_le_4 min32 max32 input
) | val serialize32_bounded_int32_le
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (serializer32 (serialize_bounded_int32_le (U32.v min32) (U32.v max32)))
let serialize32_bounded_int32_le
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (serializer32 (serialize_bounded_int32_le (U32.v min32) (U32.v max32))) = | false | null | false | fun input ->
(if max32 `U32.lt` 256ul
then serialize32_bounded_int32_le_1 min32 max32 input
else
if max32 `U32.lt` 65536ul
then serialize32_bounded_int32_le_2 min32 max32 input
else
if max32 `U32.lt` 16777216ul
then serialize32_bounded_int32_le_3 min32 max32 input
else serialize32_bounded_int32_le_4 min32 max32 input) | {
"checked_file": "LowParse.SLow.BoundedInt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.BoundedInt.fsti.checked",
"LowParse.SLow.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "LowParse.SLow.BoundedInt.fsti"
} | [
"total"
] | [
"FStar.UInt32.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.UInt32.v",
"Prims.op_LessThanOrEqual",
"LowParse.Spec.BoundedInt.bounded_int32",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"LowParse.SLow.BoundedInt.serialize32_bounded_int32_le_1",
"Prims.bool",
"LowParse.SLow.BoundedInt.serialize32_bounded_int32_le_2",
"LowParse.SLow.BoundedInt.serialize32_bounded_int32_le_3",
"LowParse.SLow.BoundedInt.serialize32_bounded_int32_le_4",
"LowParse.SLow.Base.bytes32",
"LowParse.SLow.Base.serializer32_correct",
"LowParse.Spec.BoundedInt.parse_bounded_int32_kind",
"LowParse.Spec.BoundedInt.parse_bounded_int32_le",
"LowParse.Spec.BoundedInt.serialize_bounded_int32_le",
"LowParse.SLow.Base.serializer32"
] | [] | module LowParse.SLow.BoundedInt
include LowParse.Spec.BoundedInt
include LowParse.SLow.Base
(* bounded integers *)
inline_for_extraction
val parse32_bounded_integer_1
: (parser32 (parse_bounded_integer 1))
inline_for_extraction
val parse32_bounded_integer_2
: (parser32 (parse_bounded_integer 2))
inline_for_extraction
val parse32_bounded_integer_3
: (parser32 (parse_bounded_integer 3))
inline_for_extraction
val parse32_bounded_integer_4
: (parser32 (parse_bounded_integer 4))
inline_for_extraction
noextract
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
= match sz with
| 1 -> parse32_bounded_integer_1
| 2 -> parse32_bounded_integer_2
| 3 -> parse32_bounded_integer_3
| 4 -> parse32_bounded_integer_4
inline_for_extraction
val serialize32_bounded_integer_1
: (serializer32 (serialize_bounded_integer 1))
inline_for_extraction
val serialize32_bounded_integer_2
: (serializer32 (serialize_bounded_integer 2))
inline_for_extraction
val serialize32_bounded_integer_3
: (serializer32 (serialize_bounded_integer 3))
inline_for_extraction
val serialize32_bounded_integer_4
: (serializer32 (serialize_bounded_integer 4))
inline_for_extraction
noextract
let serialize32_bounded_integer
(sz: integer_size)
: Tot (serializer32 (serialize_bounded_integer sz))
= match sz with
| 1 -> serialize32_bounded_integer_1
| 2 -> serialize32_bounded_integer_2
| 3 -> serialize32_bounded_integer_3
| 4 -> serialize32_bounded_integer_4
#push-options "--max_fuel 0"
inline_for_extraction
val parse32_bounded_integer_le_1
: parser32 (parse_bounded_integer_le 1)
inline_for_extraction
val parse32_bounded_integer_le_2
: parser32 (parse_bounded_integer_le 2)
inline_for_extraction
val parse32_bounded_integer_le_3
: parser32 (parse_bounded_integer_le 3)
inline_for_extraction
val parse32_bounded_integer_le_4
: parser32 (parse_bounded_integer_le 4)
inline_for_extraction
noextract
let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
= match sz with
| 1 -> parse32_bounded_integer_le_1
| 2 -> parse32_bounded_integer_le_2
| 3 -> parse32_bounded_integer_le_3
| 4 -> parse32_bounded_integer_le_4
inline_for_extraction
val parse32_u16_le : parser32 parse_u16_le
inline_for_extraction
val parse32_u32_le : parser32 parse_u32_le
#pop-options
inline_for_extraction
val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1)
inline_for_extraction
val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2)
inline_for_extraction
val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3)
inline_for_extraction
val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4)
inline_for_extraction
noextract
let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz))
= match sz with
| 1 -> serialize32_bounded_integer_le_1
| 2 -> serialize32_bounded_integer_le_2
| 3 -> serialize32_bounded_integer_le_3
| 4 -> serialize32_bounded_integer_le_4
inline_for_extraction
val serialize32_u16_le : serializer32 serialize_u16_le
inline_for_extraction
val serialize32_u32_le : serializer32 serialize_u32_le
inline_for_extraction
let size32_u16_le: size32 serialize_u16_le =
assert_norm (size32_constant_precond serialize_u16_le 2ul);
size32_constant serialize_u16_le 2ul ()
inline_for_extraction
let size32_u32_le: size32 serialize_u32_le =
assert_norm (size32_constant_precond serialize_u32_le 4ul);
size32_constant serialize_u32_le 4ul ()
module U32 = FStar.UInt32
val parse32_bounded_int32_1
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_2
(min32: U32.t)
(max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_3
(min32: U32.t)
(max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_4
(min32: U32.t)
(max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
inline_for_extraction
let parse32_bounded_int32
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32)))
= fun input -> (
if max32 `U32.lt` 256ul
then parse32_bounded_int32_1 min32 max32 input
else if max32 `U32.lt` 65536ul
then parse32_bounded_int32_2 min32 max32 input
else if max32 `U32.lt` 16777216ul
then parse32_bounded_int32_3 min32 max32 input
else parse32_bounded_int32_4 min32 max32 input
)
val serialize32_bounded_int32_1
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_2
(min32: U32.t)
(max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_3
(min32: U32.t)
(max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_4
(min32: U32.t)
(max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
inline_for_extraction
let serialize32_bounded_int32
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
= fun input -> (
if max32 `U32.lt` 256ul
then serialize32_bounded_int32_1 min32 max32 input
else if max32 `U32.lt` 65536ul
then serialize32_bounded_int32_2 min32 max32 input
else if max32 `U32.lt` 16777216ul
then serialize32_bounded_int32_3 min32 max32 input
else serialize32_bounded_int32_4 min32 max32 input
)
val parse32_bounded_int32_le_1
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 })
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_le_2
(min32: U32.t)
(max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 })
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_le_3
(min32: U32.t)
(max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 })
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_le_4
(min32: U32.t)
(max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
inline_for_extraction
let parse32_bounded_int32_le
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
= fun input -> (
if max32 `U32.lt` 256ul
then parse32_bounded_int32_le_1 min32 max32 input
else if max32 `U32.lt` 65536ul
then parse32_bounded_int32_le_2 min32 max32 input
else if max32 `U32.lt` 16777216ul
then parse32_bounded_int32_le_3 min32 max32 input
else parse32_bounded_int32_le_4 min32 max32 input
)
val serialize32_bounded_int32_le_1
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 })
: Tot (serializer32 (serialize_bounded_int32_le (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_le_2
(min32: U32.t)
(max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 })
: Tot (serializer32 (serialize_bounded_int32_le (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_le_3
(min32: U32.t)
(max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 })
: Tot (serializer32 (serialize_bounded_int32_le (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32_le_4
(min32: U32.t)
(max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 })
: Tot (serializer32 (serialize_bounded_int32_le (U32.v min32) (U32.v max32)))
inline_for_extraction
let serialize32_bounded_int32_le
(min32: U32.t)
(max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) | false | false | LowParse.SLow.BoundedInt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val serialize32_bounded_int32_le
(min32: U32.t)
(max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296})
: Tot (serializer32 (serialize_bounded_int32_le (U32.v min32) (U32.v max32))) | [] | LowParse.SLow.BoundedInt.serialize32_bounded_int32_le | {
"file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti",
"git_rev": "446a08ce38df905547cf20f28c43776b22b8087a",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} |
min32: FStar.UInt32.t ->
max32:
FStar.UInt32.t
{ 0 < FStar.UInt32.v max32 /\ FStar.UInt32.v min32 <= FStar.UInt32.v max32 /\
FStar.UInt32.v max32 < 4294967296 }
-> LowParse.SLow.Base.serializer32 (LowParse.Spec.BoundedInt.serialize_bounded_int32_le (FStar.UInt32.v
min32)
(FStar.UInt32.v max32)) | {
"end_col": 3,
"end_line": 272,
"start_col": 2,
"start_line": 264
} |
Prims.Tot | val lowerUpper128u (l u: uint_t 64) : uint_t 128 | [
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.BV",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lowerUpper128u (l:uint_t 64) (u:uint_t 64) : uint_t 128 =
0x10000000000000000 * u + l | val lowerUpper128u (l u: uint_t 64) : uint_t 128
let lowerUpper128u (l u: uint_t 64) : uint_t 128 = | false | null | false | 0x10000000000000000 * u + l | {
"checked_file": "Vale.Poly1305.Bitvectors.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.BV.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Poly1305.Bitvectors.fsti"
} | [
"total"
] | [
"FStar.UInt.uint_t",
"Prims.op_Addition",
"FStar.Mul.op_Star"
] | [] | module Vale.Poly1305.Bitvectors
open FStar.BV
open FStar.Mul
open FStar.UInt
val lemma_shr2: (x:uint_t 64) -> Lemma
((shift_right #64 x 2 == udiv #64 x 4))
[SMTPat (shift_right #64 x 2)]
val lemma_shr4: x:uint_t 64 -> Lemma (shift_right #64 x 4 == udiv #64 x 16)
[SMTPat (shift_right #64 x 4)]
val lemma_and_mod_n: x:uint_t 64 -> Lemma (logand #64 x 3 == mod #64 x 4 /\
logand #64 x 15 == mod #64 x 16)
[SMTPat (logand #64 x 3);
SMTPat (logand #64 x 15)]
val lemma_clear_lower_2: x:uint_t 64 ->
Lemma (logand #64 x 0xfffffffffffffffc == mul_mod #64 (udiv #64 x 4) 4)
[SMTPat (logand #64 x 0xfffffffffffffffc)]
val lemma_and_constants: x:uint_t 64 ->
Lemma (logand #64 x 0 == 0 /\ logand #64 x 0xffffffffffffffff == x)
[SMTPat (logand #64 x 0); SMTPat (logand #64 x 0xffffffffffffffff)]
val lemma_poly_constants: x:uint_t 64 ->
Lemma (logand #64 x 0x0ffffffc0fffffff < 0x1000000000000000 /\
logand #64 x 0x0ffffffc0ffffffc < 0x1000000000000000 /\
mod #64 (logand #64 x 0x0ffffffc0ffffffc) 4 == 0)
[SMTPat (logand #64 x 0x0ffffffc0fffffff);
SMTPat (logand #64 x 0x0ffffffc0ffffffc);
SMTPat (logand #64 x 0x0ffffffc0ffffffc)]
val lemma_and_commutes: x:uint_t 64 -> y:uint_t 64 ->
Lemma (logand #64 x y == logand #64 y x)
val lemma_bv128_64_64_and_helper: x:bv_t 128 -> x0:bv_t 64 -> x1:bv_t 64 ->
y:bv_t 128 -> y0:bv_t 64 -> y1:bv_t 64 ->
z:bv_t 128 -> z0:bv_t 64 -> z1:bv_t 64 ->
Lemma (requires (z0 == bvand #64 x0 y0 /\
z1 == bvand #64 x1 y1 /\
x == bvor #128 (bvshl #128 (bv_uext #64 #64 x1) 64)
(bv_uext #64 #64 x0) /\
y == bvor #128 (bvshl #128 (bv_uext #64 #64 y1) 64)
(bv_uext #64 #64 y0) /\
z == bvor #128 (bvshl #128 (bv_uext #64 #64 z1) 64)
(bv_uext #64 #64 z0)))
(ensures (z == bvand #128 x y))
val bv128_64_64: x1:bv_t 64 -> x0:bv_t 64 -> Tot (bv_t 128)
val lemma_bv128_64_64_and: x:bv_t 128 -> x0:bv_t 64 -> x1:bv_t 64 ->
y:bv_t 128 -> y0:bv_t 64 -> y1:bv_t 64 ->
z:bv_t 128 -> z0:bv_t 64 -> z1:bv_t 64 ->
Lemma (requires (z0 == bvand #64 x0 y0 /\
z1 == bvand #64 x1 y1 /\
x == bv128_64_64 x0 x1 /\
y == bv128_64_64 y0 y1 /\
z == bv128_64_64 z0 z1))
(ensures (z == bvand #128 x y)) | false | false | Vale.Poly1305.Bitvectors.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lowerUpper128u (l u: uint_t 64) : uint_t 128 | [] | Vale.Poly1305.Bitvectors.lowerUpper128u | {
"file_name": "vale/code/crypto/poly1305/x64/Vale.Poly1305.Bitvectors.fsti",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | l: FStar.UInt.uint_t 64 -> u3: FStar.UInt.uint_t 64 -> FStar.UInt.uint_t 128 | {
"end_col": 31,
"end_line": 57,
"start_col": 4,
"start_line": 57
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": null
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Hash.Definitions",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Hashfunctions",
"short_module": "MLH"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": "MTLD"
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": "MTLD"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Hashfunctions",
"short_module": "MTLH"
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "MerkleTree",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mt_p = MerkleTree.Low.mt_p | let mt_p = | false | null | false | MerkleTree.Low.mt_p | {
"checked_file": "MerkleTree.EverCrypt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"MerkleTree.Low.Hashfunctions.fst.checked",
"MerkleTree.Low.Datastructures.fst.checked",
"MerkleTree.Low.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.EverCrypt.fsti"
} | [
"total"
] | [
"MerkleTree.Low.mt_p"
] | [] | module MerkleTree.EverCrypt
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module MTH = MerkleTree.New.High
module MTLH = MerkleTree.Low.Hashfunctions
module MTLD = MerkleTree.Low.Datastructures
open LowStar.Regional
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// A declaration whose sole purpose is to align the .fsti with the .fst
noextract val _align : unit
inline_for_extraction noextract
let hash #hash_size = MTLD.hash #hash_size | false | true | MerkleTree.EverCrypt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mt_p : Type0 | [] | MerkleTree.EverCrypt.mt_p | {
"file_name": "src/MerkleTree.EverCrypt.fsti",
"git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | Type0 | {
"end_col": 30,
"end_line": 21,
"start_col": 11,
"start_line": 21
} |
|
Prims.GTot | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": null
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Hash.Definitions",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Hashfunctions",
"short_module": "MLH"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": "MTLD"
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": "MTLD"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Hashfunctions",
"short_module": "MTLH"
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "MerkleTree",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mt_safe = MerkleTree.Low.mt_safe | let mt_safe = | false | null | false | MerkleTree.Low.mt_safe | {
"checked_file": "MerkleTree.EverCrypt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"MerkleTree.Low.Hashfunctions.fst.checked",
"MerkleTree.Low.Datastructures.fst.checked",
"MerkleTree.Low.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.EverCrypt.fsti"
} | [
"sometrivial"
] | [
"MerkleTree.Low.mt_safe"
] | [] | module MerkleTree.EverCrypt
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module MTH = MerkleTree.New.High
module MTLH = MerkleTree.Low.Hashfunctions
module MTLD = MerkleTree.Low.Datastructures
open LowStar.Regional
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// A declaration whose sole purpose is to align the .fsti with the .fst
noextract val _align : unit
inline_for_extraction noextract
let hash #hash_size = MTLD.hash #hash_size
inline_for_extraction noextract
let mt_p = MerkleTree.Low.mt_p
inline_for_extraction noextract
let mt_loc = MerkleTree.Low.mt_loc | false | false | MerkleTree.EverCrypt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mt_safe : h: FStar.Monotonic.HyperStack.mem -> mt: MerkleTree.Low.mt_p -> Prims.GTot Type0 | [] | MerkleTree.EverCrypt.mt_safe | {
"file_name": "src/MerkleTree.EverCrypt.fsti",
"git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | h: FStar.Monotonic.HyperStack.mem -> mt: MerkleTree.Low.mt_p -> Prims.GTot Type0 | {
"end_col": 36,
"end_line": 25,
"start_col": 14,
"start_line": 25
} |
|
Prims.GTot | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": null
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Hash.Definitions",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Hashfunctions",
"short_module": "MLH"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": "MTLD"
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": "MTLD"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Hashfunctions",
"short_module": "MTLH"
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "MerkleTree",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mt_loc = MerkleTree.Low.mt_loc | let mt_loc = | false | null | false | MerkleTree.Low.mt_loc | {
"checked_file": "MerkleTree.EverCrypt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"MerkleTree.Low.Hashfunctions.fst.checked",
"MerkleTree.Low.Datastructures.fst.checked",
"MerkleTree.Low.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.EverCrypt.fsti"
} | [
"sometrivial"
] | [
"MerkleTree.Low.mt_loc"
] | [] | module MerkleTree.EverCrypt
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module MTH = MerkleTree.New.High
module MTLH = MerkleTree.Low.Hashfunctions
module MTLD = MerkleTree.Low.Datastructures
open LowStar.Regional
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// A declaration whose sole purpose is to align the .fsti with the .fst
noextract val _align : unit
inline_for_extraction noextract
let hash #hash_size = MTLD.hash #hash_size
inline_for_extraction noextract
let mt_p = MerkleTree.Low.mt_p | false | false | MerkleTree.EverCrypt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mt_loc : mt: MerkleTree.Low.mt_p -> Prims.GTot LowStar.Monotonic.Buffer.loc | [] | MerkleTree.EverCrypt.mt_loc | {
"file_name": "src/MerkleTree.EverCrypt.fsti",
"git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | mt: MerkleTree.Low.mt_p -> Prims.GTot LowStar.Monotonic.Buffer.loc | {
"end_col": 34,
"end_line": 23,
"start_col": 13,
"start_line": 23
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": null
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Hash.Definitions",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Hashfunctions",
"short_module": "MLH"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": "MTLD"
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": "MTLD"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Hashfunctions",
"short_module": "MTLH"
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "MerkleTree",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let hash #hash_size = MTLD.hash #hash_size | let hash #hash_size = | false | null | false | MTLD.hash #hash_size | {
"checked_file": "MerkleTree.EverCrypt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"MerkleTree.Low.Hashfunctions.fst.checked",
"MerkleTree.Low.Datastructures.fst.checked",
"MerkleTree.Low.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.EverCrypt.fsti"
} | [
"total"
] | [
"MerkleTree.Low.Datastructures.hash_size_t",
"MerkleTree.Low.Datastructures.hash"
] | [] | module MerkleTree.EverCrypt
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module MTH = MerkleTree.New.High
module MTLH = MerkleTree.Low.Hashfunctions
module MTLD = MerkleTree.Low.Datastructures
open LowStar.Regional
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// A declaration whose sole purpose is to align the .fsti with the .fst
noextract val _align : unit | false | true | MerkleTree.EverCrypt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val hash : Type0 | [] | MerkleTree.EverCrypt.hash | {
"file_name": "src/MerkleTree.EverCrypt.fsti",
"git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | Type0 | {
"end_col": 42,
"end_line": 19,
"start_col": 22,
"start_line": 19
} |
|
Prims.GTot | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": null
},
{
"abbrev": true,
"full_module": "EverCrypt.Hash",
"short_module": "EHS"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Hash.Definitions",
"short_module": "Hash"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Hashfunctions",
"short_module": "MLH"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": "MTLD"
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "MerkleTree.Low",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Regional",
"short_module": null
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Datastructures",
"short_module": "MTLD"
},
{
"abbrev": true,
"full_module": "MerkleTree.Low.Hashfunctions",
"short_module": "MTLH"
},
{
"abbrev": true,
"full_module": "MerkleTree.New.High",
"short_module": "MTH"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Monotonic.HyperHeap",
"short_module": "HH"
},
{
"abbrev": false,
"full_module": "MerkleTree",
"short_module": null
},
{
"abbrev": false,
"full_module": "MerkleTree",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mt_lift = MerkleTree.Low.mt_lift | let mt_lift = | false | null | false | MerkleTree.Low.mt_lift | {
"checked_file": "MerkleTree.EverCrypt.fsti.checked",
"dependencies": [
"prims.fst.checked",
"MerkleTree.New.High.fst.checked",
"MerkleTree.Low.Hashfunctions.fst.checked",
"MerkleTree.Low.Datastructures.fst.checked",
"MerkleTree.Low.fst.checked",
"LowStar.Regional.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Monotonic.HyperHeap.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "MerkleTree.EverCrypt.fsti"
} | [
"sometrivial"
] | [
"MerkleTree.Low.mt_lift"
] | [] | module MerkleTree.EverCrypt
module HH = FStar.Monotonic.HyperHeap
module B = LowStar.Buffer
module HST = FStar.HyperStack.ST
module MTH = MerkleTree.New.High
module MTLH = MerkleTree.Low.Hashfunctions
module MTLD = MerkleTree.Low.Datastructures
open LowStar.Regional
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// A declaration whose sole purpose is to align the .fsti with the .fst
noextract val _align : unit
inline_for_extraction noextract
let hash #hash_size = MTLD.hash #hash_size
inline_for_extraction noextract
let mt_p = MerkleTree.Low.mt_p
inline_for_extraction noextract
let mt_loc = MerkleTree.Low.mt_loc
inline_for_extraction noextract
let mt_safe = MerkleTree.Low.mt_safe | false | false | MerkleTree.EverCrypt.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mt_lift : h: FStar.Monotonic.HyperStack.mem -> mt: MerkleTree.Low.mt_p{MerkleTree.Low.mt_safe h mt}
-> Prims.GTot (r: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts r}) | [] | MerkleTree.EverCrypt.mt_lift | {
"file_name": "src/MerkleTree.EverCrypt.fsti",
"git_rev": "3b0f086655c145aa23f58a97259ebf4cf112a4a3",
"git_url": "https://github.com/hacl-star/merkle-tree.git",
"project_name": "merkle-tree"
} | h: FStar.Monotonic.HyperStack.mem -> mt: MerkleTree.Low.mt_p{MerkleTree.Low.mt_safe h mt}
-> Prims.GTot (r: MerkleTree.New.High.merkle_tree{MerkleTree.New.High.mt_wf_elts r}) | {
"end_col": 36,
"end_line": 27,
"start_col": 14,
"start_line": 27
} |
|
FStar.HyperStack.ST.Stack | val bn_is_odd:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_odd (as_seq h0 a)) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Comparison",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_is_odd #t len a = a.(0ul) &. uint #t 1 | val bn_is_odd:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_odd (as_seq h0 a))
let bn_is_odd #t len a = | true | null | false | a.(0ul) &. uint #t 1 | {
"checked_file": "Hacl.Bignum.Comparison.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Comparison.fst.checked",
"Hacl.Bignum.Lib.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Comparison.fst"
} | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.Definitions.lbignum",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.SEC",
"Lib.IntTypes.uint",
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.int_t",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"FStar.UInt32.__uint_to_t"
] | [] | module Hacl.Bignum.Comparison
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Base
open Hacl.Bignum.Definitions
open Hacl.Bignum.Lib
module S = Hacl.Spec.Bignum.Comparison
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Bignum comparison and test functions
///
inline_for_extraction noextract
val bn_is_odd:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_odd (as_seq h0 a)) | false | false | Hacl.Bignum.Comparison.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_is_odd:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_odd (as_seq h0 a)) | [] | Hacl.Bignum.Comparison.bn_is_odd | {
"file_name": "code/bignum/Hacl.Bignum.Comparison.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> a: Hacl.Bignum.Definitions.lbignum t len
-> FStar.HyperStack.ST.Stack (Hacl.Bignum.Definitions.limb t) | {
"end_col": 45,
"end_line": 35,
"start_col": 25,
"start_line": 35
} |
FStar.HyperStack.ST.Stack | val bn_is_zero_mask:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_zero_mask (as_seq h0 a)) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Comparison",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_is_zero_mask #t len b =
push_frame ();
let bn_zero = create len (uint #t 0) in
let res = bn_eq_mask len b bn_zero in
pop_frame ();
res | val bn_is_zero_mask:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_zero_mask (as_seq h0 a))
let bn_is_zero_mask #t len b = | true | null | false | push_frame ();
let bn_zero = create len (uint #t 0) in
let res = bn_eq_mask len b bn_zero in
pop_frame ();
res | {
"checked_file": "Hacl.Bignum.Comparison.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Comparison.fst.checked",
"Hacl.Bignum.Lib.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Comparison.fst"
} | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Hacl.Bignum.Comparison.bn_eq_mask",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.Buffer.create",
"Lib.IntTypes.uint",
"Lib.IntTypes.SEC",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Bignum.Comparison
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Base
open Hacl.Bignum.Definitions
open Hacl.Bignum.Lib
module S = Hacl.Spec.Bignum.Comparison
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Bignum comparison and test functions
///
inline_for_extraction noextract
val bn_is_odd:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_odd (as_seq h0 a))
let bn_is_odd #t len a = a.(0ul) &. uint #t 1
inline_for_extraction noextract
val bn_eq_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b))
let bn_eq_mask #t len a b =
push_frame ();
let mask = create 1ul (ones t SEC) in
let mask = Lib.ByteBuffer.buf_eq_mask a b len mask in
pop_frame ();
mask
inline_for_extraction noextract
val bn_is_zero_mask:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_zero_mask (as_seq h0 a)) | false | false | Hacl.Bignum.Comparison.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_is_zero_mask:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_zero_mask (as_seq h0 a)) | [] | Hacl.Bignum.Comparison.bn_is_zero_mask | {
"file_name": "code/bignum/Hacl.Bignum.Comparison.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | len: Lib.IntTypes.size_t{Lib.IntTypes.v len > 0} -> a: Hacl.Bignum.Definitions.lbignum t len
-> FStar.HyperStack.ST.Stack (Hacl.Bignum.Definitions.limb t) | {
"end_col": 5,
"end_line": 72,
"start_col": 2,
"start_line": 68
} |
FStar.HyperStack.ST.Stack | val bn_lt_pow2_mask:
#t:limb_t
-> len:size_t{0 < v len /\ bits t * v len <= max_size_t}
-> b:lbignum t len
-> x:size_t{v x < bits t * v len} ->
Stack (limb t)
(requires fun h -> live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_pow2_mask (as_seq h0 b) (v x)) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Comparison",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_lt_pow2_mask #t len b x =
push_frame ();
let b2 = create len (uint #t 0) in
bn_set_ith_bit len b2 x;
let res = bn_lt_mask len b b2 in
pop_frame ();
res | val bn_lt_pow2_mask:
#t:limb_t
-> len:size_t{0 < v len /\ bits t * v len <= max_size_t}
-> b:lbignum t len
-> x:size_t{v x < bits t * v len} ->
Stack (limb t)
(requires fun h -> live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_pow2_mask (as_seq h0 b) (v x))
let bn_lt_pow2_mask #t len b x = | true | null | false | push_frame ();
let b2 = create len (uint #t 0) in
bn_set_ith_bit len b2 x;
let res = bn_lt_mask len b b2 in
pop_frame ();
res | {
"checked_file": "Hacl.Bignum.Comparison.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Comparison.fst.checked",
"Hacl.Bignum.Lib.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Comparison.fst"
} | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.IntTypes.max_size_t",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Hacl.Bignum.Comparison.bn_lt_mask",
"Hacl.Bignum.Lib.bn_set_ith_bit",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.Buffer.create",
"Lib.IntTypes.uint",
"Lib.IntTypes.SEC",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Bignum.Comparison
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Base
open Hacl.Bignum.Definitions
open Hacl.Bignum.Lib
module S = Hacl.Spec.Bignum.Comparison
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Bignum comparison and test functions
///
inline_for_extraction noextract
val bn_is_odd:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_odd (as_seq h0 a))
let bn_is_odd #t len a = a.(0ul) &. uint #t 1
inline_for_extraction noextract
val bn_eq_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b))
let bn_eq_mask #t len a b =
push_frame ();
let mask = create 1ul (ones t SEC) in
let mask = Lib.ByteBuffer.buf_eq_mask a b len mask in
pop_frame ();
mask
inline_for_extraction noextract
val bn_is_zero_mask:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_zero_mask (as_seq h0 a))
let bn_is_zero_mask #t len b =
push_frame ();
let bn_zero = create len (uint #t 0) in
let res = bn_eq_mask len b bn_zero in
pop_frame ();
res
inline_for_extraction noextract
val bn_lt_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_mask (as_seq h0 a) (as_seq h0 b))
let bn_lt_mask #t len a b =
push_frame ();
let acc = create 1ul (uint #t 0) in
[@inline_let]
let refl h i : GTot (limb t) = Lib.Sequence.index (as_seq h acc) 0 in
[@inline_let]
let footprint i = loc acc in
[@inline_let]
let spec h = S.bn_lt_mask_f (as_seq h a) (as_seq h b) in
let h0 = ST.get () in
loop h0 len (S.bn_lt_mask_t t (v len)) refl footprint spec
(fun i ->
Loops.unfold_repeat_gen (v len) (S.bn_lt_mask_t t (v len)) (spec h0) (refl h0 0) (v i);
let beq = eq_mask a.(i) b.(i) in
let blt = lt_mask a.(i) b.(i) in
acc.(0ul) <- mask_select beq acc.(0ul) (mask_select blt (ones t SEC) (zeros t SEC))
);
let mask = acc.(0ul) in
pop_frame ();
mask
inline_for_extraction noextract
val bn_lt_pow2_mask:
#t:limb_t
-> len:size_t{0 < v len /\ bits t * v len <= max_size_t}
-> b:lbignum t len
-> x:size_t{v x < bits t * v len} ->
Stack (limb t)
(requires fun h -> live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_pow2_mask (as_seq h0 b) (v x)) | false | false | Hacl.Bignum.Comparison.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_lt_pow2_mask:
#t:limb_t
-> len:size_t{0 < v len /\ bits t * v len <= max_size_t}
-> b:lbignum t len
-> x:size_t{v x < bits t * v len} ->
Stack (limb t)
(requires fun h -> live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_pow2_mask (as_seq h0 b) (v x)) | [] | Hacl.Bignum.Comparison.bn_lt_pow2_mask | {
"file_name": "code/bignum/Hacl.Bignum.Comparison.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len:
Lib.IntTypes.size_t
{ 0 < Lib.IntTypes.v len /\
Lib.IntTypes.bits t * Lib.IntTypes.v len <= Lib.IntTypes.max_size_t } ->
b: Hacl.Bignum.Definitions.lbignum t len ->
x: Lib.IntTypes.size_t{Lib.IntTypes.v x < Lib.IntTypes.bits t * Lib.IntTypes.v len}
-> FStar.HyperStack.ST.Stack (Hacl.Bignum.Definitions.limb t) | {
"end_col": 5,
"end_line": 127,
"start_col": 2,
"start_line": 122
} |
FStar.HyperStack.ST.Stack | val bn_gt_pow2_mask:
#t:limb_t
-> len:size_t{0 < v len /\ bits t * v len <= max_size_t}
-> b:lbignum t len
-> x:size_t{v x < bits t * v len} ->
Stack (limb t)
(requires fun h -> live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_gt_pow2_mask (as_seq h0 b) (v x)) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Comparison",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_gt_pow2_mask #t len b x =
push_frame ();
let b2 = create len (uint #t 0) in
bn_set_ith_bit len b2 x;
let res = bn_lt_mask len b2 b in
pop_frame ();
res | val bn_gt_pow2_mask:
#t:limb_t
-> len:size_t{0 < v len /\ bits t * v len <= max_size_t}
-> b:lbignum t len
-> x:size_t{v x < bits t * v len} ->
Stack (limb t)
(requires fun h -> live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_gt_pow2_mask (as_seq h0 b) (v x))
let bn_gt_pow2_mask #t len b x = | true | null | false | push_frame ();
let b2 = create len (uint #t 0) in
bn_set_ith_bit len b2 x;
let res = bn_lt_mask len b2 b in
pop_frame ();
res | {
"checked_file": "Hacl.Bignum.Comparison.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Comparison.fst.checked",
"Hacl.Bignum.Lib.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Comparison.fst"
} | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.IntTypes.max_size_t",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Hacl.Bignum.Comparison.bn_lt_mask",
"Hacl.Bignum.Lib.bn_set_ith_bit",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.Buffer.create",
"Lib.IntTypes.uint",
"Lib.IntTypes.SEC",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Bignum.Comparison
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Base
open Hacl.Bignum.Definitions
open Hacl.Bignum.Lib
module S = Hacl.Spec.Bignum.Comparison
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Bignum comparison and test functions
///
inline_for_extraction noextract
val bn_is_odd:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_odd (as_seq h0 a))
let bn_is_odd #t len a = a.(0ul) &. uint #t 1
inline_for_extraction noextract
val bn_eq_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b))
let bn_eq_mask #t len a b =
push_frame ();
let mask = create 1ul (ones t SEC) in
let mask = Lib.ByteBuffer.buf_eq_mask a b len mask in
pop_frame ();
mask
inline_for_extraction noextract
val bn_is_zero_mask:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_zero_mask (as_seq h0 a))
let bn_is_zero_mask #t len b =
push_frame ();
let bn_zero = create len (uint #t 0) in
let res = bn_eq_mask len b bn_zero in
pop_frame ();
res
inline_for_extraction noextract
val bn_lt_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_mask (as_seq h0 a) (as_seq h0 b))
let bn_lt_mask #t len a b =
push_frame ();
let acc = create 1ul (uint #t 0) in
[@inline_let]
let refl h i : GTot (limb t) = Lib.Sequence.index (as_seq h acc) 0 in
[@inline_let]
let footprint i = loc acc in
[@inline_let]
let spec h = S.bn_lt_mask_f (as_seq h a) (as_seq h b) in
let h0 = ST.get () in
loop h0 len (S.bn_lt_mask_t t (v len)) refl footprint spec
(fun i ->
Loops.unfold_repeat_gen (v len) (S.bn_lt_mask_t t (v len)) (spec h0) (refl h0 0) (v i);
let beq = eq_mask a.(i) b.(i) in
let blt = lt_mask a.(i) b.(i) in
acc.(0ul) <- mask_select beq acc.(0ul) (mask_select blt (ones t SEC) (zeros t SEC))
);
let mask = acc.(0ul) in
pop_frame ();
mask
inline_for_extraction noextract
val bn_lt_pow2_mask:
#t:limb_t
-> len:size_t{0 < v len /\ bits t * v len <= max_size_t}
-> b:lbignum t len
-> x:size_t{v x < bits t * v len} ->
Stack (limb t)
(requires fun h -> live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_pow2_mask (as_seq h0 b) (v x))
let bn_lt_pow2_mask #t len b x =
push_frame ();
let b2 = create len (uint #t 0) in
bn_set_ith_bit len b2 x;
let res = bn_lt_mask len b b2 in
pop_frame ();
res
inline_for_extraction noextract
val bn_gt_pow2_mask:
#t:limb_t
-> len:size_t{0 < v len /\ bits t * v len <= max_size_t}
-> b:lbignum t len
-> x:size_t{v x < bits t * v len} ->
Stack (limb t)
(requires fun h -> live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_gt_pow2_mask (as_seq h0 b) (v x)) | false | false | Hacl.Bignum.Comparison.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_gt_pow2_mask:
#t:limb_t
-> len:size_t{0 < v len /\ bits t * v len <= max_size_t}
-> b:lbignum t len
-> x:size_t{v x < bits t * v len} ->
Stack (limb t)
(requires fun h -> live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_gt_pow2_mask (as_seq h0 b) (v x)) | [] | Hacl.Bignum.Comparison.bn_gt_pow2_mask | {
"file_name": "code/bignum/Hacl.Bignum.Comparison.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len:
Lib.IntTypes.size_t
{ 0 < Lib.IntTypes.v len /\
Lib.IntTypes.bits t * Lib.IntTypes.v len <= Lib.IntTypes.max_size_t } ->
b: Hacl.Bignum.Definitions.lbignum t len ->
x: Lib.IntTypes.size_t{Lib.IntTypes.v x < Lib.IntTypes.bits t * Lib.IntTypes.v len}
-> FStar.HyperStack.ST.Stack (Hacl.Bignum.Definitions.limb t) | {
"end_col": 5,
"end_line": 147,
"start_col": 2,
"start_line": 142
} |
FStar.HyperStack.ST.Stack | val bn_lt_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_mask (as_seq h0 a) (as_seq h0 b)) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Comparison",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_lt_mask #t len a b =
push_frame ();
let acc = create 1ul (uint #t 0) in
[@inline_let]
let refl h i : GTot (limb t) = Lib.Sequence.index (as_seq h acc) 0 in
[@inline_let]
let footprint i = loc acc in
[@inline_let]
let spec h = S.bn_lt_mask_f (as_seq h a) (as_seq h b) in
let h0 = ST.get () in
loop h0 len (S.bn_lt_mask_t t (v len)) refl footprint spec
(fun i ->
Loops.unfold_repeat_gen (v len) (S.bn_lt_mask_t t (v len)) (spec h0) (refl h0 0) (v i);
let beq = eq_mask a.(i) b.(i) in
let blt = lt_mask a.(i) b.(i) in
acc.(0ul) <- mask_select beq acc.(0ul) (mask_select blt (ones t SEC) (zeros t SEC))
);
let mask = acc.(0ul) in
pop_frame ();
mask | val bn_lt_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_mask (as_seq h0 a) (as_seq h0 b))
let bn_lt_mask #t len a b = | true | null | false | push_frame ();
let acc = create 1ul (uint #t 0) in
[@@ inline_let ]let refl h i : GTot (limb t) = Lib.Sequence.index (as_seq h acc) 0 in
[@@ inline_let ]let footprint i = loc acc in
[@@ inline_let ]let spec h = S.bn_lt_mask_f (as_seq h a) (as_seq h b) in
let h0 = ST.get () in
loop h0
len
(S.bn_lt_mask_t t (v len))
refl
footprint
spec
(fun i ->
Loops.unfold_repeat_gen (v len) (S.bn_lt_mask_t t (v len)) (spec h0) (refl h0 0) (v i);
let beq = eq_mask a.(i) b.(i) in
let blt = lt_mask a.(i) b.(i) in
acc.(0ul) <- mask_select beq acc.(0ul) (mask_select blt (ones t SEC) (zeros t SEC)));
let mask = acc.(0ul) in
pop_frame ();
mask | {
"checked_file": "Hacl.Bignum.Comparison.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Comparison.fst.checked",
"Hacl.Bignum.Lib.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Comparison.fst"
} | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_t",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT",
"FStar.UInt32.__uint_to_t",
"Lib.Buffer.loop",
"Hacl.Spec.Bignum.Comparison.bn_lt_mask_t",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Buffer.op_Array_Assignment",
"Hacl.Spec.Bignum.Base.mask_select",
"Lib.IntTypes.ones",
"Lib.IntTypes.SEC",
"Lib.IntTypes.zeros",
"Hacl.Spec.Bignum.Definitions.limb",
"Lib.IntTypes.int_t",
"Lib.IntTypes.lt_mask",
"Lib.IntTypes.eq_mask",
"Lib.LoopCombinators.unfold_repeat_gen",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Prims.nat",
"Hacl.Spec.Bignum.Comparison.bn_lt_mask_f",
"Lib.Buffer.as_seq",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"LowStar.Monotonic.Buffer.loc",
"Lib.IntTypes.size_nat",
"Lib.Buffer.loc",
"Prims.int",
"Lib.Sequence.index",
"Lib.Buffer.lbuffer_t",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"Lib.IntTypes.uint",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Bignum.Comparison
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Base
open Hacl.Bignum.Definitions
open Hacl.Bignum.Lib
module S = Hacl.Spec.Bignum.Comparison
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Bignum comparison and test functions
///
inline_for_extraction noextract
val bn_is_odd:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_odd (as_seq h0 a))
let bn_is_odd #t len a = a.(0ul) &. uint #t 1
inline_for_extraction noextract
val bn_eq_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b))
let bn_eq_mask #t len a b =
push_frame ();
let mask = create 1ul (ones t SEC) in
let mask = Lib.ByteBuffer.buf_eq_mask a b len mask in
pop_frame ();
mask
inline_for_extraction noextract
val bn_is_zero_mask:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_zero_mask (as_seq h0 a))
let bn_is_zero_mask #t len b =
push_frame ();
let bn_zero = create len (uint #t 0) in
let res = bn_eq_mask len b bn_zero in
pop_frame ();
res
inline_for_extraction noextract
val bn_lt_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_mask (as_seq h0 a) (as_seq h0 b)) | false | false | Hacl.Bignum.Comparison.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_lt_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_lt_mask (as_seq h0 a) (as_seq h0 b)) | [] | Hacl.Bignum.Comparison.bn_lt_mask | {
"file_name": "code/bignum/Hacl.Bignum.Comparison.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Lib.IntTypes.size_t ->
a: Hacl.Bignum.Definitions.lbignum t len ->
b: Hacl.Bignum.Definitions.lbignum t len
-> FStar.HyperStack.ST.Stack (Hacl.Bignum.Definitions.limb t) | {
"end_col": 6,
"end_line": 107,
"start_col": 2,
"start_line": 87
} |
FStar.HyperStack.ST.Stack | val bn_eq_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b)) | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Comparison",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let bn_eq_mask #t len a b =
push_frame ();
let mask = create 1ul (ones t SEC) in
let mask = Lib.ByteBuffer.buf_eq_mask a b len mask in
pop_frame ();
mask | val bn_eq_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b))
let bn_eq_mask #t len a b = | true | null | false | push_frame ();
let mask = create 1ul (ones t SEC) in
let mask = Lib.ByteBuffer.buf_eq_mask a b len mask in
pop_frame ();
mask | {
"checked_file": "Hacl.Bignum.Comparison.fst.checked",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Comparison.fst.checked",
"Hacl.Bignum.Lib.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Base.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Comparison.fst"
} | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_t",
"Hacl.Bignum.Definitions.lbignum",
"Hacl.Bignum.Definitions.limb",
"Prims.unit",
"FStar.HyperStack.ST.pop_frame",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.ByteBuffer.buf_eq_mask",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"FStar.UInt32.uint_to_t",
"FStar.UInt32.t",
"Lib.Buffer.create",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.ones",
"Lib.Buffer.lbuffer",
"FStar.HyperStack.ST.push_frame"
] | [] | module Hacl.Bignum.Comparison
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Base
open Hacl.Bignum.Definitions
open Hacl.Bignum.Lib
module S = Hacl.Spec.Bignum.Comparison
module ST = FStar.HyperStack.ST
module Loops = Lib.LoopCombinators
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
///
/// Bignum comparison and test functions
///
inline_for_extraction noextract
val bn_is_odd:
#t:limb_t
-> len:size_t{v len > 0}
-> a:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_is_odd (as_seq h0 a))
let bn_is_odd #t len a = a.(0ul) &. uint #t 1
inline_for_extraction noextract
val bn_eq_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b)) | false | false | Hacl.Bignum.Comparison.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val bn_eq_mask:
#t:limb_t
-> len:size_t
-> a:lbignum t len
-> b:lbignum t len ->
Stack (limb t)
(requires fun h -> live h a /\ live h b)
(ensures fun h0 r h1 -> modifies0 h0 h1 /\
r == S.bn_eq_mask (as_seq h0 a) (as_seq h0 b)) | [] | Hacl.Bignum.Comparison.bn_eq_mask | {
"file_name": "code/bignum/Hacl.Bignum.Comparison.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
len: Lib.IntTypes.size_t ->
a: Hacl.Bignum.Definitions.lbignum t len ->
b: Hacl.Bignum.Definitions.lbignum t len
-> FStar.HyperStack.ST.Stack (Hacl.Bignum.Definitions.limb t) | {
"end_col": 6,
"end_line": 54,
"start_col": 2,
"start_line": 50
} |
Prims.Pure | val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4) | val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) = | false | null | false | let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint64",
"Hacl.Spec.BignumQ.Definitions.qelem5",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.unit",
"Hacl.Spec.BignumQ.Lemmas.lemma_choose_step",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Hat_Dot",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.op_Subtraction_Dot",
"Lib.IntTypes.u64"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y) | [] | Hacl.Spec.BignumQ.Mul.choose | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
b: Lib.IntTypes.uint64 ->
x: Hacl.Spec.BignumQ.Definitions.qelem5 ->
y: Hacl.Spec.BignumQ.Definitions.qelem5
-> Prims.Pure Hacl.Spec.BignumQ.Definitions.qelem5 | {
"end_col": 22,
"end_line": 71,
"start_col": 56,
"start_line": 59
} |
Prims.Tot | val mask56:x: uint64{v x == pow2 56 - 1} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff | val mask56:x: uint64{v x == pow2 56 - 1}
let mask56:x: uint64{v x == pow2 56 - 1} = | false | null | false | assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [
"total"
] | [
"Lib.IntTypes.u64",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mask56:x: uint64{v x == pow2 56 - 1} | [] | Hacl.Spec.BignumQ.Mul.mask56 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.SEC {Lib.IntTypes.v x == Prims.pow2 56 - 1} | {
"end_col": 22,
"end_line": 17,
"start_col": 2,
"start_line": 16
} |
Prims.Pure | val mod_264: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 t) % pow2 264) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) =
Lemmas.lemma_mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
(t0, t1, t2, t3, t4 &. mask40) | val mod_264: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 t) % pow2 264)
let mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = | false | null | false | Lemmas.lemma_mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
(t0, t1, t2, t3, t4 &. mask40) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Hacl.Spec.BignumQ.Definitions.qelem_wide5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple5",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.BignumQ.Mul.mask40",
"Prims.unit",
"Hacl.Spec.BignumQ.Lemmas.lemma_mod_264",
"FStar.Pervasives.Native.Mktuple10",
"Hacl.Spec.BignumQ.Definitions.qelem5"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n
#set-options "--z3rlimit 300"
let mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy14 = mul64_wide_5 x1 y4 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy23 = mul64_wide_5 x2 y3 in
let xy24 = mul64_wide_5 x2 y4 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy32 = mul64_wide_5 x3 y2 in
let xy33 = mul64_wide_5 x3 y3 in
let xy34 = mul64_wide_5 x3 y4 in
let xy40 = mul64_wide_5 x4 y0 in
let xy41 = mul64_wide_5 x4 y1 in
let xy42 = mul64_wide_5 x4 y2 in
let xy43 = mul64_wide_5 x4 y3 in
let xy44 = mul64_wide_5 x4 y4 in
let z0 = xy00 in // < pow2 112
let z1 = add2 xy01 xy10 in // < pow2 113
let z2 = add3 xy02 xy11 xy20 in // < pow2 114
let z3 = add4 xy03 xy12 xy21 xy30 in // < pow2 115
let z4 = add5 xy04 xy13 xy22 xy31 xy40 in // < pow2 116
let z5 = add4 xy14 xy23 xy32 xy41 in
let z6 = add3 xy24 xy33 xy42 in
let z7 = add2 xy34 xy43 in
let z8 = xy44 in
//(z0, z1, z2, z3, z4, z5, z6, z7, z8)
assert_norm (pow2 112 < pow2 117);
assert_norm (pow2 112 <= pow2 116);
let (c0, t0) = carry56_wide z0 in
let (c1, t1) = carry56_wide (add_inner_carry z1 c0) in
let (c2, t2) = carry56_wide (add_inner_carry z2 c1) in
let (c3, t3) = carry56_wide (add_inner_carry z3 c2) in
let (c4, t4) = carry56_wide (add_inner_carry z4 c3) in
let (c5, t5) = carry56_wide (add_inner_carry z5 c4) in
let (c6, t6) = carry56_wide (add_inner_carry z6 c5) in
let (c7, t7) = carry56_wide (add_inner_carry z7 c6) in
let (c8, t8) = carry56_wide (add_inner_carry z8 c7) in
let t9 = to_u64 c8 in
let lemma_t9_fits () : Lemma (v t9 < pow2 56)
= // This proof was built from the bottom. We have as a constraint that v c8 has to be < pow2 112 to satisfy the postcondition.
// We compute each time the maximal value such that this postcondition is satisfied
calc (<) {
v c0;
(<) { Math.Lemmas.lemma_div_lt_nat (v z0) 112 56 }
pow2 56;
};
calc (<) {
v c1;
(<) { assert_norm (2*(pow2 112 - pow2 57 + 1) + pow2 56 <= pow2 113);
Math.Lemmas.lemma_div_lt_nat (v z1 + v c0) 113 56 }
pow2 57;
};
calc (<) {
v c2;
(<) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 57 <= pow2 114);
Math.Lemmas.lemma_div_lt_nat (v z2 + v c1) 114 56 }
pow2 58;
};
calc (<=) {
v c3;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + pow2 58 <= 31153781151208965410895007785680895);
assert_norm (31153781151208965410895007785680895 / pow56 == 432345564227567610);
Math.Lemmas.lemma_div_le (v z3 + v c2) 31153781151208965410895007785680895 (pow2 56) }
432345564227567610;
};
calc (<=) {
v c4;
(<=) { assert_norm (5*(pow2 112 - pow2 57 + 1) + 432345564227567610 <= 25961484292674137854422105494388735); // (pow2 59 - 2) * pow56
assert_norm (25961484292674137854422105494388735 / pow56 == 360287970189639675);
Math.Lemmas.lemma_div_le (v z4 + v c3) 25961484292674137854422105494388735 (pow2 56) }
360287970189639675;
};
calc (<=) {
v c5;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + 360287970189639675 <= 20769187434139310297949203203096575);
Math.Lemmas.lemma_div_le (v z5 + v c4) 20769187434139310297949203203096575 (pow2 56);
assert_norm (20769187434139310297949203203096575 / pow2 56 == pow2 58 - 4) }
pow2 58 - 4;
};
calc (<=) {
v c6;
(<=) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 58 - 4 <= 15576890575604482741476300911804415);
Math.Lemmas.lemma_div_le (v z6 + v c5) 15576890575604482741476300911804415 (pow2 56);
assert_norm (15576890575604482741476300911804415 / pow2 56 == 216172782113783805) }
216172782113783805;
};
calc (<=) {
v c7;
(<=) { assert_norm (2*(pow2 112 - pow2 57 + 1) + 216172782113783805 <= 10384593717069655185003398620512255); // (pow2 57 - 1) * pow2 56 - 1
Math.Lemmas.lemma_div_le (v z7 + v c6) 10384593717069655185003398620512255 (pow2 56);
assert_norm (10384593717069655185003398620512255 / pow2 56 == pow2 57 - 2) }
pow2 57 - 2;
};
calc (<) {
v c8;
(<) { Math.Lemmas.lemma_div_lt_nat (v z8 + v c7) 112 56 }
pow2 56;
};
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
in
lemma_t9_fits();
calc (==) {
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224 +
v t5 * pow280 + v t6 * pow336 + v t7 * pow392 + v t8 * pow448 + v t9 * pow504;
(==) { assert_norm (pow2 61 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
}
v z0 - v c0 * pow2 56 +
(v z1 + v c0 - v c1 * pow2 56) * pow56 +
(v z2 + v c1 - v c2 * pow2 56) * pow112 +
(v z3 + v c2 - v c3 * pow2 56) * pow168 +
(v z4 + v c3 - v c4 * pow2 56) * pow224 +
(v z5 + v c4 - v c5 * pow2 56) * pow280 +
(v z6 + v c5 - v c6 * pow2 56) * pow336 +
(v z7 + v c6 - v c7 * pow2 56) * pow392 +
(v z8 + v c7 - v c8 * pow2 56) * pow448 +
v c8 * pow504;
(==) {
lemma_mult_distr_3 (v z1) (v c0) (v c1) 56;
lemma_mult_distr_3 (v z2) (v c1) (v c2) 112;
lemma_mult_distr_3 (v z3) (v c2) (v c3) 168;
lemma_mult_distr_3 (v z4) (v c3) (v c4) 224;
lemma_mult_distr_3 (v z5) (v c4) (v c5) 280;
lemma_mult_distr_3 (v z6) (v c5) (v c6) 336;
lemma_mult_distr_3 (v z7) (v c6) (v c7) 392;
lemma_mult_distr_3 (v z8) (v c7) (v c8) 448
}
v z0 +
v z1 * pow56 +
v z2 * pow112 +
v z3 * pow168 +
v z4 * pow224 +
v z5 * pow280 +
v z6 * pow336 +
v z7 * pow392 +
v z8 * pow448;
(==) { calc (==) {
v z1;
(==) { }
v x0 * v y1 + v x1 * v y0;
};
calc (==) {
v z2;
(==) { }
v x0 * v y2 + v x1 * v y1 + v x2 * v y0;
};
calc (==) {
v z3;
(==) { }
v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0;
};
calc (==) {
v z4;
(==) { }
v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0;
};
calc (==) {
v z5;
(==) { }
v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1;
};
calc (==) {
v z6;
(==) { }
v x2 * v y4 + v x3 * v y3 + v x4 * v y2;
};
calc (==) {
v z7;
(==) { }
v x3 * v y4 + v x4 * v y3;
};
calc (==) {
v z8;
(==) { }
v x4 * v y4;
}
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0) * pow168 +
(v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0) * pow224 +
(v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1) * pow280 +
(v x2 * v y4 + v x3 * v y3 + v x4 * v y2) * pow336 +
(v x3 * v y4 + v x4 * v y3) * pow392 +
(v x4 * v y4) * pow448;
(==) { Lemmas.lemma_mul_qelem5 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224) *
(v y0 + v y1 * pow2 56 + v y2 * pow2 112 + v y3 * pow2 168 + v y4 * pow2 224);
};
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)
inline_for_extraction noextract
val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264)
let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let (c0, t0) = carry56_wide xy00 in
let (c1, t1) = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let (c2, t2) = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let (c3, t3) = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc (==) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
(==) { }
v xy00 - v c0 * pow2 56 +
(v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
(==) { logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) 40 64
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4)
inline_for_extraction noextract
val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24))
let div_2_24_step x y =
let y' = (y &. u64 0xffffff) <<. 32ul in
assert_norm (pow2 24 - 1 = 0xffffff);
assert_norm (pow2 24 < pow2 64);
mod_mask_lemma y 24ul;
assert (v (mod_mask #U64 #SEC 24ul) == 0xffffff);
assert (v (y &. u64 0xffffff) == v y % pow2 24);
assert (v y' == (v y % pow2 24) * pow2 32);
let x' = x >>. 24ul in
FStar.Math.Lemmas.pow2_minus 56 24;
assert (v x' < pow2 32);
let z = x' |. y' in
logor_disjoint x' y' 32;
assert (v z == v x / pow2 24 + pow2 32 * (v y % pow2 24));
z
inline_for_extraction noextract
val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248)
let div_248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 248 == (x / pow2 224) / pow2 24
let z0 = div_2_24_step x4 x5 in
let z1 = div_2_24_step x5 x6 in
let z2 = div_2_24_step x6 x7 in
let z3 = div_2_24_step x7 x8 in
let z4 = div_2_24_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val div_2_40_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56)
(ensures fun z -> v z < pow56 /\
v z == v x / pow2 40 + pow2 16 * (v y % pow2 40))
let div_2_40_step x y =
let y' = (y &. mask40) <<. 16ul in
assert_norm (pow2 40 < pow2 64);
mod_mask_lemma y 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == v mask40);
assert (v y' == (v y % pow2 40) * pow2 16);
let x' = x >>. 40ul in
FStar.Math.Lemmas.pow2_minus 56 40;
assert (v x' == v x / pow2 40);
assert (v x' < pow2 16);
let z = x' |. y' in
logor_disjoint x' y' 16;
z
inline_for_extraction noextract
val div_264: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 x) / pow2 264)
let div_264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 264 == (x / pow2 224) / pow2 40
let z0 = div_2_40_step x4 x5 in
let z1 = div_2_40_step x5 x6 in
let z2 = div_2_40_step x6 x7 in
let z3 = div_2_40_step x7 x8 in
let z4 = div_2_40_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val mod_264: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 t) % pow2 264) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mod_264: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 t) % pow2 264) | [] | Hacl.Spec.BignumQ.Mul.mod_264 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> Prims.Pure Hacl.Spec.BignumQ.Definitions.qelem5 | {
"end_col": 32,
"end_line": 733,
"start_col": 2,
"start_line": 732
} |
Prims.Tot | val mask40:x: uint64{v x == pow2 40 - 1} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff | val mask40:x: uint64{v x == pow2 40 - 1}
let mask40:x: uint64{v x == pow2 40 - 1} = | false | null | false | assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [
"total"
] | [
"Lib.IntTypes.u64",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.op_Subtraction",
"Prims.pow2"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mask40:x: uint64{v x == pow2 40 - 1} | [] | Hacl.Spec.BignumQ.Mul.mask40 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.SEC {Lib.IntTypes.v x == Prims.pow2 40 - 1} | {
"end_col": 18,
"end_line": 23,
"start_col": 2,
"start_line": 22
} |
Prims.Tot | val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4) | val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () = | false | null | false | let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [
"total"
] | [
"Prims.unit",
"FStar.Pervasives.Native.Mktuple5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.nat",
"Hacl.Spec.BignumQ.Definitions.as_nat5",
"Spec.Ed25519.q",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.int",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Lib.IntTypes.u64",
"Hacl.Spec.BignumQ.Definitions.qelem5",
"Prims.l_and",
"Hacl.Spec.BignumQ.Definitions.qelem_fits5"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q} | [] | Hacl.Spec.BignumQ.Mul.make_m | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | _: Prims.unit
-> m:
Hacl.Spec.BignumQ.Definitions.qelem5
{ Hacl.Spec.BignumQ.Definitions.qelem_fits5 m (1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.as_nat5 m == Spec.Ed25519.q } | {
"end_col": 22,
"end_line": 35,
"start_col": 15,
"start_line": 28
} |
Prims.Pure | val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d | val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d = | false | null | false | assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint128",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Prims.unit",
"FStar.Math.Lemmas.small_mod",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Prims.pow2",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116) | [] | Hacl.Spec.BignumQ.Mul.add4 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Lib.IntTypes.uint128 ->
b: Lib.IntTypes.uint128 ->
c: Lib.IntTypes.uint128 ->
d: Lib.IntTypes.uint128
-> Prims.Pure Lib.IntTypes.uint128 | {
"end_col": 18,
"end_line": 300,
"start_col": 2,
"start_line": 293
} |
Prims.Pure | val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b | val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b = | false | null | false | assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint128",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Prims.unit",
"FStar.Math.Lemmas.small_mod",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Prims.pow2",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116) | [] | Hacl.Spec.BignumQ.Mul.add2 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.IntTypes.uint128 -> b: Lib.IntTypes.uint128 -> Prims.Pure Lib.IntTypes.uint128 | {
"end_col": 8,
"end_line": 266,
"start_col": 2,
"start_line": 263
} |
Prims.Pure | val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b | val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b = | false | null | false | assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint128",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Prims.unit",
"FStar.Math.Lemmas.small_mod",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Prims.pow2",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117) | [] | Hacl.Spec.BignumQ.Mul.add_inner_carry | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.IntTypes.uint128 -> b: Lib.IntTypes.uint128 -> Prims.Pure Lib.IntTypes.uint128 | {
"end_col": 8,
"end_line": 334,
"start_col": 2,
"start_line": 331
} |
Prims.Pure | val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t | val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y = | false | null | false | let b = (x -. y) >>. 63ul in
let lshift56 = (b <<. 56ul) in
let t = ((b <<. 56ul) +! x) -! y in
b, t | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Subtraction_Bang",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.op_Less_Less_Dot",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.IntTypes.op_Subtraction_Dot",
"FStar.Pervasives.Native.tuple2"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56) | [] | Hacl.Spec.BignumQ.Mul.subm_step | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Lib.IntTypes.uint64 -> y: Lib.IntTypes.uint64
-> Prims.Pure (Lib.IntTypes.uint64 * Lib.IntTypes.uint64) | {
"end_col": 6,
"end_line": 90,
"start_col": 19,
"start_line": 82
} |
Prims.Pure | val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry | val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x = | false | null | false | let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple2",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Modulus",
"Lib.IntTypes.range_t",
"Lib.IntTypes.mod_mask",
"FStar.UInt32.__uint_to_t",
"Hacl.Spec.BignumQ.Mul.mask56",
"Lib.IntTypes.mod_mask_lemma",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Amp_Dot",
"FStar.Math.Lemmas.pow2_minus",
"Lib.IntTypes.op_Greater_Greater_Dot",
"FStar.Pervasives.Native.tuple2"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t) | [] | Hacl.Spec.BignumQ.Mul.carry56 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Lib.IntTypes.uint64 -> Prims.Pure (Lib.IntTypes.uint64 * Lib.IntTypes.uint64) | {
"end_col": 10,
"end_line": 161,
"start_col": 15,
"start_line": 152
} |
Prims.Pure | val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c | val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c = | false | null | false | assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint128",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Prims.unit",
"FStar.Math.Lemmas.small_mod",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Prims.pow2",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116) | [] | Hacl.Spec.BignumQ.Mul.add3 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.IntTypes.uint128 -> b: Lib.IntTypes.uint128 -> c: Lib.IntTypes.uint128
-> Prims.Pure Lib.IntTypes.uint128 | {
"end_col": 13,
"end_line": 282,
"start_col": 2,
"start_line": 277
} |
Prims.Pure | val div_264: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 x) / pow2 264) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let div_264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 264 == (x / pow2 224) / pow2 40
let z0 = div_2_40_step x4 x5 in
let z1 = div_2_40_step x5 x6 in
let z2 = div_2_40_step x6 x7 in
let z3 = div_2_40_step x7 x8 in
let z4 = div_2_40_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4) | val div_264: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 x) / pow2 264)
let div_264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = | false | null | false | let z0 = div_2_40_step x4 x5 in
let z1 = div_2_40_step x5 x6 in
let z2 = div_2_40_step x6 x7 in
let z3 = div_2_40_step x7 x8 in
let z4 = div_2_40_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Hacl.Spec.BignumQ.Definitions.qelem_wide5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple5",
"Prims.unit",
"Hacl.Spec.BignumQ.Lemmas.lemma_div264",
"FStar.Pervasives.Native.Mktuple10",
"Prims._assert",
"Hacl.Spec.BignumQ.Definitions.qelem_fits5",
"Prims.nat",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.BignumQ.Mul.div_2_40_step",
"Hacl.Spec.BignumQ.Definitions.qelem5"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n
#set-options "--z3rlimit 300"
let mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy14 = mul64_wide_5 x1 y4 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy23 = mul64_wide_5 x2 y3 in
let xy24 = mul64_wide_5 x2 y4 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy32 = mul64_wide_5 x3 y2 in
let xy33 = mul64_wide_5 x3 y3 in
let xy34 = mul64_wide_5 x3 y4 in
let xy40 = mul64_wide_5 x4 y0 in
let xy41 = mul64_wide_5 x4 y1 in
let xy42 = mul64_wide_5 x4 y2 in
let xy43 = mul64_wide_5 x4 y3 in
let xy44 = mul64_wide_5 x4 y4 in
let z0 = xy00 in // < pow2 112
let z1 = add2 xy01 xy10 in // < pow2 113
let z2 = add3 xy02 xy11 xy20 in // < pow2 114
let z3 = add4 xy03 xy12 xy21 xy30 in // < pow2 115
let z4 = add5 xy04 xy13 xy22 xy31 xy40 in // < pow2 116
let z5 = add4 xy14 xy23 xy32 xy41 in
let z6 = add3 xy24 xy33 xy42 in
let z7 = add2 xy34 xy43 in
let z8 = xy44 in
//(z0, z1, z2, z3, z4, z5, z6, z7, z8)
assert_norm (pow2 112 < pow2 117);
assert_norm (pow2 112 <= pow2 116);
let (c0, t0) = carry56_wide z0 in
let (c1, t1) = carry56_wide (add_inner_carry z1 c0) in
let (c2, t2) = carry56_wide (add_inner_carry z2 c1) in
let (c3, t3) = carry56_wide (add_inner_carry z3 c2) in
let (c4, t4) = carry56_wide (add_inner_carry z4 c3) in
let (c5, t5) = carry56_wide (add_inner_carry z5 c4) in
let (c6, t6) = carry56_wide (add_inner_carry z6 c5) in
let (c7, t7) = carry56_wide (add_inner_carry z7 c6) in
let (c8, t8) = carry56_wide (add_inner_carry z8 c7) in
let t9 = to_u64 c8 in
let lemma_t9_fits () : Lemma (v t9 < pow2 56)
= // This proof was built from the bottom. We have as a constraint that v c8 has to be < pow2 112 to satisfy the postcondition.
// We compute each time the maximal value such that this postcondition is satisfied
calc (<) {
v c0;
(<) { Math.Lemmas.lemma_div_lt_nat (v z0) 112 56 }
pow2 56;
};
calc (<) {
v c1;
(<) { assert_norm (2*(pow2 112 - pow2 57 + 1) + pow2 56 <= pow2 113);
Math.Lemmas.lemma_div_lt_nat (v z1 + v c0) 113 56 }
pow2 57;
};
calc (<) {
v c2;
(<) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 57 <= pow2 114);
Math.Lemmas.lemma_div_lt_nat (v z2 + v c1) 114 56 }
pow2 58;
};
calc (<=) {
v c3;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + pow2 58 <= 31153781151208965410895007785680895);
assert_norm (31153781151208965410895007785680895 / pow56 == 432345564227567610);
Math.Lemmas.lemma_div_le (v z3 + v c2) 31153781151208965410895007785680895 (pow2 56) }
432345564227567610;
};
calc (<=) {
v c4;
(<=) { assert_norm (5*(pow2 112 - pow2 57 + 1) + 432345564227567610 <= 25961484292674137854422105494388735); // (pow2 59 - 2) * pow56
assert_norm (25961484292674137854422105494388735 / pow56 == 360287970189639675);
Math.Lemmas.lemma_div_le (v z4 + v c3) 25961484292674137854422105494388735 (pow2 56) }
360287970189639675;
};
calc (<=) {
v c5;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + 360287970189639675 <= 20769187434139310297949203203096575);
Math.Lemmas.lemma_div_le (v z5 + v c4) 20769187434139310297949203203096575 (pow2 56);
assert_norm (20769187434139310297949203203096575 / pow2 56 == pow2 58 - 4) }
pow2 58 - 4;
};
calc (<=) {
v c6;
(<=) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 58 - 4 <= 15576890575604482741476300911804415);
Math.Lemmas.lemma_div_le (v z6 + v c5) 15576890575604482741476300911804415 (pow2 56);
assert_norm (15576890575604482741476300911804415 / pow2 56 == 216172782113783805) }
216172782113783805;
};
calc (<=) {
v c7;
(<=) { assert_norm (2*(pow2 112 - pow2 57 + 1) + 216172782113783805 <= 10384593717069655185003398620512255); // (pow2 57 - 1) * pow2 56 - 1
Math.Lemmas.lemma_div_le (v z7 + v c6) 10384593717069655185003398620512255 (pow2 56);
assert_norm (10384593717069655185003398620512255 / pow2 56 == pow2 57 - 2) }
pow2 57 - 2;
};
calc (<) {
v c8;
(<) { Math.Lemmas.lemma_div_lt_nat (v z8 + v c7) 112 56 }
pow2 56;
};
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
in
lemma_t9_fits();
calc (==) {
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224 +
v t5 * pow280 + v t6 * pow336 + v t7 * pow392 + v t8 * pow448 + v t9 * pow504;
(==) { assert_norm (pow2 61 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
}
v z0 - v c0 * pow2 56 +
(v z1 + v c0 - v c1 * pow2 56) * pow56 +
(v z2 + v c1 - v c2 * pow2 56) * pow112 +
(v z3 + v c2 - v c3 * pow2 56) * pow168 +
(v z4 + v c3 - v c4 * pow2 56) * pow224 +
(v z5 + v c4 - v c5 * pow2 56) * pow280 +
(v z6 + v c5 - v c6 * pow2 56) * pow336 +
(v z7 + v c6 - v c7 * pow2 56) * pow392 +
(v z8 + v c7 - v c8 * pow2 56) * pow448 +
v c8 * pow504;
(==) {
lemma_mult_distr_3 (v z1) (v c0) (v c1) 56;
lemma_mult_distr_3 (v z2) (v c1) (v c2) 112;
lemma_mult_distr_3 (v z3) (v c2) (v c3) 168;
lemma_mult_distr_3 (v z4) (v c3) (v c4) 224;
lemma_mult_distr_3 (v z5) (v c4) (v c5) 280;
lemma_mult_distr_3 (v z6) (v c5) (v c6) 336;
lemma_mult_distr_3 (v z7) (v c6) (v c7) 392;
lemma_mult_distr_3 (v z8) (v c7) (v c8) 448
}
v z0 +
v z1 * pow56 +
v z2 * pow112 +
v z3 * pow168 +
v z4 * pow224 +
v z5 * pow280 +
v z6 * pow336 +
v z7 * pow392 +
v z8 * pow448;
(==) { calc (==) {
v z1;
(==) { }
v x0 * v y1 + v x1 * v y0;
};
calc (==) {
v z2;
(==) { }
v x0 * v y2 + v x1 * v y1 + v x2 * v y0;
};
calc (==) {
v z3;
(==) { }
v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0;
};
calc (==) {
v z4;
(==) { }
v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0;
};
calc (==) {
v z5;
(==) { }
v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1;
};
calc (==) {
v z6;
(==) { }
v x2 * v y4 + v x3 * v y3 + v x4 * v y2;
};
calc (==) {
v z7;
(==) { }
v x3 * v y4 + v x4 * v y3;
};
calc (==) {
v z8;
(==) { }
v x4 * v y4;
}
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0) * pow168 +
(v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0) * pow224 +
(v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1) * pow280 +
(v x2 * v y4 + v x3 * v y3 + v x4 * v y2) * pow336 +
(v x3 * v y4 + v x4 * v y3) * pow392 +
(v x4 * v y4) * pow448;
(==) { Lemmas.lemma_mul_qelem5 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224) *
(v y0 + v y1 * pow2 56 + v y2 * pow2 112 + v y3 * pow2 168 + v y4 * pow2 224);
};
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)
inline_for_extraction noextract
val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264)
let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let (c0, t0) = carry56_wide xy00 in
let (c1, t1) = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let (c2, t2) = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let (c3, t3) = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc (==) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
(==) { }
v xy00 - v c0 * pow2 56 +
(v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
(==) { logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) 40 64
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4)
inline_for_extraction noextract
val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24))
let div_2_24_step x y =
let y' = (y &. u64 0xffffff) <<. 32ul in
assert_norm (pow2 24 - 1 = 0xffffff);
assert_norm (pow2 24 < pow2 64);
mod_mask_lemma y 24ul;
assert (v (mod_mask #U64 #SEC 24ul) == 0xffffff);
assert (v (y &. u64 0xffffff) == v y % pow2 24);
assert (v y' == (v y % pow2 24) * pow2 32);
let x' = x >>. 24ul in
FStar.Math.Lemmas.pow2_minus 56 24;
assert (v x' < pow2 32);
let z = x' |. y' in
logor_disjoint x' y' 32;
assert (v z == v x / pow2 24 + pow2 32 * (v y % pow2 24));
z
inline_for_extraction noextract
val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248)
let div_248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 248 == (x / pow2 224) / pow2 24
let z0 = div_2_24_step x4 x5 in
let z1 = div_2_24_step x5 x6 in
let z2 = div_2_24_step x6 x7 in
let z3 = div_2_24_step x7 x8 in
let z4 = div_2_24_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val div_2_40_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56)
(ensures fun z -> v z < pow56 /\
v z == v x / pow2 40 + pow2 16 * (v y % pow2 40))
let div_2_40_step x y =
let y' = (y &. mask40) <<. 16ul in
assert_norm (pow2 40 < pow2 64);
mod_mask_lemma y 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == v mask40);
assert (v y' == (v y % pow2 40) * pow2 16);
let x' = x >>. 40ul in
FStar.Math.Lemmas.pow2_minus 56 40;
assert (v x' == v x / pow2 40);
assert (v x' < pow2 16);
let z = x' |. y' in
logor_disjoint x' y' 16;
z
inline_for_extraction noextract
val div_264: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 x) / pow2 264) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val div_264: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 x) / pow2 264) | [] | Hacl.Spec.BignumQ.Mul.div_264 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> Prims.Pure Hacl.Spec.BignumQ.Definitions.qelem5 | {
"end_col": 22,
"end_line": 719,
"start_col": 54,
"start_line": 710
} |
Prims.Pure | val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let div_248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 248 == (x / pow2 224) / pow2 24
let z0 = div_2_24_step x4 x5 in
let z1 = div_2_24_step x5 x6 in
let z2 = div_2_24_step x6 x7 in
let z3 = div_2_24_step x7 x8 in
let z4 = div_2_24_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4) | val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248)
let div_248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = | false | null | false | let z0 = div_2_24_step x4 x5 in
let z1 = div_2_24_step x5 x6 in
let z2 = div_2_24_step x6 x7 in
let z3 = div_2_24_step x7 x8 in
let z4 = div_2_24_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Hacl.Spec.BignumQ.Definitions.qelem_wide5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple5",
"Prims.unit",
"Hacl.Spec.BignumQ.Lemmas.lemma_div248",
"FStar.Pervasives.Native.Mktuple10",
"Prims._assert",
"Hacl.Spec.BignumQ.Definitions.qelem_fits5",
"Prims.nat",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.BignumQ.Mul.div_2_24_step",
"Hacl.Spec.BignumQ.Definitions.qelem5"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n
#set-options "--z3rlimit 300"
let mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy14 = mul64_wide_5 x1 y4 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy23 = mul64_wide_5 x2 y3 in
let xy24 = mul64_wide_5 x2 y4 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy32 = mul64_wide_5 x3 y2 in
let xy33 = mul64_wide_5 x3 y3 in
let xy34 = mul64_wide_5 x3 y4 in
let xy40 = mul64_wide_5 x4 y0 in
let xy41 = mul64_wide_5 x4 y1 in
let xy42 = mul64_wide_5 x4 y2 in
let xy43 = mul64_wide_5 x4 y3 in
let xy44 = mul64_wide_5 x4 y4 in
let z0 = xy00 in // < pow2 112
let z1 = add2 xy01 xy10 in // < pow2 113
let z2 = add3 xy02 xy11 xy20 in // < pow2 114
let z3 = add4 xy03 xy12 xy21 xy30 in // < pow2 115
let z4 = add5 xy04 xy13 xy22 xy31 xy40 in // < pow2 116
let z5 = add4 xy14 xy23 xy32 xy41 in
let z6 = add3 xy24 xy33 xy42 in
let z7 = add2 xy34 xy43 in
let z8 = xy44 in
//(z0, z1, z2, z3, z4, z5, z6, z7, z8)
assert_norm (pow2 112 < pow2 117);
assert_norm (pow2 112 <= pow2 116);
let (c0, t0) = carry56_wide z0 in
let (c1, t1) = carry56_wide (add_inner_carry z1 c0) in
let (c2, t2) = carry56_wide (add_inner_carry z2 c1) in
let (c3, t3) = carry56_wide (add_inner_carry z3 c2) in
let (c4, t4) = carry56_wide (add_inner_carry z4 c3) in
let (c5, t5) = carry56_wide (add_inner_carry z5 c4) in
let (c6, t6) = carry56_wide (add_inner_carry z6 c5) in
let (c7, t7) = carry56_wide (add_inner_carry z7 c6) in
let (c8, t8) = carry56_wide (add_inner_carry z8 c7) in
let t9 = to_u64 c8 in
let lemma_t9_fits () : Lemma (v t9 < pow2 56)
= // This proof was built from the bottom. We have as a constraint that v c8 has to be < pow2 112 to satisfy the postcondition.
// We compute each time the maximal value such that this postcondition is satisfied
calc (<) {
v c0;
(<) { Math.Lemmas.lemma_div_lt_nat (v z0) 112 56 }
pow2 56;
};
calc (<) {
v c1;
(<) { assert_norm (2*(pow2 112 - pow2 57 + 1) + pow2 56 <= pow2 113);
Math.Lemmas.lemma_div_lt_nat (v z1 + v c0) 113 56 }
pow2 57;
};
calc (<) {
v c2;
(<) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 57 <= pow2 114);
Math.Lemmas.lemma_div_lt_nat (v z2 + v c1) 114 56 }
pow2 58;
};
calc (<=) {
v c3;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + pow2 58 <= 31153781151208965410895007785680895);
assert_norm (31153781151208965410895007785680895 / pow56 == 432345564227567610);
Math.Lemmas.lemma_div_le (v z3 + v c2) 31153781151208965410895007785680895 (pow2 56) }
432345564227567610;
};
calc (<=) {
v c4;
(<=) { assert_norm (5*(pow2 112 - pow2 57 + 1) + 432345564227567610 <= 25961484292674137854422105494388735); // (pow2 59 - 2) * pow56
assert_norm (25961484292674137854422105494388735 / pow56 == 360287970189639675);
Math.Lemmas.lemma_div_le (v z4 + v c3) 25961484292674137854422105494388735 (pow2 56) }
360287970189639675;
};
calc (<=) {
v c5;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + 360287970189639675 <= 20769187434139310297949203203096575);
Math.Lemmas.lemma_div_le (v z5 + v c4) 20769187434139310297949203203096575 (pow2 56);
assert_norm (20769187434139310297949203203096575 / pow2 56 == pow2 58 - 4) }
pow2 58 - 4;
};
calc (<=) {
v c6;
(<=) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 58 - 4 <= 15576890575604482741476300911804415);
Math.Lemmas.lemma_div_le (v z6 + v c5) 15576890575604482741476300911804415 (pow2 56);
assert_norm (15576890575604482741476300911804415 / pow2 56 == 216172782113783805) }
216172782113783805;
};
calc (<=) {
v c7;
(<=) { assert_norm (2*(pow2 112 - pow2 57 + 1) + 216172782113783805 <= 10384593717069655185003398620512255); // (pow2 57 - 1) * pow2 56 - 1
Math.Lemmas.lemma_div_le (v z7 + v c6) 10384593717069655185003398620512255 (pow2 56);
assert_norm (10384593717069655185003398620512255 / pow2 56 == pow2 57 - 2) }
pow2 57 - 2;
};
calc (<) {
v c8;
(<) { Math.Lemmas.lemma_div_lt_nat (v z8 + v c7) 112 56 }
pow2 56;
};
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
in
lemma_t9_fits();
calc (==) {
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224 +
v t5 * pow280 + v t6 * pow336 + v t7 * pow392 + v t8 * pow448 + v t9 * pow504;
(==) { assert_norm (pow2 61 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
}
v z0 - v c0 * pow2 56 +
(v z1 + v c0 - v c1 * pow2 56) * pow56 +
(v z2 + v c1 - v c2 * pow2 56) * pow112 +
(v z3 + v c2 - v c3 * pow2 56) * pow168 +
(v z4 + v c3 - v c4 * pow2 56) * pow224 +
(v z5 + v c4 - v c5 * pow2 56) * pow280 +
(v z6 + v c5 - v c6 * pow2 56) * pow336 +
(v z7 + v c6 - v c7 * pow2 56) * pow392 +
(v z8 + v c7 - v c8 * pow2 56) * pow448 +
v c8 * pow504;
(==) {
lemma_mult_distr_3 (v z1) (v c0) (v c1) 56;
lemma_mult_distr_3 (v z2) (v c1) (v c2) 112;
lemma_mult_distr_3 (v z3) (v c2) (v c3) 168;
lemma_mult_distr_3 (v z4) (v c3) (v c4) 224;
lemma_mult_distr_3 (v z5) (v c4) (v c5) 280;
lemma_mult_distr_3 (v z6) (v c5) (v c6) 336;
lemma_mult_distr_3 (v z7) (v c6) (v c7) 392;
lemma_mult_distr_3 (v z8) (v c7) (v c8) 448
}
v z0 +
v z1 * pow56 +
v z2 * pow112 +
v z3 * pow168 +
v z4 * pow224 +
v z5 * pow280 +
v z6 * pow336 +
v z7 * pow392 +
v z8 * pow448;
(==) { calc (==) {
v z1;
(==) { }
v x0 * v y1 + v x1 * v y0;
};
calc (==) {
v z2;
(==) { }
v x0 * v y2 + v x1 * v y1 + v x2 * v y0;
};
calc (==) {
v z3;
(==) { }
v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0;
};
calc (==) {
v z4;
(==) { }
v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0;
};
calc (==) {
v z5;
(==) { }
v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1;
};
calc (==) {
v z6;
(==) { }
v x2 * v y4 + v x3 * v y3 + v x4 * v y2;
};
calc (==) {
v z7;
(==) { }
v x3 * v y4 + v x4 * v y3;
};
calc (==) {
v z8;
(==) { }
v x4 * v y4;
}
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0) * pow168 +
(v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0) * pow224 +
(v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1) * pow280 +
(v x2 * v y4 + v x3 * v y3 + v x4 * v y2) * pow336 +
(v x3 * v y4 + v x4 * v y3) * pow392 +
(v x4 * v y4) * pow448;
(==) { Lemmas.lemma_mul_qelem5 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224) *
(v y0 + v y1 * pow2 56 + v y2 * pow2 112 + v y3 * pow2 168 + v y4 * pow2 224);
};
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)
inline_for_extraction noextract
val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264)
let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let (c0, t0) = carry56_wide xy00 in
let (c1, t1) = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let (c2, t2) = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let (c3, t3) = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc (==) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
(==) { }
v xy00 - v c0 * pow2 56 +
(v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
(==) { logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) 40 64
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4)
inline_for_extraction noextract
val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24))
let div_2_24_step x y =
let y' = (y &. u64 0xffffff) <<. 32ul in
assert_norm (pow2 24 - 1 = 0xffffff);
assert_norm (pow2 24 < pow2 64);
mod_mask_lemma y 24ul;
assert (v (mod_mask #U64 #SEC 24ul) == 0xffffff);
assert (v (y &. u64 0xffffff) == v y % pow2 24);
assert (v y' == (v y % pow2 24) * pow2 32);
let x' = x >>. 24ul in
FStar.Math.Lemmas.pow2_minus 56 24;
assert (v x' < pow2 32);
let z = x' |. y' in
logor_disjoint x' y' 32;
assert (v z == v x / pow2 24 + pow2 32 * (v y % pow2 24));
z
inline_for_extraction noextract
val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248) | [] | Hacl.Spec.BignumQ.Mul.div_248 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> Prims.Pure Hacl.Spec.BignumQ.Definitions.qelem5 | {
"end_col": 22,
"end_line": 674,
"start_col": 54,
"start_line": 665
} |
FStar.Pervasives.Lemma | val lemma_mult_distr_3 (a b c n: nat)
: Lemma ((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56)) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n | val lemma_mult_distr_3 (a b c n: nat)
: Lemma ((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
let lemma_mult_distr_3 (a b c n: nat)
: Lemma ((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56)) = | false | null | true | Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [
"lemma"
] | [
"Prims.nat",
"FStar.Math.Lemmas.pow2_plus",
"Prims.unit",
"FStar.Math.Lemmas.distributivity_add_left",
"Prims.pow2",
"FStar.Math.Lemmas.distributivity_sub_left",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.int",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56)) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val lemma_mult_distr_3 (a b c n: nat)
: Lemma ((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56)) | [] | Hacl.Spec.BignumQ.Mul.lemma_mult_distr_3 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> n: Prims.nat
-> FStar.Pervasives.Lemma
(ensures
(a + b - c * Prims.pow2 56) * Prims.pow2 n ==
a * Prims.pow2 n + b * Prims.pow2 n - c * Prims.pow2 (n + 56)) | {
"end_col": 30,
"end_line": 353,
"start_col": 4,
"start_line": 351
} |
Prims.Pure | val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t | val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x = | false | null | false | let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint128",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.uint64",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Lib.IntTypes.U64",
"Prims.op_Modulus",
"FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1",
"Lib.IntTypes.range_t",
"Lib.IntTypes.mod_mask",
"FStar.UInt32.__uint_to_t",
"Hacl.Spec.BignumQ.Mul.mask56",
"Lib.IntTypes.mod_mask_lemma",
"Lib.IntTypes.to_u64",
"FStar.Math.Lemmas.lemma_div_lt_nat",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.op_Greater_Greater_Dot",
"FStar.Pervasives.Native.tuple2"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56) | [] | Hacl.Spec.BignumQ.Mul.carry56_wide | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Lib.IntTypes.uint128 -> Prims.Pure (Lib.IntTypes.uint128 * Lib.IntTypes.uint64) | {
"end_col": 10,
"end_line": 209,
"start_col": 20,
"start_line": 198
} |
Prims.Pure | val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e | val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e = | false | null | false | assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint128",
"Lib.IntTypes.op_Plus_Dot",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Prims.unit",
"FStar.Math.Lemmas.small_mod",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Prims.pow2",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116) | [] | Hacl.Spec.BignumQ.Mul.add5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} |
a: Lib.IntTypes.uint128 ->
b: Lib.IntTypes.uint128 ->
c: Lib.IntTypes.uint128 ->
d: Lib.IntTypes.uint128 ->
e: Lib.IntTypes.uint128
-> Prims.Pure Lib.IntTypes.uint128 | {
"end_col": 23,
"end_line": 320,
"start_col": 2,
"start_line": 311
} |
Prims.Pure | val div_2_40_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56)
(ensures fun z -> v z < pow56 /\
v z == v x / pow2 40 + pow2 16 * (v y % pow2 40)) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let div_2_40_step x y =
let y' = (y &. mask40) <<. 16ul in
assert_norm (pow2 40 < pow2 64);
mod_mask_lemma y 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == v mask40);
assert (v y' == (v y % pow2 40) * pow2 16);
let x' = x >>. 40ul in
FStar.Math.Lemmas.pow2_minus 56 40;
assert (v x' == v x / pow2 40);
assert (v x' < pow2 16);
let z = x' |. y' in
logor_disjoint x' y' 16;
z | val div_2_40_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56)
(ensures fun z -> v z < pow56 /\
v z == v x / pow2 40 + pow2 16 * (v y % pow2 40))
let div_2_40_step x y = | false | null | false | let y' = (y &. mask40) <<. 16ul in
assert_norm (pow2 40 < pow2 64);
mod_mask_lemma y 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == v mask40);
assert (v y' == (v y % pow2 40) * pow2 16);
let x' = x >>. 40ul in
FStar.Math.Lemmas.pow2_minus 56 40;
assert (v x' == v x / pow2 40);
assert (v x' < pow2 16);
let z = x' |. y' in
logor_disjoint x' y' 16;
z | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint64",
"Prims.unit",
"Lib.IntTypes.logor_disjoint",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Bar_Dot",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Prims.pow2",
"Prims.eq2",
"Prims.int",
"Prims.op_Division",
"FStar.Math.Lemmas.pow2_minus",
"Lib.IntTypes.op_Greater_Greater_Dot",
"FStar.UInt32.__uint_to_t",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Lib.IntTypes.range_t",
"Lib.IntTypes.mod_mask",
"Hacl.Spec.BignumQ.Mul.mask40",
"Lib.IntTypes.mod_mask_lemma",
"FStar.Pervasives.assert_norm",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.op_Amp_Dot"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n
#set-options "--z3rlimit 300"
let mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy14 = mul64_wide_5 x1 y4 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy23 = mul64_wide_5 x2 y3 in
let xy24 = mul64_wide_5 x2 y4 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy32 = mul64_wide_5 x3 y2 in
let xy33 = mul64_wide_5 x3 y3 in
let xy34 = mul64_wide_5 x3 y4 in
let xy40 = mul64_wide_5 x4 y0 in
let xy41 = mul64_wide_5 x4 y1 in
let xy42 = mul64_wide_5 x4 y2 in
let xy43 = mul64_wide_5 x4 y3 in
let xy44 = mul64_wide_5 x4 y4 in
let z0 = xy00 in // < pow2 112
let z1 = add2 xy01 xy10 in // < pow2 113
let z2 = add3 xy02 xy11 xy20 in // < pow2 114
let z3 = add4 xy03 xy12 xy21 xy30 in // < pow2 115
let z4 = add5 xy04 xy13 xy22 xy31 xy40 in // < pow2 116
let z5 = add4 xy14 xy23 xy32 xy41 in
let z6 = add3 xy24 xy33 xy42 in
let z7 = add2 xy34 xy43 in
let z8 = xy44 in
//(z0, z1, z2, z3, z4, z5, z6, z7, z8)
assert_norm (pow2 112 < pow2 117);
assert_norm (pow2 112 <= pow2 116);
let (c0, t0) = carry56_wide z0 in
let (c1, t1) = carry56_wide (add_inner_carry z1 c0) in
let (c2, t2) = carry56_wide (add_inner_carry z2 c1) in
let (c3, t3) = carry56_wide (add_inner_carry z3 c2) in
let (c4, t4) = carry56_wide (add_inner_carry z4 c3) in
let (c5, t5) = carry56_wide (add_inner_carry z5 c4) in
let (c6, t6) = carry56_wide (add_inner_carry z6 c5) in
let (c7, t7) = carry56_wide (add_inner_carry z7 c6) in
let (c8, t8) = carry56_wide (add_inner_carry z8 c7) in
let t9 = to_u64 c8 in
let lemma_t9_fits () : Lemma (v t9 < pow2 56)
= // This proof was built from the bottom. We have as a constraint that v c8 has to be < pow2 112 to satisfy the postcondition.
// We compute each time the maximal value such that this postcondition is satisfied
calc (<) {
v c0;
(<) { Math.Lemmas.lemma_div_lt_nat (v z0) 112 56 }
pow2 56;
};
calc (<) {
v c1;
(<) { assert_norm (2*(pow2 112 - pow2 57 + 1) + pow2 56 <= pow2 113);
Math.Lemmas.lemma_div_lt_nat (v z1 + v c0) 113 56 }
pow2 57;
};
calc (<) {
v c2;
(<) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 57 <= pow2 114);
Math.Lemmas.lemma_div_lt_nat (v z2 + v c1) 114 56 }
pow2 58;
};
calc (<=) {
v c3;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + pow2 58 <= 31153781151208965410895007785680895);
assert_norm (31153781151208965410895007785680895 / pow56 == 432345564227567610);
Math.Lemmas.lemma_div_le (v z3 + v c2) 31153781151208965410895007785680895 (pow2 56) }
432345564227567610;
};
calc (<=) {
v c4;
(<=) { assert_norm (5*(pow2 112 - pow2 57 + 1) + 432345564227567610 <= 25961484292674137854422105494388735); // (pow2 59 - 2) * pow56
assert_norm (25961484292674137854422105494388735 / pow56 == 360287970189639675);
Math.Lemmas.lemma_div_le (v z4 + v c3) 25961484292674137854422105494388735 (pow2 56) }
360287970189639675;
};
calc (<=) {
v c5;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + 360287970189639675 <= 20769187434139310297949203203096575);
Math.Lemmas.lemma_div_le (v z5 + v c4) 20769187434139310297949203203096575 (pow2 56);
assert_norm (20769187434139310297949203203096575 / pow2 56 == pow2 58 - 4) }
pow2 58 - 4;
};
calc (<=) {
v c6;
(<=) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 58 - 4 <= 15576890575604482741476300911804415);
Math.Lemmas.lemma_div_le (v z6 + v c5) 15576890575604482741476300911804415 (pow2 56);
assert_norm (15576890575604482741476300911804415 / pow2 56 == 216172782113783805) }
216172782113783805;
};
calc (<=) {
v c7;
(<=) { assert_norm (2*(pow2 112 - pow2 57 + 1) + 216172782113783805 <= 10384593717069655185003398620512255); // (pow2 57 - 1) * pow2 56 - 1
Math.Lemmas.lemma_div_le (v z7 + v c6) 10384593717069655185003398620512255 (pow2 56);
assert_norm (10384593717069655185003398620512255 / pow2 56 == pow2 57 - 2) }
pow2 57 - 2;
};
calc (<) {
v c8;
(<) { Math.Lemmas.lemma_div_lt_nat (v z8 + v c7) 112 56 }
pow2 56;
};
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
in
lemma_t9_fits();
calc (==) {
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224 +
v t5 * pow280 + v t6 * pow336 + v t7 * pow392 + v t8 * pow448 + v t9 * pow504;
(==) { assert_norm (pow2 61 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
}
v z0 - v c0 * pow2 56 +
(v z1 + v c0 - v c1 * pow2 56) * pow56 +
(v z2 + v c1 - v c2 * pow2 56) * pow112 +
(v z3 + v c2 - v c3 * pow2 56) * pow168 +
(v z4 + v c3 - v c4 * pow2 56) * pow224 +
(v z5 + v c4 - v c5 * pow2 56) * pow280 +
(v z6 + v c5 - v c6 * pow2 56) * pow336 +
(v z7 + v c6 - v c7 * pow2 56) * pow392 +
(v z8 + v c7 - v c8 * pow2 56) * pow448 +
v c8 * pow504;
(==) {
lemma_mult_distr_3 (v z1) (v c0) (v c1) 56;
lemma_mult_distr_3 (v z2) (v c1) (v c2) 112;
lemma_mult_distr_3 (v z3) (v c2) (v c3) 168;
lemma_mult_distr_3 (v z4) (v c3) (v c4) 224;
lemma_mult_distr_3 (v z5) (v c4) (v c5) 280;
lemma_mult_distr_3 (v z6) (v c5) (v c6) 336;
lemma_mult_distr_3 (v z7) (v c6) (v c7) 392;
lemma_mult_distr_3 (v z8) (v c7) (v c8) 448
}
v z0 +
v z1 * pow56 +
v z2 * pow112 +
v z3 * pow168 +
v z4 * pow224 +
v z5 * pow280 +
v z6 * pow336 +
v z7 * pow392 +
v z8 * pow448;
(==) { calc (==) {
v z1;
(==) { }
v x0 * v y1 + v x1 * v y0;
};
calc (==) {
v z2;
(==) { }
v x0 * v y2 + v x1 * v y1 + v x2 * v y0;
};
calc (==) {
v z3;
(==) { }
v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0;
};
calc (==) {
v z4;
(==) { }
v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0;
};
calc (==) {
v z5;
(==) { }
v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1;
};
calc (==) {
v z6;
(==) { }
v x2 * v y4 + v x3 * v y3 + v x4 * v y2;
};
calc (==) {
v z7;
(==) { }
v x3 * v y4 + v x4 * v y3;
};
calc (==) {
v z8;
(==) { }
v x4 * v y4;
}
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0) * pow168 +
(v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0) * pow224 +
(v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1) * pow280 +
(v x2 * v y4 + v x3 * v y3 + v x4 * v y2) * pow336 +
(v x3 * v y4 + v x4 * v y3) * pow392 +
(v x4 * v y4) * pow448;
(==) { Lemmas.lemma_mul_qelem5 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224) *
(v y0 + v y1 * pow2 56 + v y2 * pow2 112 + v y3 * pow2 168 + v y4 * pow2 224);
};
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)
inline_for_extraction noextract
val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264)
let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let (c0, t0) = carry56_wide xy00 in
let (c1, t1) = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let (c2, t2) = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let (c3, t3) = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc (==) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
(==) { }
v xy00 - v c0 * pow2 56 +
(v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
(==) { logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) 40 64
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4)
inline_for_extraction noextract
val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24))
let div_2_24_step x y =
let y' = (y &. u64 0xffffff) <<. 32ul in
assert_norm (pow2 24 - 1 = 0xffffff);
assert_norm (pow2 24 < pow2 64);
mod_mask_lemma y 24ul;
assert (v (mod_mask #U64 #SEC 24ul) == 0xffffff);
assert (v (y &. u64 0xffffff) == v y % pow2 24);
assert (v y' == (v y % pow2 24) * pow2 32);
let x' = x >>. 24ul in
FStar.Math.Lemmas.pow2_minus 56 24;
assert (v x' < pow2 32);
let z = x' |. y' in
logor_disjoint x' y' 32;
assert (v z == v x / pow2 24 + pow2 32 * (v y % pow2 24));
z
inline_for_extraction noextract
val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248)
let div_248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 248 == (x / pow2 224) / pow2 24
let z0 = div_2_24_step x4 x5 in
let z1 = div_2_24_step x5 x6 in
let z2 = div_2_24_step x6 x7 in
let z3 = div_2_24_step x7 x8 in
let z4 = div_2_24_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val div_2_40_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56)
(ensures fun z -> v z < pow56 /\
v z == v x / pow2 40 + pow2 16 * (v y % pow2 40)) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val div_2_40_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56)
(ensures fun z -> v z < pow56 /\
v z == v x / pow2 40 + pow2 16 * (v y % pow2 40)) | [] | Hacl.Spec.BignumQ.Mul.div_2_40_step | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Lib.IntTypes.uint64 -> y: Lib.IntTypes.uint64 -> Prims.Pure Lib.IntTypes.uint64 | {
"end_col": 3,
"end_line": 697,
"start_col": 23,
"start_line": 684
} |
Prims.Pure | val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24)) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let div_2_24_step x y =
let y' = (y &. u64 0xffffff) <<. 32ul in
assert_norm (pow2 24 - 1 = 0xffffff);
assert_norm (pow2 24 < pow2 64);
mod_mask_lemma y 24ul;
assert (v (mod_mask #U64 #SEC 24ul) == 0xffffff);
assert (v (y &. u64 0xffffff) == v y % pow2 24);
assert (v y' == (v y % pow2 24) * pow2 32);
let x' = x >>. 24ul in
FStar.Math.Lemmas.pow2_minus 56 24;
assert (v x' < pow2 32);
let z = x' |. y' in
logor_disjoint x' y' 32;
assert (v z == v x / pow2 24 + pow2 32 * (v y % pow2 24));
z | val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24))
let div_2_24_step x y = | false | null | false | let y' = (y &. u64 0xffffff) <<. 32ul in
assert_norm (pow2 24 - 1 = 0xffffff);
assert_norm (pow2 24 < pow2 64);
mod_mask_lemma y 24ul;
assert (v (mod_mask #U64 #SEC 24ul) == 0xffffff);
assert (v (y &. u64 0xffffff) == v y % pow2 24);
assert (v y' == (v y % pow2 24) * pow2 32);
let x' = x >>. 24ul in
FStar.Math.Lemmas.pow2_minus 56 24;
assert (v x' < pow2 32);
let z = x' |. y' in
logor_disjoint x' y' 32;
assert (v z == v x / pow2 24 + pow2 32 * (v y % pow2 24));
z | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint64",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.op_Addition",
"Prims.op_Division",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.op_Modulus",
"Lib.IntTypes.logor_disjoint",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Bar_Dot",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Math.Lemmas.pow2_minus",
"Lib.IntTypes.op_Greater_Greater_Dot",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.u64",
"Lib.IntTypes.mod_mask",
"Lib.IntTypes.mod_mask_lemma",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.op_Subtraction",
"Lib.IntTypes.op_Less_Less_Dot"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n
#set-options "--z3rlimit 300"
let mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy14 = mul64_wide_5 x1 y4 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy23 = mul64_wide_5 x2 y3 in
let xy24 = mul64_wide_5 x2 y4 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy32 = mul64_wide_5 x3 y2 in
let xy33 = mul64_wide_5 x3 y3 in
let xy34 = mul64_wide_5 x3 y4 in
let xy40 = mul64_wide_5 x4 y0 in
let xy41 = mul64_wide_5 x4 y1 in
let xy42 = mul64_wide_5 x4 y2 in
let xy43 = mul64_wide_5 x4 y3 in
let xy44 = mul64_wide_5 x4 y4 in
let z0 = xy00 in // < pow2 112
let z1 = add2 xy01 xy10 in // < pow2 113
let z2 = add3 xy02 xy11 xy20 in // < pow2 114
let z3 = add4 xy03 xy12 xy21 xy30 in // < pow2 115
let z4 = add5 xy04 xy13 xy22 xy31 xy40 in // < pow2 116
let z5 = add4 xy14 xy23 xy32 xy41 in
let z6 = add3 xy24 xy33 xy42 in
let z7 = add2 xy34 xy43 in
let z8 = xy44 in
//(z0, z1, z2, z3, z4, z5, z6, z7, z8)
assert_norm (pow2 112 < pow2 117);
assert_norm (pow2 112 <= pow2 116);
let (c0, t0) = carry56_wide z0 in
let (c1, t1) = carry56_wide (add_inner_carry z1 c0) in
let (c2, t2) = carry56_wide (add_inner_carry z2 c1) in
let (c3, t3) = carry56_wide (add_inner_carry z3 c2) in
let (c4, t4) = carry56_wide (add_inner_carry z4 c3) in
let (c5, t5) = carry56_wide (add_inner_carry z5 c4) in
let (c6, t6) = carry56_wide (add_inner_carry z6 c5) in
let (c7, t7) = carry56_wide (add_inner_carry z7 c6) in
let (c8, t8) = carry56_wide (add_inner_carry z8 c7) in
let t9 = to_u64 c8 in
let lemma_t9_fits () : Lemma (v t9 < pow2 56)
= // This proof was built from the bottom. We have as a constraint that v c8 has to be < pow2 112 to satisfy the postcondition.
// We compute each time the maximal value such that this postcondition is satisfied
calc (<) {
v c0;
(<) { Math.Lemmas.lemma_div_lt_nat (v z0) 112 56 }
pow2 56;
};
calc (<) {
v c1;
(<) { assert_norm (2*(pow2 112 - pow2 57 + 1) + pow2 56 <= pow2 113);
Math.Lemmas.lemma_div_lt_nat (v z1 + v c0) 113 56 }
pow2 57;
};
calc (<) {
v c2;
(<) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 57 <= pow2 114);
Math.Lemmas.lemma_div_lt_nat (v z2 + v c1) 114 56 }
pow2 58;
};
calc (<=) {
v c3;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + pow2 58 <= 31153781151208965410895007785680895);
assert_norm (31153781151208965410895007785680895 / pow56 == 432345564227567610);
Math.Lemmas.lemma_div_le (v z3 + v c2) 31153781151208965410895007785680895 (pow2 56) }
432345564227567610;
};
calc (<=) {
v c4;
(<=) { assert_norm (5*(pow2 112 - pow2 57 + 1) + 432345564227567610 <= 25961484292674137854422105494388735); // (pow2 59 - 2) * pow56
assert_norm (25961484292674137854422105494388735 / pow56 == 360287970189639675);
Math.Lemmas.lemma_div_le (v z4 + v c3) 25961484292674137854422105494388735 (pow2 56) }
360287970189639675;
};
calc (<=) {
v c5;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + 360287970189639675 <= 20769187434139310297949203203096575);
Math.Lemmas.lemma_div_le (v z5 + v c4) 20769187434139310297949203203096575 (pow2 56);
assert_norm (20769187434139310297949203203096575 / pow2 56 == pow2 58 - 4) }
pow2 58 - 4;
};
calc (<=) {
v c6;
(<=) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 58 - 4 <= 15576890575604482741476300911804415);
Math.Lemmas.lemma_div_le (v z6 + v c5) 15576890575604482741476300911804415 (pow2 56);
assert_norm (15576890575604482741476300911804415 / pow2 56 == 216172782113783805) }
216172782113783805;
};
calc (<=) {
v c7;
(<=) { assert_norm (2*(pow2 112 - pow2 57 + 1) + 216172782113783805 <= 10384593717069655185003398620512255); // (pow2 57 - 1) * pow2 56 - 1
Math.Lemmas.lemma_div_le (v z7 + v c6) 10384593717069655185003398620512255 (pow2 56);
assert_norm (10384593717069655185003398620512255 / pow2 56 == pow2 57 - 2) }
pow2 57 - 2;
};
calc (<) {
v c8;
(<) { Math.Lemmas.lemma_div_lt_nat (v z8 + v c7) 112 56 }
pow2 56;
};
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
in
lemma_t9_fits();
calc (==) {
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224 +
v t5 * pow280 + v t6 * pow336 + v t7 * pow392 + v t8 * pow448 + v t9 * pow504;
(==) { assert_norm (pow2 61 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
}
v z0 - v c0 * pow2 56 +
(v z1 + v c0 - v c1 * pow2 56) * pow56 +
(v z2 + v c1 - v c2 * pow2 56) * pow112 +
(v z3 + v c2 - v c3 * pow2 56) * pow168 +
(v z4 + v c3 - v c4 * pow2 56) * pow224 +
(v z5 + v c4 - v c5 * pow2 56) * pow280 +
(v z6 + v c5 - v c6 * pow2 56) * pow336 +
(v z7 + v c6 - v c7 * pow2 56) * pow392 +
(v z8 + v c7 - v c8 * pow2 56) * pow448 +
v c8 * pow504;
(==) {
lemma_mult_distr_3 (v z1) (v c0) (v c1) 56;
lemma_mult_distr_3 (v z2) (v c1) (v c2) 112;
lemma_mult_distr_3 (v z3) (v c2) (v c3) 168;
lemma_mult_distr_3 (v z4) (v c3) (v c4) 224;
lemma_mult_distr_3 (v z5) (v c4) (v c5) 280;
lemma_mult_distr_3 (v z6) (v c5) (v c6) 336;
lemma_mult_distr_3 (v z7) (v c6) (v c7) 392;
lemma_mult_distr_3 (v z8) (v c7) (v c8) 448
}
v z0 +
v z1 * pow56 +
v z2 * pow112 +
v z3 * pow168 +
v z4 * pow224 +
v z5 * pow280 +
v z6 * pow336 +
v z7 * pow392 +
v z8 * pow448;
(==) { calc (==) {
v z1;
(==) { }
v x0 * v y1 + v x1 * v y0;
};
calc (==) {
v z2;
(==) { }
v x0 * v y2 + v x1 * v y1 + v x2 * v y0;
};
calc (==) {
v z3;
(==) { }
v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0;
};
calc (==) {
v z4;
(==) { }
v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0;
};
calc (==) {
v z5;
(==) { }
v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1;
};
calc (==) {
v z6;
(==) { }
v x2 * v y4 + v x3 * v y3 + v x4 * v y2;
};
calc (==) {
v z7;
(==) { }
v x3 * v y4 + v x4 * v y3;
};
calc (==) {
v z8;
(==) { }
v x4 * v y4;
}
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0) * pow168 +
(v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0) * pow224 +
(v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1) * pow280 +
(v x2 * v y4 + v x3 * v y3 + v x4 * v y2) * pow336 +
(v x3 * v y4 + v x4 * v y3) * pow392 +
(v x4 * v y4) * pow448;
(==) { Lemmas.lemma_mul_qelem5 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224) *
(v y0 + v y1 * pow2 56 + v y2 * pow2 112 + v y3 * pow2 168 + v y4 * pow2 224);
};
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)
inline_for_extraction noextract
val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264)
let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let (c0, t0) = carry56_wide xy00 in
let (c1, t1) = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let (c2, t2) = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let (c3, t3) = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc (==) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
(==) { }
v xy00 - v c0 * pow2 56 +
(v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
(==) { logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) 40 64
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4)
inline_for_extraction noextract
val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24)) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24)) | [] | Hacl.Spec.BignumQ.Mul.div_2_24_step | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Lib.IntTypes.uint64 -> y: Lib.IntTypes.uint64 -> Prims.Pure Lib.IntTypes.uint64 | {
"end_col": 3,
"end_line": 652,
"start_col": 23,
"start_line": 638
} |
Prims.Pure | val subm_last_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow2 40 /\ v y <= pow2 40)
(ensures fun (b, t) -> v b <= 1 /\ v t < pow2 40 /\
v x - v y == v t - pow2 40 * v b) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let subm_last_step x y =
assert_norm (pow2 40 < pow2 63);
let b = (x -. y) >>. 63ul in
assert (if v x >= v y then v b == 0 else v b == 1);
let t = ((b <<. 40ul) +! x) -! y in
b, t | val subm_last_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow2 40 /\ v y <= pow2 40)
(ensures fun (b, t) -> v b <= 1 /\ v t < pow2 40 /\
v x - v y == v t - pow2 40 * v b)
let subm_last_step x y = | false | null | false | assert_norm (pow2 40 < pow2 63);
let b = (x -. y) >>. 63ul in
assert (if v x >= v y then v b == 0 else v b == 1);
let t = ((b <<. 40ul) +! x) -! y in
b, t | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Subtraction_Bang",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.op_Less_Less_Dot",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"Prims._assert",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.v",
"Prims.eq2",
"Prims.int",
"Prims.bool",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.IntTypes.op_Subtraction_Dot",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.Native.tuple2"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n
#set-options "--z3rlimit 300"
let mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy14 = mul64_wide_5 x1 y4 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy23 = mul64_wide_5 x2 y3 in
let xy24 = mul64_wide_5 x2 y4 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy32 = mul64_wide_5 x3 y2 in
let xy33 = mul64_wide_5 x3 y3 in
let xy34 = mul64_wide_5 x3 y4 in
let xy40 = mul64_wide_5 x4 y0 in
let xy41 = mul64_wide_5 x4 y1 in
let xy42 = mul64_wide_5 x4 y2 in
let xy43 = mul64_wide_5 x4 y3 in
let xy44 = mul64_wide_5 x4 y4 in
let z0 = xy00 in // < pow2 112
let z1 = add2 xy01 xy10 in // < pow2 113
let z2 = add3 xy02 xy11 xy20 in // < pow2 114
let z3 = add4 xy03 xy12 xy21 xy30 in // < pow2 115
let z4 = add5 xy04 xy13 xy22 xy31 xy40 in // < pow2 116
let z5 = add4 xy14 xy23 xy32 xy41 in
let z6 = add3 xy24 xy33 xy42 in
let z7 = add2 xy34 xy43 in
let z8 = xy44 in
//(z0, z1, z2, z3, z4, z5, z6, z7, z8)
assert_norm (pow2 112 < pow2 117);
assert_norm (pow2 112 <= pow2 116);
let (c0, t0) = carry56_wide z0 in
let (c1, t1) = carry56_wide (add_inner_carry z1 c0) in
let (c2, t2) = carry56_wide (add_inner_carry z2 c1) in
let (c3, t3) = carry56_wide (add_inner_carry z3 c2) in
let (c4, t4) = carry56_wide (add_inner_carry z4 c3) in
let (c5, t5) = carry56_wide (add_inner_carry z5 c4) in
let (c6, t6) = carry56_wide (add_inner_carry z6 c5) in
let (c7, t7) = carry56_wide (add_inner_carry z7 c6) in
let (c8, t8) = carry56_wide (add_inner_carry z8 c7) in
let t9 = to_u64 c8 in
let lemma_t9_fits () : Lemma (v t9 < pow2 56)
= // This proof was built from the bottom. We have as a constraint that v c8 has to be < pow2 112 to satisfy the postcondition.
// We compute each time the maximal value such that this postcondition is satisfied
calc (<) {
v c0;
(<) { Math.Lemmas.lemma_div_lt_nat (v z0) 112 56 }
pow2 56;
};
calc (<) {
v c1;
(<) { assert_norm (2*(pow2 112 - pow2 57 + 1) + pow2 56 <= pow2 113);
Math.Lemmas.lemma_div_lt_nat (v z1 + v c0) 113 56 }
pow2 57;
};
calc (<) {
v c2;
(<) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 57 <= pow2 114);
Math.Lemmas.lemma_div_lt_nat (v z2 + v c1) 114 56 }
pow2 58;
};
calc (<=) {
v c3;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + pow2 58 <= 31153781151208965410895007785680895);
assert_norm (31153781151208965410895007785680895 / pow56 == 432345564227567610);
Math.Lemmas.lemma_div_le (v z3 + v c2) 31153781151208965410895007785680895 (pow2 56) }
432345564227567610;
};
calc (<=) {
v c4;
(<=) { assert_norm (5*(pow2 112 - pow2 57 + 1) + 432345564227567610 <= 25961484292674137854422105494388735); // (pow2 59 - 2) * pow56
assert_norm (25961484292674137854422105494388735 / pow56 == 360287970189639675);
Math.Lemmas.lemma_div_le (v z4 + v c3) 25961484292674137854422105494388735 (pow2 56) }
360287970189639675;
};
calc (<=) {
v c5;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + 360287970189639675 <= 20769187434139310297949203203096575);
Math.Lemmas.lemma_div_le (v z5 + v c4) 20769187434139310297949203203096575 (pow2 56);
assert_norm (20769187434139310297949203203096575 / pow2 56 == pow2 58 - 4) }
pow2 58 - 4;
};
calc (<=) {
v c6;
(<=) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 58 - 4 <= 15576890575604482741476300911804415);
Math.Lemmas.lemma_div_le (v z6 + v c5) 15576890575604482741476300911804415 (pow2 56);
assert_norm (15576890575604482741476300911804415 / pow2 56 == 216172782113783805) }
216172782113783805;
};
calc (<=) {
v c7;
(<=) { assert_norm (2*(pow2 112 - pow2 57 + 1) + 216172782113783805 <= 10384593717069655185003398620512255); // (pow2 57 - 1) * pow2 56 - 1
Math.Lemmas.lemma_div_le (v z7 + v c6) 10384593717069655185003398620512255 (pow2 56);
assert_norm (10384593717069655185003398620512255 / pow2 56 == pow2 57 - 2) }
pow2 57 - 2;
};
calc (<) {
v c8;
(<) { Math.Lemmas.lemma_div_lt_nat (v z8 + v c7) 112 56 }
pow2 56;
};
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
in
lemma_t9_fits();
calc (==) {
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224 +
v t5 * pow280 + v t6 * pow336 + v t7 * pow392 + v t8 * pow448 + v t9 * pow504;
(==) { assert_norm (pow2 61 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
}
v z0 - v c0 * pow2 56 +
(v z1 + v c0 - v c1 * pow2 56) * pow56 +
(v z2 + v c1 - v c2 * pow2 56) * pow112 +
(v z3 + v c2 - v c3 * pow2 56) * pow168 +
(v z4 + v c3 - v c4 * pow2 56) * pow224 +
(v z5 + v c4 - v c5 * pow2 56) * pow280 +
(v z6 + v c5 - v c6 * pow2 56) * pow336 +
(v z7 + v c6 - v c7 * pow2 56) * pow392 +
(v z8 + v c7 - v c8 * pow2 56) * pow448 +
v c8 * pow504;
(==) {
lemma_mult_distr_3 (v z1) (v c0) (v c1) 56;
lemma_mult_distr_3 (v z2) (v c1) (v c2) 112;
lemma_mult_distr_3 (v z3) (v c2) (v c3) 168;
lemma_mult_distr_3 (v z4) (v c3) (v c4) 224;
lemma_mult_distr_3 (v z5) (v c4) (v c5) 280;
lemma_mult_distr_3 (v z6) (v c5) (v c6) 336;
lemma_mult_distr_3 (v z7) (v c6) (v c7) 392;
lemma_mult_distr_3 (v z8) (v c7) (v c8) 448
}
v z0 +
v z1 * pow56 +
v z2 * pow112 +
v z3 * pow168 +
v z4 * pow224 +
v z5 * pow280 +
v z6 * pow336 +
v z7 * pow392 +
v z8 * pow448;
(==) { calc (==) {
v z1;
(==) { }
v x0 * v y1 + v x1 * v y0;
};
calc (==) {
v z2;
(==) { }
v x0 * v y2 + v x1 * v y1 + v x2 * v y0;
};
calc (==) {
v z3;
(==) { }
v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0;
};
calc (==) {
v z4;
(==) { }
v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0;
};
calc (==) {
v z5;
(==) { }
v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1;
};
calc (==) {
v z6;
(==) { }
v x2 * v y4 + v x3 * v y3 + v x4 * v y2;
};
calc (==) {
v z7;
(==) { }
v x3 * v y4 + v x4 * v y3;
};
calc (==) {
v z8;
(==) { }
v x4 * v y4;
}
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0) * pow168 +
(v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0) * pow224 +
(v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1) * pow280 +
(v x2 * v y4 + v x3 * v y3 + v x4 * v y2) * pow336 +
(v x3 * v y4 + v x4 * v y3) * pow392 +
(v x4 * v y4) * pow448;
(==) { Lemmas.lemma_mul_qelem5 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224) *
(v y0 + v y1 * pow2 56 + v y2 * pow2 112 + v y3 * pow2 168 + v y4 * pow2 224);
};
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)
inline_for_extraction noextract
val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264)
let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let (c0, t0) = carry56_wide xy00 in
let (c1, t1) = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let (c2, t2) = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let (c3, t3) = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc (==) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
(==) { }
v xy00 - v c0 * pow2 56 +
(v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
(==) { logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) 40 64
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4)
inline_for_extraction noextract
val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24))
let div_2_24_step x y =
let y' = (y &. u64 0xffffff) <<. 32ul in
assert_norm (pow2 24 - 1 = 0xffffff);
assert_norm (pow2 24 < pow2 64);
mod_mask_lemma y 24ul;
assert (v (mod_mask #U64 #SEC 24ul) == 0xffffff);
assert (v (y &. u64 0xffffff) == v y % pow2 24);
assert (v y' == (v y % pow2 24) * pow2 32);
let x' = x >>. 24ul in
FStar.Math.Lemmas.pow2_minus 56 24;
assert (v x' < pow2 32);
let z = x' |. y' in
logor_disjoint x' y' 32;
assert (v z == v x / pow2 24 + pow2 32 * (v y % pow2 24));
z
inline_for_extraction noextract
val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248)
let div_248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 248 == (x / pow2 224) / pow2 24
let z0 = div_2_24_step x4 x5 in
let z1 = div_2_24_step x5 x6 in
let z2 = div_2_24_step x6 x7 in
let z3 = div_2_24_step x7 x8 in
let z4 = div_2_24_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val div_2_40_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56)
(ensures fun z -> v z < pow56 /\
v z == v x / pow2 40 + pow2 16 * (v y % pow2 40))
let div_2_40_step x y =
let y' = (y &. mask40) <<. 16ul in
assert_norm (pow2 40 < pow2 64);
mod_mask_lemma y 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == v mask40);
assert (v y' == (v y % pow2 40) * pow2 16);
let x' = x >>. 40ul in
FStar.Math.Lemmas.pow2_minus 56 40;
assert (v x' == v x / pow2 40);
assert (v x' < pow2 16);
let z = x' |. y' in
logor_disjoint x' y' 16;
z
inline_for_extraction noextract
val div_264: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 x) / pow2 264)
let div_264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 264 == (x / pow2 224) / pow2 40
let z0 = div_2_40_step x4 x5 in
let z1 = div_2_40_step x5 x6 in
let z2 = div_2_40_step x6 x7 in
let z3 = div_2_40_step x7 x8 in
let z4 = div_2_40_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val mod_264: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 t) % pow2 264)
let mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) =
Lemmas.lemma_mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
(t0, t1, t2, t3, t4 &. mask40)
inline_for_extraction noextract
val subm_last_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow2 40 /\ v y <= pow2 40)
(ensures fun (b, t) -> v b <= 1 /\ v t < pow2 40 /\
v x - v y == v t - pow2 40 * v b) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val subm_last_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow2 40 /\ v y <= pow2 40)
(ensures fun (b, t) -> v b <= 1 /\ v t < pow2 40 /\
v x - v y == v t - pow2 40 * v b) | [] | Hacl.Spec.BignumQ.Mul.subm_last_step | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Lib.IntTypes.uint64 -> y: Lib.IntTypes.uint64
-> Prims.Pure (Lib.IntTypes.uint64 * Lib.IntTypes.uint64) | {
"end_col": 6,
"end_line": 748,
"start_col": 2,
"start_line": 744
} |
Prims.Pure | val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b | val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b = | false | null | false | let lemma_smaller (a b: uint64)
: Lemma (requires qelem_fits1 a 1 /\ qelem_fits1 b 1) (ensures v (mul64_wide a b) < pow2 112) =
if v a = 0 || v b = 0
then ()
else
calc ( < ) {
v a * v b <: int;
( < ) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
( < ) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
( == ) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b: uint64)
: Lemma (requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1) =
if v a = 0 || v b = 0 then () else assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc ( <= ) {
v a * v b <: int;
( <= ) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
( <= ) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
( == ) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Lib.IntTypes.uint64",
"Lib.IntTypes.mul64_wide",
"Prims.unit",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.l_and",
"Prims.b2t",
"Hacl.Spec.BignumQ.Definitions.qelem_fits1",
"Prims.squash",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U128",
"Prims.op_Addition",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Calc.calc_finish",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.eq2",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mult_le_left",
"FStar.Math.Lemmas.lemma_mult_le_right",
"FStar.Pervasives.assert_norm",
"Prims.op_BarBar",
"Prims.op_Equality",
"Prims.bool",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Lib.IntTypes.uint128"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\ | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112) | [] | Hacl.Spec.BignumQ.Mul.mul64_wide_5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | a: Lib.IntTypes.uint64 -> b: Lib.IntTypes.uint64 -> Prims.Pure Lib.IntTypes.uint128 | {
"end_col": 16,
"end_line": 252,
"start_col": 22,
"start_line": 220
} |
Prims.Tot | val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4) | val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m = | false | null | false | let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [
"total"
] | [
"Prims.unit",
"FStar.Pervasives.Native.Mktuple5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.BignumQ.Definitions.as_nat5",
"Prims.op_Division",
"Prims.pow2",
"Spec.Ed25519.q",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Lib.IntTypes.u64",
"Hacl.Spec.BignumQ.Definitions.qelem5",
"Prims.l_and",
"Hacl.Spec.BignumQ.Definitions.qelem_fits5",
"Prims.nat"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q} | [] | Hacl.Spec.BignumQ.Mul.make_mu | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | m: Prims.unit
-> m:
Hacl.Spec.BignumQ.Definitions.qelem5
{ Hacl.Spec.BignumQ.Definitions.qelem_fits5 m (1, 1, 1, 1, 1) /\
Hacl.Spec.BignumQ.Definitions.as_nat5 m == Prims.pow2 512 / Spec.Ed25519.q } | {
"end_col": 22,
"end_line": 47,
"start_col": 15,
"start_line": 40
} |
Prims.Pure | val mul_modq5: x:qelem5 -> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 256 /\
as_nat5 y < pow2 256)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % S.q) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let mul_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let (r0, r1, r2, r3, r4, r5, r6, r7, r8, r9) = mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) in
Lemmas.lemma_mul_lt (as_nat5 (x0, x1, x2, x3, x4)) (pow2 256) (as_nat5 (y0, y1, y2, y3, y4)) (pow2 256);
assert_norm (pow2 256 * pow2 256 = pow2 512);
let (o0, o1, o2, o3, o4) = barrett_reduction5 (r0, r1, r2, r3, r4, r5, r6, r7, r8, r9) in
(o0, o1, o2, o3, o4) | val mul_modq5: x:qelem5 -> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 256 /\
as_nat5 y < pow2 256)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % S.q)
let mul_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) = | false | null | false | let r0, r1, r2, r3, r4, r5, r6, r7, r8, r9 = mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) in
Lemmas.lemma_mul_lt (as_nat5 (x0, x1, x2, x3, x4))
(pow2 256)
(as_nat5 (y0, y1, y2, y3, y4))
(pow2 256);
assert_norm (pow2 256 * pow2 256 = pow2 512);
let o0, o1, o2, o3, o4 = barrett_reduction5 (r0, r1, r2, r3, r4, r5, r6, r7, r8, r9) in
(o0, o1, o2, o3, o4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Hacl.Spec.BignumQ.Definitions.qelem5",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple5",
"Hacl.Spec.BignumQ.Mul.barrett_reduction5",
"FStar.Pervasives.Native.Mktuple10",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Spec.BignumQ.Lemmas.lemma_mul_lt",
"Hacl.Spec.BignumQ.Definitions.as_nat5",
"Hacl.Spec.BignumQ.Definitions.qelem_wide5",
"Hacl.Spec.BignumQ.Mul.mul_5"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n
#set-options "--z3rlimit 300"
let mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy14 = mul64_wide_5 x1 y4 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy23 = mul64_wide_5 x2 y3 in
let xy24 = mul64_wide_5 x2 y4 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy32 = mul64_wide_5 x3 y2 in
let xy33 = mul64_wide_5 x3 y3 in
let xy34 = mul64_wide_5 x3 y4 in
let xy40 = mul64_wide_5 x4 y0 in
let xy41 = mul64_wide_5 x4 y1 in
let xy42 = mul64_wide_5 x4 y2 in
let xy43 = mul64_wide_5 x4 y3 in
let xy44 = mul64_wide_5 x4 y4 in
let z0 = xy00 in // < pow2 112
let z1 = add2 xy01 xy10 in // < pow2 113
let z2 = add3 xy02 xy11 xy20 in // < pow2 114
let z3 = add4 xy03 xy12 xy21 xy30 in // < pow2 115
let z4 = add5 xy04 xy13 xy22 xy31 xy40 in // < pow2 116
let z5 = add4 xy14 xy23 xy32 xy41 in
let z6 = add3 xy24 xy33 xy42 in
let z7 = add2 xy34 xy43 in
let z8 = xy44 in
//(z0, z1, z2, z3, z4, z5, z6, z7, z8)
assert_norm (pow2 112 < pow2 117);
assert_norm (pow2 112 <= pow2 116);
let (c0, t0) = carry56_wide z0 in
let (c1, t1) = carry56_wide (add_inner_carry z1 c0) in
let (c2, t2) = carry56_wide (add_inner_carry z2 c1) in
let (c3, t3) = carry56_wide (add_inner_carry z3 c2) in
let (c4, t4) = carry56_wide (add_inner_carry z4 c3) in
let (c5, t5) = carry56_wide (add_inner_carry z5 c4) in
let (c6, t6) = carry56_wide (add_inner_carry z6 c5) in
let (c7, t7) = carry56_wide (add_inner_carry z7 c6) in
let (c8, t8) = carry56_wide (add_inner_carry z8 c7) in
let t9 = to_u64 c8 in
let lemma_t9_fits () : Lemma (v t9 < pow2 56)
= // This proof was built from the bottom. We have as a constraint that v c8 has to be < pow2 112 to satisfy the postcondition.
// We compute each time the maximal value such that this postcondition is satisfied
calc (<) {
v c0;
(<) { Math.Lemmas.lemma_div_lt_nat (v z0) 112 56 }
pow2 56;
};
calc (<) {
v c1;
(<) { assert_norm (2*(pow2 112 - pow2 57 + 1) + pow2 56 <= pow2 113);
Math.Lemmas.lemma_div_lt_nat (v z1 + v c0) 113 56 }
pow2 57;
};
calc (<) {
v c2;
(<) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 57 <= pow2 114);
Math.Lemmas.lemma_div_lt_nat (v z2 + v c1) 114 56 }
pow2 58;
};
calc (<=) {
v c3;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + pow2 58 <= 31153781151208965410895007785680895);
assert_norm (31153781151208965410895007785680895 / pow56 == 432345564227567610);
Math.Lemmas.lemma_div_le (v z3 + v c2) 31153781151208965410895007785680895 (pow2 56) }
432345564227567610;
};
calc (<=) {
v c4;
(<=) { assert_norm (5*(pow2 112 - pow2 57 + 1) + 432345564227567610 <= 25961484292674137854422105494388735); // (pow2 59 - 2) * pow56
assert_norm (25961484292674137854422105494388735 / pow56 == 360287970189639675);
Math.Lemmas.lemma_div_le (v z4 + v c3) 25961484292674137854422105494388735 (pow2 56) }
360287970189639675;
};
calc (<=) {
v c5;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + 360287970189639675 <= 20769187434139310297949203203096575);
Math.Lemmas.lemma_div_le (v z5 + v c4) 20769187434139310297949203203096575 (pow2 56);
assert_norm (20769187434139310297949203203096575 / pow2 56 == pow2 58 - 4) }
pow2 58 - 4;
};
calc (<=) {
v c6;
(<=) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 58 - 4 <= 15576890575604482741476300911804415);
Math.Lemmas.lemma_div_le (v z6 + v c5) 15576890575604482741476300911804415 (pow2 56);
assert_norm (15576890575604482741476300911804415 / pow2 56 == 216172782113783805) }
216172782113783805;
};
calc (<=) {
v c7;
(<=) { assert_norm (2*(pow2 112 - pow2 57 + 1) + 216172782113783805 <= 10384593717069655185003398620512255); // (pow2 57 - 1) * pow2 56 - 1
Math.Lemmas.lemma_div_le (v z7 + v c6) 10384593717069655185003398620512255 (pow2 56);
assert_norm (10384593717069655185003398620512255 / pow2 56 == pow2 57 - 2) }
pow2 57 - 2;
};
calc (<) {
v c8;
(<) { Math.Lemmas.lemma_div_lt_nat (v z8 + v c7) 112 56 }
pow2 56;
};
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
in
lemma_t9_fits();
calc (==) {
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224 +
v t5 * pow280 + v t6 * pow336 + v t7 * pow392 + v t8 * pow448 + v t9 * pow504;
(==) { assert_norm (pow2 61 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
}
v z0 - v c0 * pow2 56 +
(v z1 + v c0 - v c1 * pow2 56) * pow56 +
(v z2 + v c1 - v c2 * pow2 56) * pow112 +
(v z3 + v c2 - v c3 * pow2 56) * pow168 +
(v z4 + v c3 - v c4 * pow2 56) * pow224 +
(v z5 + v c4 - v c5 * pow2 56) * pow280 +
(v z6 + v c5 - v c6 * pow2 56) * pow336 +
(v z7 + v c6 - v c7 * pow2 56) * pow392 +
(v z8 + v c7 - v c8 * pow2 56) * pow448 +
v c8 * pow504;
(==) {
lemma_mult_distr_3 (v z1) (v c0) (v c1) 56;
lemma_mult_distr_3 (v z2) (v c1) (v c2) 112;
lemma_mult_distr_3 (v z3) (v c2) (v c3) 168;
lemma_mult_distr_3 (v z4) (v c3) (v c4) 224;
lemma_mult_distr_3 (v z5) (v c4) (v c5) 280;
lemma_mult_distr_3 (v z6) (v c5) (v c6) 336;
lemma_mult_distr_3 (v z7) (v c6) (v c7) 392;
lemma_mult_distr_3 (v z8) (v c7) (v c8) 448
}
v z0 +
v z1 * pow56 +
v z2 * pow112 +
v z3 * pow168 +
v z4 * pow224 +
v z5 * pow280 +
v z6 * pow336 +
v z7 * pow392 +
v z8 * pow448;
(==) { calc (==) {
v z1;
(==) { }
v x0 * v y1 + v x1 * v y0;
};
calc (==) {
v z2;
(==) { }
v x0 * v y2 + v x1 * v y1 + v x2 * v y0;
};
calc (==) {
v z3;
(==) { }
v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0;
};
calc (==) {
v z4;
(==) { }
v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0;
};
calc (==) {
v z5;
(==) { }
v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1;
};
calc (==) {
v z6;
(==) { }
v x2 * v y4 + v x3 * v y3 + v x4 * v y2;
};
calc (==) {
v z7;
(==) { }
v x3 * v y4 + v x4 * v y3;
};
calc (==) {
v z8;
(==) { }
v x4 * v y4;
}
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0) * pow168 +
(v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0) * pow224 +
(v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1) * pow280 +
(v x2 * v y4 + v x3 * v y3 + v x4 * v y2) * pow336 +
(v x3 * v y4 + v x4 * v y3) * pow392 +
(v x4 * v y4) * pow448;
(==) { Lemmas.lemma_mul_qelem5 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224) *
(v y0 + v y1 * pow2 56 + v y2 * pow2 112 + v y3 * pow2 168 + v y4 * pow2 224);
};
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)
inline_for_extraction noextract
val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264)
let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let (c0, t0) = carry56_wide xy00 in
let (c1, t1) = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let (c2, t2) = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let (c3, t3) = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc (==) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
(==) { }
v xy00 - v c0 * pow2 56 +
(v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
(==) { logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) 40 64
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4)
inline_for_extraction noextract
val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24))
let div_2_24_step x y =
let y' = (y &. u64 0xffffff) <<. 32ul in
assert_norm (pow2 24 - 1 = 0xffffff);
assert_norm (pow2 24 < pow2 64);
mod_mask_lemma y 24ul;
assert (v (mod_mask #U64 #SEC 24ul) == 0xffffff);
assert (v (y &. u64 0xffffff) == v y % pow2 24);
assert (v y' == (v y % pow2 24) * pow2 32);
let x' = x >>. 24ul in
FStar.Math.Lemmas.pow2_minus 56 24;
assert (v x' < pow2 32);
let z = x' |. y' in
logor_disjoint x' y' 32;
assert (v z == v x / pow2 24 + pow2 32 * (v y % pow2 24));
z
inline_for_extraction noextract
val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248)
let div_248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 248 == (x / pow2 224) / pow2 24
let z0 = div_2_24_step x4 x5 in
let z1 = div_2_24_step x5 x6 in
let z2 = div_2_24_step x6 x7 in
let z3 = div_2_24_step x7 x8 in
let z4 = div_2_24_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val div_2_40_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56)
(ensures fun z -> v z < pow56 /\
v z == v x / pow2 40 + pow2 16 * (v y % pow2 40))
let div_2_40_step x y =
let y' = (y &. mask40) <<. 16ul in
assert_norm (pow2 40 < pow2 64);
mod_mask_lemma y 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == v mask40);
assert (v y' == (v y % pow2 40) * pow2 16);
let x' = x >>. 40ul in
FStar.Math.Lemmas.pow2_minus 56 40;
assert (v x' == v x / pow2 40);
assert (v x' < pow2 16);
let z = x' |. y' in
logor_disjoint x' y' 16;
z
inline_for_extraction noextract
val div_264: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 x) / pow2 264)
let div_264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 264 == (x / pow2 224) / pow2 40
let z0 = div_2_40_step x4 x5 in
let z1 = div_2_40_step x5 x6 in
let z2 = div_2_40_step x6 x7 in
let z3 = div_2_40_step x7 x8 in
let z4 = div_2_40_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val mod_264: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 t) % pow2 264)
let mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) =
Lemmas.lemma_mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
(t0, t1, t2, t3, t4 &. mask40)
inline_for_extraction noextract
val subm_last_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow2 40 /\ v y <= pow2 40)
(ensures fun (b, t) -> v b <= 1 /\ v t < pow2 40 /\
v x - v y == v t - pow2 40 * v b)
let subm_last_step x y =
assert_norm (pow2 40 < pow2 63);
let b = (x -. y) >>. 63ul in
assert (if v x >= v y then v b == 0 else v b == 1);
let t = ((b <<. 40ul) +! x) -! y in
b, t
#push-options "--z3rlimit 400 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
val sub_mod_264: x:qelem5 -> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
(if as_nat5 x >= as_nat5 y then
as_nat5 z == as_nat5 x - as_nat5 y
else
as_nat5 z == as_nat5 x - as_nat5 y + pow2 264))
let sub_mod_264 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let (c1, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v c1 * pow56);
let (c2, t1) = subm_step x1 (y1 +! c1) in
assert (v x1 - v y1 - v c1 == v t1 - v c2 * pow56);
let (c3, t2) = subm_step x2 (y2 +! c2) in
assert (v x2 - v y2 - v c2 == v t2 - v c3 * pow56);
let (c4, t3) = subm_step x3 (y3 +! c3) in
assert (v x3 - v y3 - v c3 == v t3 - v c4 * pow56);
Lemmas.lemma_as_nat_pow264_x4 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat_pow264_x4 (y0, y1, y2, y3, y4);
let (c5, t4) = subm_last_step x4 (y4 +! c4) in
assert (v x4 - v y4 - v c4 == v t4 - pow2 40 * v c5);
assert (
if v c5 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= as_nat5 (y0, y1, y2, y3, y4)
else as_nat5 (x0, x1, x2, x3, x4) < as_nat5 (y0, y1, y2, y3, y4));
assert_norm (pow2 40 < pow2 56);
assert (qelem_fits5 (t0, t1, t2, t3, t4) (1, 1, 1, 1, 1));
assert
(as_nat5 (t0, t1, t2, t3, t4) ==
v x0 - v y0 + v c1 * pow56 +
(v x1 - v y1 - v c1 + v c2 * pow56) * pow56 +
(v x2 - v y2 - v c2 + v c3 * pow56) * pow112 +
(v x3 - v y3 - v c3 + v c4 * pow56) * pow168 +
(v x4 - v y4 - v c4 + pow2 40 * v c5) * pow224);
Lemmas.lemma_sub_mod_264_aux (v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4) (v c1) (v c2) (v c3) (v c4) (v c5);
assert (as_nat5 (t0, t1, t2, t3, t4) ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4) + v c5 * pow2 264);
Lemmas.lemma_sub_mod_264 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4) c5;
(t0, t1, t2, t3, t4)
#pop-options
// A = t, L = make_m()
// b = 2^8, k = 32, mu = b^{2*k} / L = make_mu()
inline_for_extraction noextract
val barrett_reduction5: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 t < pow2 512)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 t) % S.q)
let barrett_reduction5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) =
let (m0, m1, m2, m3, m4) = make_m () in
let (mu0, mu1, mu2, mu3, mu4) = make_mu () in
let (q0, q1, q2, q3, q4) = div_248 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) in
assert (as_nat5 (q0, q1, q2, q3, q4) == wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) / pow2 248);
FStar.Math.Lemmas.lemma_div_lt_nat (wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)) 512 248;
assert (as_nat5 (q0, q1, q2, q3, q4) < pow2 264);
let (qmu0', qmu1', qmu2', qmu3', qmu4', qmu5', qmu6', qmu7', qmu8', qmu9') = mul_5 (q0, q1, q2, q3, q4) (mu0, mu1, mu2, mu3, mu4) in
FStar.Math.Lemmas.lemma_mult_le_right (pow2 512 / S.q) (as_nat5 (q0, q1, q2, q3, q4)) (pow2 264);
assert (wide_as_nat5 (qmu0', qmu1', qmu2', qmu3', qmu4', qmu5', qmu6', qmu7', qmu8', qmu9') <= pow2 512 / S.q * pow2 264);
assert_norm (pow2 512 / S.q * pow2 264 < pow2 528);
let (qdiv0, qdiv1, qdiv2, qdiv3, qdiv4) = div_264 (qmu0', qmu1', qmu2', qmu3', qmu4', qmu5', qmu6', qmu7', qmu8', qmu9') in
//u = qdiv == (A / b^{k-1}) * mu / b^{k+1} == ((A / 2^248) * mu) / 2^264
let (r0, r1, r2, r3, r4) = mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) in
//r == A mod b^{k+1} == A mod 2^264
let (qmul0, qmul1, qmul2, qmul3, qmul4) = low_mul_5 (qdiv0, qdiv1, qdiv2, qdiv3, qdiv4) (m0, m1, m2, m3, m4) in
//v == qmul == u * L mod b^{k+1} == u * L mod 2^264
let (s0, s1, s2, s3, s4) = sub_mod_264 (r0, r1, r2, r3, r4) (qmul0, qmul1, qmul2, qmul3, qmul4) in
//u == s == (r - v) mod b^{k+1} == (r - v) mod 2^264
let (o0, o1, o2, o3, o4) = subm_conditional (s0, s1, s2, s3, s4) in
Lemmas.lemma_barrett_reduce' (wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9));
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val mul_modq5: x:qelem5 -> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 256 /\
as_nat5 y < pow2 256)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % S.q) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val mul_modq5: x:qelem5 -> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 256 /\
as_nat5 y < pow2 256)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % S.q) | [] | Hacl.Spec.BignumQ.Mul.mul_modq5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem5 -> y: Hacl.Spec.BignumQ.Definitions.qelem5
-> Prims.Pure Hacl.Spec.BignumQ.Definitions.qelem5 | {
"end_col": 22,
"end_line": 862,
"start_col": 57,
"start_line": 857
} |
Prims.Pure | val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4) | val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) = | false | null | false | assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let t0, c0 = carry56 (x0 +! y0) in
let t1, c1 = carry56 (x1 +! y1 +! c0) in
let t2, c2 = carry56 (x2 +! y2 +! c1) in
let t3, c3 = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let o0, o1, o2, o3, o4 = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Hacl.Spec.BignumQ.Definitions.qelem5",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple5",
"Prims.unit",
"Hacl.Spec.BignumQ.Lemmas.lemma_add_modq5",
"Hacl.Spec.BignumQ.Mul.subm_conditional",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.BignumQ.Definitions.as_nat5",
"Prims.op_Addition",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Plus_Bang",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.BignumQ.Mul.carry56",
"FStar.Pervasives.assert_norm",
"Prims.op_Subtraction",
"Hacl.Spec.BignumQ.Definitions.pow56",
"Prims.pow2"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q) | [] | Hacl.Spec.BignumQ.Mul.add_modq5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem5 -> y: Hacl.Spec.BignumQ.Definitions.qelem5
-> Prims.Pure Hacl.Spec.BignumQ.Definitions.qelem5 | {
"end_col": 22,
"end_line": 187,
"start_col": 2,
"start_line": 178
} |
Prims.Pure | val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x)) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4) | val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) = | false | null | false | let y0, y1, y2, y3, y4 = make_m () in
let b0, t0 = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let b1, t1 = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let b2, t2 = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let b3, t3 = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let b4, t4 = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (as_nat5 (t0, t1, t2, t3, t4) - (v b4 * pow56) * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let z0, z1, z2, z3, z4 = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Hacl.Spec.BignumQ.Definitions.qelem5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple5",
"Prims.unit",
"Prims._assert",
"Prims.op_GreaterThanOrEqual",
"Hacl.Spec.BignumQ.Definitions.as_nat5",
"Spec.Ed25519.q",
"Prims.l_and",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.nat",
"Prims.bool",
"Hacl.Spec.BignumQ.Mul.choose",
"Hacl.Spec.BignumQ.Lemmas.lemma_as_nat5",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Hacl.Spec.BignumQ.Definitions.pow56",
"Hacl.Spec.BignumQ.Definitions.pow224",
"Hacl.Spec.BignumQ.Lemmas.lemma_subm_conditional",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Hacl.Spec.BignumQ.Mul.subm_step",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Spec.BignumQ.Definitions.qelem_fits5",
"Hacl.Spec.BignumQ.Mul.make_m"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x)) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x)) | [] | Hacl.Spec.BignumQ.Mul.subm_conditional | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem5 -> Prims.Pure Hacl.Spec.BignumQ.Definitions.qelem5 | {
"end_col": 22,
"end_line": 141,
"start_col": 43,
"start_line": 102
} |
Prims.Pure | val sub_mod_264: x:qelem5 -> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
(if as_nat5 x >= as_nat5 y then
as_nat5 z == as_nat5 x - as_nat5 y
else
as_nat5 z == as_nat5 x - as_nat5 y + pow2 264)) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let sub_mod_264 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let (c1, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v c1 * pow56);
let (c2, t1) = subm_step x1 (y1 +! c1) in
assert (v x1 - v y1 - v c1 == v t1 - v c2 * pow56);
let (c3, t2) = subm_step x2 (y2 +! c2) in
assert (v x2 - v y2 - v c2 == v t2 - v c3 * pow56);
let (c4, t3) = subm_step x3 (y3 +! c3) in
assert (v x3 - v y3 - v c3 == v t3 - v c4 * pow56);
Lemmas.lemma_as_nat_pow264_x4 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat_pow264_x4 (y0, y1, y2, y3, y4);
let (c5, t4) = subm_last_step x4 (y4 +! c4) in
assert (v x4 - v y4 - v c4 == v t4 - pow2 40 * v c5);
assert (
if v c5 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= as_nat5 (y0, y1, y2, y3, y4)
else as_nat5 (x0, x1, x2, x3, x4) < as_nat5 (y0, y1, y2, y3, y4));
assert_norm (pow2 40 < pow2 56);
assert (qelem_fits5 (t0, t1, t2, t3, t4) (1, 1, 1, 1, 1));
assert
(as_nat5 (t0, t1, t2, t3, t4) ==
v x0 - v y0 + v c1 * pow56 +
(v x1 - v y1 - v c1 + v c2 * pow56) * pow56 +
(v x2 - v y2 - v c2 + v c3 * pow56) * pow112 +
(v x3 - v y3 - v c3 + v c4 * pow56) * pow168 +
(v x4 - v y4 - v c4 + pow2 40 * v c5) * pow224);
Lemmas.lemma_sub_mod_264_aux (v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4) (v c1) (v c2) (v c3) (v c4) (v c5);
assert (as_nat5 (t0, t1, t2, t3, t4) ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4) + v c5 * pow2 264);
Lemmas.lemma_sub_mod_264 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4) c5;
(t0, t1, t2, t3, t4) | val sub_mod_264: x:qelem5 -> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
(if as_nat5 x >= as_nat5 y then
as_nat5 z == as_nat5 x - as_nat5 y
else
as_nat5 z == as_nat5 x - as_nat5 y + pow2 264))
let sub_mod_264 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) = | false | null | false | let c1, t0 = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v c1 * pow56);
let c2, t1 = subm_step x1 (y1 +! c1) in
assert (v x1 - v y1 - v c1 == v t1 - v c2 * pow56);
let c3, t2 = subm_step x2 (y2 +! c2) in
assert (v x2 - v y2 - v c2 == v t2 - v c3 * pow56);
let c4, t3 = subm_step x3 (y3 +! c3) in
assert (v x3 - v y3 - v c3 == v t3 - v c4 * pow56);
Lemmas.lemma_as_nat_pow264_x4 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat_pow264_x4 (y0, y1, y2, y3, y4);
let c5, t4 = subm_last_step x4 (y4 +! c4) in
assert (v x4 - v y4 - v c4 == v t4 - pow2 40 * v c5);
assert (if v c5 = 0
then as_nat5 (x0, x1, x2, x3, x4) >= as_nat5 (y0, y1, y2, y3, y4)
else as_nat5 (x0, x1, x2, x3, x4) < as_nat5 (y0, y1, y2, y3, y4));
assert_norm (pow2 40 < pow2 56);
assert (qelem_fits5 (t0, t1, t2, t3, t4) (1, 1, 1, 1, 1));
assert (as_nat5 (t0, t1, t2, t3, t4) ==
v x0 - v y0 + v c1 * pow56 + (v x1 - v y1 - v c1 + v c2 * pow56) * pow56 +
(v x2 - v y2 - v c2 + v c3 * pow56) * pow112 +
(v x3 - v y3 - v c3 + v c4 * pow56) * pow168 +
(v x4 - v y4 - v c4 + pow2 40 * v c5) * pow224);
Lemmas.lemma_sub_mod_264_aux (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4)
(v c1) (v c2) (v c3) (v c4) (v c5);
assert (as_nat5 (t0, t1, t2, t3, t4) ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4) + v c5 * pow2 264);
Lemmas.lemma_sub_mod_264 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4) c5;
(t0, t1, t2, t3, t4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Hacl.Spec.BignumQ.Definitions.qelem5",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple5",
"Prims.unit",
"Hacl.Spec.BignumQ.Lemmas.lemma_sub_mod_264",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.BignumQ.Definitions.as_nat5",
"Prims.op_Addition",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Hacl.Spec.BignumQ.Lemmas.lemma_sub_mod_264_aux",
"Hacl.Spec.BignumQ.Definitions.pow56",
"Hacl.Spec.BignumQ.Definitions.pow112",
"Hacl.Spec.BignumQ.Definitions.pow168",
"Hacl.Spec.BignumQ.Definitions.pow224",
"Hacl.Spec.BignumQ.Definitions.qelem_fits5",
"Prims.nat",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Equality",
"Prims.op_GreaterThanOrEqual",
"Prims.bool",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Hacl.Spec.BignumQ.Mul.subm_last_step",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Spec.BignumQ.Lemmas.lemma_as_nat_pow264_x4",
"Hacl.Spec.BignumQ.Mul.subm_step"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n
#set-options "--z3rlimit 300"
let mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy14 = mul64_wide_5 x1 y4 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy23 = mul64_wide_5 x2 y3 in
let xy24 = mul64_wide_5 x2 y4 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy32 = mul64_wide_5 x3 y2 in
let xy33 = mul64_wide_5 x3 y3 in
let xy34 = mul64_wide_5 x3 y4 in
let xy40 = mul64_wide_5 x4 y0 in
let xy41 = mul64_wide_5 x4 y1 in
let xy42 = mul64_wide_5 x4 y2 in
let xy43 = mul64_wide_5 x4 y3 in
let xy44 = mul64_wide_5 x4 y4 in
let z0 = xy00 in // < pow2 112
let z1 = add2 xy01 xy10 in // < pow2 113
let z2 = add3 xy02 xy11 xy20 in // < pow2 114
let z3 = add4 xy03 xy12 xy21 xy30 in // < pow2 115
let z4 = add5 xy04 xy13 xy22 xy31 xy40 in // < pow2 116
let z5 = add4 xy14 xy23 xy32 xy41 in
let z6 = add3 xy24 xy33 xy42 in
let z7 = add2 xy34 xy43 in
let z8 = xy44 in
//(z0, z1, z2, z3, z4, z5, z6, z7, z8)
assert_norm (pow2 112 < pow2 117);
assert_norm (pow2 112 <= pow2 116);
let (c0, t0) = carry56_wide z0 in
let (c1, t1) = carry56_wide (add_inner_carry z1 c0) in
let (c2, t2) = carry56_wide (add_inner_carry z2 c1) in
let (c3, t3) = carry56_wide (add_inner_carry z3 c2) in
let (c4, t4) = carry56_wide (add_inner_carry z4 c3) in
let (c5, t5) = carry56_wide (add_inner_carry z5 c4) in
let (c6, t6) = carry56_wide (add_inner_carry z6 c5) in
let (c7, t7) = carry56_wide (add_inner_carry z7 c6) in
let (c8, t8) = carry56_wide (add_inner_carry z8 c7) in
let t9 = to_u64 c8 in
let lemma_t9_fits () : Lemma (v t9 < pow2 56)
= // This proof was built from the bottom. We have as a constraint that v c8 has to be < pow2 112 to satisfy the postcondition.
// We compute each time the maximal value such that this postcondition is satisfied
calc (<) {
v c0;
(<) { Math.Lemmas.lemma_div_lt_nat (v z0) 112 56 }
pow2 56;
};
calc (<) {
v c1;
(<) { assert_norm (2*(pow2 112 - pow2 57 + 1) + pow2 56 <= pow2 113);
Math.Lemmas.lemma_div_lt_nat (v z1 + v c0) 113 56 }
pow2 57;
};
calc (<) {
v c2;
(<) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 57 <= pow2 114);
Math.Lemmas.lemma_div_lt_nat (v z2 + v c1) 114 56 }
pow2 58;
};
calc (<=) {
v c3;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + pow2 58 <= 31153781151208965410895007785680895);
assert_norm (31153781151208965410895007785680895 / pow56 == 432345564227567610);
Math.Lemmas.lemma_div_le (v z3 + v c2) 31153781151208965410895007785680895 (pow2 56) }
432345564227567610;
};
calc (<=) {
v c4;
(<=) { assert_norm (5*(pow2 112 - pow2 57 + 1) + 432345564227567610 <= 25961484292674137854422105494388735); // (pow2 59 - 2) * pow56
assert_norm (25961484292674137854422105494388735 / pow56 == 360287970189639675);
Math.Lemmas.lemma_div_le (v z4 + v c3) 25961484292674137854422105494388735 (pow2 56) }
360287970189639675;
};
calc (<=) {
v c5;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + 360287970189639675 <= 20769187434139310297949203203096575);
Math.Lemmas.lemma_div_le (v z5 + v c4) 20769187434139310297949203203096575 (pow2 56);
assert_norm (20769187434139310297949203203096575 / pow2 56 == pow2 58 - 4) }
pow2 58 - 4;
};
calc (<=) {
v c6;
(<=) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 58 - 4 <= 15576890575604482741476300911804415);
Math.Lemmas.lemma_div_le (v z6 + v c5) 15576890575604482741476300911804415 (pow2 56);
assert_norm (15576890575604482741476300911804415 / pow2 56 == 216172782113783805) }
216172782113783805;
};
calc (<=) {
v c7;
(<=) { assert_norm (2*(pow2 112 - pow2 57 + 1) + 216172782113783805 <= 10384593717069655185003398620512255); // (pow2 57 - 1) * pow2 56 - 1
Math.Lemmas.lemma_div_le (v z7 + v c6) 10384593717069655185003398620512255 (pow2 56);
assert_norm (10384593717069655185003398620512255 / pow2 56 == pow2 57 - 2) }
pow2 57 - 2;
};
calc (<) {
v c8;
(<) { Math.Lemmas.lemma_div_lt_nat (v z8 + v c7) 112 56 }
pow2 56;
};
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
in
lemma_t9_fits();
calc (==) {
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224 +
v t5 * pow280 + v t6 * pow336 + v t7 * pow392 + v t8 * pow448 + v t9 * pow504;
(==) { assert_norm (pow2 61 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
}
v z0 - v c0 * pow2 56 +
(v z1 + v c0 - v c1 * pow2 56) * pow56 +
(v z2 + v c1 - v c2 * pow2 56) * pow112 +
(v z3 + v c2 - v c3 * pow2 56) * pow168 +
(v z4 + v c3 - v c4 * pow2 56) * pow224 +
(v z5 + v c4 - v c5 * pow2 56) * pow280 +
(v z6 + v c5 - v c6 * pow2 56) * pow336 +
(v z7 + v c6 - v c7 * pow2 56) * pow392 +
(v z8 + v c7 - v c8 * pow2 56) * pow448 +
v c8 * pow504;
(==) {
lemma_mult_distr_3 (v z1) (v c0) (v c1) 56;
lemma_mult_distr_3 (v z2) (v c1) (v c2) 112;
lemma_mult_distr_3 (v z3) (v c2) (v c3) 168;
lemma_mult_distr_3 (v z4) (v c3) (v c4) 224;
lemma_mult_distr_3 (v z5) (v c4) (v c5) 280;
lemma_mult_distr_3 (v z6) (v c5) (v c6) 336;
lemma_mult_distr_3 (v z7) (v c6) (v c7) 392;
lemma_mult_distr_3 (v z8) (v c7) (v c8) 448
}
v z0 +
v z1 * pow56 +
v z2 * pow112 +
v z3 * pow168 +
v z4 * pow224 +
v z5 * pow280 +
v z6 * pow336 +
v z7 * pow392 +
v z8 * pow448;
(==) { calc (==) {
v z1;
(==) { }
v x0 * v y1 + v x1 * v y0;
};
calc (==) {
v z2;
(==) { }
v x0 * v y2 + v x1 * v y1 + v x2 * v y0;
};
calc (==) {
v z3;
(==) { }
v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0;
};
calc (==) {
v z4;
(==) { }
v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0;
};
calc (==) {
v z5;
(==) { }
v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1;
};
calc (==) {
v z6;
(==) { }
v x2 * v y4 + v x3 * v y3 + v x4 * v y2;
};
calc (==) {
v z7;
(==) { }
v x3 * v y4 + v x4 * v y3;
};
calc (==) {
v z8;
(==) { }
v x4 * v y4;
}
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0) * pow168 +
(v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0) * pow224 +
(v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1) * pow280 +
(v x2 * v y4 + v x3 * v y3 + v x4 * v y2) * pow336 +
(v x3 * v y4 + v x4 * v y3) * pow392 +
(v x4 * v y4) * pow448;
(==) { Lemmas.lemma_mul_qelem5 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224) *
(v y0 + v y1 * pow2 56 + v y2 * pow2 112 + v y3 * pow2 168 + v y4 * pow2 224);
};
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)
inline_for_extraction noextract
val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264)
let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let (c0, t0) = carry56_wide xy00 in
let (c1, t1) = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let (c2, t2) = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let (c3, t3) = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc (==) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
(==) { }
v xy00 - v c0 * pow2 56 +
(v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
(==) { logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) 40 64
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4)
inline_for_extraction noextract
val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24))
let div_2_24_step x y =
let y' = (y &. u64 0xffffff) <<. 32ul in
assert_norm (pow2 24 - 1 = 0xffffff);
assert_norm (pow2 24 < pow2 64);
mod_mask_lemma y 24ul;
assert (v (mod_mask #U64 #SEC 24ul) == 0xffffff);
assert (v (y &. u64 0xffffff) == v y % pow2 24);
assert (v y' == (v y % pow2 24) * pow2 32);
let x' = x >>. 24ul in
FStar.Math.Lemmas.pow2_minus 56 24;
assert (v x' < pow2 32);
let z = x' |. y' in
logor_disjoint x' y' 32;
assert (v z == v x / pow2 24 + pow2 32 * (v y % pow2 24));
z
inline_for_extraction noextract
val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248)
let div_248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 248 == (x / pow2 224) / pow2 24
let z0 = div_2_24_step x4 x5 in
let z1 = div_2_24_step x5 x6 in
let z2 = div_2_24_step x6 x7 in
let z3 = div_2_24_step x7 x8 in
let z4 = div_2_24_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val div_2_40_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56)
(ensures fun z -> v z < pow56 /\
v z == v x / pow2 40 + pow2 16 * (v y % pow2 40))
let div_2_40_step x y =
let y' = (y &. mask40) <<. 16ul in
assert_norm (pow2 40 < pow2 64);
mod_mask_lemma y 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == v mask40);
assert (v y' == (v y % pow2 40) * pow2 16);
let x' = x >>. 40ul in
FStar.Math.Lemmas.pow2_minus 56 40;
assert (v x' == v x / pow2 40);
assert (v x' < pow2 16);
let z = x' |. y' in
logor_disjoint x' y' 16;
z
inline_for_extraction noextract
val div_264: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 x) / pow2 264)
let div_264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 264 == (x / pow2 224) / pow2 40
let z0 = div_2_40_step x4 x5 in
let z1 = div_2_40_step x5 x6 in
let z2 = div_2_40_step x6 x7 in
let z3 = div_2_40_step x7 x8 in
let z4 = div_2_40_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val mod_264: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 t) % pow2 264)
let mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) =
Lemmas.lemma_mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
(t0, t1, t2, t3, t4 &. mask40)
inline_for_extraction noextract
val subm_last_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow2 40 /\ v y <= pow2 40)
(ensures fun (b, t) -> v b <= 1 /\ v t < pow2 40 /\
v x - v y == v t - pow2 40 * v b)
let subm_last_step x y =
assert_norm (pow2 40 < pow2 63);
let b = (x -. y) >>. 63ul in
assert (if v x >= v y then v b == 0 else v b == 1);
let t = ((b <<. 40ul) +! x) -! y in
b, t
#push-options "--z3rlimit 400 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
val sub_mod_264: x:qelem5 -> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
(if as_nat5 x >= as_nat5 y then
as_nat5 z == as_nat5 x - as_nat5 y
else
as_nat5 z == as_nat5 x - as_nat5 y + pow2 264)) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 400,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val sub_mod_264: x:qelem5 -> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
(if as_nat5 x >= as_nat5 y then
as_nat5 z == as_nat5 x - as_nat5 y
else
as_nat5 z == as_nat5 x - as_nat5 y + pow2 264)) | [] | Hacl.Spec.BignumQ.Mul.sub_mod_264 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem5 -> y: Hacl.Spec.BignumQ.Definitions.qelem5
-> Prims.Pure Hacl.Spec.BignumQ.Definitions.qelem5 | {
"end_col": 22,
"end_line": 798,
"start_col": 59,
"start_line": 766
} |
Prims.Pure | val barrett_reduction5: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 t < pow2 512)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 t) % S.q) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let barrett_reduction5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) =
let (m0, m1, m2, m3, m4) = make_m () in
let (mu0, mu1, mu2, mu3, mu4) = make_mu () in
let (q0, q1, q2, q3, q4) = div_248 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) in
assert (as_nat5 (q0, q1, q2, q3, q4) == wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) / pow2 248);
FStar.Math.Lemmas.lemma_div_lt_nat (wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)) 512 248;
assert (as_nat5 (q0, q1, q2, q3, q4) < pow2 264);
let (qmu0', qmu1', qmu2', qmu3', qmu4', qmu5', qmu6', qmu7', qmu8', qmu9') = mul_5 (q0, q1, q2, q3, q4) (mu0, mu1, mu2, mu3, mu4) in
FStar.Math.Lemmas.lemma_mult_le_right (pow2 512 / S.q) (as_nat5 (q0, q1, q2, q3, q4)) (pow2 264);
assert (wide_as_nat5 (qmu0', qmu1', qmu2', qmu3', qmu4', qmu5', qmu6', qmu7', qmu8', qmu9') <= pow2 512 / S.q * pow2 264);
assert_norm (pow2 512 / S.q * pow2 264 < pow2 528);
let (qdiv0, qdiv1, qdiv2, qdiv3, qdiv4) = div_264 (qmu0', qmu1', qmu2', qmu3', qmu4', qmu5', qmu6', qmu7', qmu8', qmu9') in
//u = qdiv == (A / b^{k-1}) * mu / b^{k+1} == ((A / 2^248) * mu) / 2^264
let (r0, r1, r2, r3, r4) = mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) in
//r == A mod b^{k+1} == A mod 2^264
let (qmul0, qmul1, qmul2, qmul3, qmul4) = low_mul_5 (qdiv0, qdiv1, qdiv2, qdiv3, qdiv4) (m0, m1, m2, m3, m4) in
//v == qmul == u * L mod b^{k+1} == u * L mod 2^264
let (s0, s1, s2, s3, s4) = sub_mod_264 (r0, r1, r2, r3, r4) (qmul0, qmul1, qmul2, qmul3, qmul4) in
//u == s == (r - v) mod b^{k+1} == (r - v) mod 2^264
let (o0, o1, o2, o3, o4) = subm_conditional (s0, s1, s2, s3, s4) in
Lemmas.lemma_barrett_reduce' (wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9));
(o0, o1, o2, o3, o4) | val barrett_reduction5: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 t < pow2 512)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 t) % S.q)
let barrett_reduction5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) = | false | null | false | let m0, m1, m2, m3, m4 = make_m () in
let mu0, mu1, mu2, mu3, mu4 = make_mu () in
let q0, q1, q2, q3, q4 = div_248 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) in
assert (as_nat5 (q0, q1, q2, q3, q4) ==
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) / pow2 248);
FStar.Math.Lemmas.lemma_div_lt_nat (wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)) 512 248;
assert (as_nat5 (q0, q1, q2, q3, q4) < pow2 264);
let qmu0', qmu1', qmu2', qmu3', qmu4', qmu5', qmu6', qmu7', qmu8', qmu9' =
mul_5 (q0, q1, q2, q3, q4) (mu0, mu1, mu2, mu3, mu4)
in
FStar.Math.Lemmas.lemma_mult_le_right (pow2 512 / S.q) (as_nat5 (q0, q1, q2, q3, q4)) (pow2 264);
assert (wide_as_nat5 (qmu0', qmu1', qmu2', qmu3', qmu4', qmu5', qmu6', qmu7', qmu8', qmu9') <=
(pow2 512 / S.q) * pow2 264);
assert_norm ((pow2 512 / S.q) * pow2 264 < pow2 528);
let qdiv0, qdiv1, qdiv2, qdiv3, qdiv4 =
div_264 (qmu0', qmu1', qmu2', qmu3', qmu4', qmu5', qmu6', qmu7', qmu8', qmu9')
in
let r0, r1, r2, r3, r4 = mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) in
let qmul0, qmul1, qmul2, qmul3, qmul4 =
low_mul_5 (qdiv0, qdiv1, qdiv2, qdiv3, qdiv4) (m0, m1, m2, m3, m4)
in
let s0, s1, s2, s3, s4 = sub_mod_264 (r0, r1, r2, r3, r4) (qmul0, qmul1, qmul2, qmul3, qmul4) in
let o0, o1, o2, o3, o4 = subm_conditional (s0, s1, s2, s3, s4) in
Lemmas.lemma_barrett_reduce' (wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9));
(o0, o1, o2, o3, o4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Hacl.Spec.BignumQ.Definitions.qelem_wide5",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple5",
"Prims.unit",
"Hacl.Spec.BignumQ.Lemmas.lemma_barrett_reduce'",
"Hacl.Spec.BignumQ.Definitions.wide_as_nat5",
"FStar.Pervasives.Native.Mktuple10",
"Hacl.Spec.BignumQ.Definitions.qelem5",
"Hacl.Spec.BignumQ.Mul.subm_conditional",
"Hacl.Spec.BignumQ.Mul.sub_mod_264",
"Hacl.Spec.BignumQ.Mul.low_mul_5",
"Hacl.Spec.BignumQ.Mul.mod_264",
"Hacl.Spec.BignumQ.Mul.div_264",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Prims.op_Division",
"Prims.pow2",
"Spec.Ed25519.q",
"Prims._assert",
"Prims.op_LessThanOrEqual",
"FStar.Math.Lemmas.lemma_mult_le_right",
"Hacl.Spec.BignumQ.Definitions.as_nat5",
"Hacl.Spec.BignumQ.Mul.mul_5",
"FStar.Math.Lemmas.lemma_div_lt_nat",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.BignumQ.Mul.div_248",
"Prims.l_and",
"Hacl.Spec.BignumQ.Definitions.qelem_fits5",
"Prims.nat",
"Hacl.Spec.BignumQ.Mul.make_mu",
"Hacl.Spec.BignumQ.Mul.make_m"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n
#set-options "--z3rlimit 300"
let mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy14 = mul64_wide_5 x1 y4 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy23 = mul64_wide_5 x2 y3 in
let xy24 = mul64_wide_5 x2 y4 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy32 = mul64_wide_5 x3 y2 in
let xy33 = mul64_wide_5 x3 y3 in
let xy34 = mul64_wide_5 x3 y4 in
let xy40 = mul64_wide_5 x4 y0 in
let xy41 = mul64_wide_5 x4 y1 in
let xy42 = mul64_wide_5 x4 y2 in
let xy43 = mul64_wide_5 x4 y3 in
let xy44 = mul64_wide_5 x4 y4 in
let z0 = xy00 in // < pow2 112
let z1 = add2 xy01 xy10 in // < pow2 113
let z2 = add3 xy02 xy11 xy20 in // < pow2 114
let z3 = add4 xy03 xy12 xy21 xy30 in // < pow2 115
let z4 = add5 xy04 xy13 xy22 xy31 xy40 in // < pow2 116
let z5 = add4 xy14 xy23 xy32 xy41 in
let z6 = add3 xy24 xy33 xy42 in
let z7 = add2 xy34 xy43 in
let z8 = xy44 in
//(z0, z1, z2, z3, z4, z5, z6, z7, z8)
assert_norm (pow2 112 < pow2 117);
assert_norm (pow2 112 <= pow2 116);
let (c0, t0) = carry56_wide z0 in
let (c1, t1) = carry56_wide (add_inner_carry z1 c0) in
let (c2, t2) = carry56_wide (add_inner_carry z2 c1) in
let (c3, t3) = carry56_wide (add_inner_carry z3 c2) in
let (c4, t4) = carry56_wide (add_inner_carry z4 c3) in
let (c5, t5) = carry56_wide (add_inner_carry z5 c4) in
let (c6, t6) = carry56_wide (add_inner_carry z6 c5) in
let (c7, t7) = carry56_wide (add_inner_carry z7 c6) in
let (c8, t8) = carry56_wide (add_inner_carry z8 c7) in
let t9 = to_u64 c8 in
let lemma_t9_fits () : Lemma (v t9 < pow2 56)
= // This proof was built from the bottom. We have as a constraint that v c8 has to be < pow2 112 to satisfy the postcondition.
// We compute each time the maximal value such that this postcondition is satisfied
calc (<) {
v c0;
(<) { Math.Lemmas.lemma_div_lt_nat (v z0) 112 56 }
pow2 56;
};
calc (<) {
v c1;
(<) { assert_norm (2*(pow2 112 - pow2 57 + 1) + pow2 56 <= pow2 113);
Math.Lemmas.lemma_div_lt_nat (v z1 + v c0) 113 56 }
pow2 57;
};
calc (<) {
v c2;
(<) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 57 <= pow2 114);
Math.Lemmas.lemma_div_lt_nat (v z2 + v c1) 114 56 }
pow2 58;
};
calc (<=) {
v c3;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + pow2 58 <= 31153781151208965410895007785680895);
assert_norm (31153781151208965410895007785680895 / pow56 == 432345564227567610);
Math.Lemmas.lemma_div_le (v z3 + v c2) 31153781151208965410895007785680895 (pow2 56) }
432345564227567610;
};
calc (<=) {
v c4;
(<=) { assert_norm (5*(pow2 112 - pow2 57 + 1) + 432345564227567610 <= 25961484292674137854422105494388735); // (pow2 59 - 2) * pow56
assert_norm (25961484292674137854422105494388735 / pow56 == 360287970189639675);
Math.Lemmas.lemma_div_le (v z4 + v c3) 25961484292674137854422105494388735 (pow2 56) }
360287970189639675;
};
calc (<=) {
v c5;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + 360287970189639675 <= 20769187434139310297949203203096575);
Math.Lemmas.lemma_div_le (v z5 + v c4) 20769187434139310297949203203096575 (pow2 56);
assert_norm (20769187434139310297949203203096575 / pow2 56 == pow2 58 - 4) }
pow2 58 - 4;
};
calc (<=) {
v c6;
(<=) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 58 - 4 <= 15576890575604482741476300911804415);
Math.Lemmas.lemma_div_le (v z6 + v c5) 15576890575604482741476300911804415 (pow2 56);
assert_norm (15576890575604482741476300911804415 / pow2 56 == 216172782113783805) }
216172782113783805;
};
calc (<=) {
v c7;
(<=) { assert_norm (2*(pow2 112 - pow2 57 + 1) + 216172782113783805 <= 10384593717069655185003398620512255); // (pow2 57 - 1) * pow2 56 - 1
Math.Lemmas.lemma_div_le (v z7 + v c6) 10384593717069655185003398620512255 (pow2 56);
assert_norm (10384593717069655185003398620512255 / pow2 56 == pow2 57 - 2) }
pow2 57 - 2;
};
calc (<) {
v c8;
(<) { Math.Lemmas.lemma_div_lt_nat (v z8 + v c7) 112 56 }
pow2 56;
};
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
in
lemma_t9_fits();
calc (==) {
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224 +
v t5 * pow280 + v t6 * pow336 + v t7 * pow392 + v t8 * pow448 + v t9 * pow504;
(==) { assert_norm (pow2 61 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
}
v z0 - v c0 * pow2 56 +
(v z1 + v c0 - v c1 * pow2 56) * pow56 +
(v z2 + v c1 - v c2 * pow2 56) * pow112 +
(v z3 + v c2 - v c3 * pow2 56) * pow168 +
(v z4 + v c3 - v c4 * pow2 56) * pow224 +
(v z5 + v c4 - v c5 * pow2 56) * pow280 +
(v z6 + v c5 - v c6 * pow2 56) * pow336 +
(v z7 + v c6 - v c7 * pow2 56) * pow392 +
(v z8 + v c7 - v c8 * pow2 56) * pow448 +
v c8 * pow504;
(==) {
lemma_mult_distr_3 (v z1) (v c0) (v c1) 56;
lemma_mult_distr_3 (v z2) (v c1) (v c2) 112;
lemma_mult_distr_3 (v z3) (v c2) (v c3) 168;
lemma_mult_distr_3 (v z4) (v c3) (v c4) 224;
lemma_mult_distr_3 (v z5) (v c4) (v c5) 280;
lemma_mult_distr_3 (v z6) (v c5) (v c6) 336;
lemma_mult_distr_3 (v z7) (v c6) (v c7) 392;
lemma_mult_distr_3 (v z8) (v c7) (v c8) 448
}
v z0 +
v z1 * pow56 +
v z2 * pow112 +
v z3 * pow168 +
v z4 * pow224 +
v z5 * pow280 +
v z6 * pow336 +
v z7 * pow392 +
v z8 * pow448;
(==) { calc (==) {
v z1;
(==) { }
v x0 * v y1 + v x1 * v y0;
};
calc (==) {
v z2;
(==) { }
v x0 * v y2 + v x1 * v y1 + v x2 * v y0;
};
calc (==) {
v z3;
(==) { }
v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0;
};
calc (==) {
v z4;
(==) { }
v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0;
};
calc (==) {
v z5;
(==) { }
v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1;
};
calc (==) {
v z6;
(==) { }
v x2 * v y4 + v x3 * v y3 + v x4 * v y2;
};
calc (==) {
v z7;
(==) { }
v x3 * v y4 + v x4 * v y3;
};
calc (==) {
v z8;
(==) { }
v x4 * v y4;
}
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0) * pow168 +
(v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0) * pow224 +
(v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1) * pow280 +
(v x2 * v y4 + v x3 * v y3 + v x4 * v y2) * pow336 +
(v x3 * v y4 + v x4 * v y3) * pow392 +
(v x4 * v y4) * pow448;
(==) { Lemmas.lemma_mul_qelem5 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224) *
(v y0 + v y1 * pow2 56 + v y2 * pow2 112 + v y3 * pow2 168 + v y4 * pow2 224);
};
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)
inline_for_extraction noextract
val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264)
let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let (c0, t0) = carry56_wide xy00 in
let (c1, t1) = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let (c2, t2) = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let (c3, t3) = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc (==) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
(==) { }
v xy00 - v c0 * pow2 56 +
(v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
(==) { logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) 40 64
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4)
inline_for_extraction noextract
val div_2_24_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56 /\ v y < pow56)
(ensures fun r -> v r < pow56 /\
v r == v x / pow2 24 + pow2 32 * (v y % pow2 24))
let div_2_24_step x y =
let y' = (y &. u64 0xffffff) <<. 32ul in
assert_norm (pow2 24 - 1 = 0xffffff);
assert_norm (pow2 24 < pow2 64);
mod_mask_lemma y 24ul;
assert (v (mod_mask #U64 #SEC 24ul) == 0xffffff);
assert (v (y &. u64 0xffffff) == v y % pow2 24);
assert (v y' == (v y % pow2 24) * pow2 32);
let x' = x >>. 24ul in
FStar.Math.Lemmas.pow2_minus 56 24;
assert (v x' < pow2 32);
let z = x' |. y' in
logor_disjoint x' y' 32;
assert (v z == v x / pow2 24 + pow2 32 * (v y % pow2 24));
z
inline_for_extraction noextract
val div_248: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 512)
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 x) / pow2 248)
let div_248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 248 == (x / pow2 224) / pow2 24
let z0 = div_2_24_step x4 x5 in
let z1 = div_2_24_step x5 x6 in
let z2 = div_2_24_step x6 x7 in
let z3 = div_2_24_step x7 x8 in
let z4 = div_2_24_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div248 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val div_2_40_step: x:uint64 -> y:uint64 ->
Pure uint64
(requires v x < pow56)
(ensures fun z -> v z < pow56 /\
v z == v x / pow2 40 + pow2 16 * (v y % pow2 40))
let div_2_40_step x y =
let y' = (y &. mask40) <<. 16ul in
assert_norm (pow2 40 < pow2 64);
mod_mask_lemma y 40ul;
assert (v (mod_mask #U64 #SEC 40ul) == v mask40);
assert (v y' == (v y % pow2 40) * pow2 16);
let x' = x >>. 40ul in
FStar.Math.Lemmas.pow2_minus 56 40;
assert (v x' == v x / pow2 40);
assert (v x' < pow2 16);
let z = x' |. y' in
logor_disjoint x' y' 16;
z
inline_for_extraction noextract
val div_264: x:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 x (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 x < pow2 528)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 x) / pow2 264)
let div_264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) =
// x / pow2 264 == (x / pow2 224) / pow2 40
let z0 = div_2_40_step x4 x5 in
let z1 = div_2_40_step x5 x6 in
let z2 = div_2_40_step x6 x7 in
let z3 = div_2_40_step x7 x8 in
let z4 = div_2_40_step x8 x9 in
assert (qelem_fits5 (z0, z1, z2, z3, z4) (1, 1, 1, 1, 1));
Lemmas.lemma_div264 (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9);
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val mod_264: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (wide_as_nat5 t) % pow2 264)
let mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) =
Lemmas.lemma_mod_264 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
(t0, t1, t2, t3, t4 &. mask40)
inline_for_extraction noextract
val subm_last_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow2 40 /\ v y <= pow2 40)
(ensures fun (b, t) -> v b <= 1 /\ v t < pow2 40 /\
v x - v y == v t - pow2 40 * v b)
let subm_last_step x y =
assert_norm (pow2 40 < pow2 63);
let b = (x -. y) >>. 63ul in
assert (if v x >= v y then v b == 0 else v b == 1);
let t = ((b <<. 40ul) +! x) -! y in
b, t
#push-options "--z3rlimit 400 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
val sub_mod_264: x:qelem5 -> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < pow2 264 /\
as_nat5 y < pow2 264)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
(if as_nat5 x >= as_nat5 y then
as_nat5 z == as_nat5 x - as_nat5 y
else
as_nat5 z == as_nat5 x - as_nat5 y + pow2 264))
let sub_mod_264 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let (c1, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v c1 * pow56);
let (c2, t1) = subm_step x1 (y1 +! c1) in
assert (v x1 - v y1 - v c1 == v t1 - v c2 * pow56);
let (c3, t2) = subm_step x2 (y2 +! c2) in
assert (v x2 - v y2 - v c2 == v t2 - v c3 * pow56);
let (c4, t3) = subm_step x3 (y3 +! c3) in
assert (v x3 - v y3 - v c3 == v t3 - v c4 * pow56);
Lemmas.lemma_as_nat_pow264_x4 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat_pow264_x4 (y0, y1, y2, y3, y4);
let (c5, t4) = subm_last_step x4 (y4 +! c4) in
assert (v x4 - v y4 - v c4 == v t4 - pow2 40 * v c5);
assert (
if v c5 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= as_nat5 (y0, y1, y2, y3, y4)
else as_nat5 (x0, x1, x2, x3, x4) < as_nat5 (y0, y1, y2, y3, y4));
assert_norm (pow2 40 < pow2 56);
assert (qelem_fits5 (t0, t1, t2, t3, t4) (1, 1, 1, 1, 1));
assert
(as_nat5 (t0, t1, t2, t3, t4) ==
v x0 - v y0 + v c1 * pow56 +
(v x1 - v y1 - v c1 + v c2 * pow56) * pow56 +
(v x2 - v y2 - v c2 + v c3 * pow56) * pow112 +
(v x3 - v y3 - v c3 + v c4 * pow56) * pow168 +
(v x4 - v y4 - v c4 + pow2 40 * v c5) * pow224);
Lemmas.lemma_sub_mod_264_aux (v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4) (v c1) (v c2) (v c3) (v c4) (v c5);
assert (as_nat5 (t0, t1, t2, t3, t4) ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4) + v c5 * pow2 264);
Lemmas.lemma_sub_mod_264 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4) c5;
(t0, t1, t2, t3, t4)
#pop-options
// A = t, L = make_m()
// b = 2^8, k = 32, mu = b^{2*k} / L = make_mu()
inline_for_extraction noextract
val barrett_reduction5: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 t < pow2 512)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 t) % S.q) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val barrett_reduction5: t:qelem_wide5 ->
Pure qelem5
(requires
qelem_wide_fits5 t (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 t < pow2 512)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (wide_as_nat5 t) % S.q) | [] | Hacl.Spec.BignumQ.Mul.barrett_reduction5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | t: Hacl.Spec.BignumQ.Definitions.qelem_wide5 -> Prims.Pure Hacl.Spec.BignumQ.Definitions.qelem5 | {
"end_col": 22,
"end_line": 843,
"start_col": 65,
"start_line": 814
} |
Prims.Pure | val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264) | [
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.BignumQ.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.BignumQ",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let (c0, t0) = carry56_wide xy00 in
let (c1, t1) = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let (c2, t2) = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let (c3, t3) = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc (==) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
(==) { }
v xy00 - v c0 * pow2 56 +
(v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
(==) { logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) 40 64
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4) | val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264)
let low_mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) = | false | null | false | let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy40 = mul64_wide_5 x4 y0 in
assert_norm (pow2 112 < pow2 117);
let c0, t0 = carry56_wide xy00 in
let c1, t1 = carry56_wide (add_inner_carry (add2 xy01 xy10) c0) in
let c2, t2 = carry56_wide (add_inner_carry (add3 xy02 xy11 xy20) c1) in
let c3, t3 = carry56_wide (add_inner_carry (add4 xy03 xy12 xy21 xy30) c2) in
let t4 = to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3) &. mask40 in
calc ( == ) {
as_nat5 (t0, t1, t2, t3, t4) <: int;
( == ) { () }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224;
( == ) { () }
v xy00 - v c0 * pow2 56 + (v xy01 + v xy10 + v c0 - v c1 * pow2 56) * pow56 +
(v xy02 + v xy11 + v xy20 + v c1 - v c2 * pow56) * pow112 +
(v xy03 + v xy12 + v xy21 + v xy30 + v c2 - v c3 * pow56) * pow168 +
v t4 * pow224;
( == ) { (logand_mask (to_u64 (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3)) mask40 40;
Math.Lemmas.pow2_modulo_modulo_lemma_1 (v (add_inner_carry (add5 xy04 xy13 xy22 xy31 xy40) c3))
40
64) }
v x0 * v y0 + (v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0 - v c3 * pow56) * pow168 +
((v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0 + v c3) % pow2 40) * pow224;
};
Lemmas.lemma_mul_5_low_264 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4);
(t0, t1, t2, t3, t4) | {
"checked_file": "Hacl.Spec.BignumQ.Mul.fst.checked",
"dependencies": [
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.BignumQ.Lemmas.fst.checked",
"Hacl.Spec.BignumQ.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.BignumQ.Mul.fst"
} | [] | [
"Hacl.Spec.BignumQ.Definitions.qelem5",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.uint128",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple5",
"Prims.unit",
"Hacl.Spec.BignumQ.Lemmas.lemma_mul_5_low_264",
"Lib.IntTypes.v",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Hacl.Spec.BignumQ.Definitions.as_nat5",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Hacl.Spec.BignumQ.Definitions.pow56",
"Hacl.Spec.BignumQ.Definitions.pow112",
"Prims.op_Subtraction",
"Lib.IntTypes.U128",
"Hacl.Spec.BignumQ.Definitions.pow168",
"Prims.op_Modulus",
"Prims.pow2",
"Hacl.Spec.BignumQ.Definitions.pow224",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1",
"Hacl.Spec.BignumQ.Mul.add_inner_carry",
"Hacl.Spec.BignumQ.Mul.add5",
"Lib.IntTypes.logand_mask",
"Lib.IntTypes.to_u64",
"Hacl.Spec.BignumQ.Mul.mask40",
"Lib.IntTypes.op_Amp_Dot",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.BignumQ.Mul.carry56_wide",
"Hacl.Spec.BignumQ.Mul.add4",
"Hacl.Spec.BignumQ.Mul.add3",
"Hacl.Spec.BignumQ.Mul.add2",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Hacl.Spec.BignumQ.Mul.mul64_wide_5"
] | [] | module Hacl.Spec.BignumQ.Mul
open FStar.Mul
open Lib.IntTypes
module S = Spec.Ed25519
module Lemmas = Hacl.Spec.BignumQ.Lemmas
include Hacl.Spec.BignumQ.Definitions
#reset-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
inline_for_extraction noextract
let mask56 : x:uint64{v x == pow2 56 - 1} =
assert_norm (pow2 56 - 1 == 0xffffffffffffff);
u64 0xffffffffffffff
inline_for_extraction noextract
let mask40 : x:uint64{v x == pow2 40 - 1} =
assert_norm (pow2 40 - 1 == 0xffffffffff);
u64 0xffffffffff
inline_for_extraction noextract
val make_m: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == S.q}
let make_m () =
let m0 = u64 0x12631a5cf5d3ed in
let m1 = u64 0xf9dea2f79cd658 in
let m2 = u64 0x000000000014de in
let m3 = u64 0x00000000000000 in
let m4 = u64 0x00000010000000 in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val make_mu: unit -> m:qelem5{qelem_fits5 m (1, 1, 1, 1, 1) /\ as_nat5 m == pow2 512 / S.q}
let make_mu m =
let m0 = u64 0x9ce5a30a2c131b in
let m1 = u64 0x215d086329a7ed in
let m2 = u64 0xffffffffeb2106 in
let m3 = u64 0xffffffffffffff in
let m4 = u64 0x00000fffffffff in
assert_norm (as_nat5 (m0, m1, m2, m3, m4) == pow2 512 / S.q);
(m0, m1, m2, m3, m4)
inline_for_extraction noextract
val choose:
b:uint64
-> x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires v b == 0 \/ v b == 1)
(ensures fun z -> if v b = 1 then z == x else z == y)
let choose b (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let mask = b -. u64 1 in
let z0 = x0 ^. (mask &. (x0 ^. y0)) in
Lemmas.lemma_choose_step b x0 y0;
let z1 = x1 ^. (mask &. (x1 ^. y1)) in
Lemmas.lemma_choose_step b x1 y1;
let z2 = x2 ^. (mask &. (x2 ^. y2)) in
Lemmas.lemma_choose_step b x2 y2;
let z3 = x3 ^. (mask &. (x3 ^. y3)) in
Lemmas.lemma_choose_step b x3 y3;
let z4 = x4 ^. (mask &. (x4 ^. y4)) in
Lemmas.lemma_choose_step b x4 y4;
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val subm_step: x:uint64 -> y:uint64 ->
Pure (uint64 & uint64)
(requires v x < pow56 /\ v y <= pow56)
(ensures fun (b, t) ->
v b <= 1 /\ qelem_fits1 t 1 /\
v x - v y == v t - v b * pow56)
let subm_step x y =
let b = (x -. y) >>. 63ul in
//assert (if v x >= v y then v b == 0 else v b == 1);
let lshift56 = (b <<. 56ul) in
//assert (if v x >= v y then v lshift56 == 0 else v lshift56 == pow56);
//assert (v lshift56 == v b * pow56);
//assert (v ((b <<. 56ul) +! x) == v b * pow56 + v x);
let t = ((b <<. 56ul) +! x) -! y in
b, t
inline_for_extraction noextract
val subm_conditional: x:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
(if as_nat5 x >= S.q then as_nat5 r == as_nat5 x - S.q else as_nat5 r == as_nat5 x))
let subm_conditional (x0, x1, x2, x3, x4) =
let (y0, y1, y2, y3, y4) = make_m () in
let (b0, t0) = subm_step x0 y0 in
assert (v x0 - v y0 == v t0 - v b0 * pow56);
let (b1, t1) = subm_step x1 (y1 +! b0) in
assert (v x1 - v y1 - v b0 == v t1 - v b1 * pow56);
let (b2, t2) = subm_step x2 (y2 +! b1) in
assert (v x2 - v y2 - v b1 == v t2 - v b2 * pow56);
let (b3, t3) = subm_step x3 (y3 +! b2) in
assert (v x3 - v y3 - v b2 == v t3 - v b3 * pow56);
let (b4, t4) = subm_step x4 (y4 +! b3) in
assert (v x4 - v y4 - v b3 == v t4 - v b4 * pow56);
Lemmas.lemma_subm_conditional
(v x0) (v x1) (v x2) (v x3) (v x4)
(v y0) (v y1) (v y2) (v y3) (v y4)
(v b0) (v b1) (v b2) (v b3) (v b4);
assert (
as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow56 * pow224 ==
as_nat5 (x0, x1, x2, x3, x4) - as_nat5 (y0, y1, y2, y3, y4));
//assert_norm (pow56 * pow224 = pow2 280);
//assert (as_nat5 (t0, t1, t2, t3, t4) - v b4 * pow2 280 == as_nat5 (x0, x1, x2, x3, x4) - S.q);
Lemmas.lemma_as_nat5 (x0, x1, x2, x3, x4);
Lemmas.lemma_as_nat5 (t0, t1, t2, t3, t4);
//assert (if v b4 = 0 then as_nat5 (x0, x1, x2, x3, x4) >= S.q else as_nat5 (x0, x1, x2, x3, x4) < S.q);
assert (if as_nat5 (x0, x1, x2, x3, x4) >= S.q then v b4 == 0 else v b4 == 1);
let (z0, z1, z2, z3, z4) = choose b4 (x0, x1, x2, x3, x4) (t0, t1, t2, t3, t4) in
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
assert (
if as_nat5 (x0, x1, x2, x3, x4) >= S.q
then v b4 == 0 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (t0, t1, t2, t3, t4)
else v b4 == 1 /\ as_nat5 (z0, z1, z2, z3, z4) == as_nat5 (x0, x1, x2, x3, x4));
(z0, z1, z2, z3, z4)
inline_for_extraction noextract
val carry56: x:uint64 ->
Pure (uint64 & uint64)
(requires v x <= pow2 57)
(ensures fun (t, c) ->
v t < pow56 /\ v c <= 2 /\
v x == v c * pow56 + v t)
let carry56 x =
let carry = x >>. 56ul in
FStar.Math.Lemmas.pow2_minus 57 56;
let t = x &. mask56 in
assert_norm (pow2 56 < pow2 64);
mod_mask_lemma x 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
t, carry
inline_for_extraction noextract
val add_modq5:
x:qelem5
-> y:qelem5
-> Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1) /\
as_nat5 x < S.q /\ as_nat5 y < S.q)
(ensures fun z ->
qelem_fits5 z (1, 1, 1, 1, 1) /\
as_nat5 z == (as_nat5 x + as_nat5 y) % S.q)
let add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
assert_norm (pow56 - 1 + pow56 - 1 == pow2 57 - 2);
let (t0, c0) = carry56 (x0 +! y0) in
let (t1, c1) = carry56 (x1 +! y1 +! c0) in
let (t2, c2) = carry56 (x2 +! y2 +! c1) in
let (t3, c3) = carry56 (x3 +! y3 +! c2) in
let t4 = x4 +! y4 +! c3 in
assert (as_nat5 (t0, t1, t2, t3, t4) == as_nat5 (x0, x1, x2, x3, x4) + as_nat5 (y0, y1, y2, y3, y4));
let (o0, o1, o2, o3, o4) = subm_conditional (t0, t1, t2, t3, t4) in
Lemmas.lemma_add_modq5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) (t0, t1, t2, t3, t4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry56_wide: x:uint128 ->
Pure (uint128 & uint64)
(requires v x < pow2 117)
(ensures fun (c, t) -> v t < pow56 /\ v c < pow2 61 /\
v x - v c * pow56 == v t /\
v c == v x / pow56)
let carry56_wide x =
let carry = x >>. 56ul in
let t = to_u64 x &. mask56 in
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.lemma_div_lt_nat (v x) 117 56;
mod_mask_lemma (to_u64 x) 56ul;
assert (v (mod_mask #U64 #SEC 56ul) == v mask56);
assert (v t == (v x % pow2 64) % pow2 56);
FStar.Math.Lemmas.pow2_modulo_modulo_lemma_1 (v x) 56 64;
assert (v t == v x % pow2 56);
assert (v x == v carry * pow2 56 + v t);
carry, t
inline_for_extraction noextract
val mul64_wide_5:
(a:uint64) -> (b:uint64) ->
Pure uint128
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures fun z ->
v z == v a * v b /\
v z <= pow2 112 - pow2 57 + 1 /\
v z < pow2 112)
let mul64_wide_5 a b =
let lemma_smaller (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) < pow2 112)
= if v a = 0 || v b = 0 then () else
calc (<) {
v a * v b <: int;
(<) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56) }
v a * pow2 56;
(<) { Math.Lemmas.lemma_mult_le_right (pow2 56) (v a) (pow2 56) }
pow2 56 * pow2 56;
(==) { assert_norm (pow2 56 * pow2 56 == pow2 112) }
pow2 112;
}
in
let lemma_le (a b:uint64) : Lemma
(requires qelem_fits1 a 1 /\ qelem_fits1 b 1)
(ensures v (mul64_wide a b) <= pow2 112 - pow2 57 + 1)
= if v a = 0 || v b = 0 then () else
assert_norm (pow2 112 - pow2 57 + 1 >= 0);
calc (<=) {
v a * v b <: int;
(<=) { Math.Lemmas.lemma_mult_le_left (v a) (v b) (pow2 56 - 1) }
v a * (pow2 56 - 1);
(<=) { Math.Lemmas.lemma_mult_le_right (pow2 56 - 1) (v a) (pow2 56 - 1) }
(pow2 56 - 1) * (pow2 56 - 1);
(==) { assert_norm ((pow2 56 - 1) * (pow2 56 - 1) == pow2 112 - pow2 57 + 1) }
pow2 112 - pow2 57 + 1;
}
in
lemma_le a b;
lemma_smaller a b;
mul64_wide a b
inline_for_extraction noextract
val add2:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112)
(ensures fun z ->
v z == v a + v b /\
v z <= pow2 116)
let add2 a b =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val add3:
(a:uint128) -> (b:uint128) -> (c:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 )
(ensures fun z ->
v z == v a + v b + v c /\
v z <= pow2 116)
let add3 a b c =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
a +. b +. c
inline_for_extraction noextract
val add4:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d /\
v z <= pow2 116)
let add4 a b c d =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
a +. b +. c +. d
inline_for_extraction noextract
val add5:
(a:uint128) -> (b:uint128) -> (c:uint128) -> (d:uint128) -> (e:uint128) ->
Pure uint128
(requires v a < pow2 112 /\ v b < pow2 112 /\ v c < pow2 112 /\ v d < pow2 112 /\ v e < pow2 112)
(ensures fun z ->
v z == v a + v b + v c + v d + v e/\
v z <= pow2 116)
let add5 a b c d e =
assert_norm (pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 < pow2 128);
assert_norm (pow2 112 + pow2 112 + pow2 112 + pow2 112 + pow2 112 <= pow2 116);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d) (pow2 128);
Math.Lemmas.small_mod (v a + v b + v c + v d + v e) (pow2 128);
a +. b +. c +. d +. e
inline_for_extraction noextract
val add_inner_carry:
(a:uint128) -> (b:uint128) ->
Pure uint128
(requires v a <= pow2 116 /\ v b < pow2 61)
(ensures fun z ->
v z == v a + v b /\
v z < pow2 117)
let add_inner_carry a b =
assert_norm (pow2 116 + pow2 61 < pow2 128);
assert_norm (pow2 116 + pow2 61 < pow2 117);
Math.Lemmas.small_mod (v a + v b) (pow2 128);
a +. b
inline_for_extraction noextract
val mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem_wide5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_wide_fits5 r (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) /\
wide_as_nat5 r == as_nat5 x * as_nat5 y)
let lemma_mult_distr_3 (a b c:nat) (n:nat) : Lemma
((a + b - c * pow2 56) * pow2 n == a * pow2 n + b * pow2 n - c * pow2 (n + 56))
=
Math.Lemmas.distributivity_sub_left (a + b) (c * pow2 56) (pow2 n);
Math.Lemmas.distributivity_add_left a b (pow2 n);
Math.Lemmas.pow2_plus 56 n
#set-options "--z3rlimit 300"
let mul_5 (x0, x1, x2, x3, x4) (y0, y1, y2, y3, y4) =
let xy00 = mul64_wide_5 x0 y0 in
let xy01 = mul64_wide_5 x0 y1 in
let xy02 = mul64_wide_5 x0 y2 in
let xy03 = mul64_wide_5 x0 y3 in
let xy04 = mul64_wide_5 x0 y4 in
let xy10 = mul64_wide_5 x1 y0 in
let xy11 = mul64_wide_5 x1 y1 in
let xy12 = mul64_wide_5 x1 y2 in
let xy13 = mul64_wide_5 x1 y3 in
let xy14 = mul64_wide_5 x1 y4 in
let xy20 = mul64_wide_5 x2 y0 in
let xy21 = mul64_wide_5 x2 y1 in
let xy22 = mul64_wide_5 x2 y2 in
let xy23 = mul64_wide_5 x2 y3 in
let xy24 = mul64_wide_5 x2 y4 in
let xy30 = mul64_wide_5 x3 y0 in
let xy31 = mul64_wide_5 x3 y1 in
let xy32 = mul64_wide_5 x3 y2 in
let xy33 = mul64_wide_5 x3 y3 in
let xy34 = mul64_wide_5 x3 y4 in
let xy40 = mul64_wide_5 x4 y0 in
let xy41 = mul64_wide_5 x4 y1 in
let xy42 = mul64_wide_5 x4 y2 in
let xy43 = mul64_wide_5 x4 y3 in
let xy44 = mul64_wide_5 x4 y4 in
let z0 = xy00 in // < pow2 112
let z1 = add2 xy01 xy10 in // < pow2 113
let z2 = add3 xy02 xy11 xy20 in // < pow2 114
let z3 = add4 xy03 xy12 xy21 xy30 in // < pow2 115
let z4 = add5 xy04 xy13 xy22 xy31 xy40 in // < pow2 116
let z5 = add4 xy14 xy23 xy32 xy41 in
let z6 = add3 xy24 xy33 xy42 in
let z7 = add2 xy34 xy43 in
let z8 = xy44 in
//(z0, z1, z2, z3, z4, z5, z6, z7, z8)
assert_norm (pow2 112 < pow2 117);
assert_norm (pow2 112 <= pow2 116);
let (c0, t0) = carry56_wide z0 in
let (c1, t1) = carry56_wide (add_inner_carry z1 c0) in
let (c2, t2) = carry56_wide (add_inner_carry z2 c1) in
let (c3, t3) = carry56_wide (add_inner_carry z3 c2) in
let (c4, t4) = carry56_wide (add_inner_carry z4 c3) in
let (c5, t5) = carry56_wide (add_inner_carry z5 c4) in
let (c6, t6) = carry56_wide (add_inner_carry z6 c5) in
let (c7, t7) = carry56_wide (add_inner_carry z7 c6) in
let (c8, t8) = carry56_wide (add_inner_carry z8 c7) in
let t9 = to_u64 c8 in
let lemma_t9_fits () : Lemma (v t9 < pow2 56)
= // This proof was built from the bottom. We have as a constraint that v c8 has to be < pow2 112 to satisfy the postcondition.
// We compute each time the maximal value such that this postcondition is satisfied
calc (<) {
v c0;
(<) { Math.Lemmas.lemma_div_lt_nat (v z0) 112 56 }
pow2 56;
};
calc (<) {
v c1;
(<) { assert_norm (2*(pow2 112 - pow2 57 + 1) + pow2 56 <= pow2 113);
Math.Lemmas.lemma_div_lt_nat (v z1 + v c0) 113 56 }
pow2 57;
};
calc (<) {
v c2;
(<) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 57 <= pow2 114);
Math.Lemmas.lemma_div_lt_nat (v z2 + v c1) 114 56 }
pow2 58;
};
calc (<=) {
v c3;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + pow2 58 <= 31153781151208965410895007785680895);
assert_norm (31153781151208965410895007785680895 / pow56 == 432345564227567610);
Math.Lemmas.lemma_div_le (v z3 + v c2) 31153781151208965410895007785680895 (pow2 56) }
432345564227567610;
};
calc (<=) {
v c4;
(<=) { assert_norm (5*(pow2 112 - pow2 57 + 1) + 432345564227567610 <= 25961484292674137854422105494388735); // (pow2 59 - 2) * pow56
assert_norm (25961484292674137854422105494388735 / pow56 == 360287970189639675);
Math.Lemmas.lemma_div_le (v z4 + v c3) 25961484292674137854422105494388735 (pow2 56) }
360287970189639675;
};
calc (<=) {
v c5;
(<=) { assert_norm (4*(pow2 112 - pow2 57 + 1) + 360287970189639675 <= 20769187434139310297949203203096575);
Math.Lemmas.lemma_div_le (v z5 + v c4) 20769187434139310297949203203096575 (pow2 56);
assert_norm (20769187434139310297949203203096575 / pow2 56 == pow2 58 - 4) }
pow2 58 - 4;
};
calc (<=) {
v c6;
(<=) { assert_norm (3*(pow2 112 - pow2 57 + 1) + pow2 58 - 4 <= 15576890575604482741476300911804415);
Math.Lemmas.lemma_div_le (v z6 + v c5) 15576890575604482741476300911804415 (pow2 56);
assert_norm (15576890575604482741476300911804415 / pow2 56 == 216172782113783805) }
216172782113783805;
};
calc (<=) {
v c7;
(<=) { assert_norm (2*(pow2 112 - pow2 57 + 1) + 216172782113783805 <= 10384593717069655185003398620512255); // (pow2 57 - 1) * pow2 56 - 1
Math.Lemmas.lemma_div_le (v z7 + v c6) 10384593717069655185003398620512255 (pow2 56);
assert_norm (10384593717069655185003398620512255 / pow2 56 == pow2 57 - 2) }
pow2 57 - 2;
};
calc (<) {
v c8;
(<) { Math.Lemmas.lemma_div_lt_nat (v z8 + v c7) 112 56 }
pow2 56;
};
assert_norm (pow2 56 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
in
lemma_t9_fits();
calc (==) {
wide_as_nat5 (t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) <: int;
(==) { }
v t0 + v t1 * pow56 + v t2 * pow112 + v t3 * pow168 + v t4 * pow224 +
v t5 * pow280 + v t6 * pow336 + v t7 * pow392 + v t8 * pow448 + v t9 * pow504;
(==) { assert_norm (pow2 61 < pow2 64);
Math.Lemmas.small_mod (v c8) (pow2 64)
}
v z0 - v c0 * pow2 56 +
(v z1 + v c0 - v c1 * pow2 56) * pow56 +
(v z2 + v c1 - v c2 * pow2 56) * pow112 +
(v z3 + v c2 - v c3 * pow2 56) * pow168 +
(v z4 + v c3 - v c4 * pow2 56) * pow224 +
(v z5 + v c4 - v c5 * pow2 56) * pow280 +
(v z6 + v c5 - v c6 * pow2 56) * pow336 +
(v z7 + v c6 - v c7 * pow2 56) * pow392 +
(v z8 + v c7 - v c8 * pow2 56) * pow448 +
v c8 * pow504;
(==) {
lemma_mult_distr_3 (v z1) (v c0) (v c1) 56;
lemma_mult_distr_3 (v z2) (v c1) (v c2) 112;
lemma_mult_distr_3 (v z3) (v c2) (v c3) 168;
lemma_mult_distr_3 (v z4) (v c3) (v c4) 224;
lemma_mult_distr_3 (v z5) (v c4) (v c5) 280;
lemma_mult_distr_3 (v z6) (v c5) (v c6) 336;
lemma_mult_distr_3 (v z7) (v c6) (v c7) 392;
lemma_mult_distr_3 (v z8) (v c7) (v c8) 448
}
v z0 +
v z1 * pow56 +
v z2 * pow112 +
v z3 * pow168 +
v z4 * pow224 +
v z5 * pow280 +
v z6 * pow336 +
v z7 * pow392 +
v z8 * pow448;
(==) { calc (==) {
v z1;
(==) { }
v x0 * v y1 + v x1 * v y0;
};
calc (==) {
v z2;
(==) { }
v x0 * v y2 + v x1 * v y1 + v x2 * v y0;
};
calc (==) {
v z3;
(==) { }
v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0;
};
calc (==) {
v z4;
(==) { }
v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0;
};
calc (==) {
v z5;
(==) { }
v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1;
};
calc (==) {
v z6;
(==) { }
v x2 * v y4 + v x3 * v y3 + v x4 * v y2;
};
calc (==) {
v z7;
(==) { }
v x3 * v y4 + v x4 * v y3;
};
calc (==) {
v z8;
(==) { }
v x4 * v y4;
}
}
v x0 * v y0 +
(v x0 * v y1 + v x1 * v y0) * pow56 +
(v x0 * v y2 + v x1 * v y1 + v x2 * v y0) * pow112 +
(v x0 * v y3 + v x1 * v y2 + v x2 * v y1 + v x3 * v y0) * pow168 +
(v x0 * v y4 + v x1 * v y3 + v x2 * v y2 + v x3 * v y1 + v x4 * v y0) * pow224 +
(v x1 * v y4 + v x2 * v y3 + v x3 * v y2 + v x4 * v y1) * pow280 +
(v x2 * v y4 + v x3 * v y3 + v x4 * v y2) * pow336 +
(v x3 * v y4 + v x4 * v y3) * pow392 +
(v x4 * v y4) * pow448;
(==) { Lemmas.lemma_mul_qelem5 (v x0) (v x1) (v x2) (v x3) (v x4) (v y0) (v y1) (v y2) (v y3) (v y4) }
(v x0 + v x1 * pow2 56 + v x2 * pow2 112 + v x3 * pow2 168 + v x4 * pow2 224) *
(v y0 + v y1 * pow2 56 + v y2 * pow2 112 + v y3 * pow2 168 + v y4 * pow2 224);
};
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9)
inline_for_extraction noextract
val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264) | false | false | Hacl.Spec.BignumQ.Mul.fst | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 300,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val low_mul_5:
x:qelem5
-> y:qelem5 ->
Pure qelem5
(requires
qelem_fits5 x (1, 1, 1, 1, 1) /\
qelem_fits5 y (1, 1, 1, 1, 1))
(ensures fun r ->
qelem_fits5 r (1, 1, 1, 1, 1) /\
as_nat5 r == (as_nat5 x * as_nat5 y) % pow2 264) | [] | Hacl.Spec.BignumQ.Mul.low_mul_5 | {
"file_name": "code/ed25519/Hacl.Spec.BignumQ.Mul.fst",
"git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e",
"git_url": "https://github.com/hacl-star/hacl-star.git",
"project_name": "hacl-star"
} | x: Hacl.Spec.BignumQ.Definitions.qelem5 -> y: Hacl.Spec.BignumQ.Definitions.qelem5
-> Prims.Pure Hacl.Spec.BignumQ.Definitions.qelem5 | {
"end_col": 22,
"end_line": 628,
"start_col": 57,
"start_line": 582
} |
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let associative #a (f: (a -> a -> a)) = forall x y z. f (f x y) z == f x (f y z) | let associative #a (f: (a -> a -> a)) = | false | null | false | forall x y z. f (f x y) z == f x (f y z) | {
"checked_file": "FStar.IFC.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.IFC.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.IFC
/// FStar.IFC provides a simple, generic abstraction for monadic
/// information-flow control based on a user-defined (semi-)lattice of
/// information flow labels.
///
/// The main idea is to provide an abstract type [protected a l],
/// encapsulating values of type [a] carrying information at
/// confidentiality level [l]. Operations that compute on the
/// underlying [a] are instrumented to reflect the sensitivity of
/// their arguments on their results.
///
/// Several papers develop this idea, ranging from
///
/// Fable: A language for enforcing user-defined security policies
/// http://www.cs.umd.edu/~nswamy/papers/fable-tr.pdf
///
/// To more modern variants like
/// https://hackage.haskell.org/package/lio
(**** Basic definitions for a join semilattice *) | false | false | FStar.IFC.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val associative : f: (_: a -> _: a -> a) -> Prims.logical | [] | FStar.IFC.associative | {
"file_name": "ulib/FStar.IFC.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: a -> _: a -> a) -> Prims.logical | {
"end_col": 80,
"end_line": 40,
"start_col": 40,
"start_line": 40
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let commutative #a (f: (a -> a -> a)) = forall x y. f x y == f y x | let commutative #a (f: (a -> a -> a)) = | false | null | false | forall x y. f x y == f y x | {
"checked_file": "FStar.IFC.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.IFC.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.IFC
/// FStar.IFC provides a simple, generic abstraction for monadic
/// information-flow control based on a user-defined (semi-)lattice of
/// information flow labels.
///
/// The main idea is to provide an abstract type [protected a l],
/// encapsulating values of type [a] carrying information at
/// confidentiality level [l]. Operations that compute on the
/// underlying [a] are instrumented to reflect the sensitivity of
/// their arguments on their results.
///
/// Several papers develop this idea, ranging from
///
/// Fable: A language for enforcing user-defined security policies
/// http://www.cs.umd.edu/~nswamy/papers/fable-tr.pdf
///
/// To more modern variants like
/// https://hackage.haskell.org/package/lio
(**** Basic definitions for a join semilattice *)
(** The [lub] is associative *)
let associative #a (f: (a -> a -> a)) = forall x y z. f (f x y) z == f x (f y z) | false | false | FStar.IFC.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val commutative : f: (_: a -> _: a -> a) -> Prims.logical | [] | FStar.IFC.commutative | {
"file_name": "ulib/FStar.IFC.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: a -> _: a -> a) -> Prims.logical | {
"end_col": 66,
"end_line": 43,
"start_col": 40,
"start_line": 43
} |
|
Prims.Tot | [
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | false | let idempotent #a (f: (a -> a -> a)) = forall x. f x x == x | let idempotent #a (f: (a -> a -> a)) = | false | null | false | forall x. f x x == x | {
"checked_file": "FStar.IFC.fsti.checked",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.IFC.fsti"
} | [
"total"
] | [
"Prims.l_Forall",
"Prims.eq2",
"Prims.logical"
] | [] | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.IFC
/// FStar.IFC provides a simple, generic abstraction for monadic
/// information-flow control based on a user-defined (semi-)lattice of
/// information flow labels.
///
/// The main idea is to provide an abstract type [protected a l],
/// encapsulating values of type [a] carrying information at
/// confidentiality level [l]. Operations that compute on the
/// underlying [a] are instrumented to reflect the sensitivity of
/// their arguments on their results.
///
/// Several papers develop this idea, ranging from
///
/// Fable: A language for enforcing user-defined security policies
/// http://www.cs.umd.edu/~nswamy/papers/fable-tr.pdf
///
/// To more modern variants like
/// https://hackage.haskell.org/package/lio
(**** Basic definitions for a join semilattice *)
(** The [lub] is associative *)
let associative #a (f: (a -> a -> a)) = forall x y z. f (f x y) z == f x (f y z)
(** The [lub] is commutative *)
let commutative #a (f: (a -> a -> a)) = forall x y. f x y == f y x | false | false | FStar.IFC.fsti | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | null | val idempotent : f: (_: a -> _: a -> a) -> Prims.logical | [] | FStar.IFC.idempotent | {
"file_name": "ulib/FStar.IFC.fsti",
"git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | f: (_: a -> _: a -> a) -> Prims.logical | {
"end_col": 59,
"end_line": 46,
"start_col": 39,
"start_line": 46
} |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.